JP2020132896A - Soft magnetic alloy powder, method for producing the same, and dust core using the same - Google Patents

Soft magnetic alloy powder, method for producing the same, and dust core using the same Download PDF

Info

Publication number
JP2020132896A
JP2020132896A JP2019023404A JP2019023404A JP2020132896A JP 2020132896 A JP2020132896 A JP 2020132896A JP 2019023404 A JP2019023404 A JP 2019023404A JP 2019023404 A JP2019023404 A JP 2019023404A JP 2020132896 A JP2020132896 A JP 2020132896A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic alloy
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019023404A
Other languages
Japanese (ja)
Inventor
泰史 藤本
Yasushi Fujimoto
泰史 藤本
正人 前出
Masato Maede
正人 前出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019023404A priority Critical patent/JP2020132896A/en
Publication of JP2020132896A publication Critical patent/JP2020132896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a soft magnetic alloy powder, so that an excellent magnetic property is obtained.SOLUTION: In the soft magnetic alloy powder 101 of the present invention, a heat-treated flat plate-shaped first powder 101 having a particle size of 40 μm or more and the value of major axis/minor axis of 1.2 or more and 2.0 or less, and a heat-treated flat plate-shaped second powder 102 having a particle size of 10 μm or more and 15 μm or less and the value of major axis/minor axis of 1.2 or more and 2.0 or less, are existing in a mixed manner.SELECTED DRAWING: Figure 1

Description

本発明は、チョークコイル、リアクトル、トランス等のインダクタに用いられる軟磁性合金粉末、その製造方法、および、それを用いた圧粉磁心に関するものである。 The present invention relates to a soft magnetic alloy powder used for inductors such as choke coils, reactors and transformers, a method for producing the same, and a powder magnetic core using the same.

近年、ハイブリッド自動車(HEV)やプラグインハイブリッド自動(PHEV)、電気自動車(EV)など、車両の電動化が急速に進んでおり、更なる燃費向上のためシステムの小型・軽量化が求められている。その電動化市場に牽引されて、様々な電子部品に対して小型化および軽量化が求められる中、チョークコイル、リアクトル、トランスなどで使用される軟磁性合金粉末およびそれを用いた圧粉磁心に対してますます高い性能が要求されている。 In recent years, vehicles such as hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and electric vehicles (EV) have been rapidly electrified, and there is a demand for smaller and lighter systems in order to further improve fuel efficiency. There is. Driven by the electrification market, various electronic components are required to be smaller and lighter, and soft magnetic alloy powders used in choke coils, reactors, transformers, etc. and powder magnetic cores using them. On the other hand, higher performance is required.

この軟磁性合金粉末およびそれを用いた圧粉磁心においては、小型化・軽量化のために飽和磁束密度が高いことが要求され、更には、コアロスが少ないこと、直流重畳特性に優れることが要求されている。 This soft magnetic alloy powder and the powder magnetic core using it are required to have a high saturation magnetic flux density in order to reduce the size and weight, and further, to have a small core loss and excellent DC superimposition characteristics. Has been done.

例えば、特許文献1には、アモルファス軟磁性合金の特長である少ないコアロスと優れた直流重畳特性とを、粉砕粉とアトマイズ球状粉とを混合することにより実現させる方法が記載されている。 For example, Patent Document 1 describes a method of realizing a small core loss and excellent DC superimposition characteristics, which are the characteristics of an amorphous soft magnetic alloy, by mixing pulverized powder and atomized spherical powder.

図5(a)〜図5(c)は、特許文献1に記載されたアモルファス軟磁性合金を説明するための図である。図5(a)は粒径50μm以上の粉砕粉1を示す図である。図5(b)は粒径50μm以下の粉砕粉2を示す図である。図5(c)はアトマイズ球状粉3を示す図である。 5 (a) to 5 (c) are diagrams for explaining the amorphous soft magnetic alloy described in Patent Document 1. FIG. 5A is a diagram showing a pulverized powder 1 having a particle size of 50 μm or more. FIG. 5B is a diagram showing a pulverized powder 2 having a particle size of 50 μm or less. FIG. 5C is a diagram showing atomized spherical powder 3.

特許文献1には、これらのアモルファス合金薄帯の粉砕粉1,2とアモルファス合金のアトマイズ球状粉3とを主成分とする圧粉磁心が記載されている。この圧粉磁心は以下を特徴としている。 Patent Document 1 describes a dust core containing the crushed powders 1 and 2 of these amorphous alloy strips and the amorphous alloy atomized spherical powder 3 as main components. This dust core is characterized by the following.

粉砕粉1,2は薄板状であり、対向する二主面を有する。前記主面の面方向の最小値を粒径としたとき、粒径が粉砕粉の厚さ(薄帯の厚さ25μm)の2倍(25μm×2=50μm)を超えて、6倍(25μm×6=150μm)以下の粉砕粉1が全粉砕粉の80質量%以上である。かつ、粒径が粉砕粉の厚さの2倍(25μm×2=50μm)以下の粉砕粉2が、全粉砕粉の20質量%以下である。さらに、アトマイズ球状粉3の粒径は、薄帯の厚さ(25μm)の1/2(25×1/2=12.5μm)以下かつ、3μm以上である。 The crushed powders 1 and 2 are thin plates and have two facing main surfaces. When the minimum value in the plane direction of the main surface is taken as the particle size, the particle size exceeds twice (25 μm × 2 = 50 μm) of the thickness of the pulverized powder (thickness of the thin band 25 μm) and is 6 times (25 μm). × 6 = 150 μm) or less of the crushed powder 1 is 80% by mass or more of the total crushed powder. Moreover, the crushed powder 2 having a particle size of twice the thickness of the crushed powder (25 μm × 2 = 50 μm) or less is 20% by mass or less of the total crushed powder. Further, the particle size of the atomized spherical powder 3 is 1/2 (25 × 1/2 = 12.5 μm) or less and 3 μm or more of the thickness of the thin band (25 μm).

特許第4944971号公報Japanese Patent No. 4944971

しかしながら、特許文献1では、薄帯の粉砕粉1,2はともに扁平状であるのに対し、アトマイズ球状粉3は球形である。そのため、粉砕粉1,2とアトマイズ球状粉3とを混合する際に、粉砕粉の空隙を球状粉が十分に埋めることができない。つまり、アトマイズ球状粉3が粉砕粉1,2の周りに入りこむ際に、粉砕粉1,2とアトマイズ球状粉3との形状が異なるため、粉砕粉1,2とアトマイズ粉3との接触面積が小さく、粉砕粉1,2の空隙をアトマイズ球状粉3が十分に埋めることができない。よって、アトマイズ球状粉3の充填率が上がらず、比透磁率または飽和磁束密度などの磁気特性が低下する。 However, in Patent Document 1, the thin band crushed powders 1 and 2 are both flat, whereas the atomized spherical powder 3 is spherical. Therefore, when the crushed powders 1 and 2 and the atomized spherical powder 3 are mixed, the spherical powder cannot sufficiently fill the voids of the crushed powder. That is, when the atomized spherical powder 3 enters around the crushed powders 1 and 2, the shapes of the crushed powders 1 and 2 and the atomized spherical powder 3 are different, so that the contact area between the crushed powders 1 and 2 and the atomized powder 3 is large. It is small and the voids of the crushed powders 1 and 2 cannot be sufficiently filled with the atomized spherical powder 3. Therefore, the filling rate of the atomized spherical powder 3 does not increase, and the magnetic characteristics such as the relative permeability or the saturated magnetic flux density decrease.

本発明は上記課題を解決するもので、優れた磁気特性が得られる軟磁性合金粉末と、その製造方法、それを用いた圧粉磁心を提供することを目的とする。 The present invention solves the above problems, and an object of the present invention is to provide a soft magnetic alloy powder having excellent magnetic properties, a method for producing the same, and a powder magnetic core using the same.

上記の目的を達成するために、本発明の軟磁性合金粉末は、粒径が40μm以上であり、長径/短径の値が1.2以上2.0以下であり、熱処理された平板状の第1粉末と、粒径10μm以上15μm以下であり、長径/短径の値が1.2以上2.0以下であり、熱処理された平板状の第2粉末と、が混在している。 In order to achieve the above object, the soft magnetic alloy powder of the present invention has a particle size of 40 μm or more, a major axis / minor axis value of 1.2 or more and 2.0 or less, and is a heat-treated flat plate. The first powder and the second powder having a particle size of 10 μm or more and 15 μm or less, a major axis / minor axis value of 1.2 or more and 2.0 or less, and a heat-treated flat plate-shaped second powder are mixed.

上記の目的を達成するために、本発明の圧粉磁心は、前記軟磁性合金粉末と、バインダーと、を含む。 In order to achieve the above object, the powder magnetic core of the present invention includes the soft magnetic alloy powder and a binder.

上記の目的を達成するために、本発明の軟磁性合金粉末の製造方法は、軟磁性合金薄帯を粗粉末に加工する第1加工工程と、前記粗粉末を粉砕して微粉末とする第2加工工程と、前記微粉末を分級して複数に分ける分級工程と、前記複数に分けられた微粉末に対して、各々熱処理を施す熱処理工程と、前記熱処理工程後の微粉末を混合する混合工程と、を有する。 In order to achieve the above object, the method for producing a soft magnetic alloy powder of the present invention includes a first processing step of processing a soft magnetic alloy strip into a coarse powder and a first processing step of crushing the crude powder into a fine powder. Two processing steps, a classification step of classifying the fine powder into a plurality of parts, a heat treatment step of applying heat treatment to each of the plurality of fine powders, and a mixing of the fine powders after the heat treatment step. It has a process.

以上のように、実施の形態で開示する手段によれば、優れた磁気特性が得られる軟磁性合金粉末と、その製造方法、それを用いた圧粉磁心を提供することができる。 As described above, according to the means disclosed in the embodiment, it is possible to provide a soft magnetic alloy powder having excellent magnetic properties, a method for producing the same, and a powder magnetic core using the same.

(a)は本発明の実施の形態の軟磁性合金粉末を示す図、(b)は従来の軟磁性合金粉末を示す図(A) is a diagram showing a soft magnetic alloy powder according to an embodiment of the present invention, and (b) is a diagram showing a conventional soft magnetic alloy powder. 本発明の実施の形態の軟磁性合金薄帯の微粉末の製造工程を示す図The figure which shows the manufacturing process of the fine powder of the soft magnetic alloy thin band of embodiment of this invention. (a)〜(b)は本発明の実施の形態の軟磁性合金薄帯の微粉末の粉砕メカニズムを示す図Figures (a) to (b) show the pulverization mechanism of the fine powder of the soft magnetic alloy strip according to the embodiment of the present invention. (a)〜(c)は本発明の実施例に係る各種粉末のSEM画像、(d)比較例の軟磁性合金粉末のSEM画像(A) to (c) are SEM images of various powders according to the examples of the present invention, and (d) SEM images of soft magnetic alloy powders of Comparative Examples. (a)は特許文献1に記載された粒径50μm以上の粉砕粉を示す図、(b)は特許文献1に記載された粒径50μm以下の粉砕粉を示す図、(c)はアトマイズ球状粉を示す図(A) is a diagram showing a pulverized powder having a particle size of 50 μm or more described in Patent Document 1, (b) is a diagram showing a pulverized powder having a particle size of 50 μm or less described in Patent Document 1, and (c) is an atomized spherical shape. Diagram showing powder

以下に、本発明を実施するための形態について図面を参照しながら、説明する。以下に示す実施の形態はあくまでも例示に過ぎず、以下の実施の形態で明示しない種々の変形や技術の適用を排除するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The embodiments shown below are merely examples, and do not exclude the application of various modifications and techniques not specified in the following embodiments.

なお、実施の形態を説明するための全図において、同一要素は原則として同一の符号を付し、その説明を省略することもある。 In addition, in all the drawings for explaining the embodiment, the same elements may be given the same reference numerals in principle, and the description thereof may be omitted.

<構造>
図1(a)は、本発明の実施の形態における軟磁性合金粉末100の断面図である。図1(a)に示すように、軟磁性合金粉末100は、粒径の大きな熱処理後の第1粉末101と、粒径の小さな熱処理後の第2粉末102との混合粉末である。
<Structure>
FIG. 1A is a cross-sectional view of the soft magnetic alloy powder 100 according to the embodiment of the present invention. As shown in FIG. 1A, the soft magnetic alloy powder 100 is a mixed powder of the first powder 101 after the heat treatment having a large particle size and the second powder 102 after the heat treatment having a small particle size.

第1粉末101(熱処理後の微粉末)は、平板状で、粒径Dが40μm以上で、平面の長径/短径の値R(短径に対する長径の比)が1.2以上2.0以下の粉末である。後述するように、第1粉末101は、粉砕されることで微粉化された粉砕粉であり、また、熱処理が施されている。
なお、上記粒径Dの定義は、レーザー粒度分布計を用いて算出した、平均粒子径d50%(μm)、メジアン径(個数平均)の値である。比の値も、左記で計算した値である。下記において、規定していない径は、同様である。
The first powder 101 (fine powder after heat treatment) has a flat plate shape, a particle size D of 40 μm or more, and a plane major axis / minor axis value R (ratio of major axis to minor axis) of 1.2 or more and 2.0. The following powder. As will be described later, the first powder 101 is a pulverized powder that has been pulverized by being pulverized, and has been subjected to heat treatment.
The definition of the particle size D is a value of an average particle size d50% (μm) and a median diameter (number average) calculated using a laser particle size distribution meter. The ratio value is also the value calculated on the left. In the following, the diameters not specified are the same.

第2粉末102(熱処理後の微粉末)は、平板状で、粒径Dが10以上15μm以下で、平面の長径/短径の値Rが1.2以上2.0以下の粉末である。後述するように第2粉末102は、粉砕されることで微粉化された粉砕粉であり、また、熱処理が施されている。 The second powder 102 (fine powder after heat treatment) is a flat powder having a particle size D of 10 or more and 15 μm or less and a plane major axis / minor axis value R of 1.2 or more and 2.0 or less. As will be described later, the second powder 102 is a pulverized powder that has been pulverized by being pulverized, and has been subjected to heat treatment.

なお、第1粉末101の粒径Dは、より大きいほうが好ましく、50μm以上が好ましい。また、第1粉末101の平面の長径/短径の値Rは、1.4以上1.6以下が好ましい。 The particle size D of the first powder 101 is preferably larger, preferably 50 μm or more. Further, the value R of the major axis / minor axis of the plane of the first powder 101 is preferably 1.4 or more and 1.6 or less.

第2粉末102としては、粒径が小さいものも含むのが好ましく、例えば10μm未満の粒径のものを含むことが好ましい。また、第2粉末102の平面の長径/短径の値Rは、1.4以上1.6以下が好ましい。 The second powder 102 preferably has a small particle size, and preferably contains, for example, a powder having a particle size of less than 10 μm. Further, the value R of the major axis / minor axis of the plane of the second powder 102 is preferably 1.4 or more and 1.6 or less.

第1粉末101に、第1粉末101と長径/短径の値Rが同じ範囲内であり且つ第1粉末101よりも粒径Dの小さな第二粉末が入り込むことで、第1粉末101と第2粉末102との接触面積が大きくなり、充填率が高くなる。充填率とは、図1(a),(b)に示す枠のような所定面積の領域において第1粉末101と第2粉末102とが占める面積の割合をいう。 The first powder 101 and the first powder 101 are the first powder 101 because the second powder having a major axis / minor axis value R within the same range as the first powder 101 and having a particle size D smaller than that of the first powder 101 enters the first powder 101. 2 The contact area with the powder 102 becomes large, and the filling rate becomes high. The filling rate refers to the ratio of the area occupied by the first powder 101 and the second powder 102 in a region having a predetermined area such as the frame shown in FIGS. 1 (a) and 1 (b).

また、第1粉末101、第2粉末102の各厚みは、好ましくは1μm以上50μm以下であり、より好ましくは、10μm以上40μm以下である。 The thickness of each of the first powder 101 and the second powder 102 is preferably 1 μm or more and 50 μm or less, and more preferably 10 μm or more and 40 μm or less.

第1粉末101、第2粉末102の厚みが厚くなると、粒子間に電圧もしくは、電流を流した際、粒子の存在により、特性を向上できない。このため、第1粉末101、第2粉末102の厚みが薄ければ薄いほど、個々の粉体の熱応答性が向上する熱処理を施すことで、粒径別の比透磁率および、飽和磁束密度が向上する。ここで、熱応答性が向上する熱処理とは、粉の熱伝導を上げる処理のことである。具体的には、粉一つ一つの熱を瞬時に伝えるために、昇温速度や粉の表面粗さを均一化するなどの処理を指す。 If the thickness of the first powder 101 and the second powder 102 becomes thicker, the characteristics cannot be improved due to the presence of the particles when a voltage or current is passed between the particles. Therefore, the thinner the thickness of the first powder 101 and the second powder 102, the more the thermal responsiveness of each powder is improved. By performing the heat treatment, the relative magnetic permeability and the saturation magnetic flux density for each particle size are obtained. Is improved. Here, the heat treatment for improving the heat response is a process for increasing the heat conduction of the powder. Specifically, it refers to a process such as making the temperature rise rate and the surface roughness of the powder uniform in order to instantly transfer the heat of each powder.

<従来例>
図1(b)は、従来例である特許文献1の粉砕粉とアトマイズ粉とを混合した軟磁性合金粉末の断面図である。図1(b)に示す混合粉末(軟磁性合金粉末)は、粒径20μm以上の粉砕粉103と、粒径3μm以上のアトマイズ粉104とが混在した混合粉末である。この軟磁性合金粉末では、粉砕粉103が長球形状であるのに対してアトマイズ粉104がほぼ球形状であることから、粉砕粉103の周りに、アトマイズ粉104が入りこんだ際、粉砕粉103とアトマイズ粉104との接触面積が小さい。したがって、図1(a)に示す本発明の実施の形態の軟磁性合金粉末に比べて、粉砕粉103とアトマイズ粉104との充填率が低下する。すなわち、粉体のない空隙が多くなる。
<Conventional example>
FIG. 1B is a cross-sectional view of a soft magnetic alloy powder obtained by mixing the pulverized powder and atomized powder of Patent Document 1, which is a conventional example. The mixed powder (soft magnetic alloy powder) shown in FIG. 1B is a mixed powder in which a pulverized powder 103 having a particle size of 20 μm or more and an atomized powder 104 having a particle size of 3 μm or more are mixed. In this soft magnetic alloy powder, the crushed powder 103 has a long spherical shape, whereas the atomized powder 104 has a substantially spherical shape. Therefore, when the crushed powder 104 enters around the crushed powder 103, the crushed powder 103 The contact area between the atomized powder 104 and the atomized powder 104 is small. Therefore, the filling rate of the pulverized powder 103 and the atomized powder 104 is lower than that of the soft magnetic alloy powder of the embodiment of the present invention shown in FIG. 1 (a). That is, there are many voids without powder.

<製造方法>
次に、本発明の実施の形態の軟磁性合金粉末の製造法、および、本発明の実施の形態の圧粉磁心の製造方法について説明する。
<Manufacturing method>
Next, a method for producing a soft magnetic alloy powder according to an embodiment of the present invention and a method for producing a dust core according to an embodiment of the present invention will be described.

<軟磁性合金粉末の製造方法>
軟磁性合金粉末100の製造方法について、図2を用いて説明する。
<Manufacturing method of soft magnetic alloy powder>
A method for producing the soft magnetic alloy powder 100 will be described with reference to FIG.

<Fe系の軟磁性合金薄帯の製造>
アーク溶解などを用いて合金化したFe系合金組成物を、高周波加熱などによって融解し、その後、この融解したFe系合金組成物を液体急冷法により冷却して、Fe系の軟磁性合金薄帯201を製造する。この時、Fe系の軟磁性合金薄帯201の厚みは、20μm以上40μm以下が好ましい。
<Manufacturing of Fe-based soft magnetic alloy strip>
The Fe-based alloy composition alloyed by arc melting or the like is melted by high-frequency heating or the like, and then the melted Fe-based alloy composition is cooled by a liquid quenching method to obtain an Fe-based soft magnetic alloy ribbon. 201 is manufactured. At this time, the thickness of the Fe-based soft magnetic alloy strip 201 is preferably 20 μm or more and 40 μm or less.

このような液体急冷法を伴う軟磁性合金薄帯201の製造は、単ロール式の製造装置や、双ロール式の製造装置を使用することで実施できる。 The production of the soft magnetic alloy strip 201 accompanied by such a liquid quenching method can be carried out by using a single roll type production apparatus or a double roll type production apparatus.

<第1次加工工程>
次に、第1次加工工程として、軟磁性合金薄帯201を、粉砕機を使用せずに、一定大きさ(例えば1mm四方)に細かく裁断し、粗粉末202に加工する。
<Primary processing process>
Next, as the first processing step, the soft magnetic alloy strip 201 is finely cut into a certain size (for example, 1 mm square) without using a crusher, and processed into a coarse powder 202.

このように、粉砕前に、あらかじめ、軟磁性合金薄帯201を細かくして粗粉末202とすることによって、その後に行われる粉砕の時に生じる破砕エネルギーを抑えることができる。軟磁性合金薄帯201を細かく裁断する装置として、マイクロカットシュレッダー、または、裁断機などが例示される。裁断機は、軟磁性合金薄帯201を厚み方向でなく面方向にカットする装置を使用する。この第1次加工工程において、予め、軟磁性合金薄帯201を小さくすることで、最終的に粒度分布が広い粉体(微粉末203)を製造できる。粗粉末202の大きさは、1mm角以下が好ましい。 In this way, by finely grinding the soft magnetic alloy strip 201 into coarse powder 202 before pulverization, it is possible to suppress the crushing energy generated during the subsequent pulverization. Examples of a device for finely cutting the soft magnetic alloy strip 201 include a microcut shredder, a cutting machine, and the like. The cutting machine uses a device that cuts the soft magnetic alloy strip 201 in the plane direction instead of the thickness direction. By reducing the soft magnetic alloy strip 201 in advance in this first processing step, a powder having a wide particle size distribution (fine powder 203) can be finally produced. The size of the crude powder 202 is preferably 1 mm square or less.

<第2次加工工程>
次に、細断した粗粉末202を粉砕することで、微粉末203を得る。粗粉末202の粉砕には、一般的な粉砕装置を使用でき、例えば、ボールミル、スタンプミル、遊星ミル、サイクロンミル、ジェットミル、または、回転ミルなどを使用できる。
<Second processing process>
Next, the fine powder 203 is obtained by crushing the shredded coarse powder 202. A general pulverizer can be used for pulverizing the coarse powder 202, and for example, a ball mill, a stamp mill, a planetary mill, a cyclone mill, a jet mill, a rotary mill, or the like can be used.

また、粉砕して得られた微粉末203を、ふるいを用いて分級することにより、所望の粒度分布を有する微粉末204,205が得られる。 Further, by classifying the fine powder 203 obtained by pulverization using a sieve, fine powders 204 and 205 having a desired particle size distribution can be obtained.

<第2次加工工程の製造メカニズム>
図3(a)と図3(b)とを用いて、粗粉末202から、微粉末204と微粉末205とが混在する微粉末203が、粉砕装置によって製造されるメカニズム(製造メカニズム)を説明する。図3(a)に示す粗粉末202を回転ミルなどの粉砕機で粉砕すると、粗粉末202の表面がへき開され、図3(b)に示すように、微粉末205が削り取られ、表面に粉砕痕204aを有し、粒径Dが20μm以上であって角がなく丸みを帯びた微粉末204となる。また、微粉末205も、同様のメカニズムで表面がへき開され、角がなく丸みを帯びた形状となる。
<Manufacturing mechanism of the secondary processing process>
Using FIGS. 3 (a) and 3 (b), a mechanism (manufacturing mechanism) in which the fine powder 203 in which the fine powder 204 and the fine powder 205 are mixed is produced from the crude powder 202 by the pulverizer will be described. To do. When the crude powder 202 shown in FIG. 3A is crushed with a crusher such as a rotary mill, the surface of the coarse powder 202 is cleaved, and as shown in FIG. 3B, the fine powder 205 is scraped off and crushed onto the surface. The fine powder 204 has a mark 204a, a particle size D of 20 μm or more, and has no corners and is rounded. Further, the surface of the fine powder 205 is also cleaved by the same mechanism, and has a rounded shape without corners.

再び図2を用いて以降の処理について説明する。 The subsequent processing will be described again with reference to FIG.

<分級工程>
上述したように粉砕により微粉末203が得られると、この微粉末203が分級され、微粉末204,205が得られる。
<Classification process>
When the fine powder 203 is obtained by pulverization as described above, the fine powder 203 is classified to obtain the fine powders 204 and 205.

<熱処理工程>
次に、分級して得られた、微粉末204と微粉末205とを、それぞれ熱処理装置を使用して熱処理する。この熱処理によって、粉砕による生じた内部ひずみを微粉末204,205から取り除いたり、微粉末204,205にαFe結晶相を析出させたりする。それにより、αFe結晶相の析出した第1粉末101及び第2粉末102が得られる。熱処理装置には、例えば、熱風炉、ホットプレス、ランプ、シースー金属ヒーター、セラミックヒーター、ロータリーキルンなどを使用できる。この時、ホットプレスなどを用いて、急速加熱することで、結晶化がより進み、微粉末204の表面のへき開がさらに進むので好ましい。したがって、粒径が小さい微粉末205の割合を増やせる。
<Heat treatment process>
Next, the fine powder 204 and the fine powder 205 obtained by classification are heat-treated using a heat treatment apparatus, respectively. By this heat treatment, the internal strain generated by pulverization is removed from the fine powders 204 and 205, and the αFe crystal phase is precipitated on the fine powders 204 and 205. As a result, the first powder 101 and the second powder 102 in which the αFe crystal phase is precipitated are obtained. As the heat treatment apparatus, for example, a hot air furnace, a hot press, a lamp, a sheath metal heater, a ceramic heater, a rotary kiln and the like can be used. At this time, rapid heating using a hot press or the like is preferable because crystallization progresses further and cleavage of the surface of the fine powder 204 further progresses. Therefore, the proportion of the fine powder 205 having a small particle size can be increased.

微粉末204,205を粒子径で分けて、それぞれを別々に熱処理(熱処理条件を変える)した方が、それぞれの微粉末204,205へ均等に熱が伝わり、均質な好ましい特性が得られるので好ましい。例えば、粒子径が小さい方(微粉末205)は、440℃で熱処理(最高温度)される。粒径が大きい方(微粉末204)は、熱の伝わりが遅いため、460℃で熱処理(最高温度)される。このように粒子径が大きいほど、熱処理温度を上げることで、微粉末204,205に対してそれぞれの粒子径にあった熱処理を行え、微粉末204,205は均質な特性の粒子となる。 It is preferable to divide the fine powders 204 and 205 according to the particle size and heat-treat each of them separately (change the heat treatment conditions) because heat is evenly transferred to the fine powders 204 and 205 and homogeneous and preferable characteristics are obtained. .. For example, the smaller particle size (fine powder 205) is heat-treated (maximum temperature) at 440 ° C. The larger particle size (fine powder 204) is heat-treated (maximum temperature) at 460 ° C. because heat transfer is slow. As described above, as the particle size is larger, the heat treatment temperature is raised so that the fine powders 204 and 205 can be heat-treated according to the respective particle sizes, and the fine powders 204 and 205 have uniform characteristics.

<混合工程>
次に、αFe結晶相の析出した第1粉末101及び第2粉末102を、混合量を配慮しつつ、混合装置を使用して混ぜ合わせる。これにより軟磁性合金粉末100が得られる。
混合装置としては、例えば、撹拌機、混合機などを使用できる。混合工程では、第1粉末101及び第2粉末102の混合比率を変えて、充填率の向上につながるように粒径を制御することで、比透磁率および、飽和磁束密度が向上させることができる。ここで、粒径とは、レーザー回折の粒度分布計を用いた時の平均粒径のことである。例えば、粒径の大きな粒子の割合を増やすと、粒径の小さい粒子が粒径の大きな粒子の間に入り込む余地が無いため、平均粒径が大きくなり、第1粉末101及び第2粉末102の混合比率を変えることで粒径を制御できる。
<Mixing process>
Next, the first powder 101 and the second powder 102 in which the αFe crystal phase is precipitated are mixed using a mixing device while considering the mixing amount. As a result, the soft magnetic alloy powder 100 is obtained.
As the mixing device, for example, a stirrer, a mixer, or the like can be used. In the mixing step, the relative magnetic permeability and the saturation magnetic flux density can be improved by changing the mixing ratio of the first powder 101 and the second powder 102 and controlling the particle size so as to improve the filling rate. .. Here, the particle size is the average particle size when a laser diffraction particle size distribution meter is used. For example, when the proportion of particles having a large particle size is increased, there is no room for particles having a small particle size to enter between the particles having a large particle size, so that the average particle size becomes large, and the first powder 101 and the second powder 102 The particle size can be controlled by changing the mixing ratio.

<圧粉磁心の製造>
本発明の実施形態に係る軟磁性合金粉末100とバインダーとを含有する圧粉磁心の製造方法について説明する。本実施の形態における圧粉磁心の製造では、先ず、第1粉末101と、第2粉末102と、フェノール樹脂やシリコーン樹脂などの絶縁性が良好で耐熱性が高いバインダーとを混合攪拌機を用いて、造粒粉を製造する。
<Manufacturing of dust core>
A method for producing a powder magnetic core containing the soft magnetic alloy powder 100 and a binder according to the embodiment of the present invention will be described. In the production of the powder magnetic core according to the present embodiment, first, the first powder 101, the second powder 102, and a binder having good insulation and high heat resistance such as phenol resin and silicone resin are mixed and stirred using a mixing stirrer. , Manufacture granulated powder.

次に、この造粒粉を、所望の形状を有する耐熱性が高い金型に充填し、加圧成形して圧粉体を得る。その後、この圧粉体を、バインダーが硬化する温度で加熱することで、比透磁率および、飽和磁束密度が高い圧粉磁心が得られる。 Next, this granulated powder is filled in a highly heat-resistant mold having a desired shape and pressure-molded to obtain a green compact. Then, by heating this powder compact at a temperature at which the binder cures, a powder magnetic core having a high relative permeability and a high saturation magnetic flux density can be obtained.

(実施例1)
軟磁性合金薄帯201として、急冷単ロール法により、厚み20μm以上40μm以下のFe73.5−Cu1−Nb3−Si13.5−B9(原子%)のFe系軟磁性合金薄帯を製造した。
(Example 1)
As the soft magnetic alloy strip 201, an Fe-based soft magnetic alloy strip 201 having a thickness of 20 μm or more and 40 μm or less of Fe73.5-Cu1-Nb3-Si13.5-B9 (atomic%) was produced by a quenching single roll method.

この軟磁性合金薄帯201を、10mm四方に細断し、粗粉末202を製造した。 The soft magnetic alloy strip 201 was shredded into 10 mm squares to produce a crude powder 202.

その後、粗粉末202を回転ミルで粉砕し、軟磁性合金の粉砕粉である微粉末203を得た。この粉砕では、粗粉砕を3分間、微粉砕を20分間実施した。微粉末203を、ふるいを用いて、それぞれ所望の粒度分布を有する軟磁性合金の粉末である微粉末204と微粉末205とに分級した。分級して得られた微粉末204,205をそれぞれ熱処理して、α−Fe結晶相が析出した第1粉末101及び第2粉末102を得た。最後に、α−Fe結晶相の析出した第1粉末101及び第2粉末102を混合して、軟磁性合金粉末100を得た。 Then, the crude powder 202 was pulverized with a rotary mill to obtain a fine powder 203 which is a pulverized powder of a soft magnetic alloy. In this pulverization, coarse pulverization was carried out for 3 minutes and fine pulverization was carried out for 20 minutes. The fine powder 203 was classified into fine powder 204 and fine powder 205, which are soft magnetic alloy powders having desired particle size distributions, respectively, using a sieve. The fine powders 204 and 205 obtained by classification were heat-treated, respectively, to obtain a first powder 101 and a second powder 102 in which the α-Fe crystal phase was precipitated. Finally, the first powder 101 and the second powder 102 in which the α—Fe crystal phase was precipitated were mixed to obtain a soft magnetic alloy powder 100.

次に、シリコーン樹脂をバインダーとして、軟磁性粉末100の造粒を行い、造粒粉を製造した。 Next, the soft magnetic powder 100 was granulated using the silicone resin as a binder to produce the granulated powder.

次に、造粒粉を金型に投入し、この金型に投入した造粒粉を、プレス機を用いて、成形圧4トン/cmの圧力で加圧成形を行って圧粉体を製造した。この際、同様の手法により複数の圧粉体を製造した。 Next, the granulated powder is put into a mold, and the granulated powder put into the mold is pressure-molded at a pressure of 4 tons / cm 2 using a press machine to obtain a green compact. Manufactured. At this time, a plurality of green compacts were produced by the same method.

得られたそれぞれの圧粉体に対して、インピーダンスアナライザーを用いて、周波数100kHzにおける比透磁率を測定した。透磁率の合否基準を25以上としたところ、全ての圧粉体が合否基準をクリアした。すなわち、全ての圧粉体の透磁率が25以上となった。合否基準は、従来の金属系の材料の比透磁率以上になるように設定した。よって、比透磁率が高い圧粉磁心が得られた。 For each of the obtained green compacts, the relative magnetic permeability at a frequency of 100 kHz was measured using an impedance analyzer. When the pass / fail standard of magnetic permeability was set to 25 or more, all the green compacts cleared the pass / fail standard. That is, the magnetic permeability of all the green compacts was 25 or more. The pass / fail criteria were set to be equal to or higher than the relative magnetic permeability of conventional metallic materials. Therefore, a powder magnetic core having a high relative magnetic permeability was obtained.

(比較例1)
軟磁性合金薄帯として、急冷単ロール法により、厚み20μm以上40μm以下のFe73.5−Cu1−Nb3−Si13.5−B9(原子%)のFe系の薄帯を製造した。この薄帯を10mm四方に細断し、粗粉末を得た。
(Comparative Example 1)
As the soft magnetic alloy strip, a Fe-based strip having a thickness of 20 μm or more and 40 μm or less of Fe73.5-Cu1-Nb3-Si13.5-B9 (atomic%) was produced by a quenching single roll method. This thin band was shredded into 10 mm squares to obtain a coarse powder.

この粗粉末を、回転ミルを用いて粉砕し、軟磁性合金薄帯の粉砕粉である微粉末を得た。この粉砕では、粗粉砕を3分間、微粉砕を20分間実施した。粉砕粉を、ふるいを用いて分級し、所望の粒度分布を有する軟磁性合金の粉砕粉を得た。得られた粉砕粉を熱処理することで、α−Fe結晶相が析出した微粉末(軟磁性粉末)を得た。 This crude powder was pulverized using a rotary mill to obtain a fine powder which is a pulverized powder of a soft magnetic alloy strip. In this pulverization, coarse pulverization was carried out for 3 minutes and fine pulverization was carried out for 20 minutes. The pulverized powder was classified using a sieve to obtain a pulverized powder of a soft magnetic alloy having a desired particle size distribution. The obtained pulverized powder was heat-treated to obtain a fine powder (soft magnetic powder) in which the α-Fe crystal phase was precipitated.

次に、この微粉末である軟磁性粉末の造粒粉を、シリコーン樹脂をバインダーとして使用して製造した。 Next, the granulated powder of the soft magnetic powder, which is a fine powder, was produced using a silicone resin as a binder.

次に、造粒粉を金型に投入し、プレス機を用いて、4トン/cmの圧力で加圧成形を行って、圧粉体を製造した。この際、同様の手法により複数の圧粉体を製造した。 Next, the granulated powder was put into a mold and pressure-molded at a pressure of 4 tons / cm 2 using a press machine to produce a green compact. At this time, a plurality of green compacts were produced by the same method.

得られたそれぞれの圧粉体に対して、インピーダンスアナライザーを用いて、周波数100kHzにおける比透磁率を測定した。比透磁率の合否基準を、実施例と同様に25以上としたところ、合否基準をクリアした圧粉体はなかった。合否基準は、上述のとおり、従来の金属系の材料の比透磁率以上になるように設定した。 For each of the obtained green compacts, the relative magnetic permeability at a frequency of 100 kHz was measured using an impedance analyzer. When the pass / fail criteria for the specific magnetic permeability was set to 25 or more as in the examples, there was no green compact that cleared the pass / fail criteria. As described above, the pass / fail criteria are set so as to be equal to or higher than the relative magnetic permeability of the conventional metal-based material.

<熱処理後の微粉末の形状>
実施例の圧粉体および比較例の圧粉体は、それぞれ、上述した通り、回転ミルを用いて、粉砕した粉砕粉を用いて熱処理を施していることから、表面がへき開して、粒径が20μm以上の角がなく、丸みを帯びた形状をしている。
<Shape of fine powder after heat treatment>
As described above, the green compact of the example and the green compact of the comparative example are each subjected to heat treatment using the crushed crushed powder using a rotary mill, so that the surface is cleaved and the particle size is increased. Has no corners of 20 μm or more and has a rounded shape.

<粒度分布>
粉砕して得られたそれぞれの軟磁性合金薄帯の粉砕粉の粒度分布を、マイクロトラックMT3000(2)シリーズを用いて測定した。図4(a)に実施例1の分級後の熱処理された第2粉末102のSEM画像を示す。図4(b)に実施例1の分級後の熱処理された第1粉末101のSEM画像を示す。図4(a)に示す第2粉末102の粒径は10μm以上15μm以下、図4(b)に示す第1粉末101の粒径は40μm以上50μm以下である。この図4(a)、図4(b)の微粉末を混合した時の粉末、すなわち実施例1の軟磁性合金粉末100を図4(c)に示す。
<Particle size distribution>
The particle size distribution of the pulverized powder of each soft magnetic alloy strip obtained by pulverization was measured using the Microtrack MT3000 (2) series. FIG. 4A shows an SEM image of the second powder 102 that has been heat-treated after the classification of Example 1. FIG. 4B shows an SEM image of the first powder 101 that has been heat-treated after the classification of Example 1. The particle size of the second powder 102 shown in FIG. 4A is 10 μm or more and 15 μm or less, and the particle size of the first powder 101 shown in FIG. 4B is 40 μm or more and 50 μm or less. FIG. 4 (c) shows the powder when the fine powders of FIGS. 4 (a) and 4 (b) are mixed, that is, the soft magnetic alloy powder 100 of Example 1.

図4(d)は、比較例1の軟磁性合金粉末404である。比較例1の軟磁性合金粉末404は、粉砕後に粒径が揃えられず、粒径10μm以上20μm以下の粉末となっている。 FIG. 4D is the soft magnetic alloy powder 404 of Comparative Example 1. The soft magnetic alloy powder 404 of Comparative Example 1 has a particle size that is not uniform after pulverization, and is a powder having a particle size of 10 μm or more and 20 μm or less.

累積分布は、図4(c)の実施例1の軟磁性合金粉末100は、平均粒子径であるD10%が7.032μm、D50%が14.48μm、D90%が37.81μmであった。 The cumulative distribution of the soft magnetic alloy powder 100 of Example 1 in FIG. 4 (c) was 7.032 μm for D10%, 14.48 μm for D50%, and 37.81 μm for D90%, which are average particle diameters.

対して、図4(d)の比較例1の軟磁性合金粉末404は、平均粒子径であるD10%が7.153μm、D50%が14.13μm、D90%が29.99μmであった。 On the other hand, in the soft magnetic alloy powder 404 of Comparative Example 1 in FIG. 4 (d), the average particle size of D10% was 7.153 μm, D50% was 14.13 μm, and D90% was 29.99 μm.

ここで、D10%とは、個数基準の下側10%の粒径である。D50%とは、個数基準の下側50%の粒径である。D90%とは、個数基準の下側90%の粒径である。 Here, D10% is a particle size of 10% below the number standard. D50% is a particle size of 50% below the number standard. D90% is a particle size of 90% below the number standard.

以下、表1にまとめた。 The following is a summary in Table 1.

また、累積分布の割合であるD10%/D90%の値は、図4(c)の実施例1の軟磁性合金粉末100では0.185であった。図4(d)の比較例1の軟磁性合金粉末404では0.239であった。この値が小さければ小さいほど、軟磁性合金粉末の粒度分布の幅が広くなっていく。つまり、軟磁性合金粉末における微粒子の割合が多くなる。実施例1の軟磁性合金粉末100は熱処理後の粉末である第1粉末101及び第2粉末102を30%と70%との割合で混合した。 The value of D10% / D90%, which is the ratio of the cumulative distribution, was 0.185 in the soft magnetic alloy powder 100 of Example 1 in FIG. 4 (c). It was 0.239 in the soft magnetic alloy powder 404 of Comparative Example 1 in FIG. 4 (d). The smaller this value, the wider the width of the particle size distribution of the soft magnetic alloy powder. That is, the proportion of fine particles in the soft magnetic alloy powder increases. In the soft magnetic alloy powder 100 of Example 1, the first powder 101 and the second powder 102, which are the powders after the heat treatment, were mixed at a ratio of 30% and 70%.

したがって、軟磁性合金粉末100における粉砕粉の累積分布は、平均粒子径であるD50%が14μmのとき、累積分布の割合であるD10%/D90%は、0.200未満であることが好ましい。 Therefore, in the cumulative distribution of the pulverized powder in the soft magnetic alloy powder 100, when the average particle size D50% is 14 μm, the cumulative distribution ratio D10% / D90% is preferably less than 0.200.

平均粒子径であるD50%が10μm以上20μm以下の範囲内であることを目標値としたとき、微粒子の割合が多く、粗粒子の割合が少ないと、粗粒子内の空隙に微粒子が入り込み、密度が向上する。よって、平均粒子径であるD10%の値がより小さく、粒度分布幅の広いことを表すD10%/D90%の値が小さいのが好ましい。かつ、粒径別に熱処理を施すことで、粒径が揃っていることから、粉1つ1つにかかる熱量が等しくなり、より特性向上につながるサイズの揃ったαFeの結晶を析出させることができる。 When the target value is that D50%, which is the average particle size, is within the range of 10 μm or more and 20 μm or less, if the proportion of fine particles is large and the proportion of coarse particles is small, the fine particles enter the voids in the coarse particles and have a density. Is improved. Therefore, it is preferable that the value of D10%, which is the average particle size, is smaller, and the value of D10% / D90%, which indicates that the particle size distribution width is wide, is small. Moreover, since the particle size is uniform by performing the heat treatment for each particle size, the amount of heat applied to each powder becomes equal, and it is possible to precipitate αFe crystals having a uniform size, which leads to further improvement in characteristics. ..

また、軟磁性合金粉末100における粉砕粉の累積分布は、D10%が10μm未満かつ、D50%が10μm以上20μm以下かつD90%が30μm以上であり、累積分布の割合であるD10%/D90%は、0.20以下であることが好ましい。 The cumulative distribution of the pulverized powder in the soft magnetic alloy powder 100 is such that D10% is less than 10 μm, D50% is 10 μm or more and 20 μm or less, and D90% is 30 μm or more, and the cumulative distribution ratio of D10% / D90% is , 0.20 or less is preferable.

上記の通り、粒径別に熱処理を施した粉末(第1粉末101及び第2粉末102)を、混合させることで得られた実施例1の軟磁性合金粉末100は、比較例1の軟磁性合金粉末404と比べて、粒度分布幅の広いブロードな粒度分布を作り出すことができる。結果、微粒子の割合が多くなることから、第2粉末102が、第1粉末101に入り込みやすくなる。 As described above, the soft magnetic alloy powder 100 of Example 1 obtained by mixing the powders (first powder 101 and second powder 102) heat-treated according to the particle size is the soft magnetic alloy of Comparative Example 1. It is possible to create a broad particle size distribution having a wider particle size distribution range than the powder 404. As a result, since the proportion of the fine particles is increased, the second powder 102 can easily enter the first powder 101.

さらに、軟磁性合金粉末100は、粉砕後の粉末のみから構成されており、粉砕後の粉末は略同形状であることから、空隙率が低くなる。よって、軟磁性合金粉末100は、透磁率および、飽和磁束密度が高い磁気特性の優れた軟磁性合金粉末となる。 Further, the soft magnetic alloy powder 100 is composed of only the powder after pulverization, and the powder after pulverization has substantially the same shape, so that the porosity is low. Therefore, the soft magnetic alloy powder 100 is a soft magnetic alloy powder having high magnetic permeability and high saturation magnetic flux density and excellent magnetic characteristics.

この結果から、熱処理後の粉末である第1粉末101及び第2粉末102を混合させることで、空隙率を減少させた混合比率で混ぜることができ、比透磁率および、飽和磁束密度を向上させることができる。 From this result, by mixing the first powder 101 and the second powder 102 which are the powders after the heat treatment, it is possible to mix them at a mixing ratio in which the porosity is reduced, and the specific magnetic permeability and the saturation magnetic flux density are improved. be able to.

<混合>
したがって、軟磁性合金粉末100のプロセスを基に粒径別に粉を混合させるとよい。つまり、粉砕機で粉砕し、53μmふるいまで分級した粉末203をさらに、32μmふるいまで分級した。その際に分級された粒径の大きな粉末204、粒径の小さな粉末205が生成される。この粉末204、205を、それぞれ別々に熱処理を施し、混合した粉末が軟磁性合金粉末100になる。
<Mixed>
Therefore, it is preferable to mix the powders according to the particle size based on the process of the soft magnetic alloy powder 100. That is, the powder 203 which was crushed by a crusher and classified to a 53 μm sieve was further classified to a 32 μm sieve. At that time, the classified powder 204 having a large particle size and the powder 205 having a small particle size are produced. The powders 204 and 205 are separately heat-treated, and the mixed powder becomes the soft magnetic alloy powder 100.

また、熱処理後の軟磁性合金粉末100を製造するにあたり、第1粉末101及び第2粉末102の混合比率を適正な値とすることで、より高充填率かつ、高比透磁率な粉末を製造することができる。 Further, in producing the soft magnetic alloy powder 100 after the heat treatment, by setting the mixing ratio of the first powder 101 and the second powder 102 to an appropriate value, a powder having a higher filling rate and a higher specific magnetic permeability can be produced. can do.

下表2に、前記の実施例1に加えて、実施例2の計測結果を示す。実施例1と実施例2とはそれぞれ、熱処理後の粉末である第1粉末101及び第2粉末102を混合させたものである。 Table 2 below shows the measurement results of Example 2 in addition to the above-mentioned Example 1. Examples 1 and 2 are a mixture of the first powder 101 and the second powder 102, which are the powders after the heat treatment, respectively.

また、累積分布の割合であるD10%/D90%の値は、実施例1では0.185であり、実施例2では0.134であった。この値が小さければ小さいほど、粒度分布の幅が広くなっていく。つまり、微粒子の割合が多くなる。 The value of D10% / D90%, which is the ratio of the cumulative distribution, was 0.185 in Example 1 and 0.134 in Example 2. The smaller this value, the wider the particle size distribution. That is, the proportion of fine particles increases.

このとき、実施例1の粉末(軟磁性合金粉末100)は、第1粉末101及び第2粉末102を30%、70%の割合で混合した。実施例2の粉末(軟磁性合金粉末100)は熱処理後の第1粉末101及び第2粉末102を50%、50%の割合で混合した。 At this time, the powder of Example 1 (soft magnetic alloy powder 100) was a mixture of the first powder 101 and the second powder 102 at a ratio of 30% and 70%. In the powder of Example 2 (soft magnetic alloy powder 100), the first powder 101 and the second powder 102 after the heat treatment were mixed at a ratio of 50% and 50%.

したがって、第1粉末101及び第2粉末102の累積分布の割合であるD10%/D90%の値は、0.150未満より小さいのが好ましい。 Therefore, the value of D10% / D90%, which is the ratio of the cumulative distribution of the first powder 101 and the second powder 102, is preferably less than 0.150.

平均粒子径であるD50%が10μm以上20μm以下の範囲内であることを目標としたとき、微粒子の割合が多く、粗粒子の割合が少ないと、粗粒子内の空隙に微粒子が入り込み、密度が向上する。よって、平均粒子径であるD10%の値がより小さく、粒度分布幅の広いことを表すD10%/D90%の値がより小さいのが好ましい。かつ、粒径別の混合比率(第1粉末101及び第2粉末102の混合比率)を変えることで、より充填率の高い粉末を製造することができる。 When the target is that the average particle size D50% is within the range of 10 μm or more and 20 μm or less, if the proportion of fine particles is large and the proportion of coarse particles is small, the fine particles enter the voids in the coarse particles and the density becomes high. improves. Therefore, it is preferable that the value of D10%, which is the average particle size, is smaller, and the value of D10% / D90%, which indicates that the particle size distribution width is wide, is smaller. Moreover, by changing the mixing ratio for each particle size (mixing ratio of the first powder 101 and the second powder 102), a powder having a higher filling rate can be produced.

熱処理後の第1粉末101及び第2粉末102の累積分布は、D10%が10μm未満、かつ、D50%が10μm以上20μm以下かつ、D90%が30μm以上で、累積分布の割合であるD10%/D90%は、0.20以下であることが好ましい。 The cumulative distribution of the first powder 101 and the second powder 102 after the heat treatment is D10% less than 10 μm, D50% 10 μm or more and 20 μm or less, and D90% 30 μm or more, which is the ratio of the cumulative distribution D10% /. D90% is preferably 0.20 or less.

上記の通り、粒径別に熱処理を施した粉末(第1粉末101及び第2粉末102)を、混合させることで、比較例と比べて、粒度分布幅の広いブロードな粒度分布を作り出すことができる。結果、微粒子の割合が多くなることから、第2粉末102が、第1粉末101に入り込みやすくなる。 As described above, by mixing the powders (first powder 101 and second powder 102) that have been heat-treated for each particle size, a broad particle size distribution having a wider particle size distribution range can be created as compared with the comparative example. .. As a result, since the proportion of the fine particles is increased, the second powder 102 can easily enter the first powder 101.

さらに、粉砕された微粉末(粉砕粉)のみが使用されており、異なる粒径の微粉末が同形状であることから、空隙率が低くなる。よって、透磁率および、飽和磁束密度が高い磁気特性の優れた軟磁性合金粉末が得られる。 Further, only crushed fine powder (crushed powder) is used, and since fine powders having different particle sizes have the same shape, the porosity is low. Therefore, a soft magnetic alloy powder having high magnetic permeability and high saturation magnetic flux density and excellent magnetic properties can be obtained.

この結果から、熱処理された第1粉末101及び第2粉末102を混合させる割合を調節することで、空隙率を減少させることができ、比透磁率および、飽和磁束密度を向上させることができる。 From this result, the porosity can be reduced, and the relative magnetic permeability and the saturation magnetic flux density can be improved by adjusting the mixing ratio of the heat-treated first powder 101 and the second powder 102.

<本発明の効果>
本発明の効果について、再び図4(a)、図4(b)および図4(c)を参照しながら説明していく。粒径の揃った粉砕後の微粉末205,204を、それぞれの粉1つ1つの熱量に合った熱処理を施すことで、図4(a)および図4(b)に示す第2粉末102及び第1粉末101のような優れた軟磁性特性の粉末を得ることができる。熱処理後の第2粉末102及び第1粉末101を密度向上につながる混合比率で混ぜ合わせることで、比透磁率および、飽和磁束密度を向上させることができる。
<Effect of the present invention>
The effect of the present invention will be described again with reference to FIGS. 4 (a), 4 (b) and 4 (c). By heat-treating the pulverized fine powders 205 and 204 having the same particle size according to the calorific value of each powder, the second powder 102 and FIG. 4 (b) shown in FIGS. 4 (a) and 4 (b) are subjected to heat treatment. A powder having excellent soft magnetic properties such as the first powder 101 can be obtained. By mixing the second powder 102 and the first powder 101 after the heat treatment at a mixing ratio that leads to an increase in density, the relative magnetic permeability and the saturation magnetic flux density can be improved.

上記の通り、累積分布比のD10%/D90%の値を小さくする、つまり粒度分布幅を広げることで、大小様々な粒子径の微粉末が混在した軟磁性合金粉末を製造できる。さらに、微粉末の割合が多いことで、粗粉末の周りに微粉末が入り込み、軟磁性合金粉末における空隙率を減少させることができる。 As described above, by reducing the value of the cumulative distribution ratio of D10% / D90%, that is, by widening the particle size distribution width, it is possible to produce a soft magnetic alloy powder in which fine powders of various sizes are mixed. Further, since the ratio of the fine powder is large, the fine powder can enter around the coarse powder, and the porosity in the soft magnetic alloy powder can be reduced.

さらに、図1(a)に示すように、軟磁性合金粉末100は、扁平状の粉末101,102のみを有する構成である。すなわち同じ形状の粉末101,102により構成される。このことから、従来例である図1(b)の粉砕粉103とアトマイズ粉104とを混合させた混合粉末よりも、空隙を埋めやすくなる。その結果、図1(b)に示す粉砕粉103とアトマイズ粉104との混合粉末である従来例よりも、図1(a)の扁平状の粉末101,102のみから構成される本実施形態の軟磁性合金粉末100のほうが、空隙率が低いため、比透磁率および、飽和磁束密度が向上する。 Further, as shown in FIG. 1A, the soft magnetic alloy powder 100 has only the flat powders 101 and 102. That is, it is composed of powders 101 and 102 having the same shape. For this reason, it becomes easier to fill the voids than the mixed powder obtained by mixing the crushed powder 103 and the atomized powder 104 of FIG. 1B, which is a conventional example. As a result, the present embodiment composed of only the flat powders 101 and 102 of FIG. 1 (a) as compared with the conventional example which is a mixed powder of the crushed powder 103 and the atomized powder 104 shown in FIG. 1 (b). Since the soft magnetic alloy powder 100 has a lower porosity, the relative magnetic permeability and the saturation magnetic flux density are improved.

本発明の実施形態によれば、軟磁性合金粉末の比透磁率および、飽和磁束密度を向上させることができる。つまり、優れた軟磁性特性が得られる軟磁性合金粉末を提供することができる。 According to the embodiment of the present invention, the relative magnetic permeability of the soft magnetic alloy powder and the saturation magnetic flux density can be improved. That is, it is possible to provide a soft magnetic alloy powder having excellent soft magnetic properties.

1 粉砕粉
2 粉砕粉
3 アトマイズ球状粉
100 軟磁性合金粉末
101 第1粉末(熱処理後の微粉末)
102 第2粉末(熱処理後の微粉末)
103 粉砕粉
104 アトマイズ粉
201 軟磁性合金薄帯
202 粗粉末
203、204、205 粉砕後の微粉末
204a 粉砕痕
1 Milled powder
2 Crushed powder 3 Atomized spherical powder 100 Soft magnetic alloy powder 101 First powder (fine powder after heat treatment)
102 Second powder (fine powder after heat treatment)
103 Crushed powder 104 Atomized powder 201 Soft magnetic alloy strip 202 Coarse powder 203, 204, 205 Fine powder after crushing 204a Crushing marks

Claims (10)

粒径が40μm以上であり、長径/短径の値が1.2以上2.0以下であり、平板状の第1粉末と、
粒径10μm以上15μm以下であり、長径/短径の値が1.2以上2.0以下であり、平板状の第2粉末と、が混在している
軟磁性合金粉末。
A flat first powder having a particle size of 40 μm or more and a major axis / minor axis value of 1.2 or more and 2.0 or less.
A soft magnetic alloy powder having a particle size of 10 μm or more and 15 μm or less, a major axis / minor axis value of 1.2 or more and 2.0 or less, and a plate-like second powder mixed.
前記第1粉末と前記第2粉末との各厚みは、1μm以上50μm以下である
請求項1記載の軟磁性合金粉末。
The soft magnetic alloy powder according to claim 1, wherein the thickness of each of the first powder and the second powder is 1 μm or more and 50 μm or less.
前記軟磁性合金粉末の累積分布は、D10%が10μm未満、かつ、D50%が10μm以上20μm以下、かつ、D90%が30μm以上である
請求項1または2に記載の軟磁性合金粉末。
The soft magnetic alloy powder according to claim 1 or 2, wherein the cumulative distribution of the soft magnetic alloy powder is D10% less than 10 μm, D50% 10 μm or more and 20 μm or less, and D90% 30 μm or more.
前記軟磁性合金粉末の累積分布比であるD10%/D90%は、0.20以下である
請求項1〜3に記載の軟磁性合金粉末。
The soft magnetic alloy powder according to claims 1 to 3, wherein D10% / D90%, which is the cumulative distribution ratio of the soft magnetic alloy powder, is 0.20 or less.
請求項1〜4のいずれか1項に記載の軟磁性合金粉末と、
バインダーと、を含有する
圧粉磁心。
The soft magnetic alloy powder according to any one of claims 1 to 4,
A powder magnetic core containing a binder.
軟磁性合金薄帯を粗粉末に加工する第1加工工程と、
前記粗粉末を粉砕して微粉末とする第2加工工程と、
前記微粉末を分級して複数に分ける分級工程と、
前記複数に分けられた微粉末に対して、各々熱処理を施す熱処理工程と、
前記熱処理工程後の微粉末を混合する混合工程と、を有する
軟磁性合金粉末の製造方法。
The first processing step of processing the soft magnetic alloy strip into coarse powder, and
The second processing step of crushing the crude powder into a fine powder, and
A classification step of classifying the fine powder into a plurality of powders,
A heat treatment step in which each of the fine powders divided into the plurality of pieces is heat-treated,
A method for producing a soft magnetic alloy powder, which comprises a mixing step of mixing the fine powder after the heat treatment step.
前記軟磁性合金薄帯は、軟磁性合金の溶融物を急冷して製造される
請求項6記載の軟磁性合金粉末の製造方法。
The method for producing a soft magnetic alloy powder according to claim 6, wherein the soft magnetic alloy strip is produced by quenching a melt of the soft magnetic alloy.
前記混合工程では、D10%/D90%の値が0.20以下となるような混合比率で、前記複数に分けられた微粉末を混合する
請求項6又は7に記載の軟磁性合金粉末の製造方法。
The production of the soft magnetic alloy powder according to claim 6 or 7, wherein in the mixing step, the fine powders divided into the plurality of parts are mixed at a mixing ratio such that the value of D10% / D90% is 0.20 or less. Method.
前記各々の熱処理の条件は互いに異なる
請求項6〜8のいずれか1項に記載の軟磁性合金粉末の製造方法。
The method for producing a soft magnetic alloy powder according to any one of claims 6 to 8, wherein the conditions of each of the heat treatments are different from each other.
前記各々の熱処理は、ホットプレスである
請求項6〜9のいずれか1項に記載の軟磁性合金粉末の製造方法。
The method for producing a soft magnetic alloy powder according to any one of claims 6 to 9, wherein each of the heat treatments is a hot press.
JP2019023404A 2019-02-13 2019-02-13 Soft magnetic alloy powder, method for producing the same, and dust core using the same Pending JP2020132896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023404A JP2020132896A (en) 2019-02-13 2019-02-13 Soft magnetic alloy powder, method for producing the same, and dust core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023404A JP2020132896A (en) 2019-02-13 2019-02-13 Soft magnetic alloy powder, method for producing the same, and dust core using the same

Publications (1)

Publication Number Publication Date
JP2020132896A true JP2020132896A (en) 2020-08-31

Family

ID=72262461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023404A Pending JP2020132896A (en) 2019-02-13 2019-02-13 Soft magnetic alloy powder, method for producing the same, and dust core using the same

Country Status (1)

Country Link
JP (1) JP2020132896A (en)

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
CN104067358B (en) The manufacture method of compressed-core, coil component and compressed-core
CN109215919B (en) Soft magnetic powder, method for producing same, and dust core using same
CN110098029B (en) Soft magnetic alloy and magnetic component
US20190013129A1 (en) Dust core
JP6632602B2 (en) Manufacturing method of magnetic refrigeration module
JP6998552B2 (en) Powder magnetic core
EP3785824B1 (en) Fe-based nanocrystalline alloy powder and method for producing a magnetic core
US11062829B2 (en) Soft magnetic alloy powder, production method thereof, and dust core using same
US20210265088A1 (en) Soft magnetic alloy powder, method for producing same, and dust core using soft magnetic alloy powder
TWI820323B (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core and method for manufacturing nanocrystalline alloy dust core
JP2020132896A (en) Soft magnetic alloy powder, method for producing the same, and dust core using the same
JP6941766B2 (en) Soft magnetic alloy powder and its manufacturing method, and powder magnetic core using it
JP6998549B2 (en) Soft magnetic powder and its manufacturing method, and powder magnetic core using it
JP6975877B2 (en) Soft magnetic alloy powder and powder magnetic core using it
JPH1174140A (en) Manufacture of dust core
KR102290167B1 (en) Fe based soft magnetic alloy, method for manufacturing thereof and magnetic comprising the same
JP2019094552A (en) Manufacturing method of soft magnetic powder magnetic core, and soft magnetic powder magnetic core
US20200143967A1 (en) Dust core and method of manufacturing the same
JP7026339B2 (en) How to recycle magnetic materials
JP2021034609A (en) Powder-compact magnetic core and method for manufacturing the same
JP2020096167A (en) Dust core and method of manufacturing the same
JP2020077845A (en) Powder magnetic core and manufacturing method of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191021