JP2020132593A - Method for producing 1,1,2-trifluoroethane (HFC-143) - Google Patents

Method for producing 1,1,2-trifluoroethane (HFC-143) Download PDF

Info

Publication number
JP2020132593A
JP2020132593A JP2019030321A JP2019030321A JP2020132593A JP 2020132593 A JP2020132593 A JP 2020132593A JP 2019030321 A JP2019030321 A JP 2019030321A JP 2019030321 A JP2019030321 A JP 2019030321A JP 2020132593 A JP2020132593 A JP 2020132593A
Authority
JP
Japan
Prior art keywords
hfc
reaction
hydrogen fluoride
production method
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019030321A
Other languages
Japanese (ja)
Other versions
JP6939830B2 (en
Inventor
勇博 茶木
Takehiro Chaki
勇博 茶木
翼 仲上
Tsubasa Nakagami
翼 仲上
恵 串田
Megumi Kushida
恵 串田
一博 高橋
Kazuhiro Takahashi
一博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019030321A priority Critical patent/JP6939830B2/en
Priority to EP20758587.8A priority patent/EP3851431A4/en
Priority to PCT/JP2020/006873 priority patent/WO2020171177A1/en
Priority to CN202080015526.0A priority patent/CN113498407A/en
Publication of JP2020132593A publication Critical patent/JP2020132593A/en
Priority to US17/227,601 priority patent/US11312673B2/en
Application granted granted Critical
Publication of JP6939830B2 publication Critical patent/JP6939830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a method for producing HFC-143, which is inexpensive and more efficient than the conventional method.SOLUTION: A method for producing 1,1,2-trifluoroethane (HFC-143), including a step of contacting at least one chlorine-containing compound selected from the group consisting of 1,1,2-trichloroethane (HCC-140), 1,2-dichloro-1-fluoroethane (HCFC-141), 1,1-dichloro-2-fluoroethane (HCFC-141a), (E,Z)-1,2-dichloroethylene (HCO-1130(E,Z)) and (E,Z)-1-chloro-2-fluoroethylene (HCFO-1131(E,Z)) with hydrogen fluoride in order to perform one or more fluorination reaction, and a reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride is obtained.SELECTED DRAWING: None

Description

本開示は、1,1,2−トリフルオロエタン(HFC−143)の製造方法に関する。 The present disclosure relates to a method for producing 1,1,2-trifluoroethane (HFC-143).

1,1,2−トリフルオロエタン(CHFCHF;以下、「HFC−143」と表記する)に代表されるフルオロエタンは、各種冷媒を製造するための原料として知られている。例えば、HFC−143は、1,2−ジフルオロエチレン(HFO−1132)の原料として知られている。 Fluoroethane represented by 1,1,2-trifluoroethane (CHF 2 CH 2 F; hereinafter referred to as "HFC-143") is known as a raw material for producing various refrigerants. For example, HFC-143 is known as a raw material for 1,2-difluoroethylene (HFO-1132).

HFC−143などのフルオロエタンの製造方法としては、従来種々の方法が提案されている。例えば、特許文献1には、水素化触媒の存在下、クロロトリフルオロエチレン(CTFE)等の水素化反応により、HFC−143を製造する技術が提案されている。また、特許文献2には、1,1,2−トリクロロエタン(HCC−140)から2−クロロ−1,1−ジフルオロエタン(HCFC−142)を製造する技術が開示されており、副生成物としてHFC−143が微量混在することが記載されている。 As a method for producing fluoroethane such as HFC-143, various methods have been conventionally proposed. For example, Patent Document 1 proposes a technique for producing HFC-143 by a hydrogenation reaction of chlorotrifluoroethylene (CTFE) or the like in the presence of a hydrogenation catalyst. Further, Patent Document 2 discloses a technique for producing 2-chloro-1,1-difluoroethane (HCFC-142) from 1,1,2-trichloroethane (HCC-140), and HFC as a by-product. It is described that -143 is mixed in a trace amount.

特開平1−287044号公報Japanese Unexamined Patent Publication No. 1-287044 国際公開第2015/082812号International Publication No. 2015/082812

しかしながら、特許文献1に開示される方法でHFC−143を製造する場合、原料のCTFEが高価であるという問題がある。また、特許文献2はもとよりHCFC−142を製造する方法を開示しており、副生成物として微量混在するHFC−143の有機物中の選択率は僅か1.9%と小さい。 However, when HFC-143 is produced by the method disclosed in Patent Document 1, there is a problem that the raw material CTFE is expensive. Further, Patent Document 2 discloses a method for producing HCFC-142 as well, and the selectivity of HFC-143 mixed in a trace amount as a by-product in an organic substance is as small as 1.9%.

本開示は、上記の問題点に鑑みてなされたものであり、目的生成物であるHFC−143を安価に且つ従来法よりも効率的に製造する方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a method for producing the target product, HFC-143, at low cost and more efficiently than the conventional method.

本開示は、例えば、以下の項に記載の発明を包含する。
1.1,1,2−トリフルオロエタン(HFC−143)の製造方法であって、
1,1,2−トリクロロエタン(HCC−140)、1,2−ジクロロ−1−フルオロエタン(HCFC−141)、1,1−ジクロロ−2−フルオロエタン(HCFC−141a)、(E,Z)−1,2−ジクロロエチレン(HCO−1130(E,Z))及び(E,Z)−1−クロロ−2−フルオロエチレン(HCFO−1131(E,Z))からなる群から選択される少なくとも一種の含塩素化合物をフッ化水素と接触させることにより1以上のフッ素化反応を行う工程を含み、HFC−143、塩化水素及びフッ化水素を含む反応ガスを得る、HFC−143の製造方法。
2.前記フッ素化反応は、0〜2MPaGの圧力条件で行う、上記項1に記載の製造方法。
3.前記フッ素化反応は、触媒存在下、気相で行う、上記項1又は2に記載の製造方法。
4.前記フッ素化反応は、150〜600℃の温度条件で行う、上記項3に記載の製造方法。
5.前記フッ素化反応における前記含塩素化合物と前記フッ化水素との接触時間W/Foが0.1〜100g・sec/ccである、上記項3又は4に記載の製造方法。
6.前記フッ素化反応における前記含塩素化合物に対する前記フッ化水素のモル比が20以上である、上記項1〜5のいずれかに記載の製造方法。
7.前記フッ素化反応における前記含塩素化合物に対する前記フッ化水素のモル比が40超過である、上記項1〜5のいずれかに記載の製造方法。
8.前記触媒は、少なくとも一部がクロム系触媒である、上記項3〜7のいずれかに記載の製造方法。
9.前記フッ素化反応は、触媒存在下、液相で行う、上記項1又は2に記載の製造方法。
10.前記触媒は、少なくとも一部がアンチモン系触媒である、上記項9に記載の製造方法。
11.上記項1〜10のいずれかに記載の製造方法により得た前記反応ガスに含まれる1,1,2−トリフルオロエタン(HFC−143)を脱フッ化水素反応に供する工程を有する、1,2−ジフルオロエチレン(HFO−1132)の製造方法。
The present disclosure includes, for example, the inventions described in the following sections.
A method for producing 1,1,1,2-trifluoroethane (HFC-143).
1,1,2-Trichloroethane (HCC-140), 1,2-dichloro-1-fluoroethane (HCFC-141), 1,1-dichloro-2-fluoroethane (HCFC-141a), (E, Z) At least one selected from the group consisting of -1,2-dichloroethylene (HCO-1130 (E, Z)) and (E, Z) -1-chloro-2-fluoroethylene (HCFO-1131 (E, Z)). A method for producing HFC-143, which comprises a step of carrying out one or more fluorination reactions by contacting the chlorine-containing compound of HFC with hydrogen fluoride to obtain a reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride.
2. 2. Item 2. The production method according to Item 1, wherein the fluorination reaction is carried out under a pressure condition of 0 to 2 MPaG.
3. 3. Item 2. The production method according to Item 1 or 2, wherein the fluorination reaction is carried out in the gas phase in the presence of a catalyst.
4. Item 3. The production method according to Item 3, wherein the fluorination reaction is carried out under temperature conditions of 150 to 600 ° C.
5. Item 3. The production method according to Item 3 or 4, wherein the contact time W / Fo between the chlorine-containing compound and the hydrogen fluoride in the fluorination reaction is 0.1 to 100 g · sec / cc.
6. The production method according to any one of Items 1 to 5, wherein the molar ratio of hydrogen fluoride to the chlorine-containing compound in the fluorination reaction is 20 or more.
7. The production method according to any one of Items 1 to 5, wherein the molar ratio of hydrogen fluoride to the chlorine-containing compound in the fluorination reaction exceeds 40.
8. The production method according to any one of Items 3 to 7, wherein the catalyst is at least a chromium-based catalyst.
9. Item 2. The production method according to Item 1 or 2, wherein the fluorination reaction is carried out in a liquid phase in the presence of a catalyst.
10. Item 9. The production method according to Item 9, wherein the catalyst is at least partly an antimony-based catalyst.
11. 1. It has a step of subjecting 1,1,2-trifluoroethane (HFC-143) contained in the reaction gas obtained by the production method according to any one of Items 1 to 10 to a hydrogen fluoride reaction. A method for producing 2-difluoroethylene (HFO-1132).

本開示のHFC−143の製造方法によれば、安価且つ従来法よりも効率的なHFC−143の製造方法を提供することができる。 According to the method for producing HFC-143 of the present disclosure, it is possible to provide an inexpensive and more efficient method for producing HFC-143 than the conventional method.

本開示のHFC−143の製造方法は、1,1,2−トリクロロエタン(HCC−140)、1,2−ジクロロ−1−フルオロエタン(HCFC−141)、1,1−ジクロロ−2−フルオロエタン(HCFC−141a)、(E,Z)−1,2−ジクロロエチレン(HCO−1130(E,Z))及び(E,Z)−1−クロロ−2−フルオロエチレン(HCFO−1131(E,Z))からなる群から選択される少なくとも一種の含塩素化合物をフッ化水素と接触させることにより1以上のフッ素化反応を行う工程を含み、HFC−143、塩化水素及びフッ化水素を含む反応ガスを得る、ことを特徴とする。 The method for producing HFC-143 of the present disclosure is 1,1,2-trichloroethane (HCC-140), 1,2-dichloro-1-fluoroethane (HCFC-141), 1,1-dichloro-2-fluoroethane. (HCFC-141a), (E, Z) -1,2-dichloroethylene (HCO-1130 (E, Z)) and (E, Z) -1-chloro-2-fluoroethylene (HCFO-1131 (E, Z)) )) A reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride, which comprises a step of carrying out one or more fluorination reactions by contacting at least one chlorine-containing compound selected from the group consisting of hydrogen fluoride with hydrogen fluoride. It is characterized by obtaining.

上記特徴を有する本開示のHFC−143の製造方法によれば、安価且つ従来法よりも効率的なHFC−143の製造方法を提供することができる。 According to the method for producing HFC-143 of the present disclosure having the above-mentioned characteristics, it is possible to provide an inexpensive and more efficient method for producing HFC-143 than the conventional method.

本開示の製造方法では、原料化合物としてHCC−140、HCFC−141、HCFC−141a、HCO−1130(E,Z)及びHCFO−1131(E,Z)からなる群から選択される少なくとも一種の含塩素化合物を用いる。なお、前記(E,Z)は、E体及び/又はZ体を含むことを意味する。これらの含塩素化合物はいずれもCTFEと比べて安価に入手可能であるため、HFC−143の製造方法を低コスト化できる。これらの含塩素化合物の中でも、原料コストの観点からHCC−140及びHCO−1130(E,Z)の少なくとも一種が好ましい。 In the production method of the present disclosure, the raw material compound contains at least one selected from the group consisting of HCC-140, HCFC-141, HCFC-141a, HCO-1130 (E, Z) and HCFO-1131 (E, Z). Use chlorine compounds. The (E, Z) means that the E-form and / or the Z-form are included. Since all of these chlorine-containing compounds are available at a lower cost than CTFE, the cost of producing HFC-143 can be reduced. Among these chlorine-containing compounds, at least one of HCC-140 and HCO-1130 (E, Z) is preferable from the viewpoint of raw material cost.

本開示の製造方法は、上記含塩素化合物をフッ化水素と接触させることにより1以上のフッ素化反応を行う工程を含み、HFC−143、塩化水素及びフッ化水素を含む反応ガスを得る、ことを特徴とする。 The production method of the present disclosure includes a step of carrying out one or more fluorination reactions by contacting the chlorine-containing compound with hydrogen fluoride to obtain a reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride. It is characterized by.

フッ化水素によるフッ素化反応は、気相反応であってもよいし、液相反応であってもよい。また、HFC−143を得るまでに要するフッ素化反応は、使用する含塩素化合物に応じて1つであってもよいし、2つ以上であってもよい。 The fluorination reaction with hydrogen fluoride may be a gas phase reaction or a liquid phase reaction. Further, the number of fluorination reactions required to obtain HFC-143 may be one or two or more depending on the chlorine-containing compound used.

気相反応の場合、後述する反応温度領域において、含塩素化合物とフッ化水素とが気体状態で接触できればよく、含塩素化合物の供給時には、含塩素化合物が液体状態であってもよい。 In the case of a gas phase reaction, it is sufficient that the chlorine-containing compound and hydrogen fluoride can come into contact with each other in a gaseous state in the reaction temperature region described later, and the chlorine-containing compound may be in a liquid state when the chlorine-containing compound is supplied.

例えば、含塩素化合物が常温、常圧で液状である場合には、含塩素化合物を、気化器を用いて気化させてから予熱領域を通過させ、フッ化水素と接触させる混合領域に供給することによって、気相状態で反応を行うことができる。また、含塩素化合物を液体状態で反応装置に供給し、フッ化水素との反応領域に達した時に気化させて反応させてもよい。 For example, when the chlorine-containing compound is liquid at normal temperature and pressure, the chlorine-containing compound is vaporized using a vaporizer, passed through a preheating region, and supplied to a mixed region in contact with hydrogen fluoride. Allows the reaction to take place in the vapor phase state. Alternatively, the chlorine-containing compound may be supplied to the reactor in a liquid state and vaporized to react when it reaches the reaction region with hydrogen fluoride.

また、フッ化水素としては、反応器の腐食や触媒の劣化を抑制できるという理由から、無水フッ化水素を使用することが好ましい。 Further, as hydrogen fluoride, it is preferable to use anhydrous hydrogen fluoride because it can suppress corrosion of the reactor and deterioration of the catalyst.

含塩素化合物を反応領域で気化させる方法については特に限定はなく、公知の方法を広く採用することが可能である。例えば、ニッケルビーズ、ハステロイ片などの熱伝導性が良好で、フッ素化反応における触媒活性が無く、且つ、フッ化水素に対して安定な材料を反応管内に充填して、反応管内の温度分布を均一にし、含塩素化合物の気化温度以上に加熱し、ここに液体状態の含塩素化合物を供給して気化させ、気相状態としてもよい。 The method for vaporizing the chlorine-containing compound in the reaction region is not particularly limited, and a known method can be widely adopted. For example, the temperature distribution in the reaction tube can be adjusted by filling the reaction tube with a material that has good thermal conductivity such as nickel beads and hasteroi pieces, has no catalytic activity in the fluorination reaction, and is stable against hydrogen fluoride. It may be made uniform, heated to a temperature higher than the vaporization temperature of the chlorine-containing compound, and the chlorine-containing compound in a liquid state may be supplied to vaporize the compound to bring it into a vapor phase state.

フッ化水素を反応器に供給する方法としては特に限定はなく、例えば、含塩素化合物と共に、気相状態で反応器に供給する方法を挙げることができる。フッ化水素の供給量については、含塩素化合物(1モル)に対するフッ化水素のモル比が20以上であれば好ましく、その中でも30以上が好ましく、40以上(特に40超過)がより好ましい。当該モル比の上限は限定的ではないが、エネルギーコストや生産性の観点から60程度とすることが好ましい。 The method of supplying hydrogen fluoride to the reactor is not particularly limited, and examples thereof include a method of supplying hydrogen fluoride to the reactor in a vapor phase state together with a chlorine-containing compound. Regarding the supply amount of hydrogen fluoride, the molar ratio of hydrogen fluoride to the chlorine-containing compound (1 mol) is preferably 20 or more, preferably 30 or more, and more preferably 40 or more (particularly over 40). The upper limit of the molar ratio is not limited, but is preferably about 60 from the viewpoint of energy cost and productivity.

上記モル比に設定することにより、含塩素化合物の転化率、及びHFC−143の選択率の双方を、従来法よりも効率的な(良好な)範囲内に維持することができる。特に、含塩素化合物1モルに対してフッ化水素を40モル以上(特に40モル超過)で供給する場合に、HFC−143の選択率を、極めて高くすることができる。 By setting the molar ratio, both the conversion rate of the chlorine-containing compound and the selectivity of HFC-143 can be maintained within an efficient (good) range as compared with the conventional method. In particular, when hydrogen fluoride is supplied in an amount of 40 mol or more (particularly more than 40 mol) with respect to 1 mol of the chlorine-containing compound, the selectivity of HFC-143 can be made extremely high.

なお、本明細書において、「転化率」とは、反応器に供給される含塩素化合物のモル量に対する、反応器出口からの流出ガス(=反応ガス)に含まれる、前記以外の化合物の合計モル量の割合(モル%)を意味するものとする。 In the present specification, the "conversion rate" is the total amount of compounds other than the above contained in the outflow gas (= reaction gas) from the reactor outlet with respect to the molar amount of the chlorine-containing compound supplied to the reactor. It shall mean the ratio of molar quantity (mol%).

また、本明細書において、「選択率」とは、反応器出口からの流出ガス(=反応ガス)に含まれる、前記以外の化合物の合計モル量に対する当該流出ガスに含まれる目的化合物(HFC−143)のモル量の割合(モル%)を意味するものとする。 Further, in the present specification, the "selectivity" means the target compound (HFC-) contained in the effluent gas with respect to the total molar amount of the compounds other than the above contained in the effluent gas (= reaction gas) from the reactor outlet. It shall mean the ratio (mol%) of the molar amount of 143).

なお、気相フッ素化反応では原料化合物としての含塩素化合物は反応器にそのまま供給してもよく、又は窒素、ヘリウム、アルゴン等の不活性ガスで希釈して供給してもよい。 In the vapor phase fluorination reaction, the chlorine-containing compound as a raw material compound may be supplied to the reactor as it is, or may be diluted with an inert gas such as nitrogen, helium or argon and supplied.

フッ素化反応を触媒存在下、気相で行う場合には、公知の気相フッ素化触媒を、広く採用することができ、特に限定はない。例えば、クロム、アルミニウム、コバルト、マンガン、ニッケル、及び鉄の酸化物、水酸化物、ハロゲン化物、ハロゲン酸化物、無機塩及びこれらの混合物が挙げられる。これらの中でも、含塩素化合物の転化率を向上させるために、CrO、Cr、FeCl/C、Cr/Al、Cr/AlF、Cr/C、CoCl/Crなどのクロム系触媒を使用することが好ましい。酸化クロム/酸化アルミニウム系触媒は、米国特許第5155082号明細書に記載されているもの、つまり、酸化クロム/酸化アルミニウム触媒(例えば、Cr/Al)や、これにコバルト、ニッケル、マンガン、ロジウム、及びルテニウムのハロゲン化物を複合したもの等を好適に使用できる。つまり、気相反応の場合には、少なくとも一部がクロム系触媒であることが好ましい。 When the fluorination reaction is carried out in the gas phase in the presence of a catalyst, a known gas phase fluorination catalyst can be widely adopted, and there is no particular limitation. Examples include oxides of chromium, aluminum, cobalt, manganese, nickel, and iron, hydroxides, halides, halogen oxides, inorganic salts and mixtures thereof. Among these, in order to improve the conversion rate of the chlorine-containing compound, CrO 2 , Cr 2 O 3 , FeCl 3 / C, Cr 2 O 3 / Al 2 O 3 , Cr 2 O 3 / AlF 3 , Cr 2 O It is preferable to use a chromium-based catalyst such as 3 / C and CoCl 2 / Cr 2 O 3 . Chromium oxide / aluminum oxide catalysts are those described in US Pat. No. 5,155,082, that is, chromium oxide / aluminum oxide catalysts (eg, Cr 2 O 3 / Al 2 O 3 ), and cobalt. A composite of a halide of nickel, manganese, rhodium, and ruthenium can be preferably used. That is, in the case of a gas phase reaction, it is preferable that at least a part of the catalyst is a chromium-based catalyst.

触媒金属は、一部又は全てが結晶化したものを用いてもよく、非晶質を用いてもよく、結晶性は適宜選択することができる。例えば、酸化クロムは、様々な粒子径のものを商業的に入手可能である。また、粒子径や結晶性を制御するため、硝酸クロムとアンモニアから水酸化クロムの沈降させた後、焼成させることで調製してもよい。上記触媒は単独で使用してもよく、その混合物を用いてもよい。また、担体として、種々の活性炭、酸化マグネシウム、酸化ジルコニア、アルミナ等を使用できる。これらの触媒は、フッ素化反応に使用する前に無水フッ酸、含フッ素化合物等を用いてフッ素化処理に供してよく、特に無水フッ酸でフッ素化処理することが好ましい。 As the catalyst metal, a partially or completely crystallized one may be used, an amorphous metal may be used, and the crystallinity can be appropriately selected. For example, chromium oxide is commercially available in various particle sizes. Further, in order to control the particle size and crystallinity, it may be prepared by precipitating chromium hydroxide from chromium nitrate and ammonia and then firing the mixture. The catalyst may be used alone or a mixture thereof. Further, as the carrier, various activated carbons, magnesium oxide, zirconia oxide, alumina and the like can be used. These catalysts may be subjected to a fluorination treatment using hydrofluoric acid anhydride, a fluorine-containing compound or the like before being used in the fluorination reaction, and are particularly preferably hydrofluoric acid treatment.

使用する反応器の形態は特に限定されるものではなく、公知の反応器を広く使用することが可能である。例えば、触媒を充填した管型の流通型反応器を用いることができる。また、触媒の不存在下に反応を行う場合には、例えば、空塔の断熱反応器、フッ化水素と出発物質との気相混合状態を向上させるための多孔質又は非多孔質の金属や媒体を充填した断熱反応器等を用いてもよい。それ以外にも、熱媒体を用いて除熱及び/又は反応器内の温度分布を均一化した多管型反応器等を用いることも好ましい。 The form of the reactor to be used is not particularly limited, and a known reactor can be widely used. For example, a tube-type flow reactor filled with a catalyst can be used. When the reaction is carried out in the absence of a catalyst, for example, an adiabatic reactor in an empty tower, a porous or non-porous metal for improving the gas phase mixed state of hydrogen fluoride and a starting material, or An adiabatic reactor filled with a medium or the like may be used. In addition, it is also preferable to use a multi-tube reactor or the like in which heat is removed and / or the temperature distribution in the reactor is made uniform by using a heat medium.

空塔の反応器を使用する場合、内径の小さい反応管を用いて伝熱効率を良くする方法では、例えば、含塩素化合物の流量と、反応管の内径の関係は、線速度が大きくかつ伝熱面積が大きくなるようにすることが好ましい。 When using a reactor with an empty tower, in a method of improving heat transfer efficiency by using a reaction tube having a small inner diameter, for example, the relationship between the flow rate of a chlorine-containing compound and the inner diameter of the reaction tube has a large linear velocity and heat transfer. It is preferable that the area is large.

気相フッ素化反応における反応温度は、反応器中の温度として、150〜600℃が好ましく、200〜500℃がより好ましく、230〜400℃がさらに好ましい。反応温度を200℃以上に設定することにより、目的物の選択率を向上させることができる。また、反応温度を600℃以下とすることにより、反応により炭化物が生成し、該炭化物が反応管壁や充填剤に付着及び/又は堆積することにより反応器を徐々に閉塞してしまうリスクを低減することができる。但し、かかるリスクが想定される場合には、反応系中に酸素を同伴するか、あるいは一旦、反応を停止して酸素あるいは空気を流通させることにより、反応管内に残存する炭化物を燃焼除去することができる。 The reaction temperature in the vapor phase fluorination reaction is preferably 150 to 600 ° C., more preferably 200 to 500 ° C., and even more preferably 230 to 400 ° C. as the temperature in the reactor. By setting the reaction temperature to 200 ° C. or higher, the selectivity of the target product can be improved. Further, by setting the reaction temperature to 600 ° C. or lower, the risk of carbides being generated by the reaction and the carbides adhering to and / or accumulating on the reaction tube wall and the filler and gradually clogging the reactor is reduced. can do. However, if such a risk is assumed, the carbides remaining in the reaction tube should be burned and removed by accommodating oxygen in the reaction system or by temporarily stopping the reaction and allowing oxygen or air to flow. Can be done.

気相フッ素化反応における反応圧力については、含塩素化合物とフッ化水素とが気相状態で存在できる圧力であれば特に限定されるものではなく、常圧下、加圧下、減圧下のいずれでもよい。例えば、減圧下又は大気圧(0MPaG)下で実施することができ、原料が液体状態にならない程度の加圧下で実施することもできる。通常、圧力条件としては0〜2MPaGの範囲が好ましく、0〜1MPaGの範囲がより好ましい。 The reaction pressure in the vapor phase fluorination reaction is not particularly limited as long as the chlorine-containing compound and hydrogen fluoride can exist in the vapor phase state, and may be under normal pressure, pressure, or reduced pressure. .. For example, it can be carried out under reduced pressure or atmospheric pressure (0 MPaG), and can also be carried out under pressure to the extent that the raw material does not become liquid. Usually, the pressure condition is preferably in the range of 0 to 2 MPaG, more preferably in the range of 0 to 1 MPaG.

気相フッ素化反応における反応時間については、特に限定的ではないが、通常、反応系に流す原料ガスの全流量Fo(0℃、0.0MPaGでの流量:cc/sec)に対する触媒充填量W(g)の比率:W/Foで表される接触時間を0.1〜100g・sec/cc程度、好ましくは5〜50g・sec/cc程度とすればよい。なお、この場合の原料ガスの全流量とは、原料とする含塩素化合物とフッ化水素との合計流量に、更に不活性ガス、酸素などを用いる場合には、これらの流量を加えた量である。 The reaction time in the vapor phase fluorination reaction is not particularly limited, but usually, the catalyst charge amount W with respect to the total flow rate Fo (flow rate at 0 ° C. and 0.0 MPaG: cc / sec) of the raw material gas flowing through the reaction system. The ratio of (g): The contact time represented by W / Fo may be about 0.1 to 100 g · sec / cc, preferably about 5 to 50 g · sec / cc. The total flow rate of the raw material gas in this case is the total flow rate of the chlorine-containing compound and hydrogen fluoride used as the raw material, plus the flow rates of the inert gas and oxygen when used. is there.

一方、フッ素化反応を触媒存在下、液相で行う場合には、公知の液相フッ素化触媒を、広く採用することができ、特に限定はない。具体的には、ルイス酸、遷移金属ハロゲン化物、遷移金属酸化物、IVb属の金属ハロゲン化物、及びVb属の金属ハロゲン化物からなる群より選択される1種以上を使用することができる。 On the other hand, when the fluorination reaction is carried out in a liquid phase in the presence of a catalyst, a known liquid phase fluorination catalyst can be widely adopted, and there is no particular limitation. Specifically, one or more selected from the group consisting of Lewis acid, transition metal halide, transition metal oxide, metal halide of group IVb, and metal halide of group Vb can be used.

より具体的には、ハロゲン化アンチモン、ハロゲン化錫、ハロゲン化タンタル、ハロゲン化チタン、ハロゲン化ニオブ、ハロゲン化モリブデン、ハロゲン化鉄、フッ化クロムハロゲン化物、及びフッ化クロム酸化物からなる群より選択される1種以上を使用することができる。 More specifically, from the group consisting of antimonate halide, tin halide, tantalum halide, titanium halide, niobium halide, molybdenum halide, iron halide, chromium halide, and chromium fluoride oxide. One or more selected species can be used.

更に具体的には、SbCl、SbCl、SbF、SnCl、TaCl、TiCl、NbCl、MoCl、FeCl、及び塩化物塩とフッ化水素から調製されたSbCl(5−y)、SbCl(3−y)、SnCl(4−y)、TaCl(5−y)Fy、TiCl(4−y)Fy、NbCl(5−y)Fy、MoCl(6−y)、FeCl(3−y)(ここで、yは、下限として0.1以上、上限としては、それぞれの元素の価数以下である。)等の触媒が好ましい。これらの触媒は、1種を単独で使用してもよいし、複数種を混合して使用してもよい。これらの中でも少なくとも一部がアンチモン系触媒であることが好ましく、特に五塩化アンチモンが好ましい。 More specifically, SbCl 5 , SbCl 3 , SbF 5 , SnCl 4 , TaCl 5 , TiCl 4 , NbCl 5 , MoCl 6 , FeCl 3 , and SbCl (5-y ) prepared from chloride salts and hydrogen fluoride. ) F y, SbCl (3- y) F y, SnCl (4-y) F y, TaCl (5-y) Fy, TiCl (4-y) Fy, NbCl (5-y) Fy, MoCl (6- y) F y, FeCl (3 -y) F y ( where, y is 0.1 or more as a lower limit, the upper limit is less valences of the respective elements.) catalysts are preferred, such as. One of these catalysts may be used alone, or a plurality of types may be mixed and used. Of these, at least a part is preferably an antimony catalyst, and antimony trichloride is particularly preferable.

これらの触媒は、不活性になった場合には、公知の手法によって容易に再生可能である。触媒を再生する方法としては、塩素を触媒と接触させる方法が採用できる。例えば、液相フッ素化触媒100gあたり、約0.15〜25g/hrの塩素を液相反応に加えることができる。 When these catalysts become inactive, they can be easily regenerated by known methods. As a method for regenerating the catalyst, a method of bringing chlorine into contact with the catalyst can be adopted. For example, about 0.15 to 25 g / hr of chlorine can be added to the liquid phase reaction per 100 g of the liquid phase fluorinated catalyst.

液相フッ素化反応における反応温度は、反応系中の温度として、50〜200℃が好ましく、80〜150℃がより好ましい。反応温度を80℃以上に設定することにより、目的物の選択率及び生産性を向上させることができる。液相フッ素化反応における圧力は、気相反応の場合と同様に0〜2MPaGの範囲が好ましく、0〜1MPaGの範囲がより好ましい。 The reaction temperature in the liquid phase fluorination reaction is preferably 50 to 200 ° C., more preferably 80 to 150 ° C. as the temperature in the reaction system. By setting the reaction temperature to 80 ° C. or higher, the selectivity and productivity of the target product can be improved. The pressure in the liquid phase fluorination reaction is preferably in the range of 0 to 2 MPaG, more preferably 0 to 1 MPaG, as in the case of the gas phase reaction.

気相でのフッ素化反応及び液相でのフッ素化反応ともに、反応器としては、公知のものを広く使用することが可能であり、特に限定はない。具体的には、ハステロイ(HASTALLOY)、インコネル(INCONEL)、モネル(MONEL)、インコロイ(INCOLLOY)等のフッ化水素の腐食作用に抵抗性がある材料によって構成されるものを用いることが好ましい。 As the reactor, known reactors can be widely used for both the fluorination reaction in the gas phase and the fluorination reaction in the liquid phase, and there is no particular limitation. Specifically, it is preferable to use a material composed of a material resistant to the corrosive action of hydrogen fluoride, such as Hastelloy, INCONEL, MONEL, and INCOLLY.

本開示の製造方法によりHFC−143、塩化水素及びフッ化水素を含む反応ガスを得た後は公知の各種の分離方法によりHFC−143を得ることができる。フッ化水素は、フッ素化反応にリサイクルすることもできる。また、得られたHFC−143は、必要に応じて精製処理を施した後に各種用途に用いることができる。例えば、HFC−143を脱フッ化水素反応に供して1,2−ジフルオロエチレン(HFO−1132)を製造してもよい。この点、本開示は、前述の本開示の製造方法により得た反応ガスに含まれる1,1,2−トリフルオロエタン(HFC−143)を脱フッ化水素反応に供する工程を有する、1,2−ジフルオロエチレン(HFO−1132)の製造方法の発明も包含する。 After obtaining a reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride by the production method of the present disclosure, HFC-143 can be obtained by various known separation methods. Hydrogen fluoride can also be recycled for the fluorination reaction. Further, the obtained HFC-143 can be used for various purposes after being subjected to a purification treatment as needed. For example, HFC-143 may be subjected to a hydrogen fluoride reaction to produce 1,2-difluoroethylene (HFO-1132). In this regard, the present disclosure comprises a step of subjecting 1,1,2-trifluoroethane (HFC-143) contained in the reaction gas obtained by the above-mentioned production method of the present disclosure to a hydrogen fluoride reaction. It also includes the invention of a method for producing 2-difluoroethylene (HFO-1132).

以上、本開示の実施形態について説明したが、本開示はこれらの例に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲において、種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to these examples, and it goes without saying that the present disclosure can be implemented in various forms without departing from the gist of the present disclosure.

以下、実施例に基づき、本開示の実施形態をより具体的に説明する。但し、本開示は実施例の範囲に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in more detail based on Examples. However, the present disclosure is not limited to the scope of the examples.

実施例1
酸化フッ化クロム触媒を下記手順により調製した。先ず特開平5−146680号公報に記載されている方法に沿ってCrxOyで示される酸化クロムを調製した。詳細には、5.7%硝酸クロム水溶液765gに10%アンモニア水を加え、これにより生じた沈殿をろ過により回収して洗浄した後、空気中で120℃、12時間乾燥させて水酸化クロムを得た。この水酸化クロムを直径3.0mm、高さ3.0mmのペレット状に成形した。このペレットを窒素気流中400℃で2時間焼成して酸化クロムを得た。得られた酸化クロムの比表面積(BET法による)は約200m/gであった。次に、この酸化クロムにフッ素化処理を施して酸化フッ化クロム触媒を得た。詳細には、酸化クロムにフッ化水素を含むガスを流通させて200〜360℃まで段階的に温度を上げながら加熱し、360℃に到達した後、フッ化水素により2時間フッ素化して酸化フッ化クロム触媒を得た。
Example 1
A chromium oxide fluoride catalyst was prepared by the following procedure. First, chromium oxide represented by CrxOy was prepared according to the method described in JP-A-5-146680. Specifically, 10% aqueous ammonia is added to 765 g of a 775% aqueous solution of chromium nitrate, and the precipitate formed thereby is collected by filtration and washed, and then dried in air at 120 ° C. for 12 hours to obtain chromium hydroxide. Obtained. This chromium hydroxide was molded into pellets having a diameter of 3.0 mm and a height of 3.0 mm. The pellet was calcined in a nitrogen stream at 400 ° C. for 2 hours to obtain chromium oxide. The specific surface area of the obtained chromium oxide (according to the BET method) was about 200 m 2 / g. Next, this chromium oxide was subjected to a fluorination treatment to obtain a chromium oxide fluoride catalyst. Specifically, a gas containing hydrogen fluoride is circulated through chromium oxide and heated while gradually raising the temperature from 200 to 360 ° C. After reaching 360 ° C., it is fluorinated with hydrogen fluoride for 2 hours to fluorinate. A chromium fluorinated catalyst was obtained.

得られた酸化フッ化クロム触媒12gを、内径15mm、長さ1mの管状ハステロイ製反応器に充填した。 12 g of the obtained chromium oxide fluoride catalyst was filled in a tubular Hastelloy reactor having an inner diameter of 15 mm and a length of 1 m.

この反応管を大気圧(0.0MPaG)下で150℃に維持し、無水フッ化水素(HF)ガスを118mL/min(0℃、0.0MPaGでの流量)の流速で反応器に供給して1時間維持した。その後、CHClCHCl(HCC−140)を2.4mL/min(0℃、0.0MPaGでのガス流量)の流速で供給した。この時のHF:HCC−140のモル比は50:1、接触時間W/Foは6g・sec/ccであった。 This reaction tube is maintained at 150 ° C. under atmospheric pressure (0.0 MPaG), and anhydrous hydrogen fluoride (HF) gas is supplied to the reactor at a flow rate of 118 mL / min (flow rate at 0 ° C., 0.0 MPaG). It was maintained for 1 hour. Then, CHCl 2 CH 2 Cl (HCC-140) was supplied at a flow rate of 2.4 mL / min (gas flow rate at 0 ° C. and 0.0 MPaG). At this time, the molar ratio of HF: HCC-140 was 50: 1, and the contact time W / Fo was 6 g · sec / cc.

反応開始から1.5時間後、HCC−140の転化率は56.4%、HFC−143の選択率は0.4%であった。 1.5 hours after the start of the reaction, the conversion of HCC-140 was 56.4% and the selectivity of HFC-143 was 0.4%.

実施例2
反応温度を240℃にした以外は実施例1と同様にしてHFC−143を合成した。
Example 2
HFC-143 was synthesized in the same manner as in Example 1 except that the reaction temperature was set to 240 ° C.

反応開始から2.5時間後、HCC−140の転化率は99.8%、HFC−143の選択率は2.4%であった。 2.5 hours after the start of the reaction, the conversion of HCC-140 was 99.8% and the selectivity of HFC-143 was 2.4%.

実施例3
反応温度を280℃にした以外は実施例1と同様にしてHFC−143を合成した。
Example 3
HFC-143 was synthesized in the same manner as in Example 1 except that the reaction temperature was set to 280 ° C.

反応開始から2.5時間後、HCC−140の転化率は100%、HFC−143の選択率は6.5%であった。 2.5 hours after the start of the reaction, the conversion of HCC-140 was 100% and the selectivity of HFC-143 was 6.5%.

実施例4
反応温度を330℃にした以外は実施例1と同様にしてHFC−143を合成した。
Example 4
HFC-143 was synthesized in the same manner as in Example 1 except that the reaction temperature was set to 330 ° C.

反応開始から1.5時間後、HCC−140の転化率は100%、HFC−143の選択率は4.1%であった。 1.5 hours after the start of the reaction, the conversion rate of HCC-140 was 100%, and the selectivity of HFC-143 was 4.1%.

実施例5
無水フッ化水素(HF)ガスを57.4mL/min(0℃、0.0MPaGでの流量)の流速で反応器に供給し、反応温度を200℃にしたこと以外は実施例1と同様にしてHFC−143を合成した。この時のHF:HCC−140のモル比は24.3:1、接触時間W/Foは12g・sec/ccであった。
Example 5
Anhydrous hydrogen fluoride (HF) gas was supplied to the reactor at a flow rate of 57.4 mL / min (flow rate at 0 ° C. and 0.0 MPaG), and the reaction temperature was set to 200 ° C. in the same manner as in Example 1. HFC-143 was synthesized. At this time, the molar ratio of HF: HCC-140 was 24.3: 1, and the contact time W / Fo was 12 g · sec / cc.

反応開始から2時間後、HCC−140の転化率は98.3%、HFC−143の選択率は0.1%であった。 Two hours after the start of the reaction, the conversion of HCC-140 was 98.3% and the selectivity of HFC-143 was 0.1%.

実施例6
反応温度を240℃にした以外は実施例5と同様にしてHFC−143を合成した。
Example 6
HFC-143 was synthesized in the same manner as in Example 5 except that the reaction temperature was set to 240 ° C.

反応開始から3時間後、HCC−140の転化率は100%、HFC−143の選択率は1.9%であった。 Three hours after the start of the reaction, the conversion of HCC-140 was 100% and the selectivity of HFC-143 was 1.9%.

実施例7
反応温度を280℃にした以外は実施例5と同様にしてHFC−143を合成した。
Example 7
HFC-143 was synthesized in the same manner as in Example 5 except that the reaction temperature was set to 280 ° C.

反応開始から2時間後、HCC−140の転化率は100%、HFC−143の選択率は2.7%であった。 Two hours after the start of the reaction, the conversion rate of HCC-140 was 100%, and the selectivity of HFC-143 was 2.7%.

実施例8
無水フッ化水素(HF)ガスを35mL/min(0℃、0.0MPaGでの流量)の流速で反応器に供給し、反応温度を280℃にしたこと以外は実施例1と同様にしてHFC−143を合成した。この時のHF:HCC−140のモル比は15:1、接触時間W/Foは19g・sec/ccであった。
Example 8
Anhydrous hydrogen fluoride (HF) gas was supplied to the reactor at a flow rate of 35 mL / min (flow rate at 0 ° C. and 0.0 MPaG), and the reaction temperature was set to 280 ° C. in the same manner as in Example 1 HFC. -143 was synthesized. At this time, the molar ratio of HF: HCC-140 was 15: 1, and the contact time W / Fo was 19 g · sec / cc.

反応開始から2時間後、HCC−140の転化率は100%、HFC−143の選択率は1.4%であった。 Two hours after the start of the reaction, the conversion rate of HCC-140 was 100%, and the selectivity of HFC-143 was 1.4%.

実施例8の結果から、モル比を低く設定したことによりHFC−143の収率が低下したことから、モル比は20以上、好ましくは40以上(特に40超過)とすることによりHFC−143の収率が向上することが分かる。 From the results of Example 8, since the yield of HFC-143 decreased by setting the molar ratio low, the molar ratio of HFC-143 was set to 20 or more, preferably 40 or more (particularly over 40). It can be seen that the yield is improved.

実施例9
反応温度を365℃にした以外は実施例8と同様にしてHFC−143を合成した。
Example 9
HFC-143 was synthesized in the same manner as in Example 8 except that the reaction temperature was set to 365 ° C.

反応開始から2時間後、HCC−140の転化率は100%、HFC−143の選択率は0.27%であった。 Two hours after the start of the reaction, the conversion of HCC-140 was 100% and the selectivity of HFC-143 was 0.27%.

実施例10
実施例1で調製した酸化フッ化クロム触媒12gを、内径15mm、長さ1mの管状ハステロイ製反応器に充填した。
Example 10
12 g of the chromium oxide fluoride catalyst prepared in Example 1 was filled in a tubular Hastelloy reactor having an inner diameter of 15 mm and a length of 1 m.

この反応管を大気圧(0.0MPaG)下で240℃に維持し、無水フッ化水素(HF)ガスを63mL/min(0℃、0.0MPaGでの流量)の流速で反応器に供給して1時間維持した。その後、CHClCHCl(HCO−1130)を3mL/min(0℃、0.0MPaGでのガス流量)の流速で供給した。この時のHF:HCO−1130のモル比は21:1、接触時間W/Foは11g・sec/ccであった。 This reaction tube is maintained at 240 ° C. under atmospheric pressure (0.0 MPaG), and anhydrous hydrogen fluoride (HF) gas is supplied to the reactor at a flow rate of 63 mL / min (flow rate at 0 ° C., 0.0 MPaG). It was maintained for 1 hour. Then, CHClCHCl (HCO-1130) was supplied at a flow rate of 3 mL / min (gas flow rate at 0 ° C., 0.0 MPaG). At this time, the molar ratio of HF: HCO-1130 was 21: 1, and the contact time W / Fo was 11 g · sec / cc.

反応開始から19時間後、HCO−1130の転化率は29%、HFC−143の選択率は6.8%であった。 19 hours after the start of the reaction, the conversion of HCO-1130 was 29% and the selectivity of HFC-143 was 6.8%.

実施例11
無水フッ化水素(HF)ガスを61.9mL/min(0℃、0.0MPaGでの流量)、HCO−1130を4.1mL/min(0℃、0.0MPaGでのガス流量)の流速でそれぞれ反応器に供給したこと以外は実施例10と同様にしてHFC−143を合成した。この時のHF:HCO−1130のモル比は15:1、接触時間W/Foは11g・sec/ccであった。
Example 11
Anhydrous hydrogen fluoride (HF) gas at a flow rate of 61.9 mL / min (flow rate at 0 ° C., 0.0 MPaG) and HCO-1130 at a flow rate of 4.1 mL / min (gas flow rate at 0 ° C., 0.0 MPaG). HFC-143 was synthesized in the same manner as in Example 10 except that each was supplied to the reactor. At this time, the molar ratio of HF: HCO-1130 was 15: 1, and the contact time W / Fo was 11 g · sec / cc.

反応開始から2時間後、HCO−1130の転化率は25.5%、HFC−143の選択率は3.3%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 25.5% and the selectivity of HFC-143 was 3.3%.

実施例12
無水フッ化水素(HF)ガスを64.7mL/min(0℃、0.0MPaGでの流量)、HCO−1130を1.3mL/min(0℃、0.0MPaGでのガス流量)の流速でそれぞれ反応器に供給したこと以外は実施例10と同様にしてHFC−143を合成した。この時のHF:HCO−1130のモル比は50:1、接触時間W/Foは11g・sec/ccであった。
Example 12
Anhydrous hydrogen fluoride (HF) gas at a flow rate of 64.7 mL / min (flow rate at 0 ° C., 0.0 MPaG) and HCO-1130 at a flow rate of 1.3 mL / min (gas flow rate at 0 ° C., 0.0 MPaG). HFC-143 was synthesized in the same manner as in Example 10 except that each was supplied to the reactor. At this time, the molar ratio of HF: HCO-1130 was 50: 1, and the contact time W / Fo was 11 g · sec / cc.

反応開始から2時間後、HCO−1130の転化率は63.5%、HFC−143の選択率は14.6%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 63.5% and the selectivity of HFC-143 was 14.6%.

実施例11の結果と、実施例10及び実施例12の結果とを比較すると、モル比を低く設定したことによりHFC−143の収率が低下したことから、モル比は20以上、好ましくは40以上(特に40超過)とすることによりHFC−143の収率が向上することが分かる。 Comparing the results of Example 11 with the results of Examples 10 and 12, the yield of HFC-143 decreased due to the low molar ratio, so the molar ratio was 20 or more, preferably 40. It can be seen that the yield of HFC-143 is improved by setting the above (particularly over 40).

実施例13
無水フッ化水素(HF)ガスを150mL/min(0℃、0.0MPaGでの流量)、HCO−1130を3mL/min(0℃、0.0MPaGでのガス流量)の流速でそれぞれ反応器に供給し、反応圧力を0.6MPaG、反応温度を200℃としたこと以外は実施例10と同様にしてHFC−143を合成した。この時のHF:HCO−1130のモル比は50:1、接触時間W/Foは4.7g・sec/ccであった。
Example 13
Anhydrous hydrogen fluoride (HF) gas at a flow rate of 150 mL / min (flow rate at 0 ° C., 0.0 MPaG) and HCO-1130 at a flow rate of 3 mL / min (gas flow rate at 0 ° C., 0.0 MPaG) in the reactor. HFC-143 was synthesized in the same manner as in Example 10 except that the reaction pressure was 0.6 MPaG and the reaction temperature was 200 ° C. At this time, the molar ratio of HF: HCO-1130 was 50: 1, and the contact time W / Fo was 4.7 g · sec / cc.

反応開始から2時間後、HCO−1130の転化率は40%、HFC−143の選択率は5.9%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 40% and the selectivity of HFC-143 was 5.9%.

実施例14
反応圧力を0.0MPaGとしたこと以外は実施例13と同様にしてHFC−143を合成した。
Example 14
HFC-143 was synthesized in the same manner as in Example 13 except that the reaction pressure was 0.0 MPaG.

反応開始から2時間後、HCO−1130の転化率は25.4%、HFC−143の選択率は7.4%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 25.4% and the selectivity of HFC-143 was 7.4%.

実施例13の結果と実施例14の結果との比較から、圧力を0.6MPaGまで上げることで、転化率を大きく向上させることができることが分かる。 From the comparison between the result of Example 13 and the result of Example 14, it can be seen that the conversion rate can be greatly improved by increasing the pressure to 0.6 MPaG.

実施例15
実施例14に示した条件に、全流量に対し1%のOを同伴させた。
Example 15
The conditions shown in Example 14 were accompanied by 1% O 2 with respect to the total flow rate.

反応開始から15時間後、HCO−1130の転化率は44.2%、HFC−143の選択率は17.8%であった。 Fifteen hours after the start of the reaction, the conversion of HCO-1130 was 44.2% and the selectivity of HFC-143 was 17.8%.

実施例16
反応温度を260℃にした以外は実施例15と同様にしてHFC−143を合成した。
Example 16
HFC-143 was synthesized in the same manner as in Example 15 except that the reaction temperature was set to 260 ° C.

反応開始から2時間後、HCO−1130の転化率は54%、HFC−143の選択率は17.5%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 54% and the selectivity of HFC-143 was 17.5%.

実施例17
反応温度を280℃にした以外は実施例15と同様にしてHFC−143を合成した。
Example 17
HFC-143 was synthesized in the same manner as in Example 15 except that the reaction temperature was set to 280 ° C.

反応開始から2時間後、HCO−1130の転化率は55.4%、HFC−143の選択率は18.2%であった。 Two hours after the start of the reaction, the conversion of HCO-1130 was 55.4% and the selectivity of HFC-143 was 18.2%.

実施例14の結果と実施例15〜実施例17の結果との比較から、酸素の添加により、転化率のみならず、HFC−143の選択率を向上させることができることが分かる。 From the comparison between the results of Example 14 and the results of Examples 15 to 17, it can be seen that the addition of oxygen can improve not only the conversion rate but also the selectivity of HFC-143.

Claims (11)

1,1,2−トリフルオロエタン(HFC−143)の製造方法であって、
1,1,2−トリクロロエタン(HCC−140)、1,2−ジクロロ−1−フルオロエタン(HCFC−141)、1,1−ジクロロ−2−フルオロエタン(HCFC−141a)、(E,Z)−1,2−ジクロロエチレン(HCO−1130(E,Z))及び(E,Z)−1−クロロ−2−フルオロエチレン(HCFO−1131(E,Z))からなる群から選択される少なくとも一種の含塩素化合物をフッ化水素と接触させることにより1以上のフッ素化反応を行う工程を含み、HFC−143、塩化水素及びフッ化水素を含む反応ガスを得る、HFC−143の製造方法。
A method for producing 1,1,2-trifluoroethane (HFC-143).
1,1,2-Trichloroethane (HCC-140), 1,2-dichloro-1-fluoroethane (HCFC-141), 1,1-dichloro-2-fluoroethane (HCFC-141a), (E, Z) At least one selected from the group consisting of -1,2-dichloroethylene (HCO-1130 (E, Z)) and (E, Z) -1-chloro-2-fluoroethylene (HCFO-1131 (E, Z)). A method for producing HFC-143, which comprises a step of carrying out one or more fluorination reactions by contacting the chlorine-containing compound of HFC with hydrogen fluoride to obtain a reaction gas containing HFC-143, hydrogen chloride and hydrogen fluoride.
前記フッ素化反応は、0〜2MPaGの圧力条件で行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the fluorination reaction is carried out under a pressure condition of 0 to 2 MPaG. 前記フッ素化反応は、触媒存在下、気相で行う、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the fluorination reaction is carried out in the gas phase in the presence of a catalyst. 前記フッ素化反応は、150〜600℃の温度条件で行う、請求項3に記載の製造方法。 The production method according to claim 3, wherein the fluorination reaction is carried out under temperature conditions of 150 to 600 ° C. 前記フッ素化反応における前記含塩素化合物と前記フッ化水素との接触時間W/Foが0.1〜100g・sec/ccである、請求項3又は4に記載の製造方法。 The production method according to claim 3 or 4, wherein the contact time W / Fo between the chlorine-containing compound and the hydrogen fluoride in the fluorination reaction is 0.1 to 100 g · sec / cc. 前記フッ素化反応における前記含塩素化合物に対する前記フッ化水素のモル比が20以上である、請求項1〜5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the molar ratio of hydrogen fluoride to the chlorine-containing compound in the fluorination reaction is 20 or more. 前記フッ素化反応における前記含塩素化合物に対する前記フッ化水素のモル比が40超過である、請求項1〜5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the molar ratio of hydrogen fluoride to the chlorine-containing compound in the fluorination reaction exceeds 40. 前記触媒は、少なくとも一部がクロム系触媒である、請求項3〜7のいずれかに記載の製造方法。 The production method according to any one of claims 3 to 7, wherein the catalyst is at least a chromium-based catalyst. 前記フッ素化反応は、触媒存在下、液相で行う、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the fluorination reaction is carried out in a liquid phase in the presence of a catalyst. 前記触媒は、少なくとも一部がアンチモン系触媒である、請求項9に記載の製造方法。 The production method according to claim 9, wherein the catalyst is at least a part of an antimony-based catalyst. 請求項1〜10のいずれかに記載の製造方法により得た前記反応ガスに含まれる1,1,2−トリフルオロエタン(HFC−143)を脱フッ化水素反応に供する工程を有する、1,2−ジフルオロエチレン(HFO−1132)の製造方法。 A step of subjecting 1,1,2-trifluoroethane (HFC-143) contained in the reaction gas obtained by the production method according to any one of claims 1 to 10 to a hydrogen fluoride reaction. A method for producing 2-difluoroethylene (HFO-1132).
JP2019030321A 2019-02-22 2019-02-22 Method for producing 1,1,2-trifluoroethane (HFC-143) Active JP6939830B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019030321A JP6939830B2 (en) 2019-02-22 2019-02-22 Method for producing 1,1,2-trifluoroethane (HFC-143)
EP20758587.8A EP3851431A4 (en) 2019-02-22 2020-02-20 Method for producing 1,1,2-trifluoroethane (hfc-143)
PCT/JP2020/006873 WO2020171177A1 (en) 2019-02-22 2020-02-20 Method for producing 1,1,2-trifluoroethane (hfc-143)
CN202080015526.0A CN113498407A (en) 2019-02-22 2020-02-20 Process for producing 1,1, 2-trifluoroethane (HFC-143)
US17/227,601 US11312673B2 (en) 2019-02-22 2021-04-12 Method for producing 1,1,2-trifluoroethane (HFC-143)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030321A JP6939830B2 (en) 2019-02-22 2019-02-22 Method for producing 1,1,2-trifluoroethane (HFC-143)

Publications (2)

Publication Number Publication Date
JP2020132593A true JP2020132593A (en) 2020-08-31
JP6939830B2 JP6939830B2 (en) 2021-09-22

Family

ID=72144611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030321A Active JP6939830B2 (en) 2019-02-22 2019-02-22 Method for producing 1,1,2-trifluoroethane (HFC-143)

Country Status (5)

Country Link
US (1) US11312673B2 (en)
EP (1) EP3851431A4 (en)
JP (1) JP6939830B2 (en)
CN (1) CN113498407A (en)
WO (1) WO2020171177A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078234A1 (en) * 2007-12-14 2009-06-25 Daikin Industries, Ltd. Method for producing pentafluoroethane
JP2014520109A (en) * 2011-06-08 2014-08-21 ダウ アグロサイエンシィズ エルエルシー Process for producing chlorinated and / or fluorinated propenes
WO2016069785A1 (en) * 2014-10-28 2016-05-06 President And Fellows Of Harvard College High energy efficiency phase change device using convex surface features
WO2017104828A1 (en) * 2015-12-16 2017-06-22 旭硝子株式会社 Method for producing hydrofluoroolefin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1468438A1 (en) * 1963-01-22 1968-12-19 Onoda Cement Co Ltd Process for the production of fluorine derivatives of halogenated hydrocarbons
US3432562A (en) * 1965-09-24 1969-03-11 Phillips Petroleum Co Dehydrofluorination process and products
JPH0723328B2 (en) * 1985-01-09 1995-03-15 旭化成工業株式会社 Method for producing fluorinated hydrocarbon
IT1221776B (en) * 1988-01-15 1990-07-12 Ausimont Spa PROCESS FOR THE PREPARATION OF 1,2 DIFLUOROETHANE AND 1,1,2 TRIFLUOROETHANE
US5155082A (en) 1991-04-12 1992-10-13 Allied-Signal Inc. Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
CN101028990B (en) * 2007-04-11 2010-06-09 西安近代化学研究所 Method for producing 1,1,1-trifluoro-ethane
FR3014099B1 (en) * 2013-12-04 2017-01-13 Arkema France PROCESS FOR THE PRODUCTION OF 1-CHLORO-2,2-DIFLUOROETHANE
JP6673395B2 (en) * 2018-05-07 2020-03-25 ダイキン工業株式会社 Method for producing 1,2-difluoroethylene and / or 1,1,2-trifluoroethane
CN111116304B (en) * 2019-11-04 2021-04-23 中国矿业大学(北京) Method for synthesizing 1, 2-difluoroethane and 1,1, 2-trifluoroethane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078234A1 (en) * 2007-12-14 2009-06-25 Daikin Industries, Ltd. Method for producing pentafluoroethane
JP2014520109A (en) * 2011-06-08 2014-08-21 ダウ アグロサイエンシィズ エルエルシー Process for producing chlorinated and / or fluorinated propenes
WO2016069785A1 (en) * 2014-10-28 2016-05-06 President And Fellows Of Harvard College High energy efficiency phase change device using convex surface features
WO2017104828A1 (en) * 2015-12-16 2017-06-22 旭硝子株式会社 Method for producing hydrofluoroolefin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INDUSTRIAL AND ENGNEERING CHEMISTRY, vol. 39, no. 3, JPN6020016856, 1947, pages 409 - 412, ISSN: 0004380965 *
石川延男,小林義郎, フッ素の化合物 −その化学と応用, JPN6020016855, 1979, pages 80 - 91, ISSN: 0004380966 *

Also Published As

Publication number Publication date
US20210230086A1 (en) 2021-07-29
JP6939830B2 (en) 2021-09-22
EP3851431A1 (en) 2021-07-21
US11312673B2 (en) 2022-04-26
EP3851431A4 (en) 2022-06-15
CN113498407A (en) 2021-10-12
WO2020171177A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6673395B2 (en) Method for producing 1,2-difluoroethylene and / or 1,1,2-trifluoroethane
JP5971305B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP5831589B2 (en) Method for producing fluorine-containing alkene compound
CN105188909B (en) Fluorination process and reactor
CN103946192A (en) Process for the manufacture of hydrofluoroolefins
JP2017222684A (en) Catalyst life improvement for vapor phase manufacture of 1-chloro-3,3,3-trifluoropropene
JP2015509096A (en) Method for producing fluorine-containing olefin
US11124467B2 (en) Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon
JP6939830B2 (en) Method for producing 1,1,2-trifluoroethane (HFC-143)
JP6806174B2 (en) Method for producing 1,1,2-trifluoroethane (HFC-143)
US20230138340A1 (en) Method for manufacturing 2-chloro-1,1-difluoroethane (hcfc-142), 1,1,2-trifluoroethane (hfc-143), and (e)-1,2-difluoroethylene (hfo-1132(e)) and/or (z)-1,2-difluoroethylene (hfo-1132(z))

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151