JP2020134179A - Non-destructive cell analysis method - Google Patents

Non-destructive cell analysis method Download PDF

Info

Publication number
JP2020134179A
JP2020134179A JP2019024097A JP2019024097A JP2020134179A JP 2020134179 A JP2020134179 A JP 2020134179A JP 2019024097 A JP2019024097 A JP 2019024097A JP 2019024097 A JP2019024097 A JP 2019024097A JP 2020134179 A JP2020134179 A JP 2020134179A
Authority
JP
Japan
Prior art keywords
cells
sugar chain
cell
analysis method
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019024097A
Other languages
Japanese (ja)
Other versions
JP7369393B2 (en
Inventor
明弘 梅澤
Akihiro Umezawa
明弘 梅澤
岡村 浩司
Koji Okamura
浩司 岡村
眞侑 柴田
Mayu Shibata
眞侑 柴田
秀紀 野中
Hidenori Nonaka
秀紀 野中
雅雄 山田
Masao Yamada
雅雄 山田
京子 横田
Kyoko Yokota
京子 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glicotechnica Ltd
Rohto Pharmaceutical Co Ltd
National Center for Child Health and Development
Original Assignee
Glicotechnica Ltd
Rohto Pharmaceutical Co Ltd
National Center for Child Health and Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glicotechnica Ltd, Rohto Pharmaceutical Co Ltd, National Center for Child Health and Development filed Critical Glicotechnica Ltd
Priority to JP2019024097A priority Critical patent/JP7369393B2/en
Publication of JP2020134179A publication Critical patent/JP2020134179A/en
Application granted granted Critical
Publication of JP7369393B2 publication Critical patent/JP7369393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a non-destructive cell analysis method for analyzing cell type, etc. of pluripotent cells such as differentiated cells, mesenchymal stem cells, or the like. as well as to provide a non-destructive cell analysis method for analyzing the cell status, such as aging, activity, pluripotency, differentiation orientation, efficacy, etc.SOLUTION: The cell type or cell state can be analyzed without destroying the cells by obtaining and analyzing a sugar chain profile of functional factors secreted from cells in a medium using a microarray with immobilized sugar chain-binding proteins.SELECTED DRAWING: None

Description

本発明は、細胞の状態を非破壊的に検査する検査装置と解析方法に関する。本発明の検査、解析は、分化細胞、幹細胞など多能性細胞等の細胞種の分類及び解析に関する。また、本発明の検査、解析はする細胞の状態としては、老化と活性度、多能性、分化指向性、有効性などがある。 The present invention relates to an inspection device and an analysis method for non-destructively inspecting the state of cells. The examination and analysis of the present invention relate to the classification and analysis of cell types such as pluripotent cells such as differentiated cells and stem cells. In addition, the state of cells to be examined and analyzed by the present invention includes aging and activity, pluripotency, differentiation orientation, and effectiveness.

細胞の状態を非破壊的に検査する検査装置、解析方法に関しては従来から種々の検査装置、解析方法が知られている。 Various inspection devices and analysis methods have been conventionally known for non-destructive inspection devices and analysis methods for the state of cells.

特許文献1には、細胞や生体組織の遺伝子発現態様や、抗原抗体反応を解析する試料チップ解析装置及び解析方法に関して、蛍光物質の励起光や外乱光に影響されることなく試料に結合された被検試料に標識された蛍光物質からの発光を確実、かつ高精度に検出して被検試料の解析作業を効率化できる試料チップ解析装置及び解析方法が記載されている。 In Patent Document 1, the gene expression mode of cells and biological tissues, the sample chip analyzer for analyzing the antigen-antibody reaction, and the analysis method are bound to the sample without being affected by the excitation light or the disturbance light of the fluorescent substance. A sample chip analyzer and an analysis method capable of reliably and highly accurately detecting light emission from a fluorescent substance labeled on a test sample to streamline the analysis work of the test sample are described.

特許文献2には、レクチンアレイの実用化に道を開く、タンパク質と糖鎖との相互作用を分析する方法が提案されている。レクチン、糖結合ドメインを有する酵素タンパク質、糖鎖に親和性を有するサイトカイン、または糖鎖に相互作用を示す抗体など、糖鎖に相互作用を示すタンパク質を固定化した基板に蛍光標識した被検糖鎖または被検複合糖質を接触させ、前記基板を洗浄せず、励起光(エバネッセント波)を作用させ、励起される蛍光の強度を測定することで、タンパク質と糖鎖との相互作用を分析する方法が記載されている。 Patent Document 2 proposes a method for analyzing the interaction between a protein and a sugar chain, which opens the way to the practical use of a lectin array. A test sugar fluorescently labeled on a substrate on which a protein that interacts with a sugar chain, such as a lectin, an enzyme protein having a sugar-binding domain, a cytokine having an affinity for a sugar chain, or an antibody that interacts with a sugar chain, is immobilized. The interaction between the protein and the sugar chain is analyzed by contacting the chain or the test complex sugar, not washing the substrate, allowing excitation light (evanescent wave) to act, and measuring the intensity of the excited fluorescence. How to do it is described.

特許文献3には、IgMクラスに属する糖鎖認識抗体やレクチンなどの糖鎖結合性タンパク質を複数種配置固定した導光性材料からなる基板と、該基板の側部端面に光を導入し、該基板表面にエバネッセント波を発生させて蛍光標識を励起する手段と、該手段により生じた蛍光の強度を上記糖鎖結合性タンパク質の配置位置毎に測定する蛍光強度測定手段とを有する、糖鎖あるいは複合糖質の解析装置が記載されている。 In Patent Document 3, light is introduced into a substrate made of a light-guiding material in which a plurality of sugar chain-binding proteins such as a sugar chain recognition antibody and a lectin belonging to the IgM class are arranged and fixed, and a side end surface of the substrate. A sugar chain having a means for generating an evanescent wave on the surface of the substrate to excite a fluorescent label and a means for measuring the fluorescence intensity for measuring the intensity of fluorescence generated by the means at each position of the sugar chain-binding protein. Alternatively, a complex sugar analyzer is described.

一方、品質管理項目としての間葉系幹細胞の必要最低評価条件としては、次の3項目が規定されている(非特許文献1)。
1.プラスティックへ接着し培養可能であること
2.細胞表面マーカーの発現について、CD73, CD90, CD105が陽性、CD45, CD34, CD14 or CD11b, CD79a or CD19, HLA-DRが陰性であること
3.骨芽細胞、脂肪細胞、軟骨細胞への分化能を有すること
On the other hand, the following three items are defined as the minimum necessary evaluation conditions for mesenchymal stem cells as quality control items (Non-Patent Document 1).
1. 1. Must be able to adhere to plastic and be cultured. Regarding the expression of cell surface markers, CD73, CD90, CD105 are positive, and CD45, CD34, CD14 or CD11b, CD79a or CD19, HLA-DR are negative. Has the ability to differentiate into osteoblasts, adipocytes, and chondrocytes

しかしながら、分化能試験は試験実施に非常に時間を要する。また、細胞表面マーカーの試験はフローサイトメーターで実施ができるため比較的容易であるが、これらのマーカーの特異性は高いとは言えず、識別可能な細胞に限界があることが指摘されている。具体的には、間葉系幹細胞と繊維芽細胞の判別は困難を極める(非特許文献2)。 However, the potency test takes a very long time to carry out. In addition, although the test of cell surface markers can be performed with a flow cytometer, it is relatively easy, but the specificity of these markers is not high, and it has been pointed out that there is a limit to the cells that can be identified. .. Specifically, it is extremely difficult to distinguish between mesenchymal stem cells and fibroblasts (Non-Patent Document 2).

また、国際細胞治療学会が推奨する間葉系幹細胞製剤の評価方法には、免疫調整機能の評価があり、IFNγ、TNFαらのサイトカイン刺激と遺伝子発現解析が推奨されている(非特許文献3)。 In addition, the evaluation method for mesenchymal stem cell preparations recommended by the International Cell Therapy Association includes evaluation of immunomodulatory function, and cytokine stimulation of IFNγ, TNFα, etc. and gene expression analysis are recommended (Non-Patent Document 3). ..

これは、間葉系幹細胞の抗炎症作用は、サイトカイン刺激によりどのような因子がどの位誘導されるかである程度予測可能とされており、間葉系幹細胞を用いた再生医療等製品において、その有効性に結び付くものと考えられているからである(非特許文献4)。 It is said that the anti-inflammatory effect of mesenchymal stem cells can be predicted to some extent by what factors are induced by cytokine stimulation and how much, and in products such as regenerative medicine using mesenchymal stem cells. This is because it is considered to be linked to effectiveness (Non-Patent Document 4).

免疫調整機能評価においても、サイトカイン刺激及び細胞のさらなる培養行う事が必要であるため試験時間を要し、試験のコスト増を伴うことが課題として指摘されている。なお、本評価は核酸抽出が必要であるため、細胞の破壊を行うこととなる。培養上清からエクソソームを回収して糖鎖プロファイリングを行う方法が知られているが(非特許文献5)、エクソソームの回収には超遠心を用いた濃縮作業が必要であり、簡便性高い方法とは言えない。 It has been pointed out that the evaluation of immunomodulatory function also requires a long test time because it requires cytokine stimulation and further culture of cells, which increases the cost of the test. Since this evaluation requires nucleic acid extraction, cells will be destroyed. A method of recovering exosomes from a culture supernatant and performing sugar chain profiling is known (Non-Patent Document 5), but recovery of exosomes requires a concentration operation using an ultracentrifugation, which is a highly convenient method. I can't say.

従って、間葉系幹細胞を用いた再生医療等製品の開発において、その「品質管理」方法には、時間や費用等の面で改善の余地が残されている。 Therefore, in the development of products such as regenerative medicine using mesenchymal stem cells, there is room for improvement in terms of time, cost, etc. in the "quality control" method.

特開2003−172701公報JP-A-2003-172701 国際公開第2005/064333号公報International Publication No. 2005/064333 特開2007−3357号公報JP-A-2007-3357

M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 2006; 8(4), pp315-317M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 2006; 8 (4), pp315-317 E. Alt, Y. Yan, S. Gehmert, YH Song, A. Altman, S Gehmert, D. Vykoukai, X. Bai, Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential, Biol. Cell., 2011 Apr;103(4)pp.198-208E. Alt, Y. Yan, S. Gehmert, YH Song, A. Altman, S Gehmert, D. Vykoukai, X. Bai, Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential, Biol. Cell., 2011 Apr; 103 (4) pp.198-208 Cytotherapy, 2016 February; 18(2):151-159. doi:10.1016/j/jcyt.2015.11.008Cytotherapy, 2016 February; 18 (2): 151-159. doi: 10.1016 / j / jcyt. 2015.11.008 Galipeau et al., 2016 Cytotherapy; & Chinnadurai et al., 2018 CellReportsGalipeau et al., 2016 Cytotherapy; & Chinnadurai et al., 2018 Cell Reports A. Shimoda et al., BBRC 491 (2017), pp.701-707A. Shimoda et al., BBRC 491 (2017), pp.701-707

本発明は、分化細胞、間葉系幹細胞など多能性細胞等の細胞種等を非破壊的に検査及び解析する方法を提供することを目的とする。また、本発明は細胞の状態、例えば、老化、活性度、多能性、分化指向性、有効性等を非破壊的に検査及び解析する方法を提供することを目的とする。 An object of the present invention is to provide a method for nondestructively inspecting and analyzing cell types such as pluripotent cells such as differentiated cells and mesenchymal stem cells. Another object of the present invention is to provide a method for nondestructively examining and analyzing a cell state, for example, aging, activity, pluripotency, differentiation orientation, efficacy and the like.

本発明者らは上記課題を解決すべく鋭意検討した結果、糖鎖結合性タンパク質を固定化したマイクロアレイを用いて、細胞から分泌される機能因子からその糖鎖プロファイルを取得して解析することにより、細胞を破壊することなく細胞種もしくは細胞状態を解析することができることを見出した。本発明はこれらの知見に基づいて完成されたものである。すなわち、上記課題を解決するためになされた発明は、以下の通りである。 As a result of diligent studies to solve the above problems, the present inventors obtained and analyzed the sugar chain profile from functional factors secreted from cells using a microarray on which a sugar chain-binding protein was immobilized. , Found that it is possible to analyze cell type or cell state without destroying cells. The present invention has been completed based on these findings. That is, the inventions made to solve the above problems are as follows.

[1]
糖鎖結合性タンパク質を固定化したマイクロアレイを用いて、培地中に細胞から分泌される機能因子からその糖鎖プロファイルを取得し、解析する方法。
[1]
A method of obtaining and analyzing a sugar chain profile from a functional factor secreted from cells in a medium using a microarray on which a sugar chain-binding protein is immobilized.

[2]
前記細胞がヒト細胞である[1]の解析方法。
[2]
The method for analyzing [1], wherein the cell is a human cell.

[3]
糖鎖プロファイルを取得する工程がエバネッセント波蛍光励起装置を用いて行われる[1]又は[2]の解析方法。
[3]
The analysis method of [1] or [2], wherein the step of acquiring the sugar chain profile is performed using an evanescent wave fluorescence excitation device.

[4]
前記培地が無血清培地である[1]乃至[3]のいずれかの解析方法。
[4]
The analysis method according to any one of [1] to [3], wherein the medium is a serum-free medium.

[5]
前記機能因子が糖タンパク質である[1]乃至[4]のいずれかの解析方法。
[5]
The analysis method according to any one of [1] to [4], wherein the functional factor is a glycoprotein.

本発明によれば、分化細胞、間葉系幹細胞など多能性細胞等の細胞種を非破壊的に検査及び解析方法を提供することができる。また、本発明は細胞の状態、例えば、老化、活性度、多能性、分化指向性、有効性等を非破壊的に検査及び解析方法を提供することができる。本発明の検査及び解析方法では、一切の前処理を行なわず検査及び解析することができるため、細胞を用いた再生医療等製品の開発において、品質管理にかかる時間の短縮や費用の軽減をすることができる。 According to the present invention, it is possible to provide a method for non-destructively examining and analyzing cell types such as pluripotent cells such as differentiated cells and mesenchymal stem cells. The present invention can also provide a non-destructive method for examining and analyzing cell states such as aging, activity, pluripotency, differentiation orientation, efficacy and the like. Since the inspection and analysis method of the present invention can be inspected and analyzed without performing any pretreatment, the time required for quality control and the cost can be reduced in the development of products such as regenerative medicine using cells. be able to.

糖鎖プロファイリングの比較図Comparison diagram of sugar chain profiling 使用した深層学習の入力層から出力層への流れを説明する図The figure explaining the flow from the input layer to the output layer of the deep learning used

以下に、本発明の解析方法について詳細に説明する。 The analysis method of the present invention will be described in detail below.

本発明の検査及び解析方法は、細胞培養の培地中に分泌される糖タンパク質のレクチンマイクロアレイを用いた糖鎖プロファイリングを用いることで、細胞の持つ特徴を非破壊的に解析するものである。 The test and analysis method of the present invention is to non-destructively analyze the characteristics of cells by using sugar chain profiling using a lectin microarray of glycoproteins secreted into a cell culture medium.

「細胞の持つ特徴を非破壊的に解析する」とは、細胞を破壊することなく細胞種もしくは細胞状態を解析するものである。 "Non-destructive analysis of cell characteristics" is to analyze cell type or cell state without destroying cells.

本発明の検査及び解析方法によれば、検査対象となる細胞を用いることなく、本来培地交換等で廃棄する培地を用いることで、低コストで細胞の持つ特徴を解析することができる。 According to the inspection and analysis method of the present invention, the characteristics of cells can be analyzed at low cost by using a medium that is originally discarded by medium replacement or the like without using the cells to be inspected.

本発明の検査及び解析方法では、細胞の状態を、糖鎖結合性タンパク質を固定化したマイクロアレイを用いて、培地中に分泌される機能因子からその糖鎖プロファイルを取得し、非破壊的に解析する。 In the test and analysis method of the present invention, the state of cells is analyzed non-destructively by obtaining the sugar chain profile from the functional factors secreted in the medium using a microarray on which a sugar chain-binding protein is immobilized. To do.

本発明の解析方法において、糖鎖プロファイルを取得する工程は、エバネッセント波蛍光励起装置を用いて行うことができる。 In the analysis method of the present invention, the step of acquiring the sugar chain profile can be performed using an evanescent wave fluorescence excitation device.

エバネッセント波蛍光励起装置とは、糖鎖結合性タンパク質が固定化されたマイクロアレイの表面にエバネッセント波(近接場)を発生させ、解析対象になっている前記細胞から前記培地中に分泌される機能因子と、前記糖鎖結合性タンパク質との相互作用を、前記マイクロアレイ表面の洗浄や乾燥操作を行わず、非破壊で検出できる装置である。 The evanescent wave fluorescence exciter is a functional factor that generates an evanescent wave (proximity field) on the surface of a microarray on which a sugar chain-binding protein is immobilized and is secreted into the medium from the cell to be analyzed. It is a device that can detect the interaction with the sugar chain-binding protein in a non-destructive manner without washing or drying the surface of the microarray.

エバネッセント波蛍光励起装置としては、株式会社グライコテクニカのGlycoStation ReaderやGlycoLite等が例示される。 Examples of the evanescent wave fluorescence excitation device include Glyco Station Reader and Glyco Lite of Glyco Technica Co., Ltd.

本発明において、検査及び解析を行う細胞は、本発明の効果が得られる限り特に限定されるものではないが、例えば、ヒト細胞が挙げられる。本発明において、検査及び解析を行う細胞種としては、本発明の効果が得られる限り特に限定されるものではないが、例えば、分化細胞、間葉系幹細胞などの多能性細胞が挙げられる。 In the present invention, the cells to be examined and analyzed are not particularly limited as long as the effects of the present invention can be obtained, and examples thereof include human cells. In the present invention, the cell type to be examined and analyzed is not particularly limited as long as the effects of the present invention can be obtained, and examples thereof include pluripotent cells such as differentiated cells and mesenchymal stem cells.

本発明において、検査及び解析する細胞の状態としては、本発明の効果が得られる限り特に限定されるものではないが、例えば、老化と活性度、多能性、分化指向性、有効性が挙げられる。 In the present invention, the state of the cell to be examined and analyzed is not particularly limited as long as the effect of the present invention can be obtained, and examples thereof include aging and activity, pluripotency, differentiation orientation, and effectiveness. Be done.

本発明で用いる培地は細胞を培養できる培地であれば、特に限定されないが、例えば、無血清培地が挙げられる。 The medium used in the present invention is not particularly limited as long as it is a medium capable of culturing cells, and examples thereof include a serum-free medium.

本発明で用いる機能因子は、本発明の効果が得られる限り特に限定されるものではないが、糖タンパク質が挙げられる。 The functional factors used in the present invention are not particularly limited as long as the effects of the present invention can be obtained, and examples thereof include glycoproteins.

無血清培地とは、血清を含まない動物細胞培養用の培地であり、動物細胞を人工的に培養する場合に、必要な増殖因子等の成分を補うため、培地中に5〜20%程度の血清を添加した培地に対比して、血清を添加せずに同様な効果を実現したものである。 The serum-free medium is a medium for culturing animal cells that does not contain serum, and is about 5 to 20% in the medium in order to supplement components such as growth factors necessary for artificially culturing animal cells. Compared with the medium to which serum was added, the same effect was realized without adding serum.

本発明において、解析には機械学習の中でも特に教師あり学習を使用することができる。「教師あり学習」とは、ソフトウェアに目的の結果を導き出す手順をハードコーディングすることなく、データから反復的に学習し、そこに潜むパターンから独自の手順を見つけ出す学習方法である。 In the present invention, supervised learning can be used for analysis, among other machine learning. "Supervised learning" is a learning method that iteratively learns from data and finds a unique procedure from the patterns hidden in it, without hard-coding the procedure to derive the desired result in software.

本発明の解析方法の機械学習として、深層学習(ディープラーニング)を使用することができる。「深層学習」とは、神経細胞間の情報伝達を参考にしたニューラルネットワークを何層も重ねることにより、データの学習をへて分析を行う教師あり学習の一手法である。 Deep learning can be used as machine learning for the analysis method of the present invention. "Deep learning" is a supervised learning method that analyzes data through the learning of data by stacking multiple layers of neural networks that refer to information transmission between nerve cells.

本発明の検査及び解析方法には糖鎖との弱い結合を漏れなく検出するためのエバネッセント波蛍光励起スキャナー、試料チップ解析装置、糖鎖プロファイルを取得するためのエバネッセント波蛍光励起装置を用いることができる。 The inspection and analysis method of the present invention may use an evanescent wave fluorescence excitation scanner for detecting weak bonds with sugar chains without omission, a sample chip analyzer, and an evanescent wave fluorescence excitation device for acquiring a sugar chain profile. it can.

本発明の検査及び解析方法には特許文献1、2、3に記載されたタンパク質と糖鎖との相互作用を分析する方法を用いることができる。本発明の検査及び解析方法には特許文献1、2、3に記載された糖鎖あるいは複合糖質の解析装置を用いることができる。本発明の検査及び解析方法にはその他の従来技術を使用することができる。 As the inspection and analysis method of the present invention, the method for analyzing the interaction between a protein and a sugar chain described in Patent Documents 1, 2 and 3 can be used. As the inspection and analysis method of the present invention, the sugar chain or complex sugar analyzer described in Patent Documents 1, 2 and 3 can be used. Other prior art techniques can be used for the inspection and analysis methods of the present invention.

以下、本発明の実施例を説明するが、本発明は上述した実施の形態、以下の実施例に限られるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the above-described embodiments and the following examples, and can be variously changed within the technical scope grasped from the description of the claims. Is.

ヒト脂肪組織由来間葉系幹細胞(以下「AD」と言う)、ヒト臍帯由来間葉系幹細胞(以下「UC」と言う)、ヒト肺線維芽細胞(以下「Lung」と言う)、ヒト肝由来線維芽細胞(以下「Liver」と言う)、ヒト動脈由来細胞(以下「Aorta」と言う)を間葉系幹細胞用無血清培地(ロート製薬製)で培養した。 Human adipose tissue-derived mesenchymal stem cells (hereinafter referred to as "AD"), human umbilical band-derived mesenchymal stem cells (hereinafter referred to as "UC"), human lung fibroblasts (hereinafter referred to as "Lung"), human liver-derived Fibroblasts (hereinafter referred to as "Liver") and human artery-derived cells (hereinafter referred to as "Aorta") were cultured in a serum-free medium for mesenchymal stem cells (manufactured by Rohto Pharmaceutical Co., Ltd.).

培養後2日及び4日において20μLの培養上清を回収し、下記のプロトコルに従って試料の前処理を行った。 20 μL of the culture supernatant was collected 2 and 4 days after the culture, and the sample was pretreated according to the following protocol.

1.各試料20μLとCy3 Mono-Reactive dye 100μg labeling(GE Healthcare, PA23001を100μg labelingずつ子分けたもの)を混合し、室温、暗所で1時間反応させた。 1. 1. 20 μL of each sample and 100 μg labeling of Cy3 Mono-Reactive dye (GE Healthcare, PA23001 divided into 100 μg labeling) were mixed and reacted at room temperature in the dark for 1 hour.

2.脱塩カラム(Zeba(商標)Spin Desalting Columns, 7K MWCO (Thermo SCIENTIFIC, 89882)を1,500×g、1分間、4℃で遠心した。 2. 2. Desalted columns (Zeba ™ Spin Desalting Columns, 7K MWCO (Thermo SCIENTIFIC, 89882)) were centrifuged at 1,500 xg for 1 minute at 4 ° C.

3.脱塩カラムにTBS=300μLをアプライし、1,500×g、1分間、4℃で遠心する (カラム洗浄) 。この工程を2回繰り返した。 3. 3. Apply TBS = 300 μL to the desalting column and centrifuge at 1,500 × g for 1 minute at 4 ° C (column wash). This process was repeated twice.

4.脱塩カラムに各試料全量とT= 25μLをアプライして、1,500×g、2分間、4℃で遠心し、未反応のCy3を除いた。 4. The whole amount of each sample and T = 25 μL were applied to a desalting column and centrifuged at 1,500 × g for 2 minutes at 4 ° C. to remove unreacted Cy3.

5.各試料にProbing Solution 450μLをアプライし、500μL/tubeにメスアップした。 5. Probing Solution 450 μL was applied to each sample, and the sample was increased to 500 μL / tube.

6.LecChip(登録商標)(GlycoTechnica製レクチンマイクロアレイ)をProbing Solution(100μL/ウェル)(GlycoTechnica製 LecChip用プロービング液)で3回洗浄後、各試料(100μL/ウェル)をアプライし、LecChip(登録商標)を20℃で、17時間以上反応させた。 6. After washing LecChip (registered trademark) (GlycoTechnica lectin microarray) with Probing Solution (100 μL / well) (GlycoTechnica probing solution for LecChip) three times, apply each sample (100 μL / well) and apply LecChip (registered trademark). The reaction was carried out at 20 ° C. for 17 hours or more.

7.試料を反応させたままの液相状態のLecChip(登録商標)をGlycoStation(登録商標)Reader 1200 (GlycoTechnica製 エバネッセント波蛍光励起スキャナー)で測定した(測定条件,積算回数: 4回、露光時間: 133msec、カメラゲイン: 75, 85, 95, 105, 115, 125)。 7. LecChip (registered trademark) in the liquid phase state in which the sample was reacted was measured with GlycoStation (registered trademark) Reader 1200 (Evanescent wave fluorescence excitation scanner manufactured by GlycoTechnica) (measurement conditions, number of integrations: 4, exposure time: 133 msec) , Camera gain: 75, 85, 95, 105, 115, 125).

8.GlycoStaion(登録商標)Tools Pro Suite 1.5 (GlycoTechnica製 糖鎖解析ソフトウェア)による数値化、データ統合(ゲイン統合) を行った。 8. Quantification and data integration (gain integration) were performed using GlycoStaion (registered trademark) Tools Pro Suite 1.5 (GlycoTechnica sugar chain analysis software).

9.データ統合(ゲイン統合)した数値データについて、すべての数値化データをMicrosoft(登録商標) Excelのシートにエキスポートした。なお、表計算ソフトウェアのスプレッドシートにエキスポートしてもよい。 9. For the numerical data that was data-integrated (gain-integrated), all the digitized data was exported to the Microsoft (registered trademark) Excel sheet. It may be exported to a spreadsheet of spreadsheet software.

以上のように前処理を行った試料について、45種類のレクチンが搭載されたレクチンマイクロアレイ(LecChip(登録商標))を用いて糖鎖プロファイラー(GlycoStation(登録商標)Reader 1200)でスキャンして得られる蛍光強度(糖鎖プロファイル)に基づく糖鎖プロファイリングを行った。その結果の比較図を図1に示した。図1中、Beforeは、細胞を培養していない培地であり、Afterは、細胞培養後2日の培地中の糖鎖プロファイリングを示した。 It is obtained by scanning the pretreated sample as described above with a sugar chain profiler (GlycoStation (registered trademark) Reader 1200) using a lectin microarray (LecChip (registered trademark)) equipped with 45 types of lectins. Sugar chain profiling based on the fluorescence intensity (sugar chain profile) was performed. A comparative diagram of the results is shown in FIG. In FIG. 1, Before is a medium in which cells are not cultured, and After is sugar chain profiling in the medium 2 days after cell culture.

細胞を培養していない培地の上清からは、STL、 UDA以外の信号は検出されず、細胞培養後2日の培地の上清からは数多くのレクチンの信号が検出された。また、図としては示していないが、細胞培養後4日の培地の上清からは、細胞培養後2日の培地の上清に比べて検出されるレクチンの信号が増加しており、細胞培養後に見られる数多くのレクチンからの信号は、培地中に細胞から分泌された因子であることが確認された。 No signals other than STL and UDA were detected in the supernatant of the medium in which the cells were not cultured, and many lectin signals were detected in the supernatant of the medium 2 days after the cell culture. In addition, although not shown in the figure, the signal of lectin detected from the supernatant of the medium 4 days after the cell culture is increased as compared with the supernatant of the medium 2 days after the cell culture, and the cell culture It was confirmed that the signals from many lectins seen later were factors secreted from cells in the medium.

図1に示されるような45種類のレクチンが搭載されたレクチンマイクロアレイ(LecChip(登録商標))を用いて糖鎖プロファイラー(GlycoStation(登録商標)Reader 1200)でスキャンして得られる蛍光強度(糖鎖プロファイル)から、教師なし学習および教師あり学習の両方に共通して用いるための45要素からなる特徴ベクトルを作成した。 Fluorescence intensity (sugar chain) obtained by scanning with a sugar chain profiler (GlycoStation (registered trademark) Reader 1200) using a lectin microarray (LecChip (registered trademark)) equipped with 45 types of lectins as shown in FIG. From the profile), a feature vector consisting of 45 elements was created for common use in both unsupervised learning and supervised learning.

蛍光強度に1.0を足して常用対数を取ることで、小さな蛍光強度の差を強調し、大きな蛍光強度の差を縮小させた上で、その最小値を0に、最大値が1になるように正規化を行った。 By adding 1.0 to the fluorescence intensity and taking the common logarithm, the difference in small fluorescence intensity is emphasized, the difference in large fluorescence intensity is reduced, and the minimum value is set to 0 and the maximum value is set to 1. Normalization was done as follows.

正規化法(x:測定された蛍光強度、xmin:測定された最小蛍光強度、xmax:測定された最大蛍光強度、y:規格化後)
y = (log(x + 1.0) - log(xmin + 1.0)) / (log(xmax + 1.0) - log(xmin + 1.0))
Normalization method (x: measured fluorescence intensity, x min : measured minimum fluorescence intensity, x max : measured maximum fluorescence intensity, y: after normalization)
y = (log (x + 1.0) --log (x min + 1.0)) / (log (x max + 1.0) --log (x min + 1.0))

教師あり学習は、オンライン機械学習向け分散処理フレームワークJubatus (http://jubat.us/) に含まれる多値分類機能Classifierを利用して線形分類、さらに深層学習に対応したフレームワーク TensorFlow (http://tensorflow.org/) およびそのインターフェースであるKeras (http://keras.io/) を利用して深層学習を行った。 Supervised learning is a framework that supports linear classification and deep learning using the multi-value classification function Classifier included in the distributed processing framework Jubatus (http://jubat.us/) for online machine learning. TensorFlow (http) Deep learning was performed using //tensorflow.org/) and its interface Keras (http://keras.io/).

これらにおけるハイパーパラメータの最適化には、サンプル数が多くないため、一個抜き交差検証により行った。サンプル数の数だけ分類機の認識精度を出力し、最終的な認識精度を高めるための設定変更を重ねた。 Since the number of samples is not large, the optimization of hyperparameters in these was performed by cross-validation without one. The recognition accuracy of the classifier was output as many as the number of samples, and the settings were changed repeatedly to improve the final recognition accuracy.

線形分類では深層学習ほどの認識精度を望むことができないが、各レクチンの蛍光強度がどの程度分類に寄与したかを知ることができるため、この目的で利用した。認識精度を最大限高めるためにClassifierで利用するAROW等アルゴリズムの選択を行い、さらにそれらのアルゴリズムで設定可能なregularization weight値等の最適化を行った。完成させた線形分類機から、それぞれの分類に寄与したレクチンのランキングを作成し、後述する深層学習で得られた結果を補完するために用いた。 Although linear classification cannot be expected to have the same recognition accuracy as deep learning, it was used for this purpose because it is possible to know how much the fluorescence intensity of each lectin contributed to the classification. In order to maximize the recognition accuracy, we selected algorithms such as AROW to be used in the Classifier, and further optimized the regularization weight value that can be set by those algorithms. From the completed linear classifier, a ranking of lectins that contributed to each classification was created and used to complement the results obtained in deep learning described later.

深層学習は、affine層(全結合層)による隠れ層の積み重ねで構成した。活性化関数はReLU関数、重みの初期値はHeの初期値を用いた。2分類の場合、出力層の出力は単一ノードのSigmoid関数を用い、0に近いか1に近いかにより2分類を行うことができる。3分類以上の場合は、出力層のノード数を分類数に合わせることにより分類することができる。隠れ層の数は2から7程度、各層におけるノード数は4から60程度、batchサイズ、batch normalizationの利用、dropoutの値、学習率、SGD以外のパラメータ更新法の検討などのハイパーパラメータ最適化を行った。 Deep learning consisted of stacking hidden layers by affine layers (fully connected layers). The ReLU function was used as the activation function, and the initial value of He was used as the initial value of the weight. In the case of two classifications, the output of the output layer can be classified into two categories according to whether it is close to 0 or 1 by using the Sigmoid function of a single node. In the case of 3 or more classifications, the number of nodes in the output layer can be classified according to the number of classifications. The number of hidden layers is about 2 to 7, the number of nodes in each layer is about 4 to 60, and hyperparameter optimization such as batch size, use of batch normalization, dropout value, learning rate, and examination of parameter update methods other than SGD. went.

具体的には、図2に示すような入力層から出力層に至る構成で深層学習を行った。 Specifically, deep learning was performed with a configuration from the input layer to the output layer as shown in FIG.

深層学習による細胞種の認識精度は、表1に示す如くとなった。用いているサンプル数は、AD=105、UC=30、Lung=6、Liver=6、Aorta=6サンプルである。

Figure 2020134179
The accuracy of cell type recognition by deep learning is as shown in Table 1. The number of samples used is AD = 105, UC = 30, Lung = 6, Liver = 6, Aorta = 6 samples.
Figure 2020134179

表1から、間葉系幹細胞(AD、UD)が90%を超える精度で認識されており、品質確認の基礎となる細胞種の判定において有意な性能が得られていることがわかった。この結果は、対象となる細胞は非破壊にて、従来捨てられていた培地から特段の前処理なしに得られた結果であることを強調するものである。 From Table 1, it was found that mesenchymal stem cells (AD, UD) were recognized with an accuracy of more than 90%, and significant performance was obtained in determining the cell type that is the basis of quality confirmation. This result emphasizes that the cells of interest were non-destructive and were obtained from a previously discarded medium without any special pretreatment.

本発明により、分化細胞、間葉系幹細胞など多能性細胞等の細胞種等を非破壊的に検査及び解析する方法を提供する。また、本発明により細胞の状態、例えば、老化、活性度、多能性、分化指向性、有効性等を非破壊的に検査及び解析する方法を提供する。 INDUSTRIAL APPLICABILITY The present invention provides a method for nondestructively inspecting and analyzing cell types such as pluripotent cells such as differentiated cells and mesenchymal stem cells. The present invention also provides a method for non-destructively examining and analyzing cell states such as aging, activity, pluripotency, differentiation orientation, efficacy and the like.

Claims (5)

糖鎖結合性タンパク質を固定化したマイクロアレイを用いて、培地中に細胞から分泌される機能因子からその糖鎖プロファイルを取得し、解析する方法。 A method of obtaining and analyzing a sugar chain profile from a functional factor secreted from cells in a medium using a microarray on which a sugar chain-binding protein is immobilized. 前記細胞がヒト細胞である請求項1の解析方法。 The analysis method according to claim 1, wherein the cell is a human cell. 糖鎖プロファイルを取得する工程がエバネッセント波蛍光励起装置を用いて行われる請求項1又は2記載の解析方法。 The analysis method according to claim 1 or 2, wherein the step of acquiring the sugar chain profile is performed using an evanescent wave fluorescence excitation device. 前記培地が無血清培地である請求項1乃至3のいずれか一項に記載の解析方法。 The analysis method according to any one of claims 1 to 3, wherein the medium is a serum-free medium. 前記機能因子が糖タンパク質である請求項1乃至4のいずれか一項に記載の解析方法。 The analysis method according to any one of claims 1 to 4, wherein the functional factor is glycoprotein.
JP2019024097A 2019-02-14 2019-02-14 Non-destructive cell analysis method Active JP7369393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019024097A JP7369393B2 (en) 2019-02-14 2019-02-14 Non-destructive cell analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024097A JP7369393B2 (en) 2019-02-14 2019-02-14 Non-destructive cell analysis method

Publications (2)

Publication Number Publication Date
JP2020134179A true JP2020134179A (en) 2020-08-31
JP7369393B2 JP7369393B2 (en) 2023-10-26

Family

ID=72278380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024097A Active JP7369393B2 (en) 2019-02-14 2019-02-14 Non-destructive cell analysis method

Country Status (1)

Country Link
JP (1) JP7369393B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148236A (en) * 2007-12-20 2009-07-09 Glycoresearch Kk Method for identifying fibroblast
US20120282628A1 (en) * 2011-05-06 2012-11-08 Korea Basic Science Institute Method for diagnosing cancer using lectin
JP2017184713A (en) * 2016-03-31 2017-10-12 国立研究開発法人産業技術総合研究所 Method for determining cell differentiation potential

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148236A (en) * 2007-12-20 2009-07-09 Glycoresearch Kk Method for identifying fibroblast
US20120282628A1 (en) * 2011-05-06 2012-11-08 Korea Basic Science Institute Method for diagnosing cancer using lectin
JP2017184713A (en) * 2016-03-31 2017-10-12 国立研究開発法人産業技術総合研究所 Method for determining cell differentiation potential

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMODA, A. ET AL.: "Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of s", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 491, JPN6022041999, 2017, pages 701 - 707, XP085181371, ISSN: 0005026553, DOI: 10.1016/j.bbrc.2017.07.126 *

Also Published As

Publication number Publication date
JP7369393B2 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
Srivastava et al. Biosensor-based detection of tuberculosis
Cooper et al. Direct and sensitive detection of a human virus by rupture event scanning
Bhalla et al. Nanoplasmonic biosensor for rapid detection of multiple viral variants in human serum
Sezgintürk A new impedimetric biosensor utilizing vegf receptor-1 (flt-1): Early diagnosis of vascular endothelial growth factor in breast cancer
Robinson et al. Flow cytometry: the next revolution
Liébana et al. Electrochemical immunosensors, genosensors and phagosensors for Salmonella detection
Joung et al. Ultra-sensitive detection of pathogenic microorganism using surface-engineered impedimetric immunosensor
Maglio et al. A quartz crystal microbalance immunosensor for stem cell selection and extraction
Wang et al. Immunophenotyping of acute leukemia using an integrated piezoelectric immunosensor array
Spadafora et al. Species-specific immunodetection of an Entamoeba histolytica cyst wall protein
Tran et al. Simple Label‐Free Electrochemical Immunosensor in a Microchamber for Detecting Newcastle Disease Virus
Bigdeli et al. Electrochemical impedance spectroscopy (EIS) for biosensing
Lee et al. Automated estimation of cancer cell deformability with machine learning and acoustic trapping
Andryukov et al. Raman spectroscopy as a modern diagnostic technology for study and indication of infectious agents
Moreira et al. Development of a Biosensor Based on Angiotensin‐Converting Enzyme II for Severe Acute Respiratory Syndrome Coronavirus 2 Detection in Human Saliva
US20220120745A1 (en) Cell-free biofragment compositions and related systems, devices, and methods
JP2003000223A (en) Microorganism determination apparatus, electrode chip for microorganism determination by the apparatus and microorganism determination method
Li et al. Edge-enhanced microwell immunoassay for highly sensitive protein detection
JP7369393B2 (en) Non-destructive cell analysis method
Béland et al. Viability assessment of bacteria using long-range surface plasmon waveguide biosensors
CN102099494A (en) Method and system for detecting and/or quantifying bacteriophages, use of a microelectronic sensor device for detecting said bacteriophages and microelectronic sensor device for implementing said method
Quang Thinh et al. A label-free electrochemical immunosensor for detection of Newcastle disease virus
JP7481758B2 (en) Method for detecting a target substance in a sample
Al-Ghobashy et al. Coupled solid phase extraction and microparticle-based stability and purity-indicating immunosensor for the determination of recombinant human myelin basic protein in transgenic milk
EP3951022A1 (en) Process for modifying the surface of electrodes for the construction of electrochemical biosensors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7369393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150