JP2020132746A - Fluorine insolubilization agent, its manufacturing method, processed gypsum, fluorine-containing contaminated soil and processing method of contaminated water - Google Patents

Fluorine insolubilization agent, its manufacturing method, processed gypsum, fluorine-containing contaminated soil and processing method of contaminated water Download PDF

Info

Publication number
JP2020132746A
JP2020132746A JP2019027014A JP2019027014A JP2020132746A JP 2020132746 A JP2020132746 A JP 2020132746A JP 2019027014 A JP2019027014 A JP 2019027014A JP 2019027014 A JP2019027014 A JP 2019027014A JP 2020132746 A JP2020132746 A JP 2020132746A
Authority
JP
Japan
Prior art keywords
fluorine
insolubilizer
dcpd
ions
fluorine insolubilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027014A
Other languages
Japanese (ja)
Other versions
JP7315160B2 (en
Inventor
昌幹 袋布
Masamoto Tafu
昌幹 袋布
剛司 豊嶋
Goji Toyoshima
剛司 豊嶋
芳章 萩野
Yoshiaki Hagino
芳章 萩野
将文 ▲高▼田
将文 ▲高▼田
Masafumi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Fudo Tetra Corp
Original Assignee
Institute of National Colleges of Technologies Japan
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Fudo Tetra Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2019027014A priority Critical patent/JP7315160B2/en
Publication of JP2020132746A publication Critical patent/JP2020132746A/en
Application granted granted Critical
Publication of JP7315160B2 publication Critical patent/JP7315160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide a fluorine insolubilization agent that improves a delay time seen in a reaction between calcium hydrogen phosphate dihydrate (DCPD) and a fluoride ion and has activity higher than the DCPD, a manufacturing method of the fluorine insolubilization agent capable of adjusting at an installation spot by using a solution of a more simple composition, and a processing method of contaminated soil or contaminated water.SOLUTION: A fluorine insolubilization agent obtained by attaching FAp on a surface of DCPD powder, according to a method of precipitating fluorine apatite (FAp) on a surface of DCPD, by dipping calcium hydrogen phosphate dihydrate in a weak acidic solution containing Caion, HPOion and Fion.SELECTED DRAWING: Figure 3

Description

本発明は、石膏中、汚染水中又は汚染土壌中のフッ化物イオンを安定な鉱物であるフッ素アパタイト(FAp)として不溶化し、長期的な安定性を担保するフッ素不溶化剤、その製造方法、処理石膏、フッ素含有汚染土壌及び汚染水の処理方法に関するものである。 The present invention is a fluorine insolubilizer that insolubilizes fluoride ions in gypsum, contaminated water, or contaminated soil as a stable mineral, fluorine apatite (FAp), and ensures long-term stability, a method for producing the same, and treated gypsum. It relates to a method for treating fluorine-containing contaminated soil and contaminated water.

フッ素は、先端技術産業の分野で広く使用されており、それに伴って排水や土壌のフッ素汚染が深刻な問題となっている。このフッ素汚染土壌は、我が国の汚染土壌では2番目にサイト数が多いものとなっている。このため、排水中又は土壌中のフッ素(フッ化物イオン)を安定なフッ素アパタイト(FAp)として不溶化する技術が多数、提案されている。 Fluorine is widely used in the field of advanced technology industry, and along with this, wastewater and soil pollution with fluorine have become serious problems. This fluorine-contaminated soil has the second largest number of sites in Japan's contaminated soil. For this reason, many techniques have been proposed for insolubilizing fluorine (fluoride ion) in wastewater or soil as stable fluorine apatite (FAp).

従来、このようなフッ素不溶化剤としては、各種アルミニウム化合物やカルシウム化合物の他に、リン酸ナトリウム(Na3PO4)、リン酸水素二ナトリウム(Na2HPO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸水素カルシウム二水和物(CaHPO4・2H2O)、水酸アパタイト(Ca5(PO4)3OH)等、各種のリン酸化合物が知られている。 Conventionally, as such a fluorine insolubilizer, in addition to various aluminum compounds and calcium compounds, sodium phosphate (Na3PO4), disodium hydrogen phosphate (Na2HPO4), sodium dihydrogen phosphate (NaH2PO4), calcium hydrogen phosphate Various phosphoric acid compounds such as dihydrate (CaHPO4.2H2O) and hydroxyapatite (Ca5 (PO4) 3OH) are known.

この中、リン酸水素カルシウム二水和物(以下、単に「DCPD」との言う。)は、直接フッ化物イオンと反応するのではなく、反応初期に粒子表面に数十nmのリン酸カルシウム系前駆体を生成し、それがトリガーとなってFApを生成することが見いだされている(非特許文献1)。この前駆体相の生成には数時間の誘導時間(遅れ時間)を必要とし、さらにこの前駆体相生成は、例えばMgイオン、Cdイオン、フッ化物イオンなどの共存イオンによって容易に妨害される(非特許文献2等)という問題がある。 Among these, calcium hydrogen phosphate dihydrate (hereinafter, simply referred to as "DCPD") does not directly react with fluoride ions, but is a calcium phosphate-based precursor having a particle surface of several tens of nm at the initial stage of the reaction. It has been found that FAp is generated by generating FAp (Non-Patent Document 1). The formation of this precursor phase requires an induction time (delay time) of several hours, and the formation of this precursor phase is easily hindered by coexisting ions such as Mg ion, Cd ion, and fluoride ion (). There is a problem of non-patent document 2 etc.).

DCPDとフッ化物イオンとの反応に見られる遅れ時間を改善する技術として、例えば、国際公開番号WO2010/041330号(特許文献1)には、DCPDを水あるいは温水処理により前駆体相を表面に誘起する方法が開示されている。また、特開2011−256356号公報(特許文献2)には、DCPDと水酸アパタイト(HAp)の混合物であるフッ素不溶化剤が開示されている。また、非特許文献3には、DCPDを人の体液と同じイオン濃度を有する擬似体液に浸漬して、HApを粒子表面に析出させる方法が開示されている。 As a technique for improving the delay time observed in the reaction between DCPD and fluoride ions, for example, in International Publication No. WO2010 / 041330 (Patent Document 1), DCPD induces a precursor phase on the surface by water or hot water treatment. The method of doing so is disclosed. Further, Japanese Patent Application Laid-Open No. 2011-256356 (Patent Document 2) discloses a fluorine insolubilizer which is a mixture of DCPD and hydroxyapatite (HAp). Further, Non-Patent Document 3 discloses a method of immersing DCPD in a simulated body fluid having the same ion concentration as a human body fluid to precipitate HAp on the particle surface.

国際公開番号WO2010/041330号International Publication No. WO2010 / 041330 特開2011−256356号公報Japanese Unexamined Patent Publication No. 2011-256356

袋布昌幹、丁子哲治、「リン酸水素カルシウム二水和物(DCPD)と水溶液中低濃度フッ化物イオンとの反応」、J. Ceram. Soc. Jpn., 113, 263-267 (2005).Masami Fukurofu, Tetsuji Choko, "Reaction of Calcium Hydrogen Phosphate Dihydrate (DCPD) with Low Concentration Fluoride Ions in Aqueous Solution", J. Ceram. Soc. Jpn., 113, 263-267 (2005) .. M. Tafu, T. Okazaki, T. Toshima, T. Chohji, “Effect of Coexisting Ions on the Reaction of Fluoride with Calcium Phosphate (DCPD) for Water Treatment”, International Journal of Biological Science and Engineering,5(2),35-37 (2014).M. Tafu, T. Okazaki, T. Toshima, T. Chohji, "Effect of Coexisting Ions on the Reaction of Fluoride with Calcium Phosphate (DCPD) for Water Treatment", International Journal of Biological Science and Engineering, 5 (2), 35-37 (2014). Y. Takemura, M. Kikuchi, M. Tafu, T. Toshima, T. Chohji, “Reactivity improvement of dicalcium phosphate dihydrate with fluoride for its removal from waste and drinking water”, Univ. J. Mater. Sci., 4,60-64 (2016).Y. Takemura, M. Kikuchi, M. Tafu, T. Toshima, T. Chohji, "Reactivity improvement of dicalcium phosphate dihydrate with fluoride for its removal from waste and drinking water", Univ. J. Mater. Sci., 4, 60-64 (2016).

しかしながら、これら従来の方法は、未だDCPDとフッ化物イオンとの反応に見られる遅れ時間を改善するには不十分であるか、あるいはDCPDの活性化が不十分であり、フッ素汚染土壌中のフッ素の不溶化という点では、満足がいくものではなかった。また、疑似体液を用いる方法は、疑似体液の調製や保管が難しいという問題がある。また、DCPDとHApの混合物であるフッ素不溶化剤の場合、実際には、DCPDは合成したものを使用しており、限られた用途にしか適用できなかった。このため、例えば、汚染土壌の処理現場において、市販のDCPDを簡単に処理して得られるフッ素不溶化剤が求められていた。 However, these conventional methods are still insufficient to improve the delay time seen in the reaction of DCPD with fluoride ions, or the activation of DCPD is insufficient and fluorine in fluorine-contaminated soil. In terms of insolubilization of fluorine, it was not satisfactory. Further, the method using the simulated body fluid has a problem that it is difficult to prepare and store the simulated body fluid. Further, in the case of the fluorine insolubilizer which is a mixture of DCPD and HAp, the DCPD is actually a synthetic one, and it can be applied only to a limited use. Therefore, for example, at a treatment site for contaminated soil, there has been a demand for a fluorine insolubilizer obtained by easily treating a commercially available DCPD.

従って、本発明の目的は、DCPDとフッ化物イオンとの反応に見られる遅れ時間を改善し、DCPDの高い活性化を有するフッ素不溶化剤、より単純な組成の溶液を使用して施工現場で調製可能なフッ素不溶化剤の製造方法、処理石膏及びフッ素含有汚染土壌又は汚染水の処理方法を提供することにある。 Therefore, an object of the present invention is to improve the delay time observed in the reaction between DCPD and fluoride ions, and to prepare at the construction site using a fluorine insolubilizer having high activation of DCPD, a solution having a simpler composition. It is an object of the present invention to provide a method for producing a possible fluorine insolubilizer, a method for treating treated gypsum and a method for treating fluorine-containing contaminated soil or contaminated water.

かかる実情において、本発明者等は、フッ素不溶化剤の製造方法について、鋭意検討を行った結果、DCPDの表面に前駆体を形成する溶液である弱酸性溶液において、疑似体液のCa2+イオンとHPO 2−イオンに着目し、更にこれらのイオンに、不溶化の対象物であるフッ化物イオンを併存させるという逆転の発想に基づき作成された溶液を使用し、DCPDの表面にフッ素アパタイトを予め積極的に形成してフッ素不溶化剤を得たところ、DCPDとフッ化物イオンとの反応に見られる遅れ時間を大きく改善でき、DCPDが高い活性化を示すことを見出し、本発明を完成するに至った。 In such a situation, the present inventors diligently studied a method for producing a fluorine insolubilizer, and as a result, in a weakly acidic solution which is a solution for forming a precursor on the surface of DCPD, Ca 2+ ions and HPO of the pseudo-form solution 4 2- Focusing on ions, using a solution created based on the reverse idea of coexisting fluoride ions, which are the objects of insolubilization, with these ions, positively apply fluorine apatite to the surface of DCPD in advance. When a fluorine insolubilizer was obtained, it was found that the delay time observed in the reaction between DCPD and fluoride ions could be greatly improved, and that DCPD showed high activation, and the present invention was completed.

すなわち、本発明は、リン酸水素カルシウム二水和物の表面に、フッ素アパタイトが付着してなることを特徴とするフッ素不溶化剤を提供するものである。 That is, the present invention provides a fluorine insolubilizer characterized in that fluorine apatite adheres to the surface of calcium hydrogen phosphate dihydrate.

また、本発明は、Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液に、リン酸水素カルシウム二水和物を浸漬させ、リン酸水素カルシウム二水和物の表面に、フッ素アパタイトを沈着させる第1工程を有すること特徴とするフッ素不溶化剤の製造方法を提供するものである。 Further, the present invention, Ca 2+ ions 2.0~5.0mmol / l, HPO 4 2- ions 0.5~2.0mmol / l and F - weak containing ion 1.0~3.0mmol / l Provided is a method for producing a fluorine insolubilizer, which comprises a first step of immersing calcium hydrogen phosphate dihydrate in an acidic solution and depositing fluorine apatite on the surface of the calcium hydrogen phosphate dihydrate. It is something to do.

また、本発明は、前記不溶化剤が添加された石膏であり、フッ素の溶出を低減したことを特徴とする処理石膏を提供するものである。 The present invention also provides a gypsum to which the insolubilizing agent has been added, which is characterized by reducing elution of fluorine.

また、本発明は、前記フッ素不溶化剤を、フッ化物イオンで汚染された土壌に添加することを特徴とする汚染土壌の処理方法を提供するものである。 The present invention also provides a method for treating contaminated soil, which comprises adding the fluorine insolubilizer to soil contaminated with fluoride ions.

また、本発明は、前記フッ素不溶化剤を、フッ化物イオンで汚染された汚染水に添加することを特徴とする汚染水の処理方法を提供するものである。 The present invention also provides a method for treating contaminated water, which comprises adding the fluorine insolubilizer to contaminated water contaminated with fluoride ions.

本発明によれば、DCPDとフッ化物イオンとの反応に見られる遅れ時間を改善し、DCPDの高い活性化を有するフッ素不溶化剤を提供できる。また、本発明によれば、より単純な組成の溶液を使用して施工現場で調製可能なフッ素不溶化剤の製造方法を提供できる。また、本発明によれば、フッ素不溶化剤を直接または水に混合したものを、汚染土壌や汚染水に添加するという簡単な工程の実施のみで汚染土壌や汚染水中のフッ化物イオンを効率よく不溶化できる。 According to the present invention, it is possible to provide a fluorine insolubilizer having a high activation of DCPD by improving the delay time observed in the reaction between DCPD and fluoride ions. Further, according to the present invention, it is possible to provide a method for producing a fluorine insolubilizer that can be prepared at a construction site using a solution having a simpler composition. Further, according to the present invention, fluoride ions in contaminated soil and contaminated water are efficiently insolubilized only by carrying out a simple step of adding a fluorine insolubilizer directly or mixed with water to contaminated soil or contaminated water. it can.

本発明のCa-P-F溶液1回浸漬処理されたフッ素不溶化剤のSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of a fluorine insolubilizer which has been immersed once in the Ca-PF solution of the present invention, and (A) is 500 times and (B) is 5000 times. 本発明のCa-P-F溶液3回繰り返し浸漬処理されたフッ素不溶化剤のSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of a fluorine insolubilizer which has been repeatedly immersed in the Ca-PF solution of the present invention three times, and (A) is 500 times and (B) is 5000 times. 実施例1、実施例2、比較例1及び比較例2における、フッ素不溶化剤とフッ化物イオンとの反応に見られる遅れ時間を示す図である。It is a figure which shows the delay time observed in the reaction between a fluorine insolubilizer and a fluoride ion in Example 1, Example 2, Comparative Example 1 and Comparative Example 2. 実施例1、実施例2、比較例1及び比較例2における、X線回折図であり、(A)が除去対象のフッ化物イオンとの反応前の固相(フッ素不溶化剤)であり、(B)がフッ化物イオンとの反応後の反応物である。It is an X-ray diffraction pattern in Example 1, Example 2, Comparative Example 1 and Comparative Example 2, and (A) is a solid phase (fluorine insolubilizer) before the reaction with the fluoride ion to be removed, and ( B) is a reaction product after the reaction with fluoride ions. 図1のフッ素不溶化剤と除去対象のフッ化物イオンとの反応物のSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of the reaction product of the fluorine insolubilizer of FIG. 1 and the fluoride ion to be removed, and (A) is 500 times and (B) is 5000 times. 図2のフッ素不溶化剤と除去対象のフッ化物イオンとの反応物のSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of the reaction product of the fluorine insolubilizer and the fluoride ion to be removed in FIG. 2, and (A) is 500 times and (B) is 5000 times. 比較例となるCa-P溶液1回浸漬処理されたDCPDのSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of DCPD which was subjected to the Ca-P solution once immersion treatment as a comparative example, (A) is 500 times, (B) is 5000 times. 比較例となるDCPDのSEM写真であり、(A)が500倍、(B)が5000倍である。It is an SEM photograph of DCPD which becomes a comparative example, (A) is 500 times, (B) is 5000 times.

(フッ素不溶化剤)
本発明のフッ素不溶化剤は、DCPDの表面に、フッ素アパタイト(以下、単に「FAp」とも言う。)が付着してなるものであり、例えば、このFApは、DCPD粉末の表面を被覆しているものが挙げられる。DCPDは、X線分析及び示差熱分析で特定することができる。DCPDは、汚染土壌や汚染水中の汚染物であるフッ化物イオンと反応し、最終的には、FApに転換される。
(Fluorine insolubilizer)
The fluorine insolubilizer of the present invention is formed by adhering fluorine apatite (hereinafter, also simply referred to as "FAp") to the surface of DCPD. For example, this FAp covers the surface of DCPD powder. Things can be mentioned. DCPD can be identified by X-ray analysis and differential thermal analysis. DCPD reacts with fluoride ions, which are pollutants in contaminated soil and contaminated water, and is eventually converted to FAp.

本発明のフッ素不溶化剤において、FApは、針状体の集合物であり、この針状体は、最大長さ5μm、好ましくは最大長さ0.5μmである。また、針状体のアスペクト比(長辺と短辺の比)としては、1:100〜1:50である。FApは、X線分析及び示差熱分析で特定でき、その針状形状及び長さ寸法は、電子顕微鏡で特定できる。 In the fluorine insolubilizer of the present invention, FAp is an aggregate of needle-shaped bodies, and the needle-shaped bodies have a maximum length of 5 μm, preferably a maximum length of 0.5 μm. The aspect ratio (ratio of long side to short side) of the needle-shaped body is 1: 100 to 1:50. FAp can be identified by X-ray analysis and differential thermal analysis, and its needle-like shape and length dimension can be identified by an electron microscope.

本発明のフッ素不溶化剤において、FApの含有量は、フッ素不溶化剤中、0.1質量%以上、好ましくは1.0〜30.0質量%以上、更に好ましくは5.0〜40.0質量%である。フッ素不溶化剤中、FApの含有量は、上記数値範囲内において、多い方が汚染物であるフッ化物イオンとDCPDとの反応に見られる遅れ時間の改善効果が高い。図1のフッ素不溶化剤は、フッ素不溶化剤中、FApの含有量が10.0質量%のものであり、図2のフッ素不溶化剤は、フッ素不溶化剤中、FApの含有量が18.0質量%のものである。 In the fluorine insolubilizer of the present invention, the FAp content in the fluorine insolubilizer is 0.1% by mass or more, preferably 1.0 to 30.0% by mass or more, and more preferably 5.0 to 40.0% by mass. %. Within the above numerical range, the higher the FAp content in the fluorine insolubilizer, the higher the effect of improving the delay time observed in the reaction between the contaminant fluoride ion and DCPD. The fluorine insolubilizer of FIG. 1 has a FAp content of 10.0% by mass in the fluorine insolubilizer, and the fluorine insolubilizer of FIG. 2 has a FAp content of 18.0 mass in the fluorine insolubilizer. %belongs to.

本発明のフッ素不溶化剤は、汚染物であるフッ素を含んだ石膏、汚染水あるいは汚染土壌に対し、直接または水に混合して添加することで、フッ化物イオンとDCPDとの反応における遅れ時間を短縮して、汚染物のフッ素を不溶化できる。 The fluorine insolubilizer of the present invention can be added directly or mixed with water to gypsum, contaminated water or contaminated soil containing fluorine, which is a pollutant, to reduce the delay time in the reaction between fluoride ions and DCPD. It can be shortened to insolubilize the contaminant fluorine.

(フッ素不溶化剤の製造方法)
本発明の第1の実施の形態におけるフッ素不溶化剤の製造方法は、Ca2+イオン2.0〜5.0mmol/l、好ましくは、2.5mmol/l、PO 2−イオン0.5〜2.0mmol/l、好ましくは、1.0mmol/l、及びFイオン1.0〜3.0mmol/l、好ましくは1.2〜3.0mmol/lを含有する弱酸性溶液に、DCPDを浸漬させ、DCPDの表面に、FApを沈着させる第1工程を有する方法である。
(Manufacturing method of fluorine insolubilizer)
Method for producing a fluorine-insolubilizing agent in the first embodiment of the present invention, Ca 2+ ions 2.0~5.0mmol / l, preferably, 2.5mmol / l, PO 4 2- ions 0.5-2 Immerse DCPD in a weakly acidic solution containing 0.0 mmol / l, preferably 1.0 mmol / l, and F - ions 1.0-3.0 mmol / l, preferably 1.2-3.0 mmol / l. It is a method having a first step of depositing FAp on the surface of DCPD.

Ca2+イオンとしては、塩化カルシウム、硝酸カルシウム又は酢酸カルシウムが使用でき、PO 2−イオンとしては、リン酸ナトリウム、リン酸アンモニウム又はリン酸が使用でき、Fイオンとしては、フッ化ナトリウム、フッ化水素酸又はフッ化アンモニウムが使用できる。カルシウム化合物、リン酸化合物及びフッ化化合物の添加順序は特に制限されず、純水中に、一度に添加してもよく、別個に添加してもよい。この際、沈殿が生じないよう、pH調整しながら行う。弱酸性溶液には、上記イオンの他、例えばマグネシウムイオン、ナトリウムイオン、カリウムイオンなどが含まれていてもよい。 The Ca 2+ ion, calcium chloride, can be used calcium nitrate or calcium acetate, as a PO 4 2-ions, sodium phosphate, can be used ammonium phosphate or phosphoric acid, F - as the ion, sodium fluoride, Hydrofluoric acid or ammonium fluoride can be used. The order of addition of the calcium compound, the phosphoric acid compound and the fluorinated compound is not particularly limited, and the calcium compound, the phosphoric acid compound and the fluorinated compound may be added to pure water at once or separately. At this time, the pH is adjusted so that precipitation does not occur. In addition to the above ions, the weakly acidic solution may contain, for example, magnesium ions, sodium ions, potassium ions and the like.

弱酸性溶液のpHは、2.5〜6.5、好ましくは3.5〜6.5である。すなわち、DCPDの表面に、FApを沈着させた後の溶液のpHが6.1となるように、該弱酸性溶液のpHを調整すればよい。pHがこの範囲であれば、溶液の沈殿は起こらず、溶解状態を保持することができる。弱酸性溶液のpHが小さ過ぎると、DCPDが溶解して原料の損失が大きくなり、pHが大き過ぎると、溶液中に白濁が生じて分化するため、いずれも好ましくない。 The pH of the weakly acidic solution is 2.5 to 6.5, preferably 3.5 to 6.5. That is, the pH of the weakly acidic solution may be adjusted so that the pH of the solution after depositing FAp on the surface of DCPD is 6.1. When the pH is in this range, precipitation of the solution does not occur and the dissolved state can be maintained. If the pH of the weakly acidic solution is too small, DCPD will dissolve and the loss of raw materials will be large, and if the pH is too large, cloudiness will occur in the solution and differentiation will occur, which is not preferable.

本発明のフッ素不溶化剤の製造方法において、DCPDとしては、工業用、化粧品用、食品添加物用、医薬品用等の各種グレードの市販品が使用できる。また、DCPDは、例えば、消石灰の水分散液とリン酸とを、pH4〜5に調整した水系媒体中で反応させることで製造する公知の方法で得たものを使用することができる。 In the method for producing a fluorine insolubilizer of the present invention, various grades of commercially available products such as those for industrial use, cosmetics, food additives, and pharmaceuticals can be used as DCPD. Further, as the DCPD, for example, one obtained by a known method produced by reacting an aqueous dispersion of slaked lime and phosphoric acid in an aqueous medium adjusted to pH 4 to 5 can be used.

次に、DCPDを上記弱酸性溶液に浸漬する。DCPDと弱酸性溶液の固液比(質量/体積)は、1/100〜1/5、好ましくは1/50〜1/10である。固液比が小さ過ぎると、DCPDが溶解して原料の損失が生じ、大き過ぎると弱酸性溶液に供給できるカルシウム、リン、フッ素量が少なる結果、FApの生成量が少なくなり、いずれも好ましくない。 Next, the DCPD is immersed in the weakly acidic solution. The solid-liquid ratio (mass / volume) of DCPD to the weakly acidic solution is 1/100 to 1/5, preferably 1/50 to 1/10. If the solid-liquid ratio is too small, DCPD will dissolve and the raw material will be lost. Absent.

浸漬条件としては、弱酸性溶液とDCPDが十分、混合されれば、特に制限されず、例えば、10〜30℃、好ましくは室温下、撹拌又は振とう下、1日〜10日間、好ましくは、1日〜7日間、混合処理する方法が挙げられる。 The immersion conditions are not particularly limited as long as the weakly acidic solution and DCPD are sufficiently mixed, and are not particularly limited. For example, 10 to 30 ° C., preferably at room temperature, under stirring or shaking, 1 day to 10 days, preferably. Examples thereof include a method of mixing treatment for 1 to 7 days.

上記浸漬により、DCPDの表面に、FApが沈着する。DCPDの表面へのFApの沈着の終了は、液中のフッ素濃度の低下をイオン選択性電極や比色分析により判断する(以上が第1工程)。液中のフッ素濃度は、0.1mmol/lまで低下すれば、第1工程終了と判断してよい。 By the above immersion, FAp is deposited on the surface of DCPD. The completion of FAp deposition on the surface of DCPD is determined by determining the decrease in fluorine concentration in the liquid by an ion-selective electrode or colorimetric analysis (the above is the first step). If the fluorine concentration in the liquid drops to 0.1 mmol / l, it may be determined that the first step is completed.

DCPDの表面にFApの沈着が完了した固液相は、公知の固液分離により、固相を得る(第2工程)。特に、固液分離後、固相を脱水、乾燥して粉末の不溶化剤として得ることが好ましい。脱水方法としては、デカンテーション、濾過、遠心分離などの公知の方法を使用すればよい。乾燥した粉末のフッ素不溶化剤は、活性化に実質的に影響はなく、保管、運搬及び使用の際、都合がよい。 The solid-liquid phase in which FAp has been deposited on the surface of DCPD obtains a solid phase by known solid-liquid separation (second step). In particular, it is preferable to dehydrate and dry the solid phase after solid-liquid separation to obtain it as a powder insolubilizer. As the dehydration method, a known method such as decantation, filtration, or centrifugation may be used. The dried powder fluorine insolubilizer has substantially no effect on activation and is convenient for storage, transportation and use.

次に、本発明の第2の実施の形態におけるフッ素不溶化剤の製造方法について説明する。第2の実施の形態における製造方法において、第1の実施の形態における製造方法と同一構成要素については、その説明を省略し、異なる点について主に、説明する。すなわち、第2の実施の形態の製造方法において、第1の実施の形態の製造方法と異なる点は、第1の実施の形態における製造方法で得られた固相を再度、又は更に引き続き、直前で得られた固相を弱酸性溶液に浸漬する浸漬繰り返し工程を複数回行い、DCPDの表面へのFApの沈着量を増やす点にある。 Next, a method for producing a fluorine insolubilizer according to the second embodiment of the present invention will be described. In the manufacturing method according to the second embodiment, the same components as the manufacturing method according to the first embodiment will be omitted, and the differences will be mainly described. That is, the difference between the production method of the second embodiment and the production method of the first embodiment is that the solid phase obtained by the production method of the first embodiment is again or continuously immediately before. The point is to increase the amount of FAp deposited on the surface of DCPD by performing the immersion repetition step of immersing the solid phase obtained in 1 in a weakly acidic solution a plurality of times.

すなわち、本発明の第2の実施の形態における製造方法は、Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液に、該第2工程で得られた固相を浸漬させ、リン酸水素カルシウム二水和物の表面に、更にフッ素アパタイトを沈着させる浸漬繰り返し工程と、を有する方法(都合2回の浸漬方法)が挙げられ、更に、Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液を使用した浸漬繰り返し工程を、更に複数回繰り返し行う方法(都合3回以上の浸漬方法)が挙げられる。合計の浸漬回数は、最大10回、好ましくは最大5回、特に好ましくは最大3回である。合計の浸漬回数が、多過ぎても、FApの沈着量はそれほど増えず、効率が悪くなり、また、すくな過ぎても、FApの沈着量を増やすことができない。 That is, the manufacturing method in the second embodiment of the present invention, Ca 2+ ions 2.0~5.0mmol / l, HPO 4 2- ions 0.5~2.0mmol / l and F - ions 1.0 In a weakly acidic solution containing ~ 3.0 mmol / l, the solid phase obtained in the second step is immersed, and a fluorine apatite is further deposited on the surface of calcium hydrogen phosphate dihydrate. , it includes a method (method of dipping twice convenience) having a further, Ca 2+ ions 2.0~5.0mmol / l, HPO 4 2- ions 0.5~2.0mmol / l and F - ions 1 A method of repeating the dipping repetition step using a weakly acidic solution containing 0 to 3.0 mmol / l a plurality of times (conveniently, a dipping method of 3 times or more) can be mentioned. The total number of immersions is a maximum of 10, preferably a maximum of 5, and particularly preferably a maximum of 3. If the total number of immersions is too large, the amount of FAp deposited does not increase so much, which results in inefficiency, and if it is too small, the amount of FAp deposited cannot be increased.

すなわち、本発明の第2の実施の形態における製造方法において、再度及び複数回の浸漬処理を行う際、使用する弱酸性溶液は、常に当初濃度を有する、Ca2+イオン2.0〜5.0mmol/l、好ましくは、2.5mmol/l、PO 2−イオン0.5〜2.0mmol/l、好ましくは、1.0mmol/l、及びFイオン1.0〜3.0mmol/l、好ましくは1.2〜3.0mmol/lを含有する溶液である。一度、DCPDを浸漬した使用済みの弱酸性溶液は、それぞれのイオン濃度が低減しており、使用できない。また、再度及び複数回の浸漬処理を行う際、浸漬される固相は、直前で浸漬処理された固相である。すなわち、例えば3回目の浸漬処理で使用する固相は、2回目の浸漬処理で得られた固相であり、4回目の浸漬処理で使用する固相は、3回目の浸漬処理で得られた固相である。第2の実施の形態例では、再度及び更に複数回の浸漬処理を行うことで、処理前のフッ素不溶化剤と比べて、処理後のフッ素不溶化剤は、FApの沈着量が多くなる。 That is, in the production method according to the second embodiment of the present invention, the weakly acidic solution used when performing the immersion treatment again and a plurality of times always has an initial concentration of Ca 2+ ions 2.0 to 5.0 mmol. / l, preferably 2.5 mmol / l, PO 4 2- ion 0.5-2.0 mmol / l, preferably 1.0 mmol / l, and F - ion 1.0-3.0 mmol / l, A solution containing 1.2 to 3.0 mmol / l is preferable. The used weakly acidic solution in which DCPD is once immersed cannot be used because the respective ion concentrations are reduced. Further, when the immersion treatment is performed again and a plurality of times, the solid phase to be immersed is the solid phase to be immersed immediately before. That is, for example, the solid phase used in the third immersion treatment was the solid phase obtained in the second immersion treatment, and the solid phase used in the fourth immersion treatment was obtained in the third immersion treatment. It is a solid phase. In the second embodiment, by performing the dipping treatment again and a plurality of times, the fluorine insolubilizer after the treatment has a larger amount of FAp deposited than the fluorine insolubilizer before the treatment.

本発明の実施の形態におけるフッ素不溶化剤の製造方法において、DCPDは、市販品を使用できること、使用する弱酸性溶液は簡単な組成であること、DCPDの浸漬条件は、室温下でできる簡単な操作であることから、現場の施工場所において製造可能であり、フッ素不溶化剤の用途の拡大が図れる。 In the method for producing a fluorine insolubilizer according to the embodiment of the present invention, the DCPD can be a commercially available product, the weakly acidic solution used has a simple composition, and the immersion conditions of the DCPD are simple operations that can be performed at room temperature. Therefore, it can be manufactured at the construction site at the site, and the use of the fluorine insolubilizer can be expanded.

(処理石膏)
次に、本発明に係る含有フッ素の溶出を低減させた処理石膏について説明する。本発明において石膏は、フッ素を含有するものであれば、特に制限されず、二水塩、半水塩、無水塩が挙げられ、この内、半水塩が入手し易い点で好ましい。石膏の具体例としては、天然石膏、排煙脱硫処理によって副生する石膏、天然無水石膏、ふっ酸の製造過程で副産するふっ酸無水石膏等が挙げられる。
(Treatment plaster)
Next, the treated gypsum in which the elution of contained fluorine according to the present invention is reduced will be described. In the present invention, gypsum is not particularly limited as long as it contains fluorine, and examples thereof include dihydrate, hemihydrate, and anhydrous salt, and among these, hemihydrate is preferable because hemihydrate is easily available. Specific examples of gypsum include natural gypsum, gypsum produced as a by-product by flue gas desulfurization treatment, natural anhydrous gypsum, and hydrous acid anhydrous gypsum produced as a by-product in the process of producing hydrofluoric acid.

本発明において、フッ素を含有する石膏に、本発明のフッ素不溶化剤を添加する方法としては、特に制限されず、両者を粉末状とし、単にそのまま混合すればよい。フッ素含有石膏に対するフッ素不溶化剤の添加量としては、フッ素含有石膏100質量部に対して、フッ素不溶化剤0.5質量部以上、好ましくは0.5〜5質量部である。フッ素不溶化剤の添加量が少な過ぎると、石膏からのフッ素の溶出量を土壌環境基準値以下にするのが難しくなり、フッ素不溶化剤の添加量が多過ぎても、フッ素の溶出低減効果は大きく変わらない。本発明によれば、DCPDと石膏中のフッ素(フッ化物イオン)との反応に見られる遅れ時間を改善できるため、石膏中のフッ素を固定化して、溶出フッ化物イオンを低減できる。本発明の処理石膏は、そのまま埋立処分することもできるが、石膏ボード、プラスター、土壌固化材等の原料として再使用することもできる。 In the present invention, the method for adding the fluorine insolubilizer of the present invention to gypsum containing fluorine is not particularly limited, and both may be powdered and simply mixed as they are. The amount of the fluorine insolubilizer added to the fluorine-containing gypsum is 0.5 parts by mass or more, preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the fluorine-containing gypsum. If the amount of fluorine insolubilizer added is too small, it becomes difficult to keep the amount of fluorine eluted from gypsum below the soil environmental standard value, and even if the amount of fluorine insolubilizer added is too large, the effect of reducing the elution of fluorine is large. does not change. According to the present invention, since the delay time observed in the reaction between DCPD and fluorine (fluoride ion) in gypsum can be improved, fluorine in gypsum can be immobilized and eluted fluoride ions can be reduced. The treated gypsum of the present invention can be disposed of in landfill as it is, but it can also be reused as a raw material for gypsum board, plaster, soil solidifying material and the like.

(汚染土壌の処理方法)
次に、本発明に係る汚染土壌の処理方法について説明する。本発明は、フッ化物イオンで汚染された土壌に、本発明のフッ素不溶化剤を添加するものである。本発明において、フッ素汚染土壌に、フッ素不溶化剤を添加する方法としては、特に制限されず、単にそのまま混合する方法、両者の混合前、混合中又は混合後に必要に応じて適宜脱水又は加水して水分調整する方法などが挙げられる。水分調整の場合、混合後の水分が5〜20質量%となるようにするのが好ましい。
(Treatment method for contaminated soil)
Next, a method for treating contaminated soil according to the present invention will be described. The present invention is to add the fluorine insolubilizer of the present invention to soil contaminated with fluoride ions. In the present invention, the method of adding the fluorine insolubilizer to the fluorine-contaminated soil is not particularly limited, and is simply a method of mixing as it is, or dehydrating or adding water as necessary before, during or after mixing the two. Examples include a method of adjusting the water content. In the case of water content adjustment, it is preferable that the water content after mixing is 5 to 20% by mass.

本発明において、フッ素汚染土壌に対するフッ素不溶化剤の添加量としては、フッ素汚染土壌の乾燥物100質量部に対して、フッ素不溶化剤1質量部以上、好ましくは1〜20質量部である。フッ素不溶化剤の添加量が少な過ぎると、フッ素汚染土壌からのフッ素の溶出量を土壌環境基準値以下にするのが難しくなり、フッ素不溶化剤の添加量が多過ぎても、フッ素の溶出低減効果は大きく変わらない。本発明によれば、DCPDと汚染土壌中のフッ素(フッ化物イオン)との反応に見られる遅れ時間を改善できるため、汚染土壌中のフッ素を固定化して、溶出フッ化物イオンを低減できる。 In the present invention, the amount of the fluorine insolubilizer added to the fluorine-contaminated soil is 1 part by mass or more, preferably 1 to 20 parts by mass, based on 100 parts by mass of the dried product of the fluorine-contaminated soil. If the amount of fluorine insolubilizer added is too small, it becomes difficult to keep the amount of fluorine eluted from the soil contaminated with fluorine below the soil environmental standard value, and even if the amount of fluorine insolubilizer added is too large, the effect of reducing the elution of fluorine Does not change much. According to the present invention, the delay time observed in the reaction between DCPD and fluorine (fluoride ion) in the contaminated soil can be improved, so that the fluorine in the contaminated soil can be immobilized and the eluted fluoride ion can be reduced.

(汚染水の処理方法)
次に、本発明に係る汚染水の処理方法について説明する。本発明は、フッ化物イオンで汚染された汚染水に、本発明のフッ素不溶化剤を添加するものである。本発明において、フッ素汚染水に、フッ素不溶化剤を添加する方法としては、特に制限されず、単にそのまま混合する方法が挙げられる。
(Contaminated water treatment method)
Next, a method for treating contaminated water according to the present invention will be described. The present invention is to add the fluorine insolubilizer of the present invention to contaminated water contaminated with fluoride ions. In the present invention, the method of adding the fluorine insolubilizer to the fluorine-contaminated water is not particularly limited, and examples thereof include a method of simply mixing as it is.

本発明において、フッ素汚染水に対するフッ素不溶化剤の添加量としては、フッ素汚染濃度により変わるため、一概に決定できないものの、例えば、フッ素汚染水100質量部に対して、フッ素不溶化剤0.1質量部以上、好ましくは1.0〜5.0質量部である。フッ素不溶化剤の添加量が少な過ぎると、フッ素汚染水からのフッ素の溶出量を基準値以下にするのが難しくなり、フッ素不溶化剤の添加量が多過ぎても、フッ素の溶出低減効果は大きく変わらない。本発明によれば、DCPDと汚染水中のフッ素(フッ化物イオン)との反応に見られる遅れ時間を改善できるため、汚染水中のフッ素を固定化して、溶出フッ化物イオンを低減できる。 In the present invention, the amount of the fluorine insolubilizer added to the fluorine-contaminated water varies depending on the fluorine-contaminated concentration and cannot be unconditionally determined. As mentioned above, it is preferably 1.0 to 5.0 parts by mass. If the amount of the fluorine insolubilizer added is too small, it becomes difficult to reduce the amount of fluorine elution from the fluorine-contaminated water to the standard value or less, and even if the amount of the fluorine insolubilizer added is too large, the effect of reducing the elution of fluorine is large. does not change. According to the present invention, since the delay time observed in the reaction between DCPD and fluorine (fluoride ion) in the contaminated water can be improved, the fluorine in the contaminated water can be immobilized and the eluted fluoride ion can be reduced.

本発明において、処理石膏、汚染土壌及び汚染水に配合されたフッ素不溶化剤は、フッ素を短時間で充分にフッ素アパタイトとして不溶化することができる。すなわち、FApが表面に付着したDCPDにおけるDCPD部分は、そのままの形状を保持して、内部までFApに転化される。このため、DCPDに付着していたFApを含めて、粉末全体が、FApを形成することになる。 In the present invention, the fluorine insolubilizer blended in treated gypsum, contaminated soil and contaminated water can sufficiently insolubilize fluorine as fluorine apatite in a short time. That is, the DCPD portion of the DCPD to which the FAp is attached to the surface retains its original shape and is converted into the FAp to the inside. Therefore, the entire powder, including the FAp adhering to the DCPD, forms the FAp.

(実施例)
次に、実施例を挙げて本発明を更に具体的に説明する。
(Example)
Next, the present invention will be described in more detail with reference to examples.

<フッ素不溶化剤Aの調製>
(DCPD粉末A)
市販品である粉末状のリン酸水素カルシウム二水和物(DCPD粉末A)(米山化学工業社製;特級試薬)を使用した。また、DCPD粉末Aの電子顕微鏡(SEM)写真を図8に、XRDの結果を図4の符号(4−1)に示した。
<Preparation of Fluorine Insolubilizer A>
(DCPD powder A)
A commercially available powdered calcium hydrogen phosphate dihydrate (DCPD powder A) (manufactured by Yoneyama Chemical Industry Co., Ltd .; a special grade reagent) was used. Further, an electron microscope (SEM) photograph of DCPD powder A is shown in FIG. 8, and the result of XRD is shown in reference numeral (4-1) in FIG.

(弱酸性溶液Aの調製)
室温下、超純水に超純水1000ml換算で、CaClを0.278g(Ca2+濃度2.5mmol)、KHPO・3HOを0.228g(HPO 2−濃度1.0mmol)及びNaFを0.066g(F濃度1.5mmol)添加し、更に塩酸を添加することでpH4.6に調整された沈殿物のない弱酸性溶液Aを得た。
(Preparation of weakly acidic solution A)
At room temperature, with ultrapure water 1000ml converted to ultrapure water, the CaCl 2 0.278g (Ca 2+ concentration 2.5mmol), K 2 HPO 4 · 3H 2 O and 0.228 g (HPO 4 2-density 1.0mmol ) And NaF (F concentration 1.5 mmol) were added, and hydrochloric acid was further added to obtain a weakly acidic solution A having a pH adjusted to 4.6 without a precipitate.

(フッ素不溶化剤Aの調製)
次に、室温下、容器に入れた弱酸性溶液AにDCPD粉末Aを投入し、浸漬した。この際、DCPD粉末Aと弱酸性溶液Aの固液比(質量/体積)は、DCPD粉末A1gに対して、弱酸性溶液Aを50ml混合したものであり、1/50であった。混合後、溶液をポリプロピレン製瓶に封入し、毎分80回にて7日間、振とうさせて混合させた。
(Preparation of Fluorine Insolubilizer A)
Next, at room temperature, DCPD powder A was put into a weakly acidic solution A in a container and immersed. At this time, the solid-liquid ratio (mass / volume) of the DCPD powder A and the weakly acidic solution A was 1/50 of 1 g of the DCPD powder A mixed with 50 ml of the weakly acidic solution A. After mixing, the solution was sealed in a polypropylene bottle and shaken at 80 times per minute for 7 days to mix.

7日間の振とう後、得られた懸濁物を0.45μmのメンブレンフィルターにて濾過して固相を採取し、更に乾燥して、粉末状のフッ素不溶化剤Aを得た。フッ素不溶化剤Aを、粉末X線回折装置(XRD)、粒子表面の形態及び構成相をSEMを用いて調べた。 After shaking for 7 days, the obtained suspension was filtered through a 0.45 μm membrane filter to collect a solid phase, and further dried to obtain a powdery fluorine insolubilizer A. The fluorine insolubilizer A was examined using a powder X-ray diffractometer (XRD) and the morphology and constituent phases of the particle surface using a SEM.

上記の調製で得られたフッ素不溶化剤AのSEM写真を図1に、XRDの結果を図4の符号(2−1)に示した。この結果、フッ素不溶化剤Aは、DCPDの表面にFApが沈着していることを確認した。この時の弱酸性溶液AのpHは5.6であった。これは、DCPDの一部が溶解してカルシウムイオンとリン酸イオンを溶出し、リン酸イオンの加水分解により溶液のpHが5.6程度まで上昇したものであり、これらカルシウムイオンとリン酸イオンは、溶液中のフッ化物イオンと反応して、DCPD粉末の表面上にFApを生成したものと思われる。また、DCPDの表面に沈着したFApは、針状物が集合したものであった。また、フッ素不溶化剤A中のFApの含有量を、ICP(誘導結合プラズマ)分析により求めたところ、フッ素不溶化剤中、10.0質量%であった。 The SEM photograph of the fluorine insolubilizer A obtained by the above preparation is shown in FIG. 1, and the result of XRD is shown in reference numeral (2-1) in FIG. As a result, it was confirmed that the fluorine insolubilizer A had FAp deposited on the surface of DCPD. The pH of the weakly acidic solution A at this time was 5.6. This is because a part of DCPD dissolves and elutes calcium ions and phosphate ions, and the pH of the solution rises to about 5.6 due to the hydrolysis of phosphate ions. These calcium ions and phosphate ions Is thought to have reacted with fluoride ions in the solution to form FAp on the surface of the DCPD powder. The FAp deposited on the surface of DCPD was an aggregate of needle-like substances. Moreover, when the content of FAp in the fluorine insolubilizer A was determined by ICP (inductively coupled plasma) analysis, it was 10.0% by mass in the fluorine insolubilizer.

<フッ素含有汚染水の処理方法A>
(反応容器)
フッ素不溶化剤Aと除去対象物であるフッ化物イオンとの反応を調べるために、撹拌用テフロン(登録商標)羽根を備えた反応容器を使用した。反応容器には、フッ化物イオン濃度を測定するフッ化物イオン選択性電極を設置した。
<Treatment method A for fluorine-containing contaminated water>
(Reaction vessel)
In order to investigate the reaction between the fluorine insolubilizer A and the fluoride ion to be removed, a reaction vessel equipped with a Teflon (registered trademark) blade for stirring was used. A fluoride ion selective electrode for measuring the fluoride ion concentration was installed in the reaction vessel.

(処理方法及び測定結果)
室温下、反応容器中に超純水を1000ml入れ、所定量のフッ化ナトリウム試薬44mgを溶解させて、フッ化物イオン濃度20mg/Lのフッ化物溶液(フッ素含有汚染水A)を調製した。ここにフッ素不溶化剤Aの粉末1.0g(固液比1:1000)を添加し、撹拌羽根の撹拌速度200rpm下、反応を開始させ、溶液中のフッ化物イオン濃度の変化を経時的にイオン選択性電極で測定した。その測定結果を図3に実施例1として示した。
(Processing method and measurement results)
At room temperature, 1000 ml of ultrapure water was placed in a reaction vessel, and a predetermined amount of 44 mg of sodium fluoride reagent was dissolved to prepare a fluoride solution (fluorine-containing contaminated water A) having a fluoride ion concentration of 20 mg / L. 1.0 g of a fluorine insolubilizer A powder (solid-liquid ratio 1: 1000) was added thereto, the reaction was started at a stirring speed of 200 rpm of the stirring blade, and the change in the fluoride ion concentration in the solution was ionized over time. Measured with a selective electrode. The measurement result is shown in FIG. 3 as Example 1.

また、処理時間240分後の懸濁液を0.45μmのメンブレンフィルターにて濾過して固相を採取し、乾燥させた構成相をXRD、粒子表面の形態及び構成相をSEMを用いて調べた。SEM写真を図5に、XRDの結果を図4の符号(2−2)に示した。その結果、処理済のフッ素不溶化剤は、全体がFApと確認できた。また、フッ素不溶化剤AのDCPD部分は、その形状を保持したまま、FApに転換されたものであった。 Further, the suspension after 240 minutes of treatment time was filtered through a 0.45 μm membrane filter to collect a solid phase, and the dried constituent phase was examined using XRD, and the morphology and constituent phase of the particle surface were examined using SEM. It was. The SEM photograph is shown in FIG. 5, and the XRD result is shown in reference numeral (2-2) in FIG. As a result, it was confirmed that the treated fluorine insolubilizer as a whole was FAp. Further, the DCPD portion of the fluorine insolubilizer A was converted to FAp while maintaining its shape.

<フッ素不溶化剤Bの調製>
固液比1/50の振とう7日間に代えて、固液比1/10の振とう1日間としたこと、及びDCPD粉末Aに代えて、粉末状のフッ素不溶化剤Aを使用し、これを弱酸性溶液Aに投入し、混合処理したこと以外は、実施例1と同様の方法で、フッ素不溶化剤A-1を調製した。次いで、同様の振とう1日間とし、DCPD粉末Aに代えて、粉末状のフッ素不溶化剤A-1を使用し、これを弱酸性溶液Aに投入し、浸漬した以外は、実施例1と同様の方法で、フッ素不溶化剤Bを調製した。すなわち、フッ素不溶化剤Bは、本発明の第2の実施の形態における製造方法に相当するものであり、2度の繰り返し浸漬、合計3度の浸漬処理を行ったものである。
<Preparation of fluorine insolubilizer B>
Instead of 7 days of shaking with a solid-liquid ratio of 1/50, 1 day of shaking with a solid-liquid ratio of 1/10 was used, and instead of DCPD powder A, a powdered fluorine insolubilizer A was used. Was put into a weakly acidic solution A and mixed, and the fluorine insolubilizer A-1 was prepared in the same manner as in Example 1. Next, the same shaking was performed for one day, and instead of DCPD powder A, powdered fluorine insolubilizer A-1 was used, which was put into a weakly acidic solution A and immersed in the same manner as in Example 1. Fluorine insolubilizer B was prepared by the method of. That is, the fluorine insolubilizer B corresponds to the production method according to the second embodiment of the present invention, and has been subjected to repeated immersion twice and a total of three immersion treatments.

実施例2で得られたフッ素不溶化剤BのSEM写真を図2に、XRDの結果を図4の符号(1−1)に示した。この結果、フッ素不溶化剤Bは、DCPDの表面にFApが沈着していることを確認した。また、DCPDの表面に沈着したFApは、針状物が集合したものであった。また、フッ素不溶化剤Bにおいて、ICP分析の結果よりFApの含有量を求めたところ、フッ素不溶化剤中、18.0質量%であった。また、Ca/P比は、1.10であった。 The SEM photograph of the fluorine insolubilizer B obtained in Example 2 is shown in FIG. 2, and the result of XRD is shown in reference numeral (1-1) in FIG. As a result, it was confirmed that the fluorine insolubilizer B had FAp deposited on the surface of DCPD. The FAp deposited on the surface of DCPD was an aggregate of needle-like substances. Further, when the FAp content of the fluorine insolubilizer B was determined from the result of ICP analysis, it was 18.0% by mass in the fluorine insolubilizer. The Ca / P ratio was 1.10.

<フッ素含有汚染水の処理方法B>
フッ素不溶化剤Aに代えて、フッ素不溶化剤Bを使用した以外は、実施例1のフッ素含有汚染水の処理方法Aと同様の方法で行った。その測定結果を図3に実施例2として示した。また、処理時間240分後の懸濁液を0.45μmのメンブレンフィルターにて濾過して固相を採取し、乾燥させた構成相をXRD、粒子表面の形態及び構成相をSEMを用いて調べた。SEM写真を図6に、XRDの結果を図4の符号(1−2)に示した。その結果、処理済のフッ素不溶化剤は、全体がFApと確認できた。また、フッ素不溶化剤AのDCPD部分は、その形状を保持したまま、FApに転換されたものであった。
<Treatment method B for fluorine-containing contaminated water>
The treatment was carried out in the same manner as in the treatment method A for the fluorine-containing contaminated water of Example 1 except that the fluorine insolubilizer B was used instead of the fluorine insolubilizer A. The measurement result is shown in FIG. 3 as Example 2. Further, the suspension after 240 minutes of treatment time was filtered through a 0.45 μm membrane filter to collect a solid phase, and the dried constituent phase was examined using XRD, and the morphology and constituent phase of the particle surface were examined using SEM. It was. The SEM photograph is shown in FIG. 6, and the XRD result is shown in reference numeral (1-2) in FIG. As a result, it was confirmed that the treated fluorine insolubilizer as a whole was FAp. Further, the DCPD portion of the fluorine insolubilizer A was converted to FAp while maintaining its shape.

(比較例1)
(弱酸性溶液Bの調製)
室温下、1000mlの水に、CaClを0.278g(Ca2+濃度2.5mmol)及びKHPO・3HOを0.228g(HPO 2−濃度1.0mmol)添加してpH4.6に調整した。これにより、沈殿物のない弱酸性溶液Bを得た。すなわち、弱酸性溶液Bは、実施例1の弱酸性溶液Aにおいてフッ素化合物の添加を省略したものである。
(Comparative Example 1)
(Preparation of weakly acidic solution B)
At room temperature, the water of 1000 ml, the CaCl 2 0.278g (Ca 2+ concentration 2.5 mmol) and K 2 HPO 4 · 3H 2 O and 0.228 g (HPO 4 2-density 1.0 mmol) was added pH 4. Adjusted to 6. As a result, a weakly acidic solution B without a precipitate was obtained. That is, the weakly acidic solution B is the weakly acidic solution A of Example 1 in which the addition of the fluorine compound is omitted.

(フッ素不溶化剤Cの調製)
弱酸性溶液Aに代えて、弱酸性溶液Bとした以外は、実施例1のフッ素不溶化剤Aの調製と同様の方法で調製し、フッ素不溶化剤Cを得た。フッ素不溶化剤CのSEM写真を図7に、XRDの結果を図4の符号(3−1)に示した。この結果、フッ素不溶化剤Cは、DCPDの表面にFApの沈着は当然、確認されないものであった。
(Preparation of Fluorine Insolubilizer C)
A fluorine insolubilizer C was obtained by preparing the fluorine insolubilizer A in the same manner as in Example 1 except that the weakly acidic solution A was replaced with the weakly acidic solution B. The SEM photograph of the fluorine insolubilizer C is shown in FIG. 7, and the result of XRD is shown in reference numeral (3-1) in FIG. As a result, the fluorine insolubilizer C was not confirmed to have FAp deposited on the surface of DCPD.

<フッ素含有汚染水の処理方法C>
フッ素不溶化剤Aに代えて、フッ素不溶化剤Cを使用した以外は、実施例1のフッ素含有汚染水の処理方法と同様の方法で行った。その測定結果を図3に比較例1として示した。また、240時間処理後の固相の乾燥物のXRDの結果を図4の符号(3−2)に示した。
<Treatment method C for fluorine-containing contaminated water>
The method was the same as the method for treating fluorine-containing contaminated water in Example 1 except that the fluorine insolubilizer C was used instead of the fluorine insolubilizer A. The measurement result is shown in FIG. 3 as Comparative Example 1. The XRD results of the solid-phase dried product after the treatment for 240 hours are shown by reference numerals (3-2) in FIG.

(比較例2)
<フッ素含有汚染水の処理方法D>
フッ素不溶化剤Aに代えて、DCPD粉末Aを使用した以外は、実施例1のフッ素含有汚染水の処理方法と同様の方法で行った。その測定結果を図3に比較例2として示した。汚染水の処理方法Dの240時間処理後の固相の乾燥物のXRDの結果を図4の符号(4−2)に示した。
(Comparative Example 2)
<Treatment method D for fluorine-containing contaminated water>
The procedure was the same as the method for treating fluorine-containing contaminated water in Example 1 except that DCPD powder A was used instead of the fluorine insolubilizer A. The measurement result is shown in FIG. 3 as Comparative Example 2. The XRD results of the solid-phase dried product after the 240-hour treatment of the contaminated water treatment method D are shown by reference numerals (4-2) in FIG.

図3の結果から、FAp付着DCPD粉体をフッ素不溶化剤とした実施例1では、DCPDと汚染物質であるフッ化物イオンの反応遅れ時間が約半分に短縮できた。また、3度の繰り返し浸漬により、DCPD粉体に付着したFApの付着量を高めた実施例2では、遅れ時間が無視できる程度にまで短縮できた。また、DCPDの浸漬に使用する弱酸性溶液のフッ化物イオンの添加を省略した比較例1では、未処理のDCPD粉体を使用した比較例2と同等の結果であり、反応開始までの誘導時間(遅れ時間)に改善は見られなかった。 From the results shown in FIG. 3, in Example 1 in which the FAp-adhered DCPD powder was used as a fluorine insolubilizer, the reaction delay time between DCPD and fluoride ion, which is a pollutant, could be reduced to about half. Further, in Example 2 in which the amount of FAp adhering to the DCPD powder was increased by repeated immersion three times, the delay time could be shortened to a negligible level. Further, in Comparative Example 1 in which the addition of the fluoride ion of the weakly acidic solution used for dipping the DCPD was omitted, the result was the same as in Comparative Example 2 using the untreated DCPD powder, and the induction time until the reaction started. No improvement was seen in (delay time).

(フッ素不溶化剤の調製方法における固液比の影響‐1回浸漬処理)
実施例1の(フッ素不溶化剤Aの調製)において、固液比1/10、1/20、1/30、1/50(実施例1)の4つの系の、振とう日数1日、3日、7日におけるフッ素不溶化剤についてICP分析を行い、Ca/P値、フッ素不溶化剤中のFApの質量%を測定した。その結果を表1に示す。
(Effect of solid-liquid ratio on the method of preparing fluorine insolubilizer-1 time immersion treatment)
In Example 1 (preparation of fluorine insolubilizer A), the four systems having a solid-liquid ratio of 1/10, 1/20, 1/30, and 1/50 (Example 1) were shaken for 1 day, 3 days. ICP analysis was performed on the fluorine insolubilizer on the 7th day, and the Ca / P value and the mass% of FAp in the fluorine insolubilizer were measured. The results are shown in Table 1.

(参考例2)
(フッ素不溶化剤の調製方法における固液比の影響‐繰り返し浸漬処理)
<フッ素不溶化剤Bの調製>の繰り返し浸漬3回に代えて、1回、2回、4回とした以外は、実施例2と同様に、フッ素不溶化剤Bの調製を行い、得られた固相乾燥物についてICP分析を行い、Ca/P値、フッ素不溶化剤中のFApの質量%を測定した。その結果を表2に示す。
(Reference example 2)
(Effect of solid-liquid ratio in the method of preparing fluorine insolubilizer-repeated immersion treatment)
<Preparation of Fluorine Insolubilizer B> The fluorine insolubilizer B was prepared in the same manner as in Example 2 except that the immersion was repeated once, twice, and four times instead of three times, and the obtained solid was obtained. ICP analysis was performed on the phase dried product, and the Ca / P value and the mass% of FAp in the fluorine insolubilizer were measured. The results are shown in Table 2.

表1から、1回浸漬処理の場合、振とう日数が増えるほど、また、固液比が小さいほど、FApの沈着量は多くなることが判る。また、表2から、繰り返し処理の場合、繰り返し処理数が多いほどFApの沈着量は多くなることが判る。 From Table 1, it can be seen that in the case of the one-time immersion treatment, the amount of FAp deposited increases as the number of shaking days increases and the solid-liquid ratio decreases. Further, from Table 2, in the case of repeated treatment, it can be seen that the larger the number of repeated treatments, the larger the amount of FAp deposited.

本発明によれば、DCPDと汚染物であるフッ化物イオンとの反応に見られる遅れ時間が改善でき、DCPDの高い活性化が可能となった。また、より単純な組成の溶液を使用できるため、施工現場においてDCPDの処理が可能となる。従来、DCPDとフッ化物イオンとの反応に見られる遅れ時間を改善する方法として、DCPDの表面にリン酸カルシウムの前駆体を形成する方法が知られているが、本発明のように、DCPDの表面に、原位置において固定化されるFApを、予め沈着させるという発想はこれまでになく、これによる活性効果も大きく、フッ素汚染処理に大きな貢献をもたらすものである。 According to the present invention, the delay time observed in the reaction between DCPD and the fluoride ion which is a contaminant can be improved, and high activation of DCPD becomes possible. In addition, since a solution having a simpler composition can be used, DCPD can be processed at the construction site. Conventionally, as a method for improving the delay time observed in the reaction between DCPD and fluoride ions, a method of forming a precursor of calcium phosphate on the surface of DCPD has been known, but as in the present invention, on the surface of DCPD. The idea of pre-depositing FAp immobilized in the in-situ position has never been seen before, and the activation effect of this is large, which greatly contributes to the treatment of fluorine contamination.

Claims (13)

リン酸水素カルシウム二水和物の表面に、フッ素アパタイトが付着してなることを特徴とするフッ素不溶化剤。 A fluorine insolubilizer characterized in that fluorine apatite adheres to the surface of calcium hydrogen phosphate dihydrate. 該フッ素アパタイトは、リン酸水素カルシウム二水和物の表面の一部又は全部を被覆していることを特徴とする請求項1記載のフッ素不溶化剤。 The fluorine insolubilizer according to claim 1, wherein the fluorine apatite covers a part or all of the surface of calcium hydrogen phosphate dihydrate. 該フッ素アパタイトは、針状体の集合物であることを特徴とする請求項1又は2記載のフッ素不溶化剤。 The fluorine insolubilizer according to claim 1 or 2, wherein the fluorine apatite is an aggregate of needle-like bodies. 該フッ素アパタイトの含有量は、該フッ素不溶化剤中、0.1質量%以上であることを特徴とする請求項1〜3のいずれか1項に記載のフッ素不溶化剤。 The fluorine insolubilizer according to any one of claims 1 to 3, wherein the content of the fluorine apatite is 0.1% by mass or more in the fluorine insolubilizer. Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液に、リン酸水素カルシウム二水和物を浸漬させ、リン酸水素カルシウム二水和物の表面に、フッ素アパタイトを沈着させる第1工程を有すること特徴とするフッ素不溶化剤の製造方法。 Ca 2+ ions 2.0~5.0mmol / l, HPO 4 2- ions 0.5~2.0mmol / l and F - in weakly acidic solution containing ions 1.0~3.0mmol / l, phosphoric acid A method for producing a fluorine insolubilizer, which comprises a first step of immersing a calcium hydrogen dihydrate and depositing fluorine apatite on the surface of the calcium hydrogen phosphate dihydrate. 該弱酸性溶液のpHは、2.5〜6.5である特徴とする請求項5記載のフッ素不溶化剤の製造方法。 The method for producing a fluorine insolubilizer according to claim 5, wherein the pH of the weakly acidic solution is 2.5 to 6.5. リン酸水素カルシウム二水和物の表面に、フッ素アパタイトを沈着させた後の溶液のpHが6.1であることを特徴とする請求項5又は6記載のフッ素不溶化剤の製造方法。 The method for producing a fluorine insolubilizer according to claim 5 or 6, wherein the pH of the solution after depositing fluorine apatite on the surface of calcium hydrogen phosphate dihydrate is 6.1. 該リン酸水素カルシウム二水和物と該弱酸性溶液の固液比(質量/体積)が、1/100〜1/5であることを特徴とする請求項6〜8のいずれか1項に記載のフッ素不溶化剤の製造方法。 According to any one of claims 6 to 8, wherein the solid-liquid ratio (mass / volume) of the calcium hydrogen phosphate dihydrate and the weakly acidic solution is 1/100 to 1/5. The method for producing a fluorine insolubilizer according to the above. 該第1工程で得られた固液相を固液分離して、固相であるフッ素アパタイトが沈着したリン酸水素カルシウム二水和物を取り出す第2工程と、
Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液に、該第2工程で得られた固相を浸漬させ、リン酸水素カルシウム二水和物の表面に、更にフッ素アパタイトを沈着させる浸漬繰り返し工程と、を有する請求項5〜8のいずれか1項に記載のフッ素不溶化剤の製造方法。
The second step of solid-liquid separation of the solid-liquid phase obtained in the first step to take out the calcium hydrogen phosphate dihydrate on which fluorine apatite, which is a solid phase, is deposited, and the second step.
In a weakly acidic solution containing Ca 2+ ion 2.0 to 5.0 mmol / l, HPO 4 2- ion 0.5 to 2.0 mmol / l and F - ion 1.0 to 3.0 mmol / l, the first solution. The method according to any one of claims 5 to 8, further comprising a repeating immersion step of immersing the solid phase obtained in the two steps and further depositing fluorine apatite on the surface of calcium hydrogen phosphate dihydrate. A method for producing a fluorine insolubilizer.
Ca2+イオン2.0〜5.0mmol/l、HPO 2−イオン0.5〜2.0mmol/l及びFイオン1.0〜3.0mmol/lを含有する弱酸性溶液を使用した浸漬繰り返し工程を、更に複数回繰り返し行うことを特徴とする請求項9記載のフッ素不溶化剤の製造方法。 Ca 2+ ions 2.0~5.0mmol / l, HPO 4 2- ions 0.5~2.0mmol / l and F - immersion using weakly acidic solution containing ions 1.0~3.0mmol / l The method for producing a fluorine insolubilizer according to claim 9, wherein the repeating step is further repeated a plurality of times. 請求項1〜4のいずれか1項に記載のフッ素不溶化剤が添加された石膏であり、フッ素の溶出を低減したことを特徴とする処理石膏。 A gypsum to which the fluorine insolubilizer according to any one of claims 1 to 4 is added, and characterized in that elution of fluorine is reduced. 請求項1〜4のいずれか1項に記載のフッ素不溶化剤を、フッ化物イオンで汚染された土壌に添加することを特徴とする汚染土壌の処理方法。 A method for treating contaminated soil, which comprises adding the fluorine insolubilizer according to any one of claims 1 to 4 to soil contaminated with fluoride ions. 請求項1〜4のいずれか1項に記載のフッ素不溶化剤を、フッ化物イオンで汚染された汚染水に添加することを特徴とする汚染水の処理方法。 A method for treating contaminated water, which comprises adding the fluorine insolubilizer according to any one of claims 1 to 4 to contaminated water contaminated with fluoride ions.
JP2019027014A 2019-02-19 2019-02-19 Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water Active JP7315160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027014A JP7315160B2 (en) 2019-02-19 2019-02-19 Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027014A JP7315160B2 (en) 2019-02-19 2019-02-19 Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water

Publications (2)

Publication Number Publication Date
JP2020132746A true JP2020132746A (en) 2020-08-31
JP7315160B2 JP7315160B2 (en) 2023-07-26

Family

ID=72277730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027014A Active JP7315160B2 (en) 2019-02-19 2019-02-19 Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water

Country Status (1)

Country Link
JP (1) JP7315160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175623A (en) * 2020-10-15 2021-01-05 森特士兴集团股份有限公司 Stabilizer for repairing fluoride-contaminated soil and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216156A (en) * 2006-02-17 2007-08-30 Institute Of National Colleges Of Technology Japan Treatment agent and treatment method of fluorine-contaminated soil
WO2010041330A1 (en) * 2008-10-10 2010-04-15 独立行政法人国立高等専門学校機構 Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine
JP2010221103A (en) * 2009-03-23 2010-10-07 Chiyoda Ute Co Ltd Fluorine-containing wastewater treatment method
JP2010241665A (en) * 2009-04-10 2010-10-28 Chiyoda Ute Co Ltd Method and apparatus for producing activated calcium hydrogen phosphate dihydrate
JP2011256356A (en) * 2010-05-10 2011-12-22 Institute Of National Colleges Of Technology Japan Fluorine insolubilizer and method for producing the same
JP2017001909A (en) * 2015-06-10 2017-01-05 チヨダウーテ株式会社 Fluorine insolubilization agent for steel slag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216156A (en) * 2006-02-17 2007-08-30 Institute Of National Colleges Of Technology Japan Treatment agent and treatment method of fluorine-contaminated soil
WO2010041330A1 (en) * 2008-10-10 2010-04-15 独立行政法人国立高等専門学校機構 Fluorine insolubilizing agent, gypsum with elution of fluorine contained therein being reduced, and method for treating soil contaminated with fluirine
JP2010221103A (en) * 2009-03-23 2010-10-07 Chiyoda Ute Co Ltd Fluorine-containing wastewater treatment method
JP2010241665A (en) * 2009-04-10 2010-10-28 Chiyoda Ute Co Ltd Method and apparatus for producing activated calcium hydrogen phosphate dihydrate
JP2011256356A (en) * 2010-05-10 2011-12-22 Institute Of National Colleges Of Technology Japan Fluorine insolubilizer and method for producing the same
JP2017001909A (en) * 2015-06-10 2017-01-05 チヨダウーテ株式会社 Fluorine insolubilization agent for steel slag

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
蓬莱秀人: "半水石膏に含まれるフッ素の不溶化技術", 公益社団法人地盤工学会中国支部論文報告集, vol. 28, no. 1, JPN6022020090, 2010, JP, pages 31 - 38, ISSN: 0005038118 *
袋布昌幹: "リン酸水素カルシウム二水和物(DCPD)と水溶液中低濃度フッ化物イオンとの反応", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 113, no. 5, JPN6022020091, 2005, JP, pages 363 - 367, ISSN: 0005038117 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175623A (en) * 2020-10-15 2021-01-05 森特士兴集团股份有限公司 Stabilizer for repairing fluoride-contaminated soil and using method thereof

Also Published As

Publication number Publication date
JP7315160B2 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6438888B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
Zhuang et al. Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization
KR20070053337A (en) Ceramic particle group and method for production thereof and use thereof
KR102579185B1 (en) Dolomite based material having high specific surface area, method for producing thereof, and method for managing quality thereof
Voicu et al. Modified Pechini synthesis of tricalcium aluminate powder
JPWO2010041330A1 (en) Fluorine insolubilizer, gypsum with reduced elution of contained fluorine, and method for treating fluorine-contaminated soil
JP4470216B2 (en) Treatment method for fluorine-containing solid waste
Wang et al. Effect of low-molecular-weight organic acids on nano-hydroxyapatite adsorption of cadmium and lead
JP7315160B2 (en) Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water
JP2009072657A (en) Method for treating heavy metals in soil or soil slurry
Ge et al. Direct observation of alginate-promoted soil phosphorus availability
JP5584915B2 (en) Fluorine insolubilizing agent and method for producing the same
Southam et al. Calcium–phosphorus interactions at a nano-structured silicate surface
Tafu et al. Properties of sludge generated by the treatment of fluoride-containing wastewater with dicalcium phosphate dihydrate
EP2835359B1 (en) Uses of a material for insolubilizing specific toxic substances, method for insolubilizing specific toxic substances, and soil improvement method
JPS63103809A (en) Production of porous calcium phosphate sphere
JP2010116284A (en) Inorganic fertilizer and method for manufacturing the same
JP4753182B2 (en) Treatment method for fluorine-containing wastewater
Takemura et al. Reactivity improvement of dicalcium phosphate dihydrate with fluoride for its removal from waste and drinking water
JP4752038B2 (en) Method for treating gypsum to reduce elution of contained fluorine
CN100366301C (en) Coral hydroxyapatite artificial bone with betatype tricalcium phosphate coating and its preparation
CN106232762B (en) Insoluble material and insoluble method
Tafu et al. Production of Dicalcium Phosphate with Controlled Morphology and Reactivity
Yokoi et al. Effects of monocarboxylic acid addition on crystallization of calcium phosphate in a hydrogel matrix
JP6227879B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7315160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150