JP2020133212A - Woody building material - Google Patents

Woody building material Download PDF

Info

Publication number
JP2020133212A
JP2020133212A JP2019027071A JP2019027071A JP2020133212A JP 2020133212 A JP2020133212 A JP 2020133212A JP 2019027071 A JP2019027071 A JP 2019027071A JP 2019027071 A JP2019027071 A JP 2019027071A JP 2020133212 A JP2020133212 A JP 2020133212A
Authority
JP
Japan
Prior art keywords
wood
fiber
building material
reinforcing
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027071A
Other languages
Japanese (ja)
Other versions
JP7204519B2 (en
Inventor
諭司 長瀬
Satoshi Nagase
諭司 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2019027071A priority Critical patent/JP7204519B2/en
Publication of JP2020133212A publication Critical patent/JP2020133212A/en
Application granted granted Critical
Publication of JP7204519B2 publication Critical patent/JP7204519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

To provide woody building material allowing long woody building material excellent in rigidity and strength to be obtained through connecting and integrating at least two laminated lumbers at site in a longitudinal direction and installation thereof in a simple way.SOLUTION: Woody building material is configured to connect at least two woody laminate lumbers 41 in a longitudinal direction, wherein the woody laminate lumber 41 is strengthened with a pipe-like reinforcement member penetrating through its longitudinal direction, and a tendon 44 is arranged in a pipe of the pipe-like reinforcement member to penetrate in the longitudinal direction within pipes of the pipe-like reinforcement members of the at least two woody laminate lumbers 41 to be fixed in a connected state of the at least two woody laminate lumber 41 in the longitudinal direction by tension applied to the tendon 44.SELECTED DRAWING: Figure 4

Description

本発明は木質建材に関する。 The present invention relates to wood building materials.

従来、単一木材や、木材の繊維方向に長く切削加工した引き板(ラミナ)あるいは小角材を、その繊維方向を互いに平行にして接着剤を用いて貼り合わせた集成材は、主に建築における柱、梁のような骨組材として使われ、あるいは木橋や大型のドームなどに使われている。 Conventionally, laminated lumber, which is made by laminating a single piece of wood, a pulling plate (lamina) or a small square timber that has been cut long in the fiber direction of the wood, with the fiber directions parallel to each other using an adhesive, is mainly used in construction. It is used as a frame material such as pillars and beams, or for wooden bridges and large dome.

特に、集成材は、ひき板、小角材を集成するため寸法、形状の自由度が高く、製品強度のばらつきや干割れ、狂いなどが小さい上に、曲がり材を容易に製造できるなどの優れた特性を持っている。 In particular, laminated lumber is excellent in that it has a high degree of freedom in size and shape because it is laminated with ground lumber and small square lumber, there is little variation in product strength, dry cracks, deviation, etc., and it is easy to manufacture bent lumber. Has characteristics.

ところが、これらの集成材を大型建築物や構造物に用いる場合、集成材の剛性や強度を高くする必要があるため集成材の厚みを大きくしなければならず、その結果、建築物や構造物の天井が低くなったり、過剰な厚み設計が必要になったりする。この対策として、剛性と強度の高い補強材を、接着剤などを介して一体化した強化単一木材や強化集成材を用いることが提案されている。 However, when these laminated woods are used for large buildings and structures, it is necessary to increase the rigidity and strength of the laminated woods, so the thickness of the laminated woods must be increased, and as a result, the buildings and structures. The ceiling of the building is low, and excessive thickness design is required. As a countermeasure, it has been proposed to use a reinforced single wood or reinforced laminated wood in which a reinforcing material having high rigidity and strength is integrated with an adhesive or the like.

補強材としては、金属や繊維などさまざまなものが用いられているが、例えば特許文献1では、補強用の繊維として炭素繊維を用いたプリプレグを使用し、その両面に熱硬化樹脂を含浸させた木質系シートを貼り付け一体化し、複合シートとして用いる方法が開示されている。この発明では、その補強繊維を含有した複合シートを、さらに木材と接着させ、木材接着性と取扱い性、加工性に優れた木質集成材を開示している。 Various materials such as metal and fiber are used as the reinforcing material. For example, in Patent Document 1, a prepreg using carbon fiber is used as the reinforcing fiber, and both sides thereof are impregnated with thermosetting resin. A method of pasting and integrating a wood-based sheet and using it as a composite sheet is disclosed. In the present invention, a composite sheet containing the reinforcing fibers is further adhered to wood, and a wood laminated wood having excellent wood adhesiveness, handleability, and processability is disclosed.

しかし、金属や繊維などの補強材料を複合するのみで剛性や強度を補強する方法においては、補強材料の添加量によって補強の程度が変わるため、大型建築物や構造物に用いるなど、より大きな剛性や強度を必要とする場合、より多くの補強材料を複合する必要がある。複合する材料が多くなるほど材料コストが増加することに加え、補強材料の接着強度の担保が難しくなり、複合化工程が複雑になるなどの課題があった。 However, in the method of reinforcing rigidity and strength only by combining reinforcing materials such as metal and fiber, the degree of reinforcement changes depending on the amount of reinforcing material added, so that it is used for large buildings and structures. And if strength is required, more reinforcement material needs to be compounded. In addition to the increase in material cost as the number of materials to be composited increases, it becomes difficult to guarantee the adhesive strength of the reinforcing material, and the compounding process becomes complicated.

この問題を解決することが試みられ、例えば特許文献2には、管状補強材によって補強された木質集成材からなる木質建材が開示されている。 Attempts have been made to solve this problem. For example, Patent Document 2 discloses a wood building material made of wood laminated wood reinforced by a tubular reinforcing material.

建築物や構造物が大きくなる程、その構成要素の建材、特に梁として用いられる建材には長さが求められる。戸建住宅で使用される建材の長さは、4,000mm〜6,000mm程度であるが、大型の建築物や構造物では、例えば6,000mm、長い場合には18,000mmやそれ以上の長さの建材が必要となる。 The larger a building or structure is, the longer the building material of its component, especially the building material used as a beam, is required. The length of building materials used in detached houses is about 4,000 mm to 6,000 mm, but for large buildings and structures, for example, 6,000 mm, and in the longest case, 18,000 mm or more. A length of building material is required.

この場合、6,000mm以下の集成材をその長手方向に複数本接合することで、長い建材として使用することが行われており、代表的な工法として、鉄板とボルトを用いた工法や鉄筋と接着剤を用いたグル―インロッド工法が知られている。 In this case, it is used as a long building material by joining a plurality of laminated lumber of 6,000 mm or less in the longitudinal direction, and as a typical construction method, a construction method using an iron plate and a bolt or a reinforcing bar A glue-in rod method using an adhesive is known.

しかし、これらの工法は非常に煩雑である他、そもそも金属や繊維などの補強材を複合して剛性や強度を補強した集成材には適用できない工法である。なぜならば、接合に用いる鉄板やボルト、鉄筋などが集成材の補強材と接触や干渉をするおそれがあり、その場合には大幅な強度低下が懸念される他、そもそも補強材を含まない木質材料片のみからなる木質集成材の接合工法であるため、接合部の剛性や強度は通常の木質集成材の剛性や強度を超えることが困難なためである。 However, these construction methods are very complicated and cannot be applied to laminated wood whose rigidity and strength are reinforced by combining reinforcing materials such as metal and fiber in the first place. This is because the iron plates, bolts, reinforcing bars, etc. used for joining may come into contact with or interfere with the reinforcing material of laminated wood, and in that case, there is a concern that the strength will be significantly reduced, and wood-based materials that do not contain reinforcing material in the first place. This is because it is difficult for the rigidity and strength of the joint to exceed the rigidity and strength of ordinary wood-based laminated wood because it is a joining method of wood-based laminated wood consisting of only one piece.

特開平9−254319号公報Japanese Unexamined Patent Publication No. 9-254319 特開2018−89897号公報JP-A-2018-89897

本発明の課題は、補強材で補強された木質集成材がその物性を損なうことなく長手方向で接合された、剛性と強度に優れた長尺の木質建材を提供することにある。 An object of the present invention is to provide a long wood building material having excellent rigidity and strength, in which wood laminated wood reinforced with a reinforcing material is joined in the longitudinal direction without impairing its physical properties.

すなわち本発明は、少なくとも二つの木質集成材が長手方向に接合された木質建材であって、木質集成材は長手方向に貫通する管状補強材によって補強されており、管状補強材の菅内には、少なくとも二つの木質集成材の管状補強材の菅内を長手方向に貫通する緊張材が設けられ、緊張材に張力がかけられることにより当該少なくとも二つの木質集成材が長手方向に接合された状態で固定されている木質建材である。 That is, the present invention is a wood building material in which at least two wood laminated woods are joined in the longitudinal direction, and the wood laminated wood is reinforced by a tubular reinforcing material penetrating in the longitudinal direction. A tension material is provided that penetrates the inside of the tubular reinforcing material of at least two wood glulam in the longitudinal direction, and the tension material is tensioned to fix the at least two wood glulam in a state of being joined in the longitudinal direction. It is a wood-based building material that has been used.

本発明によれば、補強材で補強された木質集成材がその物性を損なうことなく長手方向で接合された、剛性と強度に優れた長尺の木質建材を提供することができる。 According to the present invention, it is possible to provide a long wood building material having excellent rigidity and strength, in which wood laminated wood reinforced with a reinforcing material is joined in the longitudinal direction without impairing its physical properties.

実施例1および2の木質集成材の模式図(長さ方向に直交する平面での断面図)Schematic diagram of wood laminated wood of Examples 1 and 2 (cross-sectional view in a plane orthogonal to the length direction) 比較例1の木質集成材の模式図(長さ方向に直交する平面での断面図)Schematic diagram of wood laminated wood of Comparative Example 1 (cross-sectional view on a plane orthogonal to the length direction) 比較例2の木質集成材の模式図(長さ方向に直交する平面での断面図)Schematic diagram of wood laminated wood of Comparative Example 2 (cross-sectional view on a plane orthogonal to the length direction) 実施例1および比較例1の木質集成材および座金の模式図Schematic diagram of wood laminated wood and washer of Example 1 and Comparative Example 1 実施例2の木質集成材および座金の模式図Schematic diagram of wood laminated wood and washer of Example 2 比較例2の木質集成材の模式図Schematic diagram of wood laminated wood of Comparative Example 2

〔木質集成材〕
木質集成材は、木質材料片(ラミナ)を相互に接着剤で貼り合わせて構成された木質の材料であり、単一木材や、木材の繊維方向に長く切削加工した引き板または小角材を木質材料片(ラミナ)として用い、それらの木質材料片の繊維方向を互いに平行にして接着剤を用いて貼り合わせたものである。
[Wood laminated wood]
Wood-based laminated wood is a wood-based material composed of wood-based material pieces (lamina) bonded to each other with an adhesive, and is made of single wood or a pulling board or small square wood that has been cut long in the fiber direction of the wood. It is used as a piece of material (lamina), and the fiber directions of these pieces of wood-based material are parallel to each other and bonded together using an adhesive.

本発明においては、木質集成材を補強するために、木質集成材の構成要素として、管状補強材を用いる。補強された木質集成材は、管状補強材と木質材料片(ラミナ)とを、管状補強材の長さ方向と木質材料片(ラミナ)の繊維の長さ方向とを平行になるように配置して、それらを幅方向で接するように接着されてなる補強ラミナと、木質材料片(ラミナ)のみからなる木質ラミナとからなることが好ましい。 In the present invention, in order to reinforce the wood laminated wood, a tubular reinforcing material is used as a component of the wood laminated wood. In the reinforced wood laminated wood, the tubular reinforcing material and the wood material piece (lamina) are arranged so that the length direction of the tubular reinforcing material and the fiber length direction of the wood material piece (lamina) are parallel to each other. Therefore, it is preferable that the reinforced laminar is formed by adhering them so as to be in contact with each other in the width direction, and the wood lamina is composed of only a piece of wood material (lamina).

本発明における木質集成材は、管状補強材を構成要素として含む補強ラミナと木質材料片(ラミナ)のみからなる木質ラミナとが積層しているものであることが好ましい。この木質集成材における補強ラミナの長さ方向と、木質材料片(ラミナ)の木目方向は、管状補強材料の繊維強化樹脂の繊維方向と一致していることが好ましい。すわなち、管状補強材と木質材料片(ラミナ)は、それぞれの繊維方向が平行となる向きに接着されていることが好ましい。 The wood-based laminated wood in the present invention is preferably one in which a reinforcing lamina containing a tubular reinforcing material as a component and a wood-based lamina composed of only a piece of wood-based material (lamina) are laminated. It is preferable that the length direction of the reinforcing lamina in this wood laminated wood and the grain direction of the wood material piece (lamina) coincide with the fiber direction of the fiber reinforced resin of the tubular reinforcing material. That is, it is preferable that the tubular reinforcing material and the wood-based material piece (lamina) are adhered in a direction in which the fiber directions are parallel to each other.

〔管状補強材〕
管状補強材は、木質集成材を補強することができる強度や剛性を備える素材、すなわち、木質材料片(ラミナ)よりも強度や剛性で優れた素材からなる。例えば、鉄やアルミなどの金属、補強繊維と樹脂からなる繊維強化樹脂を用いることができる。木材との相性、例えば、熱膨張係数や熱伝導率、材料物性の異方性、重量などにおいて優れた効果を発揮できることから、管状補強材は、繊維強化樹脂からなることが好ましく、その長さ方向に補強繊維が配向し熱硬化性樹脂の硬化物で固着されたものであることが好ましい。
[Tubular reinforcement]
The tubular reinforcing material is made of a material having strength and rigidity capable of reinforcing wood laminated wood, that is, a material having higher strength and rigidity than a piece of wood material (lamina). For example, a fiber reinforced resin composed of a metal such as iron or aluminum, a reinforcing fiber and a resin can be used. The tubular reinforcing material is preferably made of a fiber reinforced resin and has a length thereof because it can exert excellent effects on compatibility with wood, for example, coefficient of thermal expansion, thermal conductivity, anisotropy of material properties, weight, and the like. It is preferable that the reinforcing fibers are oriented in the direction and fixed with a cured product of a thermosetting resin.

管状補強材の少なくとも一つには緊張材が通される。このため管状補強材の内部には、緊張材の作用を阻害しない態様で充填剤が充填されていても構わないが、何も充填されず、空洞となっていることが好ましい。 A tension material is passed through at least one of the tubular reinforcing materials. Therefore, the inside of the tubular reinforcing material may be filled with a filler in a manner that does not hinder the action of the tensioning material, but it is preferable that nothing is filled and the tubular reinforcing material is hollow.

〔マトリクス樹脂〕
管状補強材が繊維強化樹脂からなる場合、繊維強化樹脂のマトリクス樹脂は、熱硬化性樹脂であることが好ましい。熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、ビニルエステル樹脂を挙げることができる。中でも物性や加工性、最終的な木材との接着性の観点からビニルエステル樹脂が好ましい。
[Matrix resin]
When the tubular reinforcing material is made of a fiber reinforced resin, the matrix resin of the fiber reinforced resin is preferably a thermosetting resin. Examples of thermosetting resins include phenolic resins, epoxy resins, and vinyl ester resins. Of these, vinyl ester resin is preferable from the viewpoint of physical properties, processability, and final adhesiveness to wood.

〔補強繊維〕
管状補強材が繊維強化樹脂からなる場合、補強繊維には木材の補強に適した強度を有する強化繊維を用いることができる。本発明の木質建材は、その用途が建物を成り立たせるための部材であるため、火災時においても強度低下が起こらないことが好ましい。このため、補強繊維は、融点またはガラス転移温度が200℃以上である有機繊維または無機繊維であることが好ましく、これらは連続繊維であることが好ましい。
[Reinforcing fiber]
When the tubular reinforcing material is made of a fiber reinforced resin, a reinforcing fiber having a strength suitable for reinforcing wood can be used as the reinforcing fiber. Since the wood building material of the present invention is used as a member for building a building, it is preferable that the strength does not decrease even in the event of a fire. Therefore, the reinforcing fibers are preferably organic fibers or inorganic fibers having a melting point or a glass transition temperature of 200 ° C. or higher, and these are preferably continuous fibers.

補強繊維としては、例えば、炭素繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維、ガラス繊維を挙げることができる。補強繊維として、炭素繊維、ガラス繊維または芳香族ポリアミド繊維が好ましい。これらの補強繊維は単独で用いてもよく、または二種類以上を複合して用いてもよい。 Examples of the reinforcing fiber include carbon fiber, aromatic polyamide fiber (aramid fiber), polyarylate fiber, polyparaphenylene benzobisoxazar fiber, polyphenylene sulfide fiber, polyimide fiber, ethylene tetrafluoride fiber, and glass fiber. Can be done. As the reinforcing fiber, carbon fiber, glass fiber or aromatic polyamide fiber is preferable. These reinforcing fibers may be used alone or in combination of two or more.

補強繊維の中でも、本発明においては炭素繊維が特に好ましい。中でもポリアクリロニトリル系繊維を焼成して得られるアクリルニトリル系の炭素繊維であることが最も好ましい。さらに、窒素含有量が0.1〜15重量%であることや、引張り強度が2500〜7000MPaであること、弾性率が150〜700GPaである炭素繊維であることが好ましい。特には、窒素含有量3〜10重量%を有する3500MPa以上の引張り強度と200〜350GPaの弾性率を有する直径5〜9μmの炭素繊維であることが、接着性の観点からも最適である。また、このような炭素繊維表面におけるESCA表面分析装置(島津製作所製)による表面の酸素/炭素比率としては、0.1/1〜0.3/1であることが好ましい。さらには0.15/1〜0.25/1の範囲であることが、樹脂との接着強度を高く確保する点からも好ましい。 Among the reinforcing fibers, carbon fibers are particularly preferable in the present invention. Of these, acrylic nitrile-based carbon fibers obtained by firing polyacrylonitrile-based fibers are most preferable. Further, it is preferable that the carbon fiber has a nitrogen content of 0.1 to 15% by weight, a tensile strength of 2500 to 7000 MPa, and an elastic modulus of 150 to 700 GPa. In particular, a carbon fiber having a nitrogen content of 3 to 10% by weight, a tensile strength of 3500 MPa or more and an elastic modulus of 200 to 350 GPa and a diameter of 5 to 9 μm is optimal from the viewpoint of adhesiveness. Further, the oxygen / carbon ratio of the surface of such carbon fiber surface by the ESCA surface analyzer (manufactured by Shimadzu Corporation) is preferably 0.1 / 1 to 0.3 / 1. Further, the range of 0.15 / 1 to 0.25 / 1 is preferable from the viewpoint of ensuring high adhesive strength with the resin.

補強繊維は、その繊維直径としては5〜9μmであることが好ましいが、さらに繊維束であることが好ましい。繊維束としては、構成本数が1000〜300000本からなる繊維束(ストランド)であることが好ましい。さらに補強繊維が繊維束である場合には、繊維束を所望分集束し、または、所望の形状に拡幅して使用することが好ましい。 The reinforcing fibers preferably have a fiber diameter of 5 to 9 μm, but are more preferably fiber bundles. The fiber bundle is preferably a fiber bundle (strand) having 1000 to 300,000 constituents. Further, when the reinforcing fiber is a fiber bundle, it is preferable to use the fiber bundle by desired fractionation or widening to a desired shape.

本発明においては、このような補強繊維が樹脂とともに管状補強材を構成することが好ましいが、管状補強材における補強繊維の形態としては、一方向に繊維を引き揃えたUD基材やその2方向以上の組合せ、織物、不織布など様々な形態が採用可能であって、必要とする強度に応じて設計することができる。ただし、実際の性能とコストとのバランスを加味した場合、一方向に引き揃えたUD基材として用いることが特に好ましい。UD基材としては、引張強度や引張弾性率が高く、かつ耐熱性が高い炭素繊維を一方向に引き揃えたUD基材を用いることが好ましい。 In the present invention, it is preferable that such reinforcing fibers form a tubular reinforcing material together with a resin, but the form of the reinforcing fibers in the tubular reinforcing material is a UD base material in which the fibers are aligned in one direction or two directions thereof. Various forms such as the above combinations, woven fabrics, and non-woven fabrics can be adopted, and can be designed according to the required strength. However, when the balance between actual performance and cost is taken into consideration, it is particularly preferable to use it as a UD base material aligned in one direction. As the UD base material, it is preferable to use a UD base material in which carbon fibers having high tensile strength and tensile elastic modulus and high heat resistance are aligned in one direction.

補強繊維は管状補強材の長さ方向に配向したものであることが好ましい。そして、補強繊維が連続繊維であることが好ましい。そのような繊維形態を用いることによって、繊維による補強効果を、より効果的に発揮することができる。 The reinforcing fibers are preferably oriented in the length direction of the tubular reinforcing material. And it is preferable that the reinforcing fiber is a continuous fiber. By using such a fiber form, the reinforcing effect of the fiber can be more effectively exhibited.

〔管状補強材の物性〕
管状補強材における補強繊維と樹脂の体積分率としては40/60〜60/40の範囲であることが好ましい。また、補強繊維の管状補強材における存在密度は、その長さ方向の断面において10,000〜18,000本/mmの範囲に有ることが好ましい。
[Physical properties of tubular reinforcing material]
The volume fraction of the reinforcing fiber and the resin in the tubular reinforcing material is preferably in the range of 40/60 to 60/40. Further, the abundance density of the reinforcing fibers in the tubular reinforcing material is preferably in the range of 10,000 to 18,000 fibers / mm 2 in the cross section in the length direction thereof.

管状補強材は、木質集成材の曲げ物性を補強する観点からは繊維方向への引張物性と圧縮物性のバランスが重要となる。管状補強材により補強された木質集成材がより好ましくない破壊形態である脆性破壊を起こさないようにするためには、管状補強材として、圧縮強度が引張強度より小さくなっていることが重要である。具体的には、引張強度が好ましくは500〜5,000MPa、さらに好ましくは1,000〜4,500MPaである。他方、圧縮強度は、好ましくは引張強度よりも低くかつ100〜5,000N/mm、さらに好ましくは引張強度よりも低くかつ500〜4,500N/mmである。 In the tubular reinforcing material, the balance between the tensile physical properties and the compressed physical properties in the fiber direction is important from the viewpoint of reinforcing the bending physical properties of the wood laminated wood. In order to prevent brittle fracture, which is a more preferable fracture form, from the wood laminated wood reinforced by the tubular reinforcing material, it is important that the compressive strength of the tubular reinforcing material is smaller than the tensile strength. .. Specifically, the tensile strength is preferably 500 to 5,000 MPa, more preferably 1,000 to 4,500 MPa. On the other hand, the compressive strength is preferably lower than the tensile strength and 100 to 5,000 N / mm, and more preferably lower than the tensile strength and 500 to 4,500 N / mm.

管状補強材において、補強繊維は管状補強材の周辺部に主に配置されたものであることが好ましい。管状補強材の周辺部に補強繊維が配置されていることにより、木質集成材における管状補強材の補強効果を向上させることができる。ここで周辺部とは、管状補強材の外周部1/3の範囲をいい、特には1/5の範囲をいう。 In the tubular reinforcing material, it is preferable that the reinforcing fibers are mainly arranged in the peripheral portion of the tubular reinforcing material. By arranging the reinforcing fibers around the tubular reinforcing material, it is possible to improve the reinforcing effect of the tubular reinforcing material in the wood laminated wood. Here, the peripheral portion refers to the range of 1/3 of the outer peripheral portion of the tubular reinforcing material, and particularly refers to the range of 1/5.

本発明においては、管状補強材の形状は管状であり、管状補強材の壁の厚さをコントロールすることで補強繊維の含有量を容易に調整することができる。管状、すなわち補強材自体を中空とすることで、菅を形成する層の肉厚により、管状補強材に必要な物性を最適にコントロールすることができ、過剰に補強繊維やマトリクス樹脂を使用することを避け、補強繊維の重量を軽くすることができる。 In the present invention, the shape of the tubular reinforcing material is tubular, and the content of the reinforcing fibers can be easily adjusted by controlling the wall thickness of the tubular reinforcing material. By making the tubular, that is, the reinforcing material itself hollow, the physical properties required for the tubular reinforcing material can be optimally controlled by the wall thickness of the layer forming the tube, and excessive use of reinforcing fibers and matrix resin can be used. Can be avoided and the weight of the reinforcing fiber can be reduced.

〔管状補強材の断面形状〕
菅状補強材の形状は矩形であることも好ましい。これに対して例えば管状補強材の断面が円形であると、管状補強材の全体として形状は円柱状となり、周辺の木質材料片(ラミナ)との間に隙間ができやすく、接着力が低下する傾向にある。管状補強材の特に好ましい断面形状は正方形または長方形の矩形中空である。
[Cross-sectional shape of tubular reinforcing material]
It is also preferable that the shape of the tube-shaped reinforcing material is rectangular. On the other hand, for example, when the cross section of the tubular reinforcing material is circular, the shape of the tubular reinforcing material as a whole becomes columnar, and a gap is likely to be formed between the tubular reinforcing material and the surrounding wood-based material piece (lamina), and the adhesive strength is reduced. There is a tendency. A particularly preferred cross-sectional shape of the tubular reinforcement is a square or rectangular hollow hollow.

他方、管状補強材の内部側は任意であり、矩形でなくても好ましく用いることができる。例えば、矩形断面の管状補強材の内側が円形断面である場合、管状補強材の肉厚を多く設計することができ、管状補強材の引張強度や圧縮強度を高くしたい場合には有効な手段となる。 On the other hand, the inner side of the tubular reinforcing material is arbitrary and can be preferably used even if it is not rectangular. For example, when the inside of a tubular reinforcing material having a rectangular cross section has a circular cross section, it is possible to design a large wall thickness of the tubular reinforcing material, which is an effective means when it is desired to increase the tensile strength and compressive strength of the tubular reinforcing material. Become.

管状補強材が矩形である場合、その断面の寸法としては短辺の外寸が10〜50mm、長辺の外寸が10〜500mmであることが好ましい。さらには、短辺の外寸が15〜45mm、長辺の外寸が15〜400mmであることが好ましく、短辺が集成材を構成する補強ラミナの厚さ以上にならないことが製造上好ましい。 When the tubular reinforcing material is rectangular, the cross-sectional dimensions thereof are preferably 10 to 50 mm on the short side and 10 to 500 mm on the long side. Further, it is preferable that the outer dimension of the short side is 15 to 45 mm and the outer dimension of the long side is 15 to 400 mm, and it is preferable in manufacturing that the short side does not exceed the thickness of the reinforcing laminar constituting the laminated wood.

管状補強材が矩形の中空(内側も矩形)である場合、管状補強材の各辺の厚さは、好ましくは1〜30mm、さらに好ましくは2〜25mmである。厚さがこれより薄いと、曲げ方向の加力があった場合に、管状補強材の縦辺においては座屈破壊を起こしてしまう可能性もあり、十分な補強効果が得られないことがあり好ましくない。他方、これより厚いと、管状補強材を成形する際に、内部の樹脂が十分に硬化できない懸念が増え、曲げ方向の加力があった場合に、管状補強材内でのせん断破壊が起こりやすくなる懸念があり好ましくない。この傾向は梁として用いる場合に特に顕著である。 When the tubular reinforcing material is rectangular and hollow (the inside is also rectangular), the thickness of each side of the tubular reinforcing material is preferably 1 to 30 mm, more preferably 2 to 25 mm. If the thickness is thinner than this, buckling fracture may occur on the vertical side of the tubular reinforcing material when a force is applied in the bending direction, and a sufficient reinforcing effect may not be obtained. Not preferred. On the other hand, if it is thicker than this, there is an increased concern that the resin inside cannot be sufficiently cured when molding the tubular reinforcing material, and when a force is applied in the bending direction, shear failure in the tubular reinforcing material is likely to occur. There is a concern that it will be unfavorable. This tendency is particularly remarkable when used as a beam.

〔配置〕
木質集成材における管状補強材の配置の態様は、木質集成材の断面の中心から等距離の位置に管状補強材を複数本配置した態様か、木質集成材の中心に対して点対称に管状補強材を複数本配置した態様であることが好ましい。特に、木質集成材の断面の中心から等距離の位置に管状補強材を2本または4本配置した態様が好ましい。木質集成材の断面の中心から等距離の位置に配置することより、木質集成材の剛性を向上させることができる。さらに断面二次モーメントの観点から木質集成材における管状補強材の配置は、木質集成材の上面と下面に近い位置であることが好ましく、この配置は、殊に梁として用いる場合に好ましい。
[Arrangement]
The arrangement of the tubular reinforcing material in the wood laminated wood is either a mode in which a plurality of tubular reinforcing materials are arranged equidistant from the center of the cross section of the wood laminated wood, or a tubular reinforcement point-symmetrical with respect to the center of the wood laminated wood. It is preferable that a plurality of materials are arranged. In particular, it is preferable that two or four tubular reinforcing members are arranged at equidistant positions from the center of the cross section of the wood laminated wood. The rigidity of the wood laminated wood can be improved by arranging the wood laminated wood equidistantly from the center of the cross section. Further, from the viewpoint of the moment of inertia of area, the arrangement of the tubular reinforcing material in the wood laminated wood is preferably at a position close to the upper surface and the lower surface of the wood laminated wood, and this arrangement is particularly preferable when used as a beam.

管状補強材を含む補強ラミナは、木質集成材の最外層(上面と下面)に配置されてもよいが、本発明の木質建材を梁として用いたときに、上方または下方から管状補強材が見えないようにするために、最外層からラミナ一層分以上内側に配置することが好ましい。管状補強材を使用する本数は必要に応じ設計することができ、例えば、梁として用いる断面が上下方向に長い木質集成材の断面の中心から上方に1本、下方に1本の合計2本であってもよく、上方の1本および下方の1本のそれぞれを左右に並べた2本に置き換えて配置してもよい。具体的には、木質集成材の断面の中心から上方に2本、下方に2本の合計4本の管状補強材を配置することが好ましく、木質集成材の断面における4つ角のすぐ内側に管状補強材を配置することが特に好ましい。木質集成材の断面における4つ角のすぐ内側に管状補強材を配置した場合、木質集成材の上面から釘やボルトを使用できるスペース(管状補強材がなく、木材のみで成形されている場所)をより大きく確保できるため、梁として使用する場足に特に好ましい態様となる。 The reinforcing lamina including the tubular reinforcing material may be arranged on the outermost layers (upper surface and lower surface) of the wood laminated wood, but when the wood building material of the present invention is used as a beam, the tubular reinforcing material can be seen from above or below. It is preferable to arrange it inward by one layer or more of lamina from the outermost layer in order to prevent it. The number of tubular reinforcing materials that can be used can be designed as needed. For example, a total of two tubular reinforcing materials, one above the center of the cross section of the wood laminated wood with a long vertical cross section and one below. It may be present, and the upper one and the lower one may be replaced with two arranged side by side. Specifically, it is preferable to arrange a total of four tubular reinforcing materials, two above the center of the cross section of the wood laminated wood and two below, and just inside the four corners in the cross section of the wood laminated wood. It is particularly preferred to place a tubular reinforcement. When the tubular reinforcement is placed just inside the four corners of the cross section of the wood laminated wood, a space where nails and bolts can be used from the upper surface of the wood laminated wood (a place where there is no tubular reinforcement and it is molded only with wood). This is a particularly preferable mode for a field foot used as a beam because a larger amount can be secured.

木質集成材の上下左右の表面は平滑であることが好ましい。本発明の木質建材では、モルダーなどにて木質集成材の上下面や、長さ方向左右の積層断面を表面切削処理し、平滑な部材の表面を形成することができる。通常木材を他の材質にて補強した場合、その他の材質が表面に露出して平滑化処理が困難であったが、本発明では補強材が木質集成材の内部に配置されるため、容易に平滑面を得ることができる。 It is preferable that the top, bottom, left and right surfaces of the wood laminated wood are smooth. In the wood building material of the present invention, the upper and lower surfaces of the wood laminated wood and the laminated cross sections on the left and right in the length direction can be surface-cut with a moulder or the like to form a smooth surface of the member. Normally, when wood is reinforced with other materials, the other materials are exposed on the surface and smoothing treatment is difficult. However, in the present invention, since the reinforcing material is arranged inside the wood laminated wood, it is easy. A smooth surface can be obtained.

木質集成材の大きさは、例えば長さ方向が2,850〜18,000mm、幅方向が105〜240mm、厚さ方向が120〜2,000mmの範囲であることが一般的であるが、この範囲外であっても任意に設定することができる。 The size of wood laminated wood is generally in the range of 2,850 to 18,000 mm in the length direction, 105 to 240 mm in the width direction, and 120 to 2,000 mm in the thickness direction. It can be set arbitrarily even if it is out of the range.

〔接着剤〕
管状補強材は、木質材料片(ラミナ)と一体化されることにより、補強ラミナを構成して用いることが好ましい。用いる接着剤はエポキシ系接着剤やアクリル系接着剤など木材と樹脂を接着できるものであれば任意のものを用いることができる。木質集成材への一体化の観点からは、集成材の作製に使用される水溶性高分子−イソシアネート系接着剤やレゾルシノール系接着剤を使用することが、プロセスコストを低減するためにも好ましい。接着方法は、接着剤の反応に合わせて選定することが可能であり、常温でプレスしてもよいが、高周波で短時間に接着する方法が、プロセスコストを低減できる観点からは特に好ましい。また、より接着効果を高めるために、管状補強材の表面に凹凸をつけて、接着面積を高くしておくことも有用である。
〔adhesive〕
It is preferable that the tubular reinforcing material is integrated with a wood-based material piece (lamina) to form a reinforcing lamina. As the adhesive to be used, any adhesive such as an epoxy adhesive or an acrylic adhesive that can bond wood and resin can be used. From the viewpoint of integration into wood laminated wood, it is preferable to use a water-soluble polymer-isocyanate adhesive or resorcinol adhesive used for producing laminated wood in order to reduce the process cost. The bonding method can be selected according to the reaction of the adhesive and may be pressed at room temperature, but the method of bonding at a high frequency in a short time is particularly preferable from the viewpoint of reducing the process cost. Further, in order to further enhance the adhesive effect, it is also useful to make the surface of the tubular reinforcing material uneven to increase the adhesive area.

〔緊張材〕
本発明の木質建材では、管状補強材を木質集成材の内部に配置し、木質建材を構成する木質集成材の長手方向に緊張材を用いてプレストレスをかけている。
[Tension material]
In the wood building material of the present invention, a tubular reinforcing material is arranged inside the wood laminated wood, and prestress is applied in the longitudinal direction of the wood laminated wood constituting the wood building material by using a tensioning material.

緊張材には、一般的なプレストレストコンクリートで使用されるPC鋼線やPC鋼より線、PC鋼棒などのPC鋼材を使用することができる。さらに、引張強度やクリープ性能の高い緊張材を使用してもよく、また、炭素繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維、ガラス繊維などの高性能繊維を用いたFRP(繊維強化プラスチックス)ロッドや繊維ロープ、繊維ケーブルであってもよい。 As the tension material, PC steel materials such as PC steel wire, PC steel stranded wire, and PC steel rod used in general prestressed concrete can be used. Further, a tension material having high tensile strength and creep performance may be used, and carbon fiber, aromatic polyamide fiber (aramid fiber), polyallylate fiber, polyparaphenylene benzobisoxazar fiber, polyphenylene sulfide fiber, and polyimide may be used. It may be an FRP (fiber reinforced plastics) rod, a fiber rope, or a fiber cable using high-performance fibers such as fibers, ethylene tetrafluoride fibers, and glass fibers.

緊張材は、木質集成材を補強している管状補強材の菅の中に通して長手方向に貫通する態様で設置する。このとき、木質集成材を長手方向に接合して連結した木質集成材の連結体の両端に座金を設け、両端の座金を緊張材で連結して、緊張材に張力をかけることで木質集成材を長手方向に接合した状態で固定する。このため、本発明の木質建材は、少なくとも二つの木質集成材が長手方向に接合した状態で固定されている。 The tension material is installed in such a manner that it passes through the tube of the tubular reinforcing material that reinforces the wood laminated wood and penetrates in the longitudinal direction. At this time, washers are provided at both ends of the connecting body of the wood laminated wood which is joined by joining the wood laminated wood in the longitudinal direction, and the washers at both ends are connected by the tension material, and tension is applied to the tension material to apply tension to the wood laminated wood. Is fixed in the state of being joined in the longitudinal direction. Therefore, the wood building material of the present invention is fixed in a state where at least two wood laminated materials are joined in the longitudinal direction.

緊張材は、木質集成材の断面の中心に通してもよいが、中心から等距離かつ、中心に対して点対称の位置に複数本を通すことが好ましい。例えば、木質集成材の断面の中心から等距離かつ中心に対して点対称の位置に4本の管状補強材を配置する場合において、4本すべての管状補強材に緊張材を通して、木質集成材同士を長手方向に接合することが好ましい。個々の管状補強材の通す緊張材は1本でもよく2本以上でもよい。 The tensioning material may be passed through the center of the cross section of the wood laminated wood, but it is preferable to pass a plurality of tensioning materials at a position equidistant from the center and point-symmetrical with respect to the center. For example, in the case of arranging four tubular reinforcing materials equidistant from the center of the cross section of the wood laminated wood and at a position symmetrical with respect to the center, the wood laminated wood is passed through all four tubular reinforcing materials with tensioning material. Is preferably joined in the longitudinal direction. The tension material through which each tubular reinforcing material is passed may be one or two or more.

この接合では、緊張材に張力をかける際に座金を介して木質集成材の連結した木質建材の両端部から圧縮力をかけ、木質集成材同士を圧着することが重要である。高い圧着を実現することで、一方の木質集成材と他方の木質集成材とが接合した部分をより一体化した状態に近づけることができ、接合部の曲げ特性の向上を得ることができる。 In this joining, it is important to apply compressive force from both ends of the wood laminated wood to which the wood laminated wood is connected via a washer when tension is applied to the tension material, and to crimp the wood laminated wood to each other. By realizing high crimping, the portion where one wood laminated wood and the other wood laminated wood are joined can be brought closer to a more integrated state, and the bending characteristics of the joint can be improved.

緊張材にかける張力は、緊張材1本あたり10〜300kN、好ましくは30〜250kNである。張力が10kN未満であると木質集成材同士の圧着が不十分となり、木質集成材の接合部における剛性や強度が十分に発現しない可能性があり、他方、張力が300kNを超えると圧縮を受ける木質集成材の端部や圧着されている木質集成材同士の接合面がめり込み破壊を起こしてしまい、結果、本発明の木質建材の接合部における剛性や強度が十分発現しない恐れがある。 The tension applied to the tension material is 10 to 300 kN, preferably 30 to 250 kN, per tension material. If the tension is less than 10 kN, the crimping between the wood laminated wood will be insufficient, and the rigidity and strength at the joint of the wood laminated wood may not be sufficiently developed. On the other hand, if the tension exceeds 300 kN, the wood will be compressed. The edge of the laminated wood and the joint surface between the crimped wood laminated wood may be sunk and broken, and as a result, the rigidity and strength at the joint of the wood building material of the present invention may not be sufficiently exhibited.

本発明において木質集成材は、緊張材を管状補強材に通してプレストレスをかけることで接合されるため、本発明の木質建材を用いる建築現場でも容易に作業効率よく木質建材を得ることができる。すなわち、建築物を建築する現場に接合前の木質集成材を搬入し、現場で木質集成材を接合して本発明の木質建材とすることができる。この場合は、搬入路が狭隘であっても建築に必要な木質建材を現場で接合して得ることができる。また、長大かつ重量の大きい木質建材を小さく軽量な木質集成材に分割して搬入して現場で、必要な長さの木質建材を得ることができるので、例えば人力での搬入に頼らざる得ない場所であっても、長大な木質建材を現場で得ることができる。 In the present invention, the wood laminated wood is joined by passing a tensioning material through a tubular reinforcing material and applying prestress, so that the wood building material can be easily and efficiently obtained even at a construction site using the wood building material of the present invention. .. That is, it is possible to bring the wood laminated wood before joining to the site where the building is constructed and join the wood laminated wood at the site to obtain the wood building material of the present invention. In this case, even if the carry-in route is narrow, the wooden building materials required for construction can be joined at the site. In addition, since it is possible to divide a long and heavy wood building material into small and lightweight wood laminated wood and carry it in to obtain a wood building material of the required length at the site, for example, it is necessary to rely on manual carrying in. Even in a place, you can get a long wooden building material on site.

本発明では、作業性を向上させるために木質集成材の断面の中心またはその近傍にザグリ穴を開けて金属ダボなどを使用してもよい。この場合、作業時の木質集成材同士のズレ防止や木質集成材の接合部における補助的なせん断補強に効果が得られる。 In the present invention, a metal dowel or the like may be used by making a counterbore hole in or near the center of the cross section of the wood laminated wood in order to improve workability. In this case, it is effective to prevent misalignment between the wood laminated wood during work and to provide auxiliary shear reinforcement at the joint of the wood laminated wood.

〔めりこみ補強材〕
本発明の木質建材においては、少なくとも二つの木質集成材が、両者の接合部に設けられた、めりこみ補強材を介して接合していることが好ましい。この場合にも、緊張材には10〜300kNの張力がかけられている。めりこみ補強材は、木質集成材同士の接合面が局所的にめり込むことを防ぐ補強材である。
[Reinforcing material]
In the wood building material of the present invention, it is preferable that at least two wood laminated materials are joined via a recessed reinforcing material provided at the joint portion between the two. In this case as well, a tension of 10 to 300 kN is applied to the tension material. The embedded reinforcing material is a reinforcing material that prevents the joint surfaces of the laminated wood materials from being locally embedded.

木質集成材同士の接合面のめり込み耐力が高いほど、より大きな圧力を木質集成材が受けることができ、緊張材に高い張力をかけることができる。すなわち、めりこみ補強材を介して接合することで、より高い剛性や強度を備える接合部を得ることができ、より高い剛性や強度を備える木質建材を得ることができる。 The higher the proof stress of the joint surface between the wood laminated wood, the larger the pressure can be applied to the wood laminated wood, and the higher the tension can be applied to the tension material. That is, by joining via a recessed reinforcing material, a joint portion having higher rigidity and strength can be obtained, and a wooden building material having higher rigidity and strength can be obtained.

めりこみ補強材の形状は、例えば平板状であってもよく、木質集成材の端部を覆う形状であってもよい。補強材の表面は平滑であってもよく、凹凸があってもよい。凹凸がある場合には、一方の補強材と他方の補強材が噛み合う凹凸であることが好ましい。 The shape of the dented reinforcing material may be, for example, a flat plate shape or a shape covering the end portion of the wood laminated wood. The surface of the reinforcing material may be smooth or uneven. When there is unevenness, it is preferable that the reinforcing material on one side and the reinforcing material on the other side mesh with each other.

めりこみ補強材の材料には、表面が平滑で、木質集成材よりも高いめり込み強度を持つ材料を用いることができる。具体的には、炭素繊維、ガラス繊維または芳香族ポリアミド繊維で補強された繊維補強樹脂、鉄やアルミ、ステンレスといった金属材料、さらにはコンクリートやモルタルなどのセメント材料といった無機材料を用いることができる。 As the material of the digging reinforcing material, a material having a smooth surface and having a higher digging strength than the wood laminated wood can be used. Specifically, a fiber reinforced resin reinforced with carbon fiber, glass fiber or aromatic polyamide fiber, a metal material such as iron, aluminum or stainless steel, and an inorganic material such as a cement material such as concrete or mortar can be used.

〔緊張材の固定〕
この状態で木質集成材の端部に座金を介してボルトやナット、クサビ金物などを用いて、緊張材が緩まないように張力をかけたまま固定することで、本発明の木質建材となる。固定の方法は一般的なプレストレストコンクリートの工法で使用されている方法を用いることができる。
[Fixing tension material]
In this state, the wood building material of the present invention is obtained by fixing the end of the wood laminated wood with bolts, nuts, wedge hardware, etc. via a washer while applying tension so that the tension material does not loosen. As the fixing method, the method used in the general prestressed concrete construction method can be used.

本発明の好ましい態様は、木質集成材の長手方向に直交する断面の中心から等距離の位置に複数本配置された管状補強材の少なくとも2本に、好ましくは4本にそれぞれを貫通する緊張材が設けられた木質建材であって、緊張材は木質集成材の長手方向に直交する断面の中心に対して点対称をなす位置に設けられ、すべての管状補強材に緊張材が通され、すべての木質集成材がめりこみ補強材を介して接合され、緊張材に10〜300kNの範囲で同じ張力がかけられ、木質集成材同士が圧着している状態で固定されている態様である。この場合、管状補強材は木質集成材の上面と下面に近い位置であることが好ましい。 A preferred embodiment of the present invention is a tension material penetrating at least two, preferably four, of a plurality of tubular reinforcing materials arranged at equal distances from the center of a cross section orthogonal to the longitudinal direction of the wood laminated wood. The tension material is provided at a position symmetrical with respect to the center of the cross section orthogonal to the longitudinal direction of the wood laminated wood, and the tension material is passed through all the tubular reinforcing materials, and all of them are provided. In this mode, the wood laminated wood is joined via a recessed reinforcing material, the same tension is applied to the tension material in the range of 10 to 300 kN, and the wood laminated wood is fixed in a state of being crimped to each other. In this case, the tubular reinforcing material is preferably located near the upper surface and the lower surface of the wood laminated wood.

以下に、実施例により本発明を具体的に説明する。各種物性は下記方法にて測定した。
(1)管状補強材の圧縮強度
繊維補強された管状補強材から、幅10mm、長さ50mm、厚さ3mmの測定用試料を切り出した。ステンレス製長さ2mm、幅4mmの圧縮端子を補強材の長さ方向に直交する向きで上から置き、圧縮速度0.5mm/分で圧縮し、試料が破壊された時の最大荷重(N)を測定した。
Hereinafter, the present invention will be specifically described with reference to Examples. Various physical properties were measured by the following methods.
(1) Compressive Strength of Tubular Reinforcing Material A measurement sample having a width of 10 mm, a length of 50 mm, and a thickness of 3 mm was cut out from the fiber-reinforced tubular reinforcing material. A stainless steel compression terminal with a length of 2 mm and a width of 4 mm is placed from above in a direction orthogonal to the length direction of the reinforcing material, compressed at a compression rate of 0.5 mm / min, and the maximum load (N) when the sample is destroyed. Was measured.

(2)管状補強材の引張強度
繊維補強された管状補強材から、幅25mm、長さ200mm、厚さ3mmの測定用試料を切り出した。つかみ部35mmとし、引張速度2mm/分で引張り、試料が破壊された時の最大荷重(N)を測定した。
(2) Tensile Strength of Tubular Reinforcing Material A measurement sample having a width of 25 mm, a length of 200 mm and a thickness of 3 mm was cut out from the fiber-reinforced tubular reinforcing material. The grip portion was 35 mm, the sample was pulled at a tensile speed of 2 mm / min, and the maximum load (N) when the sample was broken was measured.

(3)木質集成材の曲げ強度および曲げ弾性率
集成材の曲げ強度および曲げ弾性率は、JAS Z2101に準じて測定した。すなわち、支点間距離は梁成の18倍とし、支点間距離を3等分する箇所それぞれに荷重を印加する4点曲げ試験を実施した。曲げ強度、曲げ弾性率はそれぞれ以下式にて算出した。
(3) Bending strength and flexural modulus of wood laminated wood The bending strength and flexural modulus of laminated wood were measured according to JAS Z2101. That is, the distance between the fulcrums was set to 18 times the beam formation, and a four-point bending test was carried out in which a load was applied to each of the points where the distance between the fulcrums was divided into three equal parts. Bending strength and flexural modulus were calculated by the following formulas, respectively.

曲げ強度(1):

Figure 2020133212
Bending strength (1):
Figure 2020133212

曲げ弾性率(2):

Figure 2020133212
ただし、
p:最大荷重
L:支点間距離
:荷重点間距離
b:試験体幅
h:試験体厚み(梁成)
ΔF:最大荷重の10%−最大荷重の40%間の荷重増分
Δy:ΔFに対応するたわみ増分
である。 Flexural modulus (2):
Figure 2020133212
However,
p: Maximum load
L: Distance between fulcrums
L 1 : Distance between load points
b: Specimen width
h: Specimen thickness (beam formation)
ΔF: Load increment between 10% of maximum load and 40% of maximum load
Δy: Deflection increment corresponding to ΔF.

(4)プレストレスの張力
緊張材を固定する座金とナットの間に、圧縮センサーを配置し、座金−ナット間の圧力を測定することで緊張材の張力とした。
(4) Prestress tension A compression sensor was placed between the washer and the nut to fix the tension material, and the pressure between the washer and the nut was measured to obtain the tension of the tension material.

(5)木質集成材同士の接合部の曲げ強度、曲げ弾性率
木質集成材同士の接合部を試験体中央に作成し、支点間距離を3,180mmとし、木質集成材同士の接合部から左右に150mmの箇所それぞれに荷重を印加する繰返し曲げ試験を実施した。繰返しは、曲げモーメント距離に相当する1,440mmの1/300、1/250、1/200、1/150、1/100、1/50、1/30、1/15、1/10の順に繰り返し毎にたわみ量が増加するように試験した。
(5) Bending strength and bending elasticity of joints between wood laminated wood A joint between wood laminated wood was created in the center of the test piece, the distance between fulcrums was set to 3,180 mm, and left and right from the joint between wood laminated wood. A repeated bending test was carried out in which a load was applied to each of the 150 mm locations. The repetition is performed in the order of 1/300, 1/250, 1/200, 1/150, 1/100, 1/50, 1/30, 1/15, 1/10 of 1,440 mm corresponding to the bending moment distance. The test was performed so that the amount of deflection increased with each repetition.

<曲げ強度の算出>
1/10までの繰り返し曲げ試験において、破壊した場合はその点を最大荷重(p)とした。1/10までの繰り返し曲げ試験にて破壊しない場合は、試験最後に破壊するまで荷重を印加し、破壊点=最大荷重(p)を得た。得られた最大荷重(p)を用いて式(1)にて曲げ強度を算出した。
<Calculation of bending strength>
In the repeated bending test up to 1/10, when the fracture occurred, that point was set as the maximum load (p). When the fracture did not occur in the repeated bending test up to 1/10, a load was applied until the fracture occurred at the end of the test to obtain the fracture point = maximum load (p). The bending strength was calculated by the formula (1) using the obtained maximum load (p).

<曲げ弾性率の算出>
繰り返し試験によって得られた応力−撓み曲線を用いて、以下の手順にて降伏点を解析した。
(1) 破壊時の最大荷重(p)に対し、10%(0.1p)と40%(0.4p)、90%(0.9p)となる点を応力−撓み曲線上にプロットし、0.1pと0.4p、0.4pと0.9pをそれぞれ直線で結ぶ。
(2) 0.4pと0.9pを結んだ直線を応力−撓み曲線に接するまで平行移動した直線と、0.1pと0.4pを結んだ直線との交点をプロットし、その点から横軸方向に平行移動し、応力−撓み曲線と交わる点を降伏点とした。
<Calculation of flexural modulus>
Using the stress-flexure curve obtained by the repeated test, the yield point was analyzed by the following procedure.
(1) The points at 10% (0.1p), 40% (0.4p), and 90% (0.9p) with respect to the maximum load (p) at the time of fracture are plotted on the stress-deflection curve. 0.1p and 0.4p, 0.4p and 0.9p are connected by a straight line, respectively.
(2) Plot the intersection of the straight line connecting 0.4p and 0.9p in parallel until it touches the stress-flexion curve and the straight line connecting 0.1p and 0.4p, and laterally from that point. The point of translation in the axial direction and the intersection with the stress-flexion curve was defined as the yield point.

得られた降伏点を用いて、式(2)にて曲げ弾性率を算出した。ここで、式(2)のΔFは応力−撓み曲線の原点と降伏点間の荷重増分とし、Δyは、このΔFに対応するたわみ増分として算出した。 Using the obtained yield point, the flexural modulus was calculated by the equation (2). Here, ΔF in the equation (2) was calculated as the load increment between the origin and the yield point of the stress-deflection curve, and Δy was calculated as the deflection increment corresponding to this ΔF.

(実施例1)
管状補強材として、補強繊維に炭素繊維(東邦テナックス株式会社製、アクリルニトリル系炭素繊維「HTS40、24K」、直径7μm)を用いたマトリックス樹脂がビニルエステル樹脂(硬化温度110〜150℃、硬化所要時間5〜10min)である引抜成形材を作製した。この管状補強材における補強繊維とマトリックス樹脂の体積比率は60/40であり、断面における炭素繊維の存在密度は15000本/mmの密度であった。管状補強材の断面形状は中空な正方形(矩形)であって、外寸は30mm×30mm、厚さは全辺均一で3mmとした(内径24mm角)。管状補強材の引張強度は1,400MPaであり、圧縮強度は640MPaであった。
(Example 1)
As a tubular reinforcing material, a matrix resin using carbon fiber (manufactured by Toho Tenax Co., Ltd., acrylic nitrile carbon fiber "HTS40, 24K", diameter 7 μm) as a reinforcing fiber is a vinyl ester resin (curing temperature 110 to 150 ° C., curing required. A pultruded material having a time of 5 to 10 min) was produced. The volume ratio of the reinforcing fibers and the matrix resin in this tubular reinforcing material was 60/40, and the abundance density of carbon fibers in the cross section was 15,000 fibers / mm 2 . The cross-sectional shape of the tubular reinforcing material was a hollow square (rectangle), the outer dimensions were 30 mm × 30 mm, and the thickness was uniform on all sides and 3 mm (inner diameter 24 mm square). The tensile strength of the tubular reinforcing material was 1,400 MPa, and the compressive strength was 640 MPa.

幅30.5mm、深さ14.5mmの溝を掘った木質ラミナ(スギ)の溝内に水溶性高分子−イソシアネート系接着剤(株式会社オーシカ製、ピーアイボンド5300L)を250g/mの塗付量で塗付し、木質ラミナの溝間に上記の管状補強材を挟み接着した。接着は常温プレスとし、プレス圧は0.8MPaとし、プレス時間は30分とした。ここで得られた補強ラミナは、幅方向に、18mmの木材−30mmの管状補強材−30mmの木材−30mmの管状補強材−18mmの木材の構成で管状補強材と木材が交互に並んだ幅126mmのラミナであった。 A water-soluble polymer-isocyanate adhesive (manufactured by Oshika Corporation, PI Bond 5300L) is applied at 250 g / m 2 in the groove of wood lamina (cedar) with a width of 30.5 mm and a depth of 14.5 mm. It was applied in an applied amount, and the above-mentioned tubular reinforcing material was sandwiched between the grooves of the wood lamina and bonded. Adhesion was performed by pressing at room temperature, the pressing pressure was 0.8 MPa, and the pressing time was 30 minutes. The reinforcing lamina obtained here has a width of 18 mm wood-30 mm tubular reinforcing material-30 mm wood-30 mm tubular reinforcing material-18 mm wood in which tubular reinforcing materials and wood are alternately arranged in the width direction. It was 126 mm lamina.

得られた補強ラミナを最下段と最上段に用い、その間は木材のみのラミナで積層された木質集成材を得た。用いた接着剤は補強ラミナと同様に、水溶性高分子−イソシアネート系接着剤(株式会社オーシカ製、ピーアイボンド5300L)であり(塗付量250g/m)、常温プレス(プレス圧0.8MPa、プレス時間30分)で作製した。接着後、集成材の表面にモルダー仕上げを行い、断面サイズ120mm×240mm、長さ5,000mmの木質集成材を得た。この木質集成材の断面の模式図を図1に示す。また、この木質集成材の評価結果を表1に示す。 The obtained reinforced lamina was used for the bottom and top tiers, and in the meantime, a wood laminated wood laminated with wood-only lamina was obtained. The adhesive used was a water-soluble polymer-isocyanate adhesive (manufactured by Oshika Corporation, PI Bond 5300L) (coating amount 250 g / m 2 ) and a room temperature press (press pressure 0.8 MPa), similar to the reinforcing lamina. , Press time 30 minutes). After bonding, the surface of the laminated wood was subjected to a moulder finish to obtain a wood laminated wood having a cross-sectional size of 120 mm × 240 mm and a length of 5,000 mm. A schematic cross-sectional view of this wood laminated wood is shown in FIG. Table 1 shows the evaluation results of this wood laminated wood.

得られた木質集成材を長さ方向の中心にて半切し、その断面同士を接する形でプレストレスによる接合を実施した。プレストレスは、木質集成材の端部にある4本の管状補強材部分を覆うように120mm×240mm、厚さ20mmの鉄製座金を介して直径9mmのPC鋼棒を1本ずつ、それぞれの管状補強材に通した(図4)。PC鋼棒1本につき、55kNの張力をかけ、ナットで緩まないように固定して木質建材を得た。この木質建材の評価結果を表1に示す。 The obtained wood laminated wood was cut in half at the center in the length direction, and the cross sections were joined by prestress in contact with each other. Prestress is made by inserting one PC steel rod with a diameter of 9 mm through an iron washer with a thickness of 120 mm x 240 mm and a thickness of 20 mm so as to cover the four tubular reinforcing members at the end of the wood laminated wood. It was passed through a reinforcing material (Fig. 4). A tension of 55 kN was applied to each PC steel rod and fixed with a nut so as not to loosen to obtain a wooden building material. Table 1 shows the evaluation results of this wooden building material.

(実施例2)
実施例1で半切した木質集成材の接合面にも120mm×240mm、厚さ20mmの鉄製座金を挟み(図5)、PC鋼棒の径を13mmに変更してかけた張力をPC鋼棒1本につき、110kNとしたこと以外は実施例1と同様として木質建材を得た。評価結果を表1に示す。
(Example 2)
An iron washer having a thickness of 120 mm × 240 mm and a thickness of 20 mm was also sandwiched between the joint surfaces of the wood laminated wood cut in half in Example 1 (FIG. 5), and the diameter of the PC steel rod was changed to 13 mm to apply tension to the PC steel rod 1 For the book, a wooden building material was obtained in the same manner as in Example 1 except that the value was 110 kN. The evaluation results are shown in Table 1.

(比較例1)
実施例1で管状補強材を用いなかったこと以外は実施例1と同様とした。この木質集成材の断面の模式図を図2に示す。24kNの張力をかけたところで木質集成材の端部にめり込みによる割裂が発生したため、評価のための繰返し曲げ試験は実施できなかった。
(Comparative Example 1)
It was the same as in Example 1 except that the tubular reinforcing material was not used in Example 1. FIG. 2 shows a schematic cross-sectional view of this wood laminated wood. Repeated bending test for evaluation could not be carried out because cracking occurred at the end of the wood laminated wood when a tension of 24 kN was applied.

(比較例2)
実施例1と同じ断面サイズ120mm×240mm、長さ5,000mmの既存木質集成材(E65−F225)を用いた。実施例1と同様に長さ方向の中心にて半切し、その断面同士を接する形で接合を実施した。接合方法は、既存のグル―インロッド工法を用いた。接合断面の4角から40mmの位置に、4本の直径16mm、長さ600mmの全ネジボルトを接合する木質集成材、左右300mmとなるように差し込み、エポキシ樹脂を充填した。養生期間を経て、試験開始までに2週間の時間を要した。得られた既存木質集成材のグルーインロッド工法による接合試験体の評価結果を表1に示す。
(Comparative Example 2)
An existing wood laminated wood (E65-F225) having the same cross-sectional size of 120 mm × 240 mm and a length of 5,000 mm as in Example 1 was used. Similar to Example 1, the pieces were cut in half at the center in the length direction, and the cross sections were joined in contact with each other. As the joining method, the existing glue-in rod method was used. A wood laminated wood that joins four all-screw bolts with a diameter of 16 mm and a length of 600 mm was inserted at positions 40 mm from the four corners of the joint cross section so as to be 300 mm on the left and right, and filled with epoxy resin. After the curing period, it took two weeks to start the test. Table 1 shows the evaluation results of the joint test piece obtained by the glue-in rod method of the existing wood laminated wood.

Figure 2020133212
Figure 2020133212

本発明の木質建材は、木材および集成材が使用される用途に適用することができる。なかでも、学校や体育館、講堂、各種室内球技場やドームなどの大型建築物の長尺の骨組み材、共同住宅や戸建て住宅などの建築物の梁として好適に用いることができる。 The wood building material of the present invention can be applied to applications in which wood and laminated wood are used. Among them, it can be suitably used as a long frame material for large buildings such as schools, gymnasiums, auditoriums, various indoor ballparks and dome, and as a beam for buildings such as apartment houses and detached houses.

11 矩形中空の管状補強材
12 木質集成材
21 中空部分(補強材無し)
22 木質集成材
31 ロッド挿入部
32 木質集成材
41 木質集成材
42 座金
43 ナット
44 PC鋼棒
51 木質集成材
52 座金
53 ナット
54 PC鋼棒
55 めり込み補強材
61 木質集成材
62 全ネジボルト
11 Rectangular hollow tubular reinforcing material 12 Wood laminated wood 21 Hollow part (without reinforcing material)
22 Wood laminated wood 31 Rod insertion part 32 Wood laminated wood 41 Wood laminated wood 42 Seat metal 43 Nut 44 PC steel rod 51 Wood laminated wood 52 Seat metal 53 Nut 54 PC steel rod 55 Indented reinforcement 61 Wood laminated wood 62 All screw bolts

Claims (12)

少なくとも二つの木質集成材が長手方向に接合された木質建材であって、木質集成材は長手方向に貫通する管状補強材によって補強されており、管状補強材の菅内には、少なくとも二つの木質集成材の管状補強材の菅内を長手方向に貫通する緊張材が設けられ、緊張材に張力がかけられることにより当該少なくとも二つの木質集成材が長手方向に接合された状態で固定されている木質建材。 It is a wood building material in which at least two wood glulams are joined in the longitudinal direction, and the wood glulam is reinforced by a tubular reinforcing material penetrating in the longitudinal direction, and at least two wood glulams are contained in the tube reinforcing material. A wooden building material in which a tension material is provided that penetrates the inside of the tubular reinforcing material in the longitudinal direction, and the tension material is tensioned so that at least two wood laminated woods are fixed in a state of being joined in the longitudinal direction. .. 少なくとも二つの木質集成材が、両者の接合部に設けられた、めりこみ補強材を介して接合している、請求項1に記載の木質建材。 The wood building material according to claim 1, wherein at least two wood laminated materials are joined via a recessed reinforcing material provided at the joint portion between the two. 建築物の梁として用いられる、請求項1または2に記載の木質建材。 The wooden building material according to claim 1 or 2, which is used as a beam of a building. 管状補強材の断面が矩形中空である、請求項1乃至3のいずれかに記載の木質建材。 The wood-based building material according to any one of claims 1 to 3, wherein the tubular reinforcing material has a rectangular hollow cross section. 管状補強材が、その長手方向に補強繊維が配向し熱硬化性樹脂の硬化物で固着されたものである、請求項1乃至4のいずれかに記載の木質建材。 The wood-based building material according to any one of claims 1 to 4, wherein the tubular reinforcing material has reinforcing fibers oriented in the longitudinal direction and fixed with a cured product of a thermosetting resin. 補強繊維が連続繊維である、請求項1乃至5のいずれかに記載の木質建材。 The wood building material according to any one of claims 1 to 5, wherein the reinforcing fiber is a continuous fiber. 補強繊維が炭素繊維、ガラス繊維または芳香族ポリアミド繊維である、請求項1乃至6のいずれかに記載の木質建材。 The wood building material according to any one of claims 1 to 6, wherein the reinforcing fiber is carbon fiber, glass fiber or aromatic polyamide fiber. 木質集成材において管状補強材と木質材料片がそれぞれの繊維方向が平行となる向きに接着されている、請求項1乃至7のいずれかに記載の木質建材。 The wood-based building material according to any one of claims 1 to 7, wherein the tubular reinforcing material and the wood-based material piece are adhered in a direction in which the fiber directions of the wood-based laminated wood are parallel to each other. 管状補強材が集成材の長手方向に直交する断面の中心から等距離の位置に複数本配置されている、請求項1乃至8のいずれかに記載の木質建材。 The wood-based building material according to any one of claims 1 to 8, wherein a plurality of tubular reinforcing materials are arranged at equidistant positions from the center of a cross section orthogonal to the longitudinal direction of the laminated wood. 請求項1乃至9のいずれかに記載の木質建材において、緊張材に10〜300kNの張力がかけられている木質建材。 The wood building material according to any one of claims 1 to 9, wherein a tension of 10 to 300 kN is applied to the tension material. めりこみ補強材が、炭素繊維、ガラス繊維もしくは芳香族ポリアミド繊維で補強された繊維補強樹脂、金属または無機材料からなる、請求項2乃至10のいずれかに記載の木質建材。 The woody building material according to any one of claims 2 to 10, wherein the embedded reinforcing material is made of a fiber reinforcing resin reinforced with carbon fiber, glass fiber or aromatic polyamide fiber, a metal or an inorganic material. 請求項9に記載の木質建材において、木質集成材の長手方向に直交する断面の中心から等距離の位置に複数本配置された管状補強材の少なくとも二本に、それぞれを貫通する緊張材が設けられた木質建材であって、緊張材は木質集成材の長手方向に直交する断面の中心に対して点対称をなす位置に設けられている木質建材。 In the wood building material according to claim 9, at least two of the tubular reinforcing materials arranged at equal distances from the center of the cross section orthogonal to the longitudinal direction of the wood laminated wood are provided with tensioning materials penetrating each of them. The timber-based building material is a wooden building material that is provided at a position that is point-symmetrical with respect to the center of the cross section orthogonal to the longitudinal direction of the wood-glulam.
JP2019027071A 2019-02-19 2019-02-19 wooden building material Active JP7204519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027071A JP7204519B2 (en) 2019-02-19 2019-02-19 wooden building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027071A JP7204519B2 (en) 2019-02-19 2019-02-19 wooden building material

Publications (2)

Publication Number Publication Date
JP2020133212A true JP2020133212A (en) 2020-08-31
JP7204519B2 JP7204519B2 (en) 2023-01-16

Family

ID=72277982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027071A Active JP7204519B2 (en) 2019-02-19 2019-02-19 wooden building material

Country Status (1)

Country Link
JP (1) JP7204519B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162612U (en) * 1984-04-06 1985-10-29 貝本 冨作 Glulam for prestressed structures
JPH0211918U (en) * 1988-07-08 1990-01-25
JP2001254476A (en) * 2000-03-09 2001-09-21 Hiroshima Pref Gov Composite metal-wooden beam, and manufacturing method therefor
JP2007309053A (en) * 2006-05-22 2007-11-29 Kunio Honma Hoop-collection method of prestressed wooden girder
JP2014134029A (en) * 2013-01-10 2014-07-24 Cemedine Co Ltd Building reinforcement method and fiber-reinforced adhesive sheet
JP2017172297A (en) * 2016-03-25 2017-09-28 帝人株式会社 Joining method of wooden member
JP2018089897A (en) * 2016-12-06 2018-06-14 帝人株式会社 Woody laminated lumber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162612U (en) * 1984-04-06 1985-10-29 貝本 冨作 Glulam for prestressed structures
JPH0211918U (en) * 1988-07-08 1990-01-25
JP2001254476A (en) * 2000-03-09 2001-09-21 Hiroshima Pref Gov Composite metal-wooden beam, and manufacturing method therefor
JP2007309053A (en) * 2006-05-22 2007-11-29 Kunio Honma Hoop-collection method of prestressed wooden girder
JP2014134029A (en) * 2013-01-10 2014-07-24 Cemedine Co Ltd Building reinforcement method and fiber-reinforced adhesive sheet
JP2017172297A (en) * 2016-03-25 2017-09-28 帝人株式会社 Joining method of wooden member
JP2018089897A (en) * 2016-12-06 2018-06-14 帝人株式会社 Woody laminated lumber

Also Published As

Publication number Publication date
JP7204519B2 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
Wei et al. Experimental and theoretical investigation of steel-reinforced bamboo scrimber beams
Raftery et al. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods
US5565257A (en) Method of manufacturing wood structural member with synthetic fiber reinforcement
Harvey et al. Improved timber connections using bonded-in GFRP rods
US20100089002A1 (en) Composite structural elements and method of making same
Awaludin et al. Bolted bamboo joints reinforced with fibers
US8966692B2 (en) Bridge composite structural panel
Ahmad Ductility of timber beams strengthened using fiber reinforced polymer
WO2005035209A2 (en) Wood bamboo composites
Almutairi et al. Mechanical performance of fibre reinforced polymer confined softwood timber for pole applications
JP7239339B2 (en) wooden building material
JP6698397B2 (en) How to join wood members
JP7204519B2 (en) wooden building material
Al-Fasih et al. Shear performance of strengthened timber beam with intermittent GFRP strips
JP2009228361A (en) Synthetic material for construction and its manufacturing method
CN105484355A (en) Connection system of wood-concrete composite structure
Bhat Improved Strength and Stiffness Characteristics of Cross-laminated Poplar Timber
CN116940463A (en) Bamboo building element
JP2014201870A (en) Cwood
JP7405640B2 (en) Wooden building materials and structures
JP2008230032A (en) Structural material and its manufacturing method
JP2023139372A (en) Woody building material, ligneous unit for building, building and production method thereof
JP2022121887A (en) Woody beam-column structure
JP3027931B2 (en) Prestressed laminated timber beam and method of manufacturing the same
JP2019120090A (en) Wooden floor material and construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150