JP2020132805A - Manufacturing method of solid fuel - Google Patents

Manufacturing method of solid fuel Download PDF

Info

Publication number
JP2020132805A
JP2020132805A JP2019031246A JP2019031246A JP2020132805A JP 2020132805 A JP2020132805 A JP 2020132805A JP 2019031246 A JP2019031246 A JP 2019031246A JP 2019031246 A JP2019031246 A JP 2019031246A JP 2020132805 A JP2020132805 A JP 2020132805A
Authority
JP
Japan
Prior art keywords
solid fuel
plastic
closed container
temperature
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031246A
Other languages
Japanese (ja)
Other versions
JP7152773B2 (en
Inventor
知直 宮代
Tomonao Miyashiro
知直 宮代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G8 International Trading Co Ltd
Original Assignee
G8 International Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G8 International Trading Co Ltd filed Critical G8 International Trading Co Ltd
Priority to JP2019031246A priority Critical patent/JP7152773B2/en
Publication of JP2020132805A publication Critical patent/JP2020132805A/en
Application granted granted Critical
Publication of JP7152773B2 publication Critical patent/JP7152773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method for manufacturing a solid fuel which is safe on burning from a waste plastic as a raw material.SOLUTION: In the manufacturing method of a solid fuel, a solid fuel is manufactured by treating a plastic-based waste containing multiple kinds of plastics in a treatment space of a closed vessel by a temperature rising process, a temperature holding process, and a cooling process including treatment process, in which manufacturing method of a plastic-based solid fuel is characterized by that: in the temperature rising process, a temperature rising rate in the closed vessel to 7-12°C/min is set by using a high-temperature high-pressure water vapor; in the temperature holding process, a subcritical state having a temperature to 120°C or over and 175°C or under, and a pressure of 12-15atm is set in the closed vessel and a subcritical water treatment process is performed to a plastic-based waste by agitation in the subcritical state for 15-35 min for dissolution of several kinds of plastics among the plastic-based waste containing multiple kinds of plastics, allowing them to deposit around remaining other plastic and solidify; and in a cooling process, the obtained is cooled.SELECTED DRAWING: Figure 2

Description

本発明は、固体燃料の製造方法に関し、更に詳細には、プラスチック系ゴミを原料とする固体燃料の製造方法に関する。 The present invention relates to a method for producing a solid fuel, and more particularly to a method for producing a solid fuel using plastic waste as a raw material.

都市化の進展や産業の発展に伴って発生する産業廃棄物や生活廃棄物は、年々増大しており、その処理や有効利用が大きな課題となっている。 なかでも、下水の処理場や工場排水の処理場等で発生する有機性廃棄物は、可燃成分である炭素を含んでいることから、固形燃料としての有効活用が検討されている。 例えば、特許文献1では、有機性廃棄物に、粉状やチップ状若しくは糸状等に粉砕した廃プラスチックを混合し、この混合物を、100〜150℃の加熱下で加圧して固形燃料とすることが提案されており、この方法によれば、脱水有機性廃棄物に油を含浸させただけの構成に比べて発熱量を高くすることができるとともに、粉砕した廃プラスチックが加熱により溶融又は軟化し、その状態で加圧されるために保形成が向上し、運搬や保管等の取り扱いが容易になるとしている。 The amount of industrial waste and domestic waste generated by the progress of urbanization and industrial development is increasing year by year, and its treatment and effective utilization have become major issues. In particular, organic waste generated at sewage treatment plants and industrial wastewater treatment plants contains carbon, which is a combustible component, and therefore effective utilization as solid fuel is being studied. For example, in Patent Document 1, organic waste is mixed with waste plastic crushed into powder, chips, threads, etc., and this mixture is pressurized under heating at 100 to 150 ° C. to obtain a solid fuel. According to this method, the calorific value can be increased as compared with the configuration in which the dehydrated organic waste is simply impregnated with oil, and the crushed waste plastic is melted or softened by heating. Since the pressure is applied in that state, the retention is improved, and handling such as transportation and storage becomes easier.

しかしながら、原料に脱水汚泥等の有機性廃棄物を用いた固形燃料における問題として、有機性廃棄物由来の臭気がある。 そこで、前記のような有機性廃棄物と廃プラスチックを混合して用いる固形燃料において、有機性廃棄物由来の臭気を防ぐ方法が提案されている。 However, as a problem in solid fuel using organic waste such as dehydrated sludge as a raw material, there is an odor derived from organic waste. Therefore, in a solid fuel using a mixture of organic waste and waste plastic as described above, a method for preventing an odor derived from organic waste has been proposed.

例えば、特許文献2では、有機性廃棄物に木屑、紙屑等を混合して減圧下で発酵脱臭する工程と減圧下で加熱乾燥工程とからなる脱臭乾燥工程を経た後、得られた混合物に廃プラスチックを添加し、好ましくは100〜180℃の加熱下、圧縮成形して固形燃料とする方法が提案されている。 しかしながら、この方法は、製造工程が多く、ランニングコストがかかってしまうという問題がある。 For example, in Patent Document 2, after undergoing a deodorizing and drying step consisting of a step of mixing wood chips, paper scraps, etc. with organic waste and fermenting and deodorizing under reduced pressure, and a heat drying step under reduced pressure, the resulting mixture is discarded. A method has been proposed in which a plastic is added and compression molding is performed, preferably under heating at 100 to 180 ° C., to obtain a solid fuel. However, this method has a problem that many manufacturing processes are required and running cost is high.

また、特許文献3では、廃プラスチックを溶融してプラスチックシートを成形し、これに脱水汚泥をそのまま包んで所要大きさの固形燃料とするか、或いはプラスチックシートを円筒状に成形してその内側に脱水汚泥を充填後、接合し、しかる後所要大きさに切断して固形燃料とすることが提案されている。 この方法は、脱水汚泥の乾燥工程及び高圧を必要とする加圧成形工程を不要とすることを目的とするものであるが、廃プラスチックを溶融してプラスチックシートを成形する工程が別途必要となるという問題がある、また、固形燃料においては、その運搬や保管、或いは炉への投入等の取り扱いに適した強度が要求されるが、上記の方法で得られた固形燃料は脱水汚泥がそのままプラスチックシートに包み込まれているだけであるので、その取り扱い中に破損の虞があるなど、その強度において問題がある。 Further, in Patent Document 3, waste plastic is melted to form a plastic sheet, and dehydrated sludge is wrapped therein as it is to obtain a solid fuel of a required size, or a plastic sheet is formed into a cylindrical shape and inside the solid fuel. It has been proposed to fill the dehydrated sludge, join it, and then cut it to the required size to make solid fuel. The purpose of this method is to eliminate the need for the drying step of dehydrated sludge and the pressure molding step requiring high pressure, but a separate step of melting waste plastic to form a plastic sheet is required. In addition, solid fuel is required to have strength suitable for transportation, storage, and handling such as injection into a furnace. However, the solid fuel obtained by the above method is made of plastic as it is dehydrated sludge. Since it is only wrapped in a sheet, there is a problem in its strength, such as a risk of breakage during its handling.

さらに、特許文献4では、有機汚泥を含む有機物及び第1の熱可塑性プラスチックを混合した燃料混合物を、第2の熱可塑性プラスチックからなる外殻内に収容することが提案されており、これにより、臭気の原因となる有機汚泥を外殻内に密閉して、臭気が外部に放出されることが少なくするとしている。そして、その形成方法として、予め所定の形状の外殻を形成しておき、この外殻内に燃料混合物を注入した後密閉する方法、或いは、燃料混合物の流動性が低く外殻内への注入が困難な場合には、燃料混合物を予め所定形状に成形した後、その表面に廃プラスチック粉粒体を液状として成形体表面に塗布する方法や、組み合わせにより一対の容器となる容器に成形体を入れて、継ぎ目を溶着する方法等が記載されている。 該特許文献4に記載された方法は、特許文献3に記載の方法と同様に、いずれの場合も、熱可塑性プラスチックを溶融する工程が別途必要となるという問題がある。 Further, Patent Document 4 proposes to accommodate a fuel mixture in which an organic substance containing organic sludge and a first thermoplastic are mixed in an outer shell made of a second thermoplastic. Organic sludge, which causes odor, is sealed inside the outer shell to reduce the release of odor to the outside. Then, as the forming method, a method of forming an outer shell having a predetermined shape in advance, injecting the fuel mixture into the outer shell and then sealing the outer shell, or an injection of the fuel mixture into the outer shell due to low fluidity. If it is difficult, the fuel mixture is molded into a predetermined shape in advance, and then the waste plastic powder or granular material is applied to the surface of the molded product as a liquid, or the molded product is placed in a container that becomes a pair of containers by combining them. It describes how to put it in and weld the seams. Similar to the method described in Patent Document 3, the method described in Patent Document 4 has a problem that a step of melting the thermoplastic plastic is separately required in any case.

一方、プラスチック廃棄物を含んだ固形燃料を押出成形機を用いて製造する方法においては、押出成形物の表面に存在するプラスチックを溶融固化することにより、押出成形物の表面を強固に包囲して、押出成形物に一体性を付与せしめることが検討されている。 例えば、特許文献5では、廃棄物を、プラスチック成分の多いプラスチック系廃棄物と他の廃棄物に分別し、プラスチック系廃棄物を2重スクリュー式押出形機の外側ケーシング内に供給して、外側ケーシング内でドーナッツ状押出物とすることにより、2層構造押出物を得ることが提案されている。 しかしながら、該特許文献5では、固形燃料の原料に汚泥を用いることについては全く言及されておらず、有機性廃棄物由来の臭気を防止することについては全く検討されていない。例えば、この方法で得られた2層構造押出物は切断刃によって所定長さに切断されるが、原料に汚泥を含む有機性廃棄物を用いた場合には、その切断面から臭気が発生してしまう。 On the other hand, in the method of producing solid fuel containing plastic waste using an extrusion molding machine, the surface of the extrusion molding is firmly surrounded by melting and solidifying the plastic existing on the surface of the extrusion molding. , It is being studied to impart integrity to extruded products. For example, in Patent Document 5, waste is separated into plastic waste containing a large amount of plastic components and other waste, and the plastic waste is supplied into the outer casing of a double screw extruder to be supplied to the outside. It has been proposed to obtain a two-layer structure extrude by making a donut-like extrude in the casing. However, Patent Document 5 does not mention the use of sludge as a raw material for solid fuel at all, and does not study at all about preventing the odor derived from organic waste. For example, the two-layer structure extruded product obtained by this method is cut to a predetermined length by a cutting blade, but when organic waste containing sludge is used as a raw material, odor is generated from the cut surface. Will end up.

また、特許文献6では、従来の、成形機又は造粒機で成形された固形燃料の外周に廃プラスチックを含浸コーティングことにより、固形燃料の初期火力の安定と、使用時の燃料カロリーの維持を図り、更には、製造時の形状安定のために、固形燃料の形状断面を金太郎飴のように加工することが提案されている。 しかしながら、該特許文献6では、前記特許文献5と同様に、固形燃料の原料に汚泥を用いることについては全く言及されておらず、有機性廃棄物由来の臭気を防止することについては全く検討されていない。 さらにこの方法では、成形機又は造粒機で成形された固定燃料の外周に廃プラスチック含浸させるために、別途廃プラスチックを溶解することが必要である。 Further, in Patent Document 6, by impregnating the outer periphery of a conventional solid fuel molded by a molding machine or a granulator with waste plastic, the initial thermal power of the solid fuel can be stabilized and the fuel calorie can be maintained during use. Furthermore, it has been proposed to process the shape cross section of the solid fuel like a Kintaro candy in order to stabilize the shape during production. However, in Patent Document 6, as in Patent Document 5, there is no mention of using sludge as a raw material for solid fuel, and prevention of odor derived from organic waste is completely examined. Not. Further, in this method, it is necessary to separately dissolve the waste plastic in order to impregnate the outer periphery of the fixed fuel molded by the molding machine or the granulator with the waste plastic.

前述のとおり、従来、下水汚泥などの有機性廃棄物に廃プラスチックを混合して得られる固形燃料において、有機性廃棄物由来の臭気を解決する方法が幾つか提案されているものの、いずれも、脱臭乾燥工程、或いは、廃プラスチックの溶融工程等の工程を別途必要とするものであるため、簡便な方法で、有機性廃棄物由来の臭気を低減させるとともに、成形性及び保形性を向上させた固形燃料を得る方法が望まれている。 As mentioned above, although some methods have been proposed to solve the odor derived from organic waste in the solid fuel obtained by mixing waste plastic with organic waste such as sewage sludge, all of them have been proposed. Since a separate step such as a deodorizing and drying step or a process of melting waste plastic is required, a simple method is used to reduce the odor derived from organic waste and improve the moldability and shape retention. A method for obtaining solid fuel is desired.

そこで、特許文献7である特開2018−154831号公報では、以上のような事情に鑑み、簡便な方法で、有機性廃棄物由来の臭気を低減させるとともに、成形性及び保形性を向上させた固形燃料の製造方法及びそのための製造装置を提供することを目的とし、上記目的を達成すべく、原料である下水汚泥などの有機性廃棄物を廃プラスチックで覆い、この廃プラスチック表面を軟化溶融させた後、常温へ降温中に固化させることで、全表面に廃プラスチックが溶融固化した連続層を形成して、有機性廃棄物由来の臭気を低減させた固形燃料を、簡便かつ安価に提供するようにした。 Therefore, in Japanese Patent Application Laid-Open No. 2018-154831, which is Patent Document 7, in view of the above circumstances, the odor derived from organic waste is reduced and the moldability and shape retention are improved by a simple method. The purpose is to provide a method for producing solid fuel and a production device for that purpose, and in order to achieve the above object, organic waste such as sewage sludge, which is a raw material, is covered with waste plastic, and the surface of this waste plastic is softened and melted. By solidifying the mixture while lowering the temperature to room temperature, a continuous layer of melted and solidified waste plastic is formed on the entire surface to provide a solid fuel with reduced odor derived from organic waste, easily and inexpensively. I tried to do it.

すなわち、上記特許文献で提案された固形燃料の製造方法は、少なくとも有機性廃棄物及び廃プラスチックを含む圧縮成形体からなる固形燃料の製造方法であって、 有機性廃棄物又は有機性廃棄物を含む原料混合物或いはこれらのいずれかの予備固形化物の周囲を、廃プラスチックで覆い、加圧下で又は加圧後に加熱して前記廃プラスチックを軟化溶融させた後、常温へ降温中に固化させることにより、全表面に廃プラスチックが溶融固化した連続層を有する固形燃料とすることを特徴とするものである。 That is, the method for producing solid fuel proposed in the above patent document is a method for producing solid fuel composed of a compression molded product containing at least organic waste and waste plastic, and produces organic waste or organic waste. By covering the periphery of the raw material mixture containing or any of these preliminary solids with waste plastic, heating under pressure or after pressure to soften and melt the waste plastic, and then solidifying the waste plastic at room temperature during cooling. It is characterized in that it is a solid fuel having a continuous layer in which waste plastic is melted and solidified on the entire surface.

この特許文献に開示された技術によれば、従来、埋め立て等しか処分方法がなかった廃プラスチックも固形燃料の一部として有効利用を図れる可能性がある。また、この特許文献に開示された技術によれば、有機性廃棄物を固形燃料化して燃焼させる場合、懸念事項の一として塩素含有量の問題があるが、この技術によれば、塩素含有量が高い有機性廃棄物を用いた場合においても、廃プラスチックのような他の廃棄物を混合することで、固形燃料中の塩素含有量を低減することも可能である、としている。 According to the technology disclosed in this patent document, there is a possibility that waste plastic, which has conventionally been disposed of only by landfill, can be effectively used as a part of solid fuel. Further, according to the technique disclosed in this patent document, there is a problem of chlorine content as one of the concerns when converting organic waste into solid fuel and burning it. According to this technique, the chlorine content Even when organic waste with a high level of chlorine is used, it is possible to reduce the chlorine content in solid fuel by mixing other waste such as waste plastic.

しかしながら、この特許文献7の技術においては、得られた固形燃料を燃焼させたときに、廃プラスチック自体から発生する有害物について全く考慮されていない。 However, in the technique of Patent Document 7, no consideration is given to harmful substances generated from the waste plastic itself when the obtained solid fuel is burned.

特開平9−87646号公報Japanese Unexamined Patent Publication No. 9-87646 特開2008−195910号公報JP-A-2008-195910 特開平11−61162号公報Japanese Unexamined Patent Publication No. 11-61162 特開2008−201878号公報Japanese Unexamined Patent Publication No. 2008-2018878 特開2000−246212号公報Japanese Unexamined Patent Publication No. 2000-246212 特開2012−219239号公報Japanese Unexamined Patent Publication No. 2012-219239 特開2018−154831号公報JP-A-2018-154831

そこで本発明は、廃プラスチックを原料とし、燃焼させたときにも安全である固体燃料を製造する固体燃料の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a solid fuel, which uses waste plastic as a raw material and produces a solid fuel that is safe even when burned.

上記目的は、本発明の下記構成(1)〜(5)の固体燃料の製造方法により達成される。(1)
多種のプラスチック類を含有するプラスチック系ゴミを、密閉容器の処理空間内で、昇温工程と、温度保持工程と、冷却工程を含む処理工程により、処理して固体燃料を製造する固体燃料の製造方法であって、
高温高圧の水蒸気を用いて、
前記昇温
工程での前記の密閉容器内の昇温速度を、7〜12℃/minに設定し、
前記温度保持工程で、前記密閉容器内を、温度120℃以上175℃以下、圧力12〜15atmの亜臨界状態に設定し、
前記プラスチック系ゴミを、前記亜臨界状態で、撹拌しながら、15〜35分亜臨界水処理することにより、前記多種のプラスチック類を含有するプラスチック系ゴミのうちの数種のプラスチックを溶解し、残りの他のプラスチックの周りに付着させ、固体化し、これを、前記冷却工程により冷却してプラスチック系の固体燃料を製造する固体燃料の製造方法。
(2)
前記密閉容器を備え、該密閉容器の前記処理空間内に、プラスチック系ゴミを供給するための供給部と、高温高圧の蒸気を噴出する蒸気噴出手段と、開閉機構を有し、前記製造された固体燃料を外部に排出するための排出部とを備えた製造装置を準備する装置準備工程を含む前記(1)の固体燃料の製造方法。
(3)
容積割合で、プラスチック系ゴミを前記処理空間の90%以下導入する前記(1)または(2)の固体燃料の製造方法。
(4)
容積割合で、プラスチック系ゴミを前記処理空間の50〜80%導入する前記(1)または(2)の固体燃料の製造方法。
(5)
前記処理工程における撹拌が、前記処理空間内に配置された回転する撹拌部材により行われる前記(1)〜(4)のいずれかの固体燃料の製造方法。
The above object is achieved by the method for producing a solid fuel according to the following configurations (1) to (5) of the present invention. (1)
Production of solid fuel to produce solid fuel by processing plastic waste containing various kinds of plastics in the processing space of a closed container by a processing process including a temperature raising step, a temperature holding step, and a cooling step. It's a method
Using high temperature and high pressure steam,
The heating rate in the closed container in the temperature raising step is set to 7 to 12 ° C./min.
In the temperature holding step, the inside of the closed container is set to a subcritical state with a temperature of 120 ° C. or higher and 175 ° C. or lower and a pressure of 12 to 15 atm.
By treating the plastic-based dust with subcritical water for 15 to 35 minutes while stirring in the subcritical state, some plastics among the plastic-based dust containing various plastics are dissolved. A method for producing a solid fuel, which is adhered around the remaining other plastic, solidified, and cooled by the cooling step to produce a plastic-based solid fuel.
(2)
The airtight container is provided, and the processing space of the airtight container is provided with a supply unit for supplying plastic dust, a steam ejection means for ejecting high-temperature and high-pressure steam, and an opening / closing mechanism. The method for producing solid fuel according to (1) above, which comprises an apparatus preparation step of preparing a manufacturing apparatus including a discharge unit for discharging solid fuel to the outside.
(3)
The method for producing a solid fuel according to (1) or (2), wherein 90% or less of the processing space is introduced with plastic waste in a volume ratio.
(4)
The method for producing a solid fuel according to (1) or (2), wherein 50 to 80% of the processing space is introduced with plastic waste in a volume ratio.
(5)
The method for producing a solid fuel according to any one of (1) to (4) above, wherein the stirring in the processing step is performed by a rotating stirring member arranged in the processing space.

本発明の固体燃料の製造方法によれば、プラスチック類全体を水熱処理していることにより、これらプラスチック類から脱塩素化が図れ、製造された固体燃料を燃焼させたとき、有害ガスの発生が抑制できる。 また、処理容器である密閉容器内の昇温速度を、7〜12℃/minと比較的早い昇温速度に設定したことにより、低融点のプラスチック類を初期に溶融させて、液体状とし、撹拌することにより、低融点プラスチック類で高融点プラスチック類をコーティングした固体燃料を製造することがでる。 このような、低融点プラスチック類コーティング高融点プラスチック類製の固体燃料は、着火しやすく燃焼性が良好である。 According to the method for producing a solid fuel of the present invention, the entire plastics are hydrothermally treated to dechlorinate the plastics, and when the produced solid fuel is burned, harmful gas is generated. Can be suppressed. Further, by setting the temperature rise rate in the closed container, which is the processing container, to a relatively high temperature rise rate of 7 to 12 ° C./min, the low melting point plastics are initially melted into a liquid state. By stirring, it is possible to produce a solid fuel coated with high melting point plastics with low melting point plastics. Such a solid fuel made of a low melting point plastic coating high melting point plastic is easy to ignite and has good combustibility.

本発明の固体燃料の製造方法に使用される亜臨界水製造装置の概略図である。It is the schematic of the sub-critical water production apparatus used in the solid fuel production method of this invention. 本発明の固体燃料の製造方法における昇温工程、温度保持工程および冷却工程における温度パターンを示すグラフ図である。It is a graph which shows the temperature pattern in the temperature raising step, the temperature holding step and the cooling step in the solid fuel manufacturing method of this invention.

発明の実施の形態Embodiment of the invention

まず、図1を参照して、本発明の固体燃料の製造方法に使用される亜臨界水製造装置である固体燃料製造装置(製造装置)10の一例について説明する。
図1は、当該製造装置の断面図である。
First, with reference to FIG. 1, an example of a solid fuel production apparatus (production apparatus) 10 which is a subcritical water production apparatus used in the solid fuel production method of the present invention will be described.
FIG. 1 is a cross-sectional view of the manufacturing apparatus.

前記製造装置10は、内部に多種のプラスチック類を含有するプラスチック系ゴミの破断材である原料を収容する閉鎖空間S1を有する密閉容器12と、密閉容器12内に、亜臨界水である高温高圧の蒸気を噴出する蒸気噴出手段14と、密閉容器12の底側に設けられ開閉機構26を有する排出口16と、排出口16からの直接排出操作のみで処理された原料と液体とを分離して回収する分離回収手段18と、を備えている。密閉容器12の形状は、例えば、矩形箱形、立体多角筒形、円筒形、樽型、ドラム型等その他任意形状でよいが、下面側に設けられている排出口16から重力を利用して排出されるような形状が好ましい。密閉容器の下面が排出口へ向けて下り傾斜に設けられていると好適である。なお、前記排出口16の直径は、製造された固体(固形)燃料を排出できるようにするため、30cm以上とすることが望ましい。同様に、廃プラスチック類を装置内に投入するための投入口(下記する)も同様の寸法の直径を有していることが望ましい。 The manufacturing apparatus 10 has a closed container 12 having a closed space S1 for accommodating a raw material which is a breaking material for plastic waste containing various plastics inside, and a high temperature and high pressure which is subcritical water in the closed container 12. The steam ejection means 14 for ejecting the steam of the above, the discharge port 16 provided on the bottom side of the closed container 12 and having the opening / closing mechanism 26, and the raw material and the liquid processed only by the direct discharge operation from the discharge port 16 are separated. It is provided with a separation / recovery means 18 for collecting the waste. The shape of the closed container 12 may be, for example, a rectangular box shape, a three-dimensional polygonal cylinder shape, a cylindrical shape, a barrel shape, a drum shape, or any other shape, but gravity is used from the discharge port 16 provided on the lower surface side. A shape that allows discharge is preferable. It is preferable that the lower surface of the closed container is provided so as to be inclined downward toward the discharge port. The diameter of the discharge port 16 is preferably 30 cm or more so that the produced solid fuel can be discharged. Similarly, it is desirable that the input port (described below) for charging waste plastics into the device also has a diameter of the same size.

分離回収手段18は、密閉容器12の閉鎖空間S1とは異なる他の閉鎖空間S2を有し、排出口16を介して該密閉容器12内部に連通する液体の回収部50と、密閉容器12内の液体のみを排出口16を介して自然流下により回収部50へ回収させる自然流下回収機構52と、を有することとしてもよい。排出口16付近で処理された固形分としての原料は密閉容器12内にそのまま残り、液体のみが重力を利用して回収部50へ自然流下することにより、原料と液体とを分離回収できる。回収部50の構成は、例えば、金属製タンクや立体多角形状の箱体、管状体等、液体を回収する閉鎖空間S2を有するものであれば任意のものでもよい。収容部を複数個形成してもよい。 The separation / recovery means 18 has another closed space S2 different from the closed space S1 of the closed container 12, and has a liquid recovery unit 50 communicating with the inside of the closed container 12 via the discharge port 16 and the inside of the closed container 12. It may have a natural flow recovery mechanism 52 for collecting only the liquid of the above to the recovery unit 50 by natural flow through the discharge port 16. The raw material as the solid content treated near the discharge port 16 remains as it is in the closed container 12, and only the liquid naturally flows down to the recovery unit 50 using gravity, so that the raw material and the liquid can be separated and recovered. The structure of the recovery unit 50 may be arbitrary as long as it has a closed space S2 for collecting liquid, such as a metal tank, a three-dimensional polygonal box body, or a tubular body. A plurality of accommodating portions may be formed.

自然流下回収機構52は、液体の回収操作前に、密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S1とを同圧にさせる同圧形成手段62を含むこととしてもよい。密閉容器12と回収部50とを常時同圧にさせる構成とすると、処理後に液体の回収作業を直ちに行え、作業時間の短縮が図れる。
なお、上の例では、分離手段を製造装置に組み込んだ例について説明したが、製造装置自体には、分離手段を設けること無く、別体で設けてもよい。
The natural flow recovery mechanism 52 may include the same pressure forming means 62 that makes the closed space S1 of the closed container 12 and the closed space S1 of the recovery unit 50 equal in pressure before the liquid recovery operation. If the closed container 12 and the recovery unit 50 are configured to have the same pressure at all times, the liquid recovery work can be performed immediately after the treatment, and the work time can be shortened.
In the above example, an example in which the separating means is incorporated in the manufacturing apparatus has been described, but the manufacturing apparatus itself may be provided separately without providing the separating means.

また、前記密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2を同圧にするための同圧形成手段62を設けてもよい。この同圧形成手段62は、排出口16を介した液体の回収経路と異なる別の経路で密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを連通させる同圧連通管64を有することとしてもよい。この同圧連通管64は、前記閉鎖空間S1と閉鎖空間S2と常時連通させて、密閉容器12内と回収部50内とを常時同圧状態にしておいてもよい。なお、同圧連通管64は、少なくとも液体の回収操作前に密閉容器12と回収部50とを連通させて同圧にすればよく、該同圧連通管を連通・遮断するための開閉機構が設けられていても良い。 Further, the same pressure forming means 62 for making the closed space S1 of the closed container 12 and the closed space S2 of the recovery unit 50 the same pressure may be provided. The same pressure forming means 62 has a same pressure communication pipe 64 that communicates the closed space S1 of the closed container 12 and the closed space S2 of the recovery unit 50 by a different route from the liquid recovery path via the discharge port 16. It may be that. The same pressure communication pipe 64 may always communicate with the closed space S1 and the closed space S2 so that the inside of the closed container 12 and the inside of the collection unit 50 are always in the same pressure state. The same pressure communication pipe 64 may have the same pressure by communicating the closed container 12 and the recovery unit 50 at least before the liquid recovery operation, and an opening / closing mechanism for communicating / shutting off the same pressure communication pipe is provided. It may be provided.

また、別の経路を形成する同圧連通管64と密閉容器50との連通は、密閉容器12の上端側に設定された連通接続部68を介して行なわれることとしてもよい。 Further, the communication between the same pressure communication pipe 64 and the closed container 50 forming another path may be performed via the communication connecting portion 68 set on the upper end side of the closed container 12.

また、自然流下回収機構52は、密閉容器12の排出口16と回収部50とを連通接続する液体回収流路54を含み、該液体回収流路54は排出口16との連通側から回収部50側に向けて、水平又は下り傾斜状に設けられたこととしてもよい。 Further, the natural flow recovery mechanism 52 includes a liquid recovery flow path 54 that connects the discharge port 16 of the closed container 12 and the recovery section 50 in communication, and the liquid recovery flow path 54 is a recovery section from the communication side with the discharge port 16. It may be provided horizontally or downwardly inclined toward the 50 side.

また、処理された原料の排出口16からの排出経路R1途中に開閉機構26が設けられ、開閉機構26よりも排出上流側に液体回収流路54の液体導入口58が連通接続されていることとしてもよい。 Further, an opening / closing mechanism 26 is provided in the middle of the discharge path R1 from the discharge port 16 of the processed raw material, and the liquid introduction port 58 of the liquid recovery flow path 54 is continuously connected to the discharge upstream side of the opening / closing mechanism 26. May be.

また、液体回収流路54には、密閉容器12内での原料の処理中には流路を遮断するとともに、処理後に液体のみを回収する際には流路を連通させるように連通状態を選択的に切り替える開閉機構60が設けられていてもよい。 Further, for the liquid recovery flow path 54, a communication state is selected so that the flow path is blocked during the processing of the raw material in the closed container 12 and the flow path is communicated when only the liquid is recovered after the treatment. An opening / closing mechanism 60 for switching between the two may be provided.

また、回収部50の閉鎖空間S2の底面が密閉容器12の排出口16の位置より低く設けられたこととしてもよい。 Further, the bottom surface of the closed space S2 of the collection unit 50 may be provided lower than the position of the discharge port 16 of the closed container 12.

また、回収部50は、その閉鎖空間S2内に回収した液体の液面WLが常に排出口16より低くなるように設けられたこととしてもよい。 Further, the recovery unit 50 may be provided so that the liquid level WL of the liquid recovered in the closed space S2 is always lower than the discharge port 16.

密閉容器12内には、原料を撹拌する撹拌手段30が設置されている。 A stirring means 30 for stirring the raw material is installed in the closed container 12.

また、密閉容器12は、左右中央部の底側に排出口16が設けられつつ、径が左右中央部から左右両端側に向けて次第に縮径された横倒し樽型形状に形成され、撹拌手段30は、密閉容器12内に横長に設けられて回転自在に軸支された回転軸49と、回転軸49に取り付けられ同回転軸49の周方向に広がる部位を有する撹拌羽根48と、を有し、撹拌羽根48の回転軸49から羽根先端までの長さは、密閉容器12の横倒し樽型形状に対応して、回転軸49の長手方向の中央位置で長く、両端側に行くにしたがって次第に短くなるように形成されたこととしてもよい。 Further, the closed container 12 is formed in a sideways barrel shape in which the diameter is gradually reduced from the left and right center portions toward the left and right end sides while the discharge ports 16 are provided on the bottom side of the left and right center portions, and the stirring means 30 Has a rotating shaft 49 provided in a closed container 12 in a horizontally long manner and rotatably supported, and a stirring blade 48 attached to the rotating shaft 49 and having a portion extending in the circumferential direction of the rotating shaft 49. The length from the rotating shaft 49 of the stirring blade 48 to the tip of the blade is long at the center position in the longitudinal direction of the rotating shaft 49, corresponding to the sideways barrel shape of the closed container 12, and gradually becomes shorter toward both ends. It may be formed so as to be.

また、蒸気噴出手段14は、回転軸49を中空管とし、該中空管の周面に複数個の蒸気噴出孔44を形成して構成された回転軸兼蒸気噴出管28を含むこととしてもよい。 Further, the steam ejection means 14 includes a rotary shaft and steam ejection pipe 28 having a rotary shaft 49 as a hollow pipe and forming a plurality of steam ejection holes 44 on the peripheral surface of the hollow pipe. May be good.

本例では、密閉容器12は、支持脚13で地面からある程度の高さに配置されるように支持されている。密閉容器12は、その径が左右方向中央部から左右両端側の端壁12a側に向けて次第に縮径された横倒し樽型形状に形成されている。密閉容器12は、例えば、耐熱耐圧性を有するように金属板を加工して形成され、原料を約2m収容できる程度の大きさで設けられている。密閉容器12には、中央部の上方に、原料の供給部である投入部20が、中央部の底側に排出部22がそれぞれ設けられており、それぞれ開閉機構24,26により開閉されるように設けられている。密閉容器12の閉鎖空間S1内には、蒸気噴出手段14を構成している蒸気噴出管28と、原料を撹拌する撹拌手段30と、が配置されている。なお、密閉容器12には、内部圧力が設定値よりも高くなると内部蒸気を開放させる、例えば設定圧を調整可能な安全弁32が設けられている。また、安全弁32に接続された排気用管の途中には、消音・消臭装置34が設けられており、安全弁32を介して排気される蒸気は消音消臭されて、外気側に排出される。 In this example, the closed container 12 is supported by the support legs 13 so as to be arranged at a certain height from the ground. The closed container 12 is formed in a sideways barrel shape in which the diameter is gradually reduced from the central portion in the left-right direction toward the end walls 12a on both the left and right ends. The closed container 12 is formed by processing a metal plate so as to have heat resistance and pressure resistance, and is provided with a size capable of accommodating about 2 m 3 of a raw material. The closed container 12 is provided with an input unit 20 which is a raw material supply unit and a discharge unit 22 on the bottom side of the central portion above the central portion, and is opened and closed by the opening / closing mechanisms 24 and 26, respectively. It is provided in. In the closed space S1 of the closed container 12, a steam ejection pipe 28 constituting the steam ejection means 14 and a stirring means 30 for stirring the raw materials are arranged. The closed container 12 is provided with a safety valve 32 that releases the internal steam when the internal pressure becomes higher than the set value, for example, the set pressure can be adjusted. Further, a muffling / deodorizing device 34 is provided in the middle of the exhaust pipe connected to the safety valve 32, and the steam exhausted through the safety valve 32 is deodorized and deodorized and discharged to the outside air side. ..

排出口16は、図に示すように、密閉容器12の左右方向中央部の底面側に開口されており、原料の排出方向を下方にして設けられている。排出口16の径は、例えば、300mm程度に設けられている。排出口16には、下方に突設された排出筒36が接続されて処理された原料の排出経路R1を形成しているとともに、該排出経路R1の途中に設けられて排出口16を開閉する開閉機構26が設けられている。すなわち、排出部22は、排出口16と、排出筒36と、開閉機構26と、を含む構成となっている。密閉容器12が横倒し樽型形状に形成されているから、重力により内部の原料は排出口16が設けられている中央部に向けて集まりやすく、開閉機構26を開くだけで簡便に原料を排出口16から排出させることができる。 As shown in the figure, the discharge port 16 is opened on the bottom surface side of the central portion in the left-right direction of the closed container 12, and is provided with the discharge direction of the raw material facing downward. The diameter of the discharge port 16 is provided to be, for example, about 300 mm. A discharge cylinder 36 projecting downward is connected to the discharge port 16 to form a discharge path R1 for the processed raw material, and the discharge port 16 is provided in the middle of the discharge port R1 to open and close the discharge port 16. An opening / closing mechanism 26 is provided. That is, the discharge unit 22 includes a discharge port 16, a discharge cylinder 36, and an opening / closing mechanism 26. Since the closed container 12 is formed in a barrel shape by lying down, the raw materials inside are easily collected toward the central portion where the discharge port 16 is provided due to gravity, and the raw materials can be easily discharged by simply opening the opening / closing mechanism 26. It can be discharged from 16.

投入部20には、密閉容器12に上側に投入口42が開口されており、投入口42には上方へ突設された投入筒43が取り付けられ、投入筒43内を開閉するように例えばボールバルブ等の開閉機構24が設けられている。開閉機構24を介して、投入口42を開いて原料を密閉容器内に投入でき、処理時には閉鎖して密閉容器12内の閉鎖空間S1の閉鎖状態を維持する。 In the loading section 20, a loading port 42 is opened on the upper side of the closed container 12, and a loading cylinder 43 projecting upward is attached to the loading port 42, for example, a ball so as to open and close the inside of the loading cylinder 43. An opening / closing mechanism 24 such as a valve is provided. The input port 42 can be opened via the opening / closing mechanism 24 to charge the raw material into the closed container, and the raw material can be closed during processing to maintain the closed state of the closed space S1 in the closed container 12.

蒸気噴出手段14は、密閉容器12内に高温高圧の蒸気を噴出するとともに、該密閉容器12内を高温高圧状態とし、原料を蒸気を介して処理させる。図1に示すように、蒸気噴出手段14は、密閉容器12内に配置され周面側に多数の蒸気噴出孔44が形成された中空管からなる蒸気噴出管28と、ボイラー等の蒸気発生装置46と、蒸気発生装置46から蒸気噴出管28内に蒸気を供給する蒸気送管47と、を含む。蒸気噴出手段14から密閉容器12内に噴出される蒸気は、原料を適正に処理するため、亜臨界水であるような高温高圧に設定される。例えば、蒸気噴出管28から噴出される蒸気は、温度が100〜250℃、圧力が5〜35atm程度に設定されている。そして、密閉容器12内を、温度100〜250℃、圧力5〜35atm程度にするようになっている。蒸気噴出管28は、密閉容器12の上下方向略中央位置で横方向に長く配置され、密閉容器の両端壁12aに設けられた軸受45を介して回転自在に軸支されている。すなわち、蒸気噴出管28は、横軸周りに回転しながら放射状に蒸気を噴出しつつ蒸気を原料に直接に当てるようになっている。なお、蒸気噴出管28は、モータ等の回転駆動装置51からチェーン等を介して回転駆動力を得て回転するようになっている。さらに、蒸気噴出管28には、撹拌手段を構成する撹拌羽根48が取り付けられており、蒸気噴出管28が撹拌手段の回転軸49を兼用している。すなわち、本実施形態では、蒸気噴出手段14は、撹拌手段の回転軸49を中空管とし、該中空管の周面に複数個の蒸気噴出孔を形成して構成された回転軸兼蒸気噴出管28を含む。なお、蒸気噴出手段は、この形態の構成に限らず、例えば、密閉容器内に差し込んだ管の先端から蒸気を噴出する構成、複数の蒸気噴出管を配置させた構成等、その他任意の構成でもよい。 The steam ejection means 14 ejects high-temperature and high-pressure steam into the closed container 12, and puts the inside of the closed container 12 into a high-temperature and high-pressure state so that the raw material is processed through the steam. As shown in FIG. 1, the steam ejection means 14 includes a steam ejection pipe 28 formed of a hollow tube arranged in a closed container 12 and having a large number of steam ejection holes 44 formed on the peripheral surface side, and steam generation of a boiler or the like. The device 46 includes a steam transmission pipe 47 that supplies steam from the steam generator 46 into the steam ejection pipe 28. The steam ejected from the steam ejection means 14 into the closed container 12 is set to a high temperature and high pressure such that it is sub-critical water in order to properly process the raw material. For example, the temperature of the steam ejected from the steam ejection pipe 28 is set to about 100 to 250 ° C. and the pressure is set to about 5 to 35 atm. Then, the temperature inside the closed container 12 is set to about 100 to 250 ° C. and the pressure is set to about 5 to 35 atm. The steam ejection pipe 28 is arranged long in the horizontal direction at a substantially central position in the vertical direction of the closed container 12, and is rotatably supported by bearings 45 provided on both end walls 12a of the closed container. That is, the steam ejection pipe 28 is adapted to directly hit the raw material while ejecting steam radially while rotating around the horizontal axis. The steam ejection pipe 28 is adapted to rotate by obtaining a rotational driving force from a rotational driving device 51 such as a motor via a chain or the like. Further, a stirring blade 48 constituting the stirring means is attached to the steam ejection pipe 28, and the steam ejection pipe 28 also serves as a rotating shaft 49 of the stirring means. That is, in the present embodiment, the steam ejection means 14 has a rotating shaft 49 of the stirring means as a hollow tube, and a plurality of steam ejection holes are formed on the peripheral surface of the hollow tube to form a rotating shaft and steam. The ejection pipe 28 is included. The steam ejection means is not limited to this form, and may be any other configuration such as a configuration in which steam is ejected from the tip of a pipe inserted into a closed container, a configuration in which a plurality of steam ejection pipes are arranged, and the like. Good.

撹拌手段30は、密閉容器内で処理される原料を撹拌する手段であり、原料をむらなく、早期に処理できる。撹拌手段30は、上記の蒸気噴出管28からなる回転軸49と、該回転軸49に取り付けられ同回転軸の周方向に広がる部位を有する撹拌羽根48と、を含む。本実施形態では、撹拌羽根48は、回転軸49の軸方向略中央位置で互いに逆巻きに設けられた、右巻き螺旋羽根48aと、左巻き螺旋羽根48bと、で形成されている。撹拌羽根48は、回転軸から羽根先端までの長さが左右中央部から両端側に向けて次第に縮径されるように設けられている。これにより密閉容器12の横倒し樽型形状に対応して原料を確実に撹拌できる。さらに、羽根先端と密閉容器12の内壁との間にある程度の隙間Hを形成するように設けられている。螺旋羽根48a、48bは、原料を中央部から両端壁側に向けて搬送しつつ、固形状の原料を破砕しながら原料を撹拌する。撹拌羽根48により両端壁12a側に搬送された原料は、該端壁12a側で後から搬送されてくる原料によって押送され、密閉容器12の内壁に沿いつつ隙間Hを介してから中央に戻るように搬送される。なお、撹拌手段30は、上記の構成のものに限らず、その他任意の構成でもよい。 The stirring means 30 is a means for stirring the raw material to be processed in the closed container, and the raw material can be processed evenly and at an early stage. The stirring means 30 includes a rotating shaft 49 composed of the steam ejection pipe 28 described above, and a stirring blade 48 attached to the rotating shaft 49 and having a portion extending in the circumferential direction of the rotating shaft 49. In the present embodiment, the stirring blade 48 is formed by a right-handed spiral blade 48a and a left-handed spiral blade 48b, which are provided in opposite directions to each other at a substantially central position in the axial direction of the rotating shaft 49. The stirring blade 48 is provided so that the length from the rotation shaft to the tip of the blade is gradually reduced from the left and right central portions to both ends. As a result, the raw material can be reliably agitated corresponding to the sideways barrel shape of the closed container 12. Further, it is provided so as to form a certain gap H between the tip of the blade and the inner wall of the closed container 12. The spiral blades 48a and 48b stir the raw material while crushing the solid raw material while transporting the raw material from the central portion toward both end walls. The raw material transported to the end wall 12a side by the stirring blade 48 is pushed by the raw material transported later on the end wall 12a side, and returns to the center after passing through the gap H along the inner wall of the closed container 12. Will be transported to. The stirring means 30 is not limited to the above configuration, and may have any other configuration.

分離回収手段18は、排出口からの直接操作のみで、蒸気処理後の密閉容器12内の処理された原料と液体とを分離して回収する分離回収手段である。分離回収手段18は、図1に示すように、排出口16を介して密閉容器12内部に連通する液体の回収部50と、排出口16を介して液体を自然流下により回収部50に回収させる自然流下回収機構52と、を有する。 The separation / recovery means 18 is a separation / recovery means that separates and recovers the processed raw material and the liquid in the closed container 12 after the vapor treatment only by a direct operation from the discharge port. As shown in FIG. 1, the separation / recovery means 18 causes the collection unit 50 to collect the liquid that communicates with the inside of the closed container 12 via the discharge port 16 and the liquid by natural flow through the discharge port 16. It has a natural flow recovery mechanism 52 and.

回収部50は、密閉容器12の閉鎖空間S1とは異なる他の閉鎖空間S2を内部に有した第2の閉鎖容器である。回収部50は、例えば、耐熱耐圧性を有する金属製の円筒形状の密閉タンクからなる。回収部50は、例えば金属製管部材等から形成される液体回収流路54を介して密閉容器12の排出口16と連通接続されている。回収部50は、その閉鎖空間S2の底面が密閉容器12の排出口16の位置より低く設けられているとともに、閉鎖空間S2内に回収した液体の液面WLが常に排出口16より低くなるように設けられており、排出口側の液体が回収部側へスムーズに自然流下しやすいようになっている。なお、回収部50には、回収した液体の取出ドレン56が設けられており、開閉弁により開閉するように設けられている。 The collection unit 50 is a second closed container having an inner closed space S2 different from the closed space S1 of the closed container 12. The recovery unit 50 is made of, for example, a metal cylindrical closed tank having heat resistance and pressure resistance. The recovery unit 50 is communicated with and connected to the discharge port 16 of the closed container 12 via a liquid recovery flow path 54 formed of, for example, a metal pipe member or the like. The collection unit 50 is provided so that the bottom surface of the closed space S2 is lower than the position of the discharge port 16 of the closed container 12, and the liquid level WL of the liquid collected in the closed space S2 is always lower than the discharge port 16. It is provided in the above so that the liquid on the discharge port side can easily flow naturally to the collection part side. The recovery unit 50 is provided with a drain 56 for taking out the recovered liquid, and is provided so as to be opened and closed by an on-off valve.

自然流下回収機構52は、密閉容器12内に溜まる液体の重力による自然流下により、液体のみを排出口から回収部50へ流下させる自然流下回収手段である。自然流下回収機構52は、液体回収流路54を含む構成であり、液体回収流路54はその液体導入口58を排出口16に連通接続させて、処理された原料の排出経路R1から分岐した液体の回収経路R2を形成している。本実施形態では、液体回収流路54は、例えば、その内径が6mm程度の金属製管で設けられている。液体回収流路54には、流路の連通状態を選択的に切り替える開閉機構60が設けられている。開閉機構60は、密閉容器内での原料の処理中には流路を遮断するとともに、処理後に液体のみを分離回収する際には流路を連通させるように切り替えられる。これにより、原料と同時に原料中に含まれる水分や蒸気が液化して原料中の細菌や悪臭成分等を含んで状態の液体は、高温高圧の蒸気で処理させることができる。そして、処理後に分離回収される液体は、殺菌や、悪臭・有害成分の分解等された状態で回収することができ、分離回収した液体を二次処理する必要がなく、労力がかからず、時間短縮を図ることができる。 The natural flow recovery mechanism 52 is a natural flow recovery means that allows only the liquid to flow down from the discharge port to the recovery unit 50 by the natural flow of the liquid collected in the closed container 12 due to gravity. The natural flow recovery mechanism 52 includes a liquid recovery flow path 54, and the liquid recovery flow path 54 is branched from the treated raw material discharge path R1 by connecting the liquid introduction port 58 to the discharge port 16. It forms a liquid recovery path R2. In the present embodiment, the liquid recovery flow path 54 is provided, for example, with a metal pipe having an inner diameter of about 6 mm. The liquid recovery flow path 54 is provided with an opening / closing mechanism 60 that selectively switches the communication state of the flow path. The opening / closing mechanism 60 is switched so as to block the flow path during the processing of the raw material in the closed container and to communicate the flow path when separating and recovering only the liquid after the treatment. As a result, the water and steam contained in the raw material are liquefied at the same time as the raw material, and the liquid containing bacteria and malodorous components in the raw material can be treated with high-temperature and high-pressure steam. The liquid separated and recovered after the treatment can be recovered in a state of being sterilized or decomposed of malodorous and harmful components, and the separated and recovered liquid does not need to be secondarily treated, and no labor is required. The time can be shortened.

液体回収流路54は、液体導入口58が開閉機構26よりも排出上流側の位置に連通接続されている。よって、排出口16の開閉機構26を閉じた状態で、液体回収流路54の開閉機構60を開いて流路を連通状態にすることにより、排出口から液体を分離して回収させる。液体回収流路54は排出筒36と直交方向に接続されており、液体の回収経路R2が原料の排出経路R1に対して直交方向に設けられている。すなわち、開閉機構26の閉鎖状態では、密閉容器内の原料の堆積圧がかかる方向に対して交差方向に液体が流れるようになっている。これにより、簡単な構造で、液体導入口58に原料が入りにくい構造となり、液体のみを液体回収路54に自然流下させて、液体の分離回収を良好に行なうことができる。なお、密閉容器12内の液体が液体導入口56へ流れる勢いが強すぎると、液体の流れの力によって原料がともに流れされるおそれがあるので、好適には、処理された原料を流し運ばない程度の緩やかな流れになるように、液体回収路や液体導入口等の接続構成が設定される。液体回収流路54は、排出口16との連通側(液体導入口側)から回収部側に向けて全体的に水平に設けられている。これにより、液体回収流路での液体の流れはスムーズに行われ、排出口から回収部へ自然流下される。液体回収流路54を回収部側に向けて下り傾斜状に設けて、液体回収路54内で液体の流れがよりスムーズに行くようにしてもよい。この際、例えば、液体導入口58側をある程度の長さまで水平に設けて、その後下り傾斜に設けることとしてもよい。また、液体導入口58には、必要に応じてフィルタ等を設けることとしてもよい。 In the liquid recovery flow path 54, the liquid introduction port 58 is communicatively connected to a position on the discharge upstream side of the opening / closing mechanism 26. Therefore, with the opening / closing mechanism 26 of the discharge port 16 closed, the opening / closing mechanism 60 of the liquid recovery flow path 54 is opened to bring the flow path into a communicating state, so that the liquid is separated and collected from the discharge port. The liquid recovery flow path 54 is connected to the discharge cylinder 36 in the orthogonal direction, and the liquid recovery path R2 is provided in the direction orthogonal to the raw material discharge path R1. That is, in the closed state of the opening / closing mechanism 26, the liquid flows in the intersecting direction with respect to the direction in which the deposition pressure of the raw material in the closed container is applied. As a result, the structure is such that the raw material does not easily enter the liquid introduction port 58 with a simple structure, and only the liquid naturally flows down into the liquid recovery path 54, so that the liquid can be separated and recovered satisfactorily. If the momentum of the liquid in the closed container 12 flowing to the liquid introduction port 56 is too strong, the raw materials may flow together due to the force of the liquid flow. Therefore, the processed raw materials are not preferably carried. The connection configuration of the liquid recovery path, the liquid inlet, etc. is set so that the flow is moderate. The liquid recovery flow path 54 is provided horizontally as a whole from the communication side with the discharge port 16 (the liquid introduction port side) toward the recovery portion side. As a result, the liquid flows smoothly in the liquid recovery flow path and naturally flows down from the discharge port to the recovery section. The liquid recovery flow path 54 may be provided in a downward slope toward the recovery section side so that the liquid flow can flow more smoothly in the liquid recovery path 54. At this time, for example, the liquid introduction port 58 side may be provided horizontally to a certain length and then provided on a downward slope. Further, the liquid introduction port 58 may be provided with a filter or the like, if necessary.

さらに、図1に示すように、自然流下機構52は、液体の回収操作前に、密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを同圧に形成させる同圧形成手段62を含む。通常では、処理後の密閉容器12内は高圧であるから、液体回収流路では、密閉容器内に比べて低圧である回収部の閉鎖空間S2に向けて圧力差による圧送力が働く。このような圧送力が働くと液体と原料とがともに液体回収流路54に流れこむこととなり、液体と原料との分離回収が困難となるとともに、原料が液体回収流路内に詰まるおそれが高い。同圧形成手段62により、液体の回収操作前に密閉容器12と回収部50との2つの閉鎖空間S1,S2を同圧にしておくことにより、該2つの閉鎖空間S1、S2の気圧の差により生じる原料が圧送されるのを防止でき、液体の自然流下作用を利用して、原料と分離しながら良好に回収部に回収できる。また、処理後の密閉容器内の高圧状態でも分離回収作業を行えるので、作業時間を短縮できる。 Further, as shown in FIG. 1, the natural flow mechanism 52 provides the same pressure forming means 62 for forming the closed space S1 of the closed container 12 and the closed space S2 of the recovery unit 50 at the same pressure before the liquid recovery operation. Including. Normally, since the inside of the closed container 12 after the treatment has a high pressure, a pressure feeding force due to a pressure difference acts toward the closed space S2 of the recovery portion, which has a lower pressure than the inside of the closed container. When such a pumping force acts, both the liquid and the raw material flow into the liquid recovery flow path 54, which makes it difficult to separate and recover the liquid and the raw material, and there is a high possibility that the raw material is clogged in the liquid recovery flow path. .. By using the same pressure forming means 62 to keep the two closed spaces S1 and S2 of the closed container 12 and the recovery unit 50 at the same pressure before the liquid recovery operation, the difference in pressure between the two closed spaces S1 and S2. It is possible to prevent the raw material produced by the above from being pumped, and by utilizing the natural flow action of the liquid, it can be satisfactorily recovered in the recovery unit while being separated from the raw material. Further, since the separation and recovery work can be performed even in the high pressure state in the closed container after the treatment, the work time can be shortened.

同圧形成手段62は、排出口16を介した液体の回収経路R2(液体回収流路54)とは異なる別の経路R3で密閉容器12の閉鎖空間S1と回収部50の閉鎖空間S2とを連通させる同圧連通管64を含む。同圧連通管64は、例えば、金属製管からなり、簡単な構造でしかも効率的に2つの閉鎖空間S1,S2を同圧にできる。図1では、同圧連通管64は、一端側が密閉容器12の左右中央部の上端側に連通接続され、他端側を回収部50の上端側に連通接続されている。別の経路R3を形成する同圧連通管64と密閉容器12との連通は、密閉容器12の上端側に設定された連通接続部68を介して行なわれるようになっている。連通接続部68の密閉容器との接続口が下方に向けて設定されている。これにより、同圧連通管64内に密閉容器12内で堆積している原料が管内に入りにくくなっており、原料が管内に詰まるのを防止して同圧連通管の連通状態を保持し、密閉容器12と回収部50とを確実に同圧にさせることができる。同圧連通管64は、常時連通状態となっており、液体回収流路54の開閉機構60を閉じた状態では、密閉容器12内、回収部50、液体回収流路54内が同じ圧力状態になる。これにより、液体回収流路54の開閉機構60を開いた直後にも排出口16の液体導入口58側で圧力差による原料の圧送を防止できる。さらに、開閉機構60を開いて液体が回収する際にも、密閉容器12内と回収部50内は常時同圧状態が保持される。したがって、回収前から回収終了後まで同圧状態となり、良好に液体のみを排出口16から自然流下させて分離回収することができる。なお、同圧形成手段62は、この形態の構成に限らず任意の構成でよい。例えば、同圧形成手段62は、回収部内を高圧にする他の高圧形成装置を設け、密閉容器内の圧力をセンサーで監視しながら回収部内の圧力を調整して、密閉容器内の圧力と同圧にするようにしてもよい。また、密閉容器内を減圧することとしてもよい。 The same pressure forming means 62 connects the closed space S1 of the closed container 12 and the closed space S2 of the recovery unit 50 with another path R3 different from the liquid recovery path R2 (liquid recovery flow path 54) via the discharge port 16. Includes the same pressure communication pipe 64 to communicate. The same pressure communication pipe 64 is made of, for example, a metal pipe, and can efficiently make the two closed spaces S1 and S2 have the same pressure with a simple structure. In FIG. 1, one end side of the same pressure communication pipe 64 is communicated with the upper end side of the left and right central portions of the closed container 12, and the other end side is communicated with the upper end side of the recovery portion 50. The communication between the same pressure communication pipe 64 forming another path R3 and the closed container 12 is performed via the communication connecting portion 68 set on the upper end side of the closed container 12. The connection port of the communication connection portion 68 with the closed container is set to face downward. As a result, the raw material accumulated in the closed container 12 in the same pressure communication pipe 64 is less likely to enter the pipe, and the raw material is prevented from being clogged in the pipe to maintain the communication state of the same pressure communication pipe. The closed container 12 and the recovery unit 50 can be surely made to have the same pressure. The same pressure communication pipe 64 is always in a communication state, and when the opening / closing mechanism 60 of the liquid recovery flow path 54 is closed, the pressure inside the closed container 12, the recovery unit 50, and the liquid recovery flow path 54 is the same. Become. As a result, it is possible to prevent pressure feeding of the raw material due to the pressure difference on the liquid introduction port 58 side of the discharge port 16 immediately after opening the opening / closing mechanism 60 of the liquid recovery flow path 54. Further, even when the opening / closing mechanism 60 is opened to collect the liquid, the same pressure state is always maintained in the closed container 12 and the collection unit 50. Therefore, the pressure is the same from before the recovery to after the recovery, and only the liquid can be satisfactorily flowed down from the discharge port 16 for separation and recovery. The pressure forming means 62 is not limited to this type of configuration, and may have any configuration. For example, the same pressure forming means 62 is provided with another high pressure forming device for increasing the pressure inside the recovery unit, and adjusts the pressure inside the collection unit while monitoring the pressure inside the closed container with a sensor to be the same as the pressure inside the closed container. It may be pressured. Further, the pressure inside the closed container may be reduced.

次に、以上説明した製造装置10を用いての本発明の実施の形態による固体燃料の製造方法について説明する。 Next, a method for producing a solid fuel according to the embodiment of the present invention using the production apparatus 10 described above will be described.

本発明の実施の形態による固体燃料の製造方法は、
前記のような製造装置を準備する装置準備工程、
前記製造装置の密閉容器の処理空間内に、前記供給部から、プラスチック系ゴミである原料を投入する原料投入工程、
高温高圧の蒸気を前記処理空間に導入して、該処理空間内の昇温を行う昇温工程、
温度が120〜175℃で、圧力が12〜35atmの蒸気を、前記原料が投入されている前記処理空間内に導入し、前記原料を撹拌しながら、原料を亜臨界水反応処理して、固体燃料を製造する処理工程、
前記処理空間内を冷却する冷却工程、および、
前記製造した固体燃料を、排出口を介して密閉容器外に取り出す取り出し工程
を備えている。
The method for producing a solid fuel according to the embodiment of the present invention is
Equipment preparation process for preparing the manufacturing equipment as described above,
A raw material charging process in which a raw material, which is plastic waste, is charged from the supply unit into the processing space of the closed container of the manufacturing apparatus.
A temperature raising step of introducing high-temperature and high-pressure steam into the processing space to raise the temperature in the processing space.
Steam having a temperature of 120 to 175 ° C. and a pressure of 12 to 35 atm is introduced into the treatment space in which the raw material is charged, and the raw material is subjected to sub-critical water reaction treatment while stirring the raw material to form a solid. Processing process for producing fuel,
A cooling step for cooling the inside of the processing space, and
It is provided with a take-out process in which the produced solid fuel is taken out of the closed container through the discharge port.

以下、上記した各工程について詳細に説明する。
《装置準備工程》
図を参照しつつ、上で説明したような製造装置(製造装置)を準備する。
Hereinafter, each step described above will be described in detail.
<< Equipment preparation process >>
While referring to the figure, prepare the manufacturing equipment (manufacturing equipment) as described above.

《原料投入工程》
原料としてのプラスチック系ゴミ
先ず、処理すべき、すなわち固体燃料の原料となる廃プラスチック類を含有するプラスチック系ゴミを準備する。この廃プラスチック類は、そのままの形状でも良いが、少なくとも、製造装置10の投入口から投入することのできる大きさのものとするのが好ましく、特に、チップ状等の細片、あるいは粒状とするのが好ましい。ちなみに、この廃プラスチック類の樹脂別内訳は、2017年の(一社)プラスチック循環利用協会の調べでは、ポリエチレン(PE)が33.9%、ポリプロピレン(PP)が22.2%、ポリスチレン類(PS)が11.8%、塩化ビニル樹脂(VC)が7.5%、その他が24.5%となっている。今回準備したプラスチック系ゴミにおける廃プラスチック類の樹脂別内訳は、これに準ずるものであった。
《Raw material input process》
Plastic waste as a raw material First, plastic waste to be treated, that is, containing waste plastics as a raw material for solid fuel is prepared. The waste plastics may be in the same shape as they are, but at least, the waste plastics are preferably of a size that can be charged from the input port of the manufacturing apparatus 10, and in particular, they are made into small pieces such as chips or granules. Is preferable. By the way, the breakdown of these waste plastics by resin is as follows, according to a 2017 survey by the Plastic Recycling Association, polyethylene (PE) is 33.9%, polypropylene (PP) is 22.2%, and polystyrenes (1 company). PS) is 11.8%, vinyl chloride resin (VC) is 7.5%, and others are 24.5%. The breakdown of waste plastics by resin in the plastic waste prepared this time was similar to this.

プラスチック系ゴミの投入
前記多種のプラスチック類を含有するプラスチック系ゴミを、前記製造装置10の密閉容器の処理空間内に、投入口から投入する。このとき、プラスチック系ゴミの密閉容器内への投入量は、容積割合で、プラスチック系ゴミを前記処理空間の90%以下、特に、50〜80%であることが好ましい。
Insertion of plastic-based dust The plastic-based waste containing various types of plastics is charged into the processing space of the closed container of the manufacturing apparatus 10 from the charging port. At this time, the amount of the plastic waste charged into the closed container is preferably 90% or less, particularly 50 to 80% of the processing space for the plastic waste in terms of volume ratio.

《昇温工程》
この昇温工程では、昇温速度を、前記密閉容器内の処理空間へのプラスチック系ゴミの投入量、下記する保持温度(処理温度)の値を考慮し、7〜12℃/minに設定する。この昇温は、高温高圧の水蒸気を前記処理空間に導入することによって行われる。
昇温速度が前記未満であると、処理時間が掛かりすぎて、処理量が少なくなり、結果的にコストが増大し、一方、前記を越えると、高融点のプラスチック類を溶解が進まないうちに、低融点のプラスチック類が溶解してしまって、高融点プラスチック類の外側のコーティング層とならない。その結果、できた固体燃料の着火性が十分でなくなる。
<< Heating process >>
In this temperature raising step, the temperature rising rate is set to 7 to 12 ° C./min in consideration of the amount of plastic dust charged into the processing space in the closed container and the following holding temperature (treatment temperature) values. .. This temperature rise is performed by introducing high-temperature and high-pressure steam into the processing space.
If the rate of temperature rise is less than the above, the processing time is too long, the amount of processing is reduced, and as a result, the cost is increased. , The low melting point plastics are melted and do not become the outer coating layer of the high melting point plastics. As a result, the ignitability of the resulting solid fuel becomes insufficient.

《処理工程》
この処理工程では、前記密閉容器内を、温度120℃以上175℃以下、圧力12〜15atmの亜臨界状態に所定時間保持する。この温度と、圧力は、前記密閉容器内に、温度120℃以上175℃以下、圧力12〜15atmの高温高圧の水蒸気を導入することによって達成する。
前記プラスチック系ゴミを、前記亜臨界状態で、前記撹拌手段により撹拌しながら、15〜35分亜臨界水処理することにより、前記多種のプラスチック類を含有するプラスチック系ゴミのうちの数種のプラスチックを溶解し、残りの他のプラスチックの周りに付着させ、固体化する。
この処理工程において、前記温度および/または圧力が、前記亜臨界状態未満であると、高融点プラスチック類の少なくとも周囲側の部分の軟化が進まず、したがって、低融点のプラスチック類の溶融物が、その外側に付着し難くなり、また脱塩素が十分でなく、一方、越えると、高融点プラスチック類も大部分が溶融してしまい、固体燃料の態をなさなくなる。
この処理工程においては、比較的低融点のプラスチック類を溶融し、一方、比較的高融点のプラスチック類を溶解までには至らないが軟化させ、これにともなって、脱塩素化する。
<< Processing process >>
In this treatment step, the inside of the closed container is kept in a subcritical state at a temperature of 120 ° C. or higher and 175 ° C. or lower and a pressure of 12 to 15 atm for a predetermined time. This temperature and pressure are achieved by introducing high-temperature and high-pressure steam having a temperature of 120 ° C. or higher and 175 ° C. or lower and a pressure of 12 to 15 atm into the closed container.
By treating the plastic-based dust with subcritical water for 15 to 35 minutes while stirring the plastic-based dust in the subcritical state by the stirring means, some plastics among the plastic-based dust containing various kinds of plastics are used. Is melted and attached around the rest of the plastic to solidify.
In this treatment step, if the temperature and / or pressure is less than the subcritical state, the softening of at least the peripheral portion of the high melting point plastic does not proceed, and therefore, the melt of the low melting point plastic is produced. It becomes difficult to adhere to the outside, and dechlorination is not sufficient. On the other hand, if it exceeds it, most of the refractory plastics are melted, and the solid fuel is not formed.
In this treatment step, plastics having a relatively low melting point are melted, while plastics having a relatively high melting point are softened but not melted, and are dechlorinated accordingly.

《冷却工程》
この後、低融点プラスチック類で外部をコーティングした高融点プラスチック類からなる固定燃料の中間物をこの冷却工程により冷却してプラスチック系の固体燃料を製造する。この冷却工程は、処理空間を常圧に戻した後、自然冷却により行って良い。
《Cooling process》
After that, an intermediate of a fixed fuel made of high melting point plastics whose outside is coated with low melting point plastics is cooled by this cooling step to produce a plastic-based solid fuel. This cooling step may be performed by natural cooling after returning the processing space to normal pressure.

《固体燃料の取得工程》
この工程では、まず、溶液分を固体燃料分から分離する。この分離は、前記分離回収手段を用いて、溶液分を自然落下させ、固形燃料分を密閉容器内に残留させることにより行われる。
液体分が装置内から排出された後、排出口を開放して、固体燃料を装置外へ取り出す。
以上により、固体燃料の製造を完了する。
<< Solid fuel acquisition process >>
In this step, first, the solution component is separated from the solid fuel component. This separation is performed by allowing the solution component to fall naturally and leaving the solid fuel component in the closed container using the separation / recovery means.
After the liquid component is discharged from the inside of the device, the discharge port is opened and the solid fuel is taken out of the device.
With the above, the production of solid fuel is completed.

[実施例]
先ず、密閉容器中の処理空間の容積が2mの、図1に示すような構造の製造装置を準備した。
前記処理空間中に、原料として上記した廃プラスチック類構成内容のプラスチック系ゴミを準備し、これを用いてそれぞれ、廃プラスチック類体燃料の製造の実験を行った。
プラスチック系ゴミの前処理は、装置の投入口から投入が不可能な大きさのものを、押しつぶすことにより減容化する以外は、そのまま用いた。
プラスチック系ゴミの投入量は、1.6m(処理空間の容積の80%)とした。
[Example]
First, a manufacturing apparatus having a structure as shown in FIG. 1 having a processing space volume of 2 m 3 in a closed container was prepared.
In the processing space, plastic-based waste having the above-mentioned contents of waste plastics was prepared as a raw material, and experiments were conducted on the production of waste plastic fuels using the plastic wastes.
For the pretreatment of plastic-based waste, the one having a size that cannot be charged from the input port of the device was used as it was except that the volume was reduced by crushing it.
The amount of plastic waste input was 1.6 m 3 (80% of the volume of the treatment space).

前記プラスチック系ゴミの投入後、処理空間内の温度が表に示した処理温度となるように、高温高圧の水蒸気を導入した。そのときの該処理空間内の昇温速度は表に示した値となるようにして、昇温工程を行った。
次いで、処理空間内の温度が前記処理温度で、圧力を14atmに固定、処理時間を25分で固定して亜臨界水処理を行いサンプルの固体燃料を製造した。得られたサンプルの固体燃料のそれぞれに付き着火試験を行うと共に、燃焼時におけるダイオキシンの発生状態を判定した。この判定は、着火後5分以内のダイオキシンの発生量を測定することにより行った。その結果を、第1表の評価に示した。
着火試験は、サンプルの固体燃料にガスバーナーの火炎を当て、発火までの時間を測定して判定した。判定内容は下記とした。
〇:火炎を当ててから20秒未満以内に着火した。評価
x:20秒たっても着火しなかった。
ダイオキシンの発生量試験は、プラスチック系ゴミを固める以外は、何も処理せずに燃焼させた場合のダイオキシンの発生量を1としたとき、発生量が1/2以下となった場合を〇、ならなかった時をxとした。
以上から、本発明の効果が明らかである。
After charging the plastic waste, high-temperature and high-pressure steam was introduced so that the temperature in the treatment space became the treatment temperature shown in the table. The temperature rising rate in the processing space at that time was set to the value shown in the table, and the temperature rising step was performed.
Next, the temperature in the treatment space was the treatment temperature, the pressure was fixed at 14 atm, the treatment time was fixed at 25 minutes, and subcritical water treatment was performed to produce a sample solid fuel. An ignition test was conducted on each of the solid fuels of the obtained samples, and the state of dioxin generation during combustion was determined. This determination was made by measuring the amount of dioxin generated within 5 minutes after ignition. The results are shown in the evaluation in Table 1.
The ignition test was determined by irradiating the solid fuel of the sample with the flame of a gas burner and measuring the time until ignition. The judgment contents are as follows.
〇: Ignished within 20 seconds after applying the flame. Evaluation x: No ignition even after 20 seconds.
In the dioxin generation test, when the amount of dioxin generated is 1 when burned without any treatment other than solidifying plastic waste, the amount generated is 1/2 or less. The time when it did not become x was defined as x.
From the above, the effect of the present invention is clear.

10 固体燃料の製造装置
12 密閉容器
14 蒸気噴出手段
16 排出口
18 分離回収手段
26 開閉機構
30 撹拌手段
50 回収部
52 自然流下回収機構
54 液体回収流路
58 液体導入口
60 開閉機構
62 同圧形成手段
64 同圧連通管
10 Solid fuel manufacturing equipment 12 Sealed container 14 Steam ejection means 16 Discharge port 18 Separation and recovery means 26 Opening and closing mechanism 30 Stirring means 50 Recovery unit 52 Natural flow recovery mechanism 54 Liquid recovery flow path 58 Liquid introduction port 60 Opening and closing mechanism 62 Same pressure formation Means 64 Same pressure communication pipe

Claims (5)

多種のプラスチック類を含有するプラスチック系ゴミを、密閉容器の処理空間内で、昇温工程と、温度保持工程と、冷却工程を含む処理工程により、処理して固体燃料を製造する固体燃料の製造方法であって、
高温高圧の水蒸気を用いて、
前記昇温工程での前記の密閉容器内の昇温速度を、7〜12℃/minに設定し、
前記温度保持工程で、前記密閉容器内を、温度120℃以上175℃以下、圧力12〜15atmの亜臨界状態に設定し、
前記プラスチック系ゴミを、前記亜臨界状態で、撹拌しながら、15〜35分亜臨界水処理することにより、前記多種のプラスチック類を含有するプラスチック系ゴミのうちの数種のプラスチックを溶解し、残りの他のプラスチックの周りに付着させ、固体化し、これを、前記冷却工程により冷却してプラスチック系の固体燃料を製造する固体燃料の製造方法。
Production of solid fuel to produce solid fuel by processing plastic waste containing various kinds of plastics in the processing space of a closed container by a processing process including a temperature raising step, a temperature holding step, and a cooling step. It's a method
Using high temperature and high pressure steam,
The heating rate in the closed container in the temperature raising step is set to 7 to 12 ° C./min.
In the temperature holding step, the inside of the closed container is set to a subcritical state with a temperature of 120 ° C. or higher and 175 ° C. or lower and a pressure of 12 to 15 atm.
By treating the plastic-based dust with subcritical water for 15 to 35 minutes while stirring in the subcritical state, some plastics among the plastic-based dust containing various plastics are dissolved. A method for producing a solid fuel, which is adhered around the remaining other plastic, solidified, and cooled by the cooling step to produce a plastic-based solid fuel.
前記密閉容器を備え、該密閉容器の前記処理空間内に、プラスチック系ゴミを供給するための供給部と、高温高圧の蒸気を噴出する蒸気噴出手段と、開閉機構を有し、前記製造された固体燃料を外部に排出するための排出部とを備えた製造装置を準備する装置準備工程を含む請求項1の固体燃料の製造方法。 The airtight container is provided, and the processing space of the airtight container is provided with a supply unit for supplying plastic dust, a steam ejection means for ejecting high-temperature and high-pressure steam, and an opening / closing mechanism. The method for producing a solid fuel according to claim 1, which comprises an apparatus preparation step of preparing a manufacturing apparatus including a discharge unit for discharging the solid fuel to the outside. 容積割合で、プラスチック系ゴミを前記処理空間の90%以下導入する請求項1または2の固体燃料の製造方法。 The method for producing a solid fuel according to claim 1 or 2, wherein 90% or less of the processing space is introduced with plastic waste in a volume ratio. 容積割合で、プラスチック系ゴミを前記処理空間の50〜80%導入する請求項1または2の固体燃料の製造方法。 The method for producing a solid fuel according to claim 1 or 2, wherein 50 to 80% of the processing space is introduced with plastic waste in a volume ratio. 前記処理工程における撹拌が、前記処理空間内に配置された回転する撹拌部材により行われる請求項1〜4のいずれかの固体燃料の製造方法。 The method for producing a solid fuel according to any one of claims 1 to 4, wherein the stirring in the processing step is performed by a rotating stirring member arranged in the processing space.
JP2019031246A 2019-02-25 2019-02-25 Method for producing solid fuel Active JP7152773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031246A JP7152773B2 (en) 2019-02-25 2019-02-25 Method for producing solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031246A JP7152773B2 (en) 2019-02-25 2019-02-25 Method for producing solid fuel

Publications (2)

Publication Number Publication Date
JP2020132805A true JP2020132805A (en) 2020-08-31
JP7152773B2 JP7152773B2 (en) 2022-10-13

Family

ID=72277681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031246A Active JP7152773B2 (en) 2019-02-25 2019-02-25 Method for producing solid fuel

Country Status (1)

Country Link
JP (1) JP7152773B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223914A (en) * 2005-02-15 2006-08-31 Glass Resourcing Kk Method for treating waste material containing organic substance such as waste plastic and system for recycling waste material
JP2007136312A (en) * 2005-11-17 2007-06-07 Kubota Kankyo Service Kk Organic waste treatment system
WO2008038361A1 (en) * 2006-09-28 2008-04-03 Eco Material Co., Ltd. Organic waste disposal system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223914A (en) * 2005-02-15 2006-08-31 Glass Resourcing Kk Method for treating waste material containing organic substance such as waste plastic and system for recycling waste material
JP2007136312A (en) * 2005-11-17 2007-06-07 Kubota Kankyo Service Kk Organic waste treatment system
WO2008038361A1 (en) * 2006-09-28 2008-04-03 Eco Material Co., Ltd. Organic waste disposal system

Also Published As

Publication number Publication date
JP7152773B2 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP7099736B2 (en) Solid fuel composition formed from mixed solid waste
JP7315264B2 (en) Method for producing solid fuel composition from mixed solid waste
US7988830B2 (en) Waste processing process using acid
US6328234B1 (en) Apparatus and method for recycling solid waste
TWI695882B (en) System for forming a solid fuel composition from mixed solid waste
JP6744285B2 (en) Biomass fuel manufacturing plant, manufacturing plant system, biomass fuel manufacturing method, and biomass fuel
JP2020132805A (en) Manufacturing method of solid fuel
JP4988695B2 (en) Anaerobic treatment apparatus and waste treatment system provided with the same
CN208042142U (en) Composting burning processing system
JP2006063346A (en) Treatment equipment for waste plastics
KR100747047B1 (en) Food waste disposal equipment
KR200254460Y1 (en) Disposal system of mixed refuse
CN104148372A (en) Pretreatment device and pretreatment method for volume reduction and dehumidification of garbage
KR20030032486A (en) Continuous volume reducing apparatus and method using the same
KR20030010075A (en) Disposal system of mixed refuse
JPS58149994A (en) Process and plant for preparing solid fuel utilizing industrial waste
FR2693388A1 (en) Process for the treatment of contaminated waste, in particular hospital waste, and installation for implementing said process.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7152773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150