JP2020132573A - Air oxidation method of benzylic position of organic compound and air oxidation catalyst - Google Patents

Air oxidation method of benzylic position of organic compound and air oxidation catalyst Download PDF

Info

Publication number
JP2020132573A
JP2020132573A JP2019028432A JP2019028432A JP2020132573A JP 2020132573 A JP2020132573 A JP 2020132573A JP 2019028432 A JP2019028432 A JP 2019028432A JP 2019028432 A JP2019028432 A JP 2019028432A JP 2020132573 A JP2020132573 A JP 2020132573A
Authority
JP
Japan
Prior art keywords
group
air oxidation
catalyst
air
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028432A
Other languages
Japanese (ja)
Other versions
JP7232459B2 (en
Inventor
佐藤 一彦
Kazuhiko Sato
一彦 佐藤
喜裕 今
Yoshihiro Kon
喜裕 今
真島 和志
Kazuyuki Majima
和志 真島
春樹 長江
Haruki Nagae
春樹 長江
亮太 青木
Ryota Aoki
亮太 青木
早季子 藤原
Sakiko Fujiwara
早季子 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Osaka University NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Osaka University NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019028432A priority Critical patent/JP7232459B2/en
Publication of JP2020132573A publication Critical patent/JP2020132573A/en
Application granted granted Critical
Publication of JP7232459B2 publication Critical patent/JP7232459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an air oxidation method by which a hydroxy group or oxo group can be introduced by efficient air oxidation of a benzylic position under relatively mild reaction conditions by using a metal complex as a catalyst without a joint use of an additive agent.SOLUTION: An air oxidation method is a method for carrying out air oxidation of a benzylic position of an organic compound having the benzylic position includes bringing the organic compound into contact with molecular oxygen in the presence of a catalyst that is a polynuclear metal complex including two or more kinds of metals.SELECTED DRAWING: None

Description

本発明は、有機化合物のベンジル位の空気酸化方法及び空気酸化触媒に関する。 The present invention relates to an air oxidation method for the benzyl position of an organic compound and an air oxidation catalyst.

ベンジル位を有する有機化合物の前記ベンジル位を酸化して水酸基(−OH)又はオキソ基(=O)を導入し、アルコール化合物やカルボニル化合物を合成する反応は、電子材料、医薬品、農薬等の各種化学品の製造における基盤的な反応として知られている。
ベンジル位に直接的に水酸基又はオキソ基を導入する方法として空気酸化が知られている。空気酸化により水酸基又はオキソ基を導入する反応は一般的に、触媒のみでは高温高圧を必要とすることから、各種の添加剤が併用される。
Various reactions for synthesizing alcohol compounds and carbonyl compounds by oxidizing the benzyl position of an organic compound having a benzyl position to introduce a hydroxyl group (-OH) or an oxo group (= O) include various electronic materials, pharmaceuticals, pesticides and the like. It is known as a basic reaction in the production of chemical products.
Air oxidation is known as a method for directly introducing a hydroxyl group or an oxo group into the benzyl position. Since the reaction of introducing a hydroxyl group or an oxo group by air oxidation generally requires high temperature and high pressure only with a catalyst, various additives are used in combination.

例えば、ベンジルアルコールやベンズアルデヒド類の製造方法として、酸化チタンを触媒に用い、各種添加剤と組み合わせてトルエンのベンジル位を空気酸化する方法が知られている(非特許文献1)。
しかし、本方法は、光照射を効率的に行うためにごく低濃度で反応を行う必要があり、生産性に問題がある。また、ヒドロキシルラジカルを経由する方法であるので、目的化合物だけでなく二量化体、二酸化炭素等の多数の副生成物を発生させる。さらに、添加剤を併用することで生成物の純度が損なわれる。したがって、生成物の精製処理に多くのエネルギーが必要で、精製処理の副産物の廃棄処理の手間と費用もかかる。
For example, as a method for producing benzyl alcohol and benzaldehyde, a method using titanium oxide as a catalyst and air-oxidizing the benzyl position of toluene in combination with various additives is known (Non-Patent Document 1).
However, in this method, it is necessary to carry out the reaction at a very low concentration in order to efficiently perform light irradiation, and there is a problem in productivity. In addition, since it is a method via hydroxyl radicals, not only the target compound but also a large number of by-products such as dimers and carbon dioxide are generated. Furthermore, the combined use of additives impairs the purity of the product. Therefore, a large amount of energy is required for the purification process of the product, and the labor and cost of the disposal process of the by-products of the purification process are also required.

近年、各種の有機化合物を温和な条件で空気酸化する手法として、N−ヒドロキシフタルイミド等のイミド化合物を用いる方法が報告されている(非特許文献2、特許文献1〜2)。
しかし、本方法は、イミド化合物が犠牲剤として消費され再利用できないこと、反応後にイミド化合物の分解物を除去する煩雑さ、イミド化合物自体の価格が高価なこと等から、産業上有用な方法とは言えない。
In recent years, as a method for air-oxidizing various organic compounds under mild conditions, a method using an imide compound such as N-hydroxyphthalimide has been reported (Non-Patent Document 2, Patent Documents 1 and 2).
However, this method is industrially useful because the imide compound is consumed as a sacrificial agent and cannot be reused, the complexity of removing the decomposition product of the imide compound after the reaction, and the high price of the imide compound itself. I can't say.

ヘテロポリ酸、鉄錯体等の金属錯体を触媒に用いる反応が知られている(非特許文献3、4、5)。非特許文献3では、バナジウム置換ポリ酸を用いた硝酸によるニトロ化反応が報告され、またニトロ化反応にてアルコール化合物やカルボニル化合物が副生することが報告されている。非特許文献4〜5では、鉄錯体を用いた炭素−水素結合のハロゲン化反応が報告され、またハロゲン化反応にてアルコール化合物やカルボニル化合物が副生することが報告されている。 Reactions using a metal complex such as a heteropolyacid or an iron complex as a catalyst are known (Non-Patent Documents 3, 4, 5). Non-Patent Document 3 reports a nitration reaction with nitric acid using a vanadium-substituted polyacid, and reports that an alcohol compound and a carbonyl compound are by-produced in the nitration reaction. Non-Patent Documents 4 to 5 report a halogenation reaction of a carbon-hydrogen bond using an iron complex, and it is reported that an alcohol compound and a carbonyl compound are by-produced in the halogenation reaction.

特開平8−38909号公報Japanese Unexamined Patent Publication No. 8-38909 特開平9−327626号公報Japanese Unexamined Patent Publication No. 9-327626

Bull.Chem.Soc.Jpn.1982,Vol.55,No.3,666−671Bull. Chem. Soc. Jpn. 1982, Vol. 55, No. 3,666-671 Chem.Commun.2001,1352−1353Chem. Commun. 2001,1352-1353 Chem.Eur.J.2004,10,6489−6496Chem. Euro. J. 2004,10,6489-6494 J.Am.Chem.Soc.2016,138,2484−2487J. Am. Chem. Soc. 2016,138,2484-2487 Angew.Chem.Int.Ed.2016,55,7717−7722Angew. Chem. Int. Ed. 2016, 55, 7717-7722

しかし、非特許文献3は、硝酸によるニトロ化の副産物としてごく一部、アルコール化合物やカルボニル化合物が生成することを示しているのみであり、直接的な酸化反応とは言えない。非特許文献4においても、ハロゲン化の副産物として一部アルコール化合物やカルボニル化合物が形成されるもので、5割程度の収率を得るために触媒を丁寧に扱う必要があり反応温度は−40℃という低温下での処理を必要とする。非特許文献5においても、鉄触媒の炭素−水素結合のラジカル化反応を促進するために、ルイス酸のスカンジウム化合物を鉄触媒のほかに添加して反応系を調節するうえ、プロトンソースとしての酸を当量以上外部から投入する必要がある。 However, Non-Patent Document 3 only shows that an alcohol compound or a carbonyl compound is produced as a by-product of nitric acid nitration, and cannot be said to be a direct oxidation reaction. Even in Non-Patent Document 4, some alcohol compounds and carbonyl compounds are formed as a by-product of halogenation, and it is necessary to handle the catalyst carefully in order to obtain a yield of about 50%, and the reaction temperature is −40 ° C. It requires processing at a low temperature. Also in Non-Patent Document 5, in order to promote the radicalization reaction of the carbon-hydrogen bond of the iron catalyst, a scandium compound of Lewis acid is added in addition to the iron catalyst to regulate the reaction system, and an acid as a proton source is also used. It is necessary to input more than the equivalent amount from the outside.

このように、従来の金属錯体を触媒に用いた反応は、触媒となる金属錯体自体の作製が煩雑で触媒サイクルとして回すためには添加剤や反応温度の精密な調整が必要である。
さらに、触媒のみにて空気酸化反応をさせる例はなく、添加剤の存在が必要となるため、触媒及び添加剤を生成物から十分に除去しきれず後工程や製品純度に影響を与えるといった、省エネルギーと品質の両面から課題がある。
As described above, in the reaction using the conventional metal complex as a catalyst, the preparation of the metal complex itself as a catalyst is complicated, and it is necessary to precisely adjust the additive and the reaction temperature in order to rotate it as a catalytic cycle.
Furthermore, there is no example of an air oxidation reaction caused by the catalyst alone, and the presence of additives is required. Therefore, the catalyst and additives cannot be sufficiently removed from the product, which affects the post-process and product purity, resulting in energy saving. There are issues in terms of both quality and quality.

本発明は、上記事情に鑑みてなされたものであって、金属錯体を触媒に用い、添加剤を併存させなくても、比較的温和な反応条件で効率的にベンジル位を空気酸化して水酸基又はオキソ基を導入できる空気酸化方法、及び添加剤を併存させなくても、比較的温和な反応条件で効率的にベンジル位を空気酸化して水酸基又はオキソ基を導入できる、金属錯体である空気酸化触媒を提供することを目的とする。 The present invention has been made in view of the above circumstances, in which a metal complex is used as a catalyst and the benzyl position is efficiently air-oxidized under relatively mild reaction conditions without the presence of additives to form a hydroxyl group. Alternatively, air is a metal complex capable of introducing a hydroxyl group or an oxo group by efficiently air-oxidizing the benzyl position under relatively mild reaction conditions without using an air oxidation method capable of introducing an oxo group and an additive. It is an object of the present invention to provide an oxidation catalyst.

本発明は、以下の態様を有する。
〔1〕ベンジル位を有する有機化合物の前記ベンジル位を空気酸化する方法であって、
前記有機化合物を、二種以上の金属を含む多核金属錯体である触媒の存在下で分子状酸素と接触させることを特徴とする、空気酸化方法。
〔2〕前記多核金属錯体が、マクロサイクル配位子を含む、請求項1に記載の空気酸化方法。
〔3〕前記二種以上の金属が、セリウムと周期表第四周期に属する遷移金属とを含む、請求項1又は2に記載の空気酸化方法。
〔4〕前記多核金属錯体が、下記式(i)で表される、請求項1〜3のいずれか一項に記載の空気酸化方法。
The present invention has the following aspects.
[1] A method for air-oxidizing the benzyl position of an organic compound having a benzyl position.
A method for air oxidation, which comprises contacting the organic compound with molecular oxygen in the presence of a catalyst which is a polynuclear metal complex containing two or more kinds of metals.
[2] The air oxidation method according to claim 1, wherein the polynuclear metal complex contains a macrocycle ligand.
[3] The air oxidation method according to claim 1 or 2, wherein the two or more kinds of metals include cerium and a transition metal belonging to the fourth period of the periodic table.
[4] The air oxidation method according to any one of claims 1 to 3, wherein the polynuclear metal complex is represented by the following formula (i).

Figure 2020132573
Figure 2020132573

式中、Xは、周期表第四周期に属する遷移金属であり、
は、連結基であり、
は、対アニオンであり、
及びRは、それぞれ独立に水素原子、アルキル基、アリール基、水酸基もしくはアミノ基であるか、又は互いに結合して環を形成している。
〔5〕前記周期表第四周期に属する遷移金属が、マンガン、銅及び亜鉛からなる群から選ばれる少なくとも一種である、請求項3又は4に記載の空気酸化方法。
〔6〕前記触媒の使用量が、前記有機化合物に対して1〜20質量%である、請求項1〜5のいずれか一項に記載の空気酸化方法。
〔7〕ベンジル位を有する有機化合物の前記ベンジル位を空気酸化するための触媒であって、
二種以上の金属を含む多核金属錯体であることを特徴とする、空気酸化触媒。
〔8〕前記多核金属錯体が、マクロサイクル配位子を含む、請求項7に記載の空気酸化触媒。
〔9〕前記二種以上の金属が、セリウムと周期表第四周期に属する遷移金属とを含む、請求項7又は8に記載の空気酸化触媒。
〔10〕前記多核金属錯体が、下記式(i)で表される、請求項7〜9のいずれか一項に記載の空気酸化触媒。
In the equation, X 1 is a transition metal belonging to the 4th period of the periodic table.
X 2 is a linking group
X 3 is a counter anion,
R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group or an amino group, or are bonded to each other to form a ring.
[5] The air oxidation method according to claim 3 or 4, wherein the transition metal belonging to the fourth period of the periodic table is at least one selected from the group consisting of manganese, copper and zinc.
[6] The air oxidation method according to any one of claims 1 to 5, wherein the amount of the catalyst used is 1 to 20% by mass with respect to the organic compound.
[7] A catalyst for air-oxidizing the benzyl position of an organic compound having a benzyl position.
An air oxidation catalyst, which is a polynuclear metal complex containing two or more kinds of metals.
[8] The air oxidation catalyst according to claim 7, wherein the polynuclear metal complex contains a macrocycle ligand.
[9] The air oxidation catalyst according to claim 7 or 8, wherein the two or more kinds of metals include cerium and a transition metal belonging to the fourth period of the periodic table.
[10] The air oxidation catalyst according to any one of claims 7 to 9, wherein the polynuclear metal complex is represented by the following formula (i).

Figure 2020132573
Figure 2020132573

式中、Xは、周期表第四周期に属する遷移金属であり、
は、連結基であり、
は、対アニオンであり、
及びRは、それぞれ独立に水素原子、アルキル基、アリール基、水酸基もしくはアミノ基であるか、又は互いに結合して環を形成している。
〔11〕前記周期表第四周期に属する遷移金属が、マンガン、銅及び亜鉛からなる群から選ばれる少なくとも一種である、請求項9又は10に記載の空気酸化触媒。
In the formula, X 1 is a transition metal belonging to the fourth period of the periodic table.
X 2 is a linking group
X 3 is a counter anion,
R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group or an amino group, or are bonded to each other to form a ring.
[11] The air oxidation catalyst according to claim 9 or 10, wherein the transition metal belonging to the fourth period of the periodic table is at least one selected from the group consisting of manganese, copper and zinc.

本発明によれば、金属錯体を触媒に用い、添加剤を併存させなくても、比較的温和な反応条件で効率的にベンジル位を空気酸化して水酸基又はオキソ基を導入できる空気酸化方法、及び添加剤を併存させなくても、比較的温和な反応条件で効率的にベンジル位を空気酸化して水酸基又はオキソ基を導入できる、金属錯体である空気酸化触媒を提供できる。 According to the present invention, an air oxidation method capable of introducing a hydroxyl group or an oxo group by efficiently air-oxidizing the benzyl position under relatively mild reaction conditions without using a metal complex as a catalyst and coexisting with an additive. And, it is possible to provide an air oxidation catalyst which is a metal complex capable of efficiently air-oxidizing the benzyl position to introduce a hydroxyl group or an oxo group under relatively mild reaction conditions without coexisting an additive.

製造例1で得た触媒の構造を示す図である。It is a figure which shows the structure of the catalyst obtained in the production example 1. FIG. 製造例2で得た触媒の構造を示す図である。It is a figure which shows the structure of the catalyst obtained in the production example 2.

以下、本発明について詳細に説明する。以下の説明において例示される材料等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
本明細書において、数値範囲を示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
「ベンジル位」は、6員芳香環を構成する炭素原子に直接結合している炭素原子の位置である。
「空気酸化」は、分子状酸素が酸化剤となる酸化反応である。
「遷移金属」は、周期表第3族〜第12族の元素の総称である。
Hereinafter, the present invention will be described in detail. The materials and the like exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
In the present specification, "~" indicating a numerical range is used to mean that numerical values described before and after the numerical range are included as a lower limit value and an upper limit value.
The "benzyl position" is the position of the carbon atom directly bonded to the carbon atom constituting the 6-membered aromatic ring.
"Air oxidation" is an oxidation reaction in which molecular oxygen acts as an oxidant.
"Transition metal" is a general term for elements of groups 3 to 12 of the periodic table.

本発明の空気酸化方法は、ベンジル位を有する有機化合物の前記ベンジル位を空気酸化する方法である。以下、空気酸化する有機化合物を「基質」とも記す。
本発明の空気酸化方法では、基質を、二種以上の金属を含む多核金属錯体である触媒(以下、「空気酸化触媒」とも記す。)の存在下で分子状酸素と接触させる。これにより、基質のベンジル位が空気酸化され、基質のベンジル位に水酸基又はオキソ基が導入された構造の有機化合物が生成する。例えば、基質がベンジル位にC−H結合を有する場合、基質のベンジル位が空気酸化されると、ベンジル位にC−OH結合を有するアルコール化合物、又はベンジル位にC=O結合を有するカルボニル化合物が生成する。
The air oxidation method of the present invention is a method of air-oxidizing the benzyl position of an organic compound having a benzyl position. Hereinafter, the organic compound that oxidizes by air is also referred to as a "substrate".
In the air oxidation method of the present invention, the substrate is brought into contact with molecular oxygen in the presence of a catalyst (hereinafter, also referred to as "air oxidation catalyst") which is a polynuclear metal complex containing two or more kinds of metals. As a result, the benzyl position of the substrate is air-oxidized, and an organic compound having a structure in which a hydroxyl group or an oxo group is introduced into the benzyl position of the substrate is produced. For example, when the substrate has a C—H bond at the benzyl position, an alcohol compound having a C—OH bond at the benzyl position or a carbonyl compound having a C = O bond at the benzyl position when the benzyl position of the substrate is air-oxidized. Is generated.

<空気酸化触媒>
本発明における空気酸化触媒は、二種以上の金属を含む多核金属錯体である。かかる空気酸化触媒によれば、添加剤を併存させなくても、比較的温和な反応条件で効率的に、基質のベンジル位を空気酸化して水酸基又はオキソ基を導入できる。また、金属錯体は、空気酸化の際に消費されない(分解しない)ので、反応後に回収して再利用できる。
<Air oxidation catalyst>
The air oxidation catalyst in the present invention is a polynuclear metal complex containing two or more kinds of metals. According to such an air oxidation catalyst, the benzyl position of the substrate can be efficiently air-oxidized to introduce a hydroxyl group or an oxo group under relatively mild reaction conditions without the presence of additives. Moreover, since the metal complex is not consumed (not decomposed) during air oxidation, it can be recovered and reused after the reaction.

二種以上の金属は少なくとも、セリウムと周期表第四周期に属する遷移金属(以下、「第四周期遷移金属」とも記す。)とを含むことが好ましい。これらの金属を含むことで、錯体の安定性が優れ回収と再使用が容易になる。
セリウムは、100℃未満の温度で、三価と四価の酸化数を流動的かつ安定的に駆動する。この性質が上記効果に寄与すると考えられる。第四周期遷移金属は、セリウムの酸化数における三価と四価の駆動をより安定的なものとし、セリウムの酸化還元電位を変化させることで触媒活性の向上に寄与すると考えられる。
It is preferable that the two or more kinds of metals contain at least cerium and a transition metal belonging to the fourth period of the periodic table (hereinafter, also referred to as "fourth period transition metal"). By including these metals, the stability of the complex is excellent and recovery and reuse are easy.
Cerium fluidly and stably drives trivalent and tetravalent oxidation numbers at temperatures below 100 ° C. It is considered that this property contributes to the above effect. It is considered that the fourth cycle transition metal makes the driving of trivalent and tetravalent in the oxidation number of cerium more stable, and contributes to the improvement of catalytic activity by changing the oxidation-reduction potential of cerium.

第四周期遷移金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等が挙げられる。
第四周期遷移金属としては、セリウムの酸化数における三価と四価の安定的駆動と形成する錯体の安定性の二つの点で、マンガン、銅及び亜鉛からなる群から選ばれる少なくとも一種が好ましく、銅及び亜鉛からなる群から選ばれる少なくとも一種がより好ましい。
Examples of the fourth period transition metal include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and the like.
As the fourth period transition metal, at least one selected from the group consisting of manganese, copper and zinc is preferable in terms of stable driving of trivalent and tetravalent in the oxidation number of cerium and stability of the complex to be formed. , At least one selected from the group consisting of copper and zinc is more preferred.

多核金属錯体の配位子としては、二種以上の金属を安定的かつ効果的に適切な距離に配置できる点で、マクロサイクル配位子が好ましい。 As the ligand of the polynuclear metal complex, a macrocycle ligand is preferable in that two or more kinds of metals can be stably and effectively arranged at an appropriate distance.

多核金属錯体の好ましい一態様は、マクロサイクル配位子と、前記マクロサイクル配位子の内側に配置された複数(例えば3個)の第四周期遷移金属と、前記複数の第四周期遷移金属の内側に配置されたセリウムとを含む多核金属錯体である。この多核金属錯体は、ベンジル位のC−H結合を活性化させる作用に優れており、ベンジル位の空気酸化を高効率に進行させることができる。また、この多核金属錯体は、簡便かつ確実に製造でき、錯体形成後に安定に存在する。安定性に優れることから、反応後に生成物から容易に回収でき製品に混入しにくい。また、回収後に再利用しやすい。
かかる多核金属錯体の一例として、下記式(i)で表される多核金属錯体(以下、「錯体(i)」とも記す。)が挙げられる。
A preferred embodiment of the polynuclear metal complex is a macrocycle ligand, a plurality (for example, three) fourth period transition metals arranged inside the macrocycle ligand, and the plurality of fourth period transition metals. It is a polynuclear metal complex containing a cerium arranged inside the. This polynuclear metal complex is excellent in the action of activating the CH bond at the benzyl position, and can promote air oxidation at the benzyl position with high efficiency. In addition, this polynuclear metal complex can be easily and reliably produced, and exists stably after complex formation. Due to its excellent stability, it can be easily recovered from the product after the reaction and is not easily mixed into the product. In addition, it is easy to reuse after collection.
As an example of such a polynuclear metal complex, a polynuclear metal complex represented by the following formula (i) (hereinafter, also referred to as “complex (i)”) can be mentioned.

Figure 2020132573
Figure 2020132573

式中、Xは、第四周期遷移金属であり、
は、連結基であり、
は、対アニオンであり、
及びRは、それぞれ独立に水素原子、アルキル基、アリール基、水酸基もしくはアミノ基であるか、又は互いに結合して環を形成している。
In the equation, X 1 is the 4th period transition metal,
X 2 is a linking group
X 3 is a counter anion,
R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group or an amino group, or are bonded to each other to form a ring.

としては、前記した第四周期遷移金属と同様のものが挙げられ、好ましい態様も同様である。
としては、例えば、アルキレン基、脂環式基、芳香族基等が挙げられる。アルキレン基としては、直鎖状でも分岐状でもよく、例えばエチレン基、ジメチルメチレン基、トリメチレン基、2,2−ジメチルトリメチレン基等が挙げられる。アルキレン基としては、エチレン基、ジメチルメチレン基、トリメチレン基等の炭素数2〜3のアルキレン基が好ましい。脂環式基としては、例えばシクロヘキシレン基等の炭素数3〜10の脂環式基が挙げられる。芳香族基としては、例えばオルトフェニレン基等のフェニレン基、2,3−ナフタレン基等が挙げられる。
は、典型的には、脂肪族ジアミン、芳香族ジアミン等のジアミンから2つのアミノ基を除いた残基である。ジアミンとしては、例えば、エチレンジアミン、2,2−ジメチル−1,3−プロパンジアミン等の脂肪族ジアミン、1,2−シクロヘキサンジアミン等の脂環式ジアミン、1,2−フェニレンジアミン等の芳香族ジアミンが挙げられる。
Examples of X 1 include the same as those of the above-mentioned 4th period transition metal, and the preferred embodiment is also the same.
Examples of X 2 include an alkylene group, an alicyclic group, an aromatic group and the like. The alkylene group may be linear or branched, and examples thereof include an ethylene group, a dimethylmethylene group, a trimethylene group, and a 2,2-dimethyltrimethylene group. As the alkylene group, an alkylene group having 2 to 3 carbon atoms such as an ethylene group, a dimethylmethylene group and a trimethylene group is preferable. Examples of the alicyclic group include an alicyclic group having 3 to 10 carbon atoms such as a cyclohexylene group. Examples of the aromatic group include a phenylene group such as an orthophenylene group, a 2,3-naphthalene group and the like.
X 2 is typically a residue obtained by removing two amino groups from a diamine such as an aliphatic diamine or an aromatic diamine. Examples of the diamine include ethylenediamine, aliphatic diamines such as 2,2-dimethyl-1,3-propanediamine, alicyclic diamines such as 1,2-cyclohexanediamine, and aromatic diamines such as 1,2-phenylenediamine. Can be mentioned.

としては、種々の対アニオンを用いることができ、例えば、酢酸アニオン、塩化物イオン、硝酸イオン、トリフルオロメタンスルホン酸アニオンが挙げられる。対アニオンは、セリウムやXに結合していてもよく、結合していなくてもよい。 The X 3, can be used various counter anion, for example, acetic acid anion, chloride ion, nitrate ion, and trifluoromethanesulfonate anion. Counteranion may be bonded to cerium and X 1, it may not be binding.

及びRにおいて、アルキル基としては、例えば炭素数1〜15の直鎖状又は分岐状のアルキル基が挙げられる。具体例としては、メチル基、エチル基、プロピル基、n−オクチル基等が挙げられる。アルキル基は、アリール基又はハロゲン原子等の置換基を有していてもよい。
アリール基としては、例えば炭素数6〜20、好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素基が挙げられる。具体例としては、フェニル基、トリル基、キシリル基、アニシル基、ニトロフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。アリール基は、アルキル基又はハロゲン原子等の置換基を有していてもよい。
In R 1 and R 2 , examples of the alkyl group include a linear or branched alkyl group having 1 to 15 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an n-octyl group and the like. The alkyl group may have a substituent such as an aryl group or a halogen atom.
Examples of the aryl group include monocyclic, polycyclic or condensed ring aromatic hydrocarbon groups having 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms. Specific examples thereof include a phenyl group, a tolyl group, a xsilyl group, an anisyl group, a nitrophenyl group, a naphthyl group, a methylnaphthyl group, an anthryl group, a phenanthryl group, a biphenyl group and the like. The aryl group may have a substituent such as an alkyl group or a halogen atom.

及びRが互いに結合して、R及びRそれぞれが結合した炭素原子とともに形成する環としては、芳香環でもよく脂環でもよい。芳香環としては、例えば炭素数6〜20、好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素環が挙げられる。脂環としては、例えば、炭素数3〜10の単環、多環又は縮合環式の飽和炭化水素環が挙げられる。 Bound R 1 and R 2 together, the ring formed together with the carbon atom to which R 1 and R 2 are bonded, it may be good alicyclic be an aromatic ring. Examples of the aromatic ring include a monocyclic, polycyclic or condensed ring type aromatic hydrocarbon ring having 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms. Examples of the alicyclic ring include a monocyclic ring, a polycyclic ring, or a condensed ring type saturated hydrocarbon ring having 3 to 10 carbon atoms.

錯体(i)としては、Xがアルキレン基、Xが酢酸アニオンであるものが好ましい。 As the complex (i), it is preferable that X 2 is an alkylene group and X 3 is an acetate anion.

錯体(i)は、例えば、以下の手順で製造できる。
まず、溶媒中で、Xの酢酸塩と、2,3−ジヒドロキシベンゼン−1,4−ジカルボアルデヒドと、セリウムアセテートとを混合する。混合条件は、例えば25〜80℃で1〜4時間である。次いで、得られた混合液にジアミン(HN−X−NH)を加えて撹拌する。攪拌条件は、例えば25〜80℃で6〜18時間である。
その後、溶媒を除去することにより、形成された錯体を回収できる。必要に応じて、再結晶等の精製処理を行うことができる。得られた錯体の構造は、例えば、単結晶X線結晶構造解析により確認できる。
The complex (i) can be produced, for example, by the following procedure.
First, in a solvent, mixing the acetate of X 1, and 2,3-dihydroxybenzene-1,4-carbaldehyde, and a cerium acetate. The mixing conditions are, for example, 25 to 80 ° C. for 1 to 4 hours. Then, diamine (H 2 N-X 2- NH 2 ) is added to the obtained mixed solution and stirred. The stirring conditions are, for example, 25 to 80 ° C. for 6 to 18 hours.
After that, the formed complex can be recovered by removing the solvent. If necessary, purification treatment such as recrystallization can be performed. The structure of the obtained complex can be confirmed by, for example, single crystal X-ray crystal structure analysis.

<基質>
基質としては、ベンジル位を有する有機化合物であれば特に制限はない。
基質は、典型的には、ベンジル位にC−OH結合を有さない。すなわちベンジル位に置換基として水酸基を持たない。
基質としては、例えば、下記式(1)で表される化合物(以下、「化合物(1)」とも記す。)、下記式(2)で表される化合物(以下、「化合物(2)」とも記す。)等の、ベンジル位にC−H結合を有する化合物が挙げられる。
<Substrate>
The substrate is not particularly limited as long as it is an organic compound having a benzyl position.
Substrate typically does not have a C-OH bond at the benzyl position. That is, it does not have a hydroxyl group as a substituent at the benzyl position.
As the substrate, for example, a compound represented by the following formula (1) (hereinafter, also referred to as “compound (1)”) and a compound represented by the following formula (2) (hereinafter, also referred to as “compound (2)”). Examples thereof include compounds having a CH bond at the benzyl position, such as).

Figure 2020132573
Figure 2020132573

Figure 2020132573
Figure 2020132573

式中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、又はスルフィニル基を示す。これらの基はさらに、アルキル基、アリール基又はハロゲン原子等の置換基を有していてもよい。
、R、R、R、R、R、R、R10、及びR11から選ばれる二か所が結合して環を形成してもよい。
、R、及びRから選ばれる二か所が結合してオキソ基を形成してもよい。
、R、及びRが結合して芳香環を形成してもよく、さらにその芳香環がR又はR11と結合して縮合環を形成してもよい。
In the formula, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently hydrogen atom, alkyl group, cycloalkyl group and alkenyl. Shows a group, an alkynyl group, an aryl group, an aralkyl group, or a sulfinyl group. These groups may further have a substituent such as an alkyl group, an aryl group or a halogen atom.
Two locations selected from R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , and R 11 may be combined to form a ring.
Two sites selected from R 4 , R 5 , and R 6 may be bonded to form an oxo group.
R 4 , R 5 , and R 6 may be combined to form an aromatic ring, and the aromatic ring may be further combined with R 7 or R 11 to form a fused ring.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいアルキル基としては、例えば、炭素数1〜15の直鎖状又は分岐状のアルキル基が挙げられる。具体例としては、メチル基、エチル基、プロピル基、n−オクチル基等が挙げられる。 Alkyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include, for example, 1 carbon atom. Included are ~ 15 linear or branched alkyl groups. Specific examples include a methyl group, an ethyl group, a propyl group, an n-octyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいシクロアルキル基としては、例えば、炭素数3〜10の単環、多環又は縮合環式のシクロアルキル基が挙げられる。具体例としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 Examples of cycloalkyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include, for example, the number of carbon atoms. Examples thereof include 3 to 10 monocyclic, polycyclic or condensed ring cycloalkyl groups. Specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいアルケニル基としては、例えば、炭素数3〜10のアルケニル基が挙げられる。具体例としては、ビニル基、アリル基、ヘキセニル基等が挙げられる。 Examples of alkenyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 include, for example, 3 carbon atoms. Examples include 10 to 10 alkenyl groups. Specific examples include a vinyl group, an allyl group, a hexenyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいアルキニル基としては、例えば、炭素数3〜10のアルキニル基及びアリールアルキニル基が挙げられる。具体例としては、エチニル基、プロピニル基、ヘキシニル基、フェニルエチニル基等が挙げられる。 Examples of alkynyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 include, for example, 3 carbon atoms. Included are 10 to 10 alkynyl groups and aryl alkynyl groups. Specific examples include an ethynyl group, a propynyl group, a hexynyl group, a phenylethynyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいアリール基としては、例えば炭素数6〜20、好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素基が挙げられる。具体例としては、フェニル基、トリル基、キシリル基、アニシル基、ニトロフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。 Aryl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 include, for example, 6 to 6 carbon atoms. 20, preferably 6 to 14 monocyclic, polycyclic or condensed ring aromatic hydrocarbon groups. Specific examples include a phenyl group, a tolyl group, a xsilyl group, an anisyl group, a nitrophenyl group, a naphthyl group, a methylnaphthyl group, an anthryl group, a phenanthryl group, a biphenyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいアラルキル基としては、例えば炭素数は7〜20、好ましくは7〜14の単環、多環又は縮合環式のアラルキル基が挙げられ。具体例としては、ベンジル基、1−フェニルエチル基、1−フェニルプロピル基、1−ナフチルメチル基、2−ナフチルメチル基等が挙げられる。 Aralkyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include, for example, 7 carbon atoms. Examples thereof include a monocyclic, polycyclic or condensed ring type aralkyl group of ~ 20, preferably 7-14. Specific examples thereof include a benzyl group, a 1-phenylethyl group, a 1-phenylpropyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group and the like.

、R、R、R、R、R、R、R10、R11、及びR12における置換基を有していてもよいスルフィニル基としては、メチルスルフィニル基、フェニルスルフィニル基等が挙げられる。 Sulfinyl groups that may have substituents at R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include methyl sulfinyl groups and phenyls. Examples include a sulfinyl group.

基質の具体例としては、ベンジルフェニルケトン、1,4−ジフェニル−3−ブチン−2−オン、トルエン、о−キシレン、m−キシレン、p−キシレン、メシチレン、プソイドクメン、クメン、エチルベンゼン、ジフェニルメタン、フルオレン、インダン等が挙げられる。 Specific examples of the substrate include benzylphenyl ketone, 1,4-diphenyl-3-butin-2-one, toluene, о-xylene, m-xylene, p-xylene, mesitylene, pseudocumene, cumene, ethylbenzene, diphenylmethane, and fluorene. , Indan, etc.

<空気酸化>
基質を空気酸化触媒の存在下で分子状酸素と接触させることにより、基質のベンジル位の空気酸化反応が進行する。
基質を空気酸化触媒の存在下で分子状酸素と接触させる方法としては、例えば、基質と、空気酸化触媒と、必要に応じて液状媒体を容器に収容し、空気下で撹拌する方法が挙げられる。
<Air oxidation>
By contacting the substrate with molecular oxygen in the presence of an air oxidation catalyst, the air oxidation reaction at the benzyl position of the substrate proceeds.
Examples of the method of contacting the substrate with molecular oxygen in the presence of an air oxidation catalyst include a method in which the substrate, the air oxidation catalyst and, if necessary, a liquid medium are contained in a container and stirred in air. ..

空気は、例えば、1〜10気圧の圧力範囲で用いられる。
空気は、容器形状に依存した拡散を利用して容器内に導入してもよく、エアポンプを用いて導入してもよく、上方を開放させたフラスコや試験管等のガラス器具で1気圧の大気下における拡散条件下で導入してもよい。
Air is used, for example, in a pressure range of 1 to 10 atmospheres.
Air may be introduced into the container by utilizing diffusion depending on the shape of the container, may be introduced by using an air pump, or may be introduced by using a glassware such as a flask or a test tube with an open upper part. It may be introduced under the diffusion conditions below.

空気酸化触媒の使用量は、例えば、基質(100質量%)に対して0.01〜20質量%であり、好ましくは0.01〜10質量%、より好ましくは0.05〜5質量%である。
又は、空気酸化触媒の使用量は、例えば、基質1ミリモルに対して1〜200mg、好ましくは1〜100mg、より好ましくは1〜10mgである。
空気酸化触媒の使用量が前記範囲の下限値以上であれば、基質のベンジル位の空気酸化反応がより進みやすい。空気酸化触媒の使用量が前記範囲の上限値を超えると、加えた触媒が完全に溶解せず見かけの触媒活性が低下するおそれがある。
The amount of the air oxidation catalyst used is, for example, 0.01 to 20% by mass, preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass with respect to the substrate (100% by mass). is there.
Alternatively, the amount of the air oxidation catalyst used is, for example, 1 to 200 mg, preferably 1 to 100 mg, and more preferably 1 to 10 mg with respect to 1 mmol of the substrate.
When the amount of the air oxidation catalyst used is not less than the lower limit of the above range, the air oxidation reaction at the benzyl position of the substrate is more likely to proceed. If the amount of the air oxidation catalyst used exceeds the upper limit of the above range, the added catalyst may not be completely dissolved and the apparent catalytic activity may decrease.

液状媒体としては、一般的な有機溶媒は全て用いることが出来、例えば、ジメチルスルホキシド(DMSO)、ジクロロエタン、ジメチルホルミアミド(DMF)、アセトニトリル、エタノール、ベンゼン、ベンゾニトリル等が挙げられる。これらの液状媒体は単独で使用しても、2種以上を混合使用してもよい。
液状媒体の使用量は、基質に対し、質量比で、0.1〜1000倍が好ましく、1〜100倍がより好ましい。
As the liquid medium, all general organic solvents can be used, and examples thereof include dimethyl sulfoxide (DMSO), dichloroethane, dimethylformamide (DMF), acetonitrile, ethanol, benzene, and benzonitrile. These liquid media may be used alone or in combination of two or more.
The amount of the liquid medium used is preferably 0.1 to 1000 times, more preferably 1 to 100 times, the mass ratio with respect to the substrate.

空気酸化反応の反応条件に特に制約はないが、反応温度は、好ましくは0〜150℃、より好ましくは20〜60℃である。
反応時間は、用いる触媒の量や反応温度等により左右され、一概に定めることはできないが、通常は1〜20時間の範囲で、好ましくは2〜6時間の範囲で行われる。
The reaction conditions of the air oxidation reaction are not particularly limited, but the reaction temperature is preferably 0 to 150 ° C, more preferably 20 to 60 ° C.
The reaction time depends on the amount of the catalyst used, the reaction temperature, and the like, and cannot be unconditionally determined, but is usually in the range of 1 to 20 hours, preferably in the range of 2 to 6 hours.

空気酸化反応は、添加剤の不在下で行うことが好ましい。添加剤の不在下で空気酸化反応を行うことにより、生成物の純度が高まる。また、反応終了後の精製時のエネルギー投入量を少なくできる。
添加剤としては、例えば、特開平8−38909号公報の[0014]〜[0029]や特開平9−327626号公報の[0030]〜[0037]に開示されるイミド化合物(N−ヒドロキシフタルイミド等)、AgBF、AgPF、NaBF、NaPF等が挙げられる。
The air oxidation reaction is preferably carried out in the absence of additives. By performing the air oxidation reaction in the absence of additives, the purity of the product is increased. In addition, the amount of energy input during purification after the reaction is completed can be reduced.
Examples of the additive include imide compounds (N-hydroxyphthalimide and the like) disclosed in JP-A-8-389909 [0014] to [0029] and JP-A-9-327626A [0030] to [0037]. ), AgBF 4 , AgPF 6 , NaBF 4 , NaPF 6, and the like.

反応終了後、蒸留、クロマト分離、再結晶、昇華等の通常の方法によって、得られた生成物(アルコール化合物、カルボニル化合物等)を取り出すことができる。 After completion of the reaction, the obtained product (alcohol compound, carbonyl compound, etc.) can be taken out by a usual method such as distillation, chromatographic separation, recrystallization, and sublimation.

<生成物>
上記のように基質のベンジル位を空気酸化することで、基質のベンジル位に水酸基又はオキソ基が導入された構造の有機化合物が得られる。
例えば基質が前記化合物(1)である場合、下記式(3)で表されるアルコール化合物及び/又は下記式(4)で表されるカルボニル化合物が得られる。
例えば基質が前記化合物(2)である場合、下記式(5)で表されるアルコール化合物及び/又は下記式(6)で表されるカルボニル化合物が得られる。
<Product>
By air-oxidizing the benzyl position of the substrate as described above, an organic compound having a structure in which a hydroxyl group or an oxo group is introduced into the benzyl position of the substrate can be obtained.
For example, when the substrate is the compound (1), an alcohol compound represented by the following formula (3) and / or a carbonyl compound represented by the following formula (4) can be obtained.
For example, when the substrate is the compound (2), an alcohol compound represented by the following formula (5) and / or a carbonyl compound represented by the following formula (6) can be obtained.

Figure 2020132573
Figure 2020132573

Figure 2020132573
Figure 2020132573

Figure 2020132573
Figure 2020132573

Figure 2020132573
Figure 2020132573

式中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ、前記と同義である。 In the formula, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are synonymous with the above, respectively.

得られるアルコール化合物又はカルボニル化合物の具体例としては、ベンジルアルコール、2−メチルベンジルアルコール、3−メチルベンジルアルコール、4−メチルベンジルアルコールベンジル、3,5−ジメチルベンジルアルコール、1−フェニルエタノール、ジフェニルメタノール、フルオレノール、1−インダノール、ベンジル、安息香酸、2−メチル安息香酸、3−メチル安息香酸、4−メチル安息香酸、3,5−ジメチル安息香酸、アセトフェノン、ベンゾフェノン、フルオレノン、又は1−インダノン等が挙げられる。 Specific examples of the obtained alcohol compound or carbonyl compound include benzyl alcohol, 2-methylbenzyl alcohol, 3-methylbenzyl alcohol, 4-methylbenzyl alcohol benzyl, 3,5-dimethylbenzyl alcohol, 1-phenylethanol and diphenylmethanol. , Fluolenol, 1-indanol, benzyl, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, 3,5-dimethylbenzoic acid, acetphenone, benzophenone, fluorenone, 1-indanone, etc. Can be mentioned.

以上説明した本発明にあっては、前記した空気酸化触媒を用いることで、添加剤を併存させなくても、比較的温和な条件下で効率的にベンジル位を空気酸化でき、基質のベンジル位に水酸基又はオキソ基が導入された構造の有機化合物を高収率で得ることができる。また、分子状酸素を酸化剤として用いるので、水のみを副生物として排出しながら、アルコール化合物やカルボニル化合物を製造できる。
また、前記した空気酸化触媒は、金属錯体であるので、ベンジル位を空気酸化する際に分解せず、再利用できる。
特に、前記した触媒(i)は、簡便かつ確実に製造でき、錯体形成後に安定に存在する。そのため、従来の金属錯体に用いられているような、製造法が煩雑で高コストであり、しかも製造中や製造後に分解するおそれのある配位子の利用を避けることができる。
In the present invention described above, by using the above-mentioned air oxidation catalyst, the benzyl position can be efficiently air-oxidized under relatively mild conditions without the presence of additives, and the benzyl position of the substrate can be used. An organic compound having a structure in which a hydroxyl group or an oxo group is introduced can be obtained in high yield. Moreover, since molecular oxygen is used as an oxidizing agent, an alcohol compound or a carbonyl compound can be produced while discharging only water as a by-product.
Further, since the above-mentioned air oxidation catalyst is a metal complex, it can be reused without being decomposed when the benzyl position is air-oxidized.
In particular, the catalyst (i) described above can be easily and reliably produced, and exists stably after complex formation. Therefore, it is possible to avoid the use of a ligand which is complicated and costly to produce as used in a conventional metal complex and may be decomposed during or after production.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。室温は、特に記載のない場合、25℃である。
空気酸化における転化率、収率は、ガスクロマトグラフィーにより分析した結果を元に、以下の計算式により計算した。
転化率(%)=(1−残存した原料のモル数/使用した原料のモル数)×100
収率(%)=(目的化合物のモル数/使用した原料のモル数)×100
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. Room temperature is 25 ° C. unless otherwise specified.
The conversion rate and yield in air oxidation were calculated by the following formulas based on the results analyzed by gas chromatography.
Conversion rate (%) = (1-Number of moles of remaining raw material / Number of moles of raw material used) x 100
Yield (%) = (number of moles of target compound / number of moles of raw material used) x 100

(製造例1)
酢酸亜鉛二水和物(和光純薬株式会社製)(274mg、1.25mmol)のメタノール溶液(50mL)と、2,3−ジヒドロキシベンゼン−1,4−ジカルボアルデヒド(208mg、1.25mmol)のクロロホルム溶液(75mL)とを、セリウムアセテート一水和物(キシダ化学株式会社製)(139.8mg、0.416mmol)のメタノール/水混合溶媒(メタノール:水=2:1(質量比))溶液(75mL)に加え、30分間室温で撹拌した。その後、2,2−ジメチル−1,3−プロパンジアミン(東京化成工業株式会社製)(148mg、1.45mmol)のクロロホルム溶液(75mL)を加え、18時間室温で撹拌した。ロータリーエバポレーターで溶媒を留去した後、0.05mmHg下で真空乾燥させ、メタノール/ジエチルエーテル/ヘキサンの3層系で再結晶を行い、前記式(i)で表され、式中のXが亜鉛、Xがジメチルメチレン基、Xが酢酸アニオンである錯体(379mg、0.315mmol、収率76%)を得た。
得られた錯体について単結晶X線結晶構造解析を行い、その結果から、得られた錯体が図1に示す構造を有することを確認した。
(Manufacturing Example 1)
Zinc acetate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (274 mg, 1.25 mmol) in methanol solution (50 mL) and 2,3-dihydroxybenzene-1,4-dicarbaldehyde (208 mg, 1.25 mmol) Chloroform solution (75 mL) of cerium acetate monohydrate (manufactured by Kishida Chemical Co., Ltd.) (139.8 mg, 0.416 mmol) in a methanol / water mixed solvent (methanol: water = 2: 1 (mass ratio)). It was added to the solution (75 mL) and stirred for 30 minutes at room temperature. Then, a chloroform solution (75 mL) of 2,2-dimethyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) (148 mg, 1.45 mmol) was added, and the mixture was stirred at room temperature for 18 hours. After distilling off the solvent with a rotary evaporator, it was vacuum dried under 0.05 mmHg, recrystallized in a three-layer system of methanol / diethyl ether / hexane, represented by the above formula (i), and X 1 in the formula was expressed. A complex (379 mg, 0.315 mmol, yield 76%) in which zinc and X 2 were dimethylmethylene groups and X 3 was an acetate anion was obtained.
A single crystal X-ray crystal structure analysis was performed on the obtained complex, and from the results, it was confirmed that the obtained complex had the structure shown in FIG.

(製造例2)
酢酸銅(アルドリッチ社製)(55.3mg、0.304mmol)と硝酸セリウム六水和物(アルドリッチ社製)(43.7mg、0.101mmol)のメタノール溶液(25mL)に、2,3−ジヒドロキシベンゼン−1,4−ジカルボアルデヒド(50.7mg、0.305mmol)のメタノール溶液(5mL)を加え、4時間室温で撹拌した。その後、2,2−ジメチル−1,3−プロパンジアミン(東京化成工業株式会社製)(35.6mg、0.350mmol)のメタノール溶液(5mL)を加えて、17時間室温で撹拌した。0.05mmHg下で、溶媒を留去し乾燥させ、ピリジン/トルエンの2層系で再結晶を行い、前記式(i)で表され、式中のXが銅、Xがジメチルメチレン基、Xが酢酸アニオンである錯体(379mg、0.315mmol、収率76%)を得た。
得られた錯体について単結晶X線結晶構造解析を行い、その結果から、得られた錯体が図2に示す構造を有することを確認した。
(Manufacturing Example 2)
2,3-Dihydroxy in a methanol solution (25 mL) of cupric acetate (Aldrich) (55.3 mg, 0.304 mmol) and cerium nitrate hexahydrate (Aldrich) (43.7 mg, 0.101 mmol). A methanol solution (5 mL) of benzene-1,4-dicarbaldehyde (50.7 mg, 0.305 mmol) was added, and the mixture was stirred at room temperature for 4 hours. Then, a methanol solution (5 mL) of 2,2-dimethyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) (35.6 mg, 0.350 mmol) was added, and the mixture was stirred at room temperature for 17 hours. The solvent was distilled off and dried under 0.05 mmHg, and recrystallization was performed in a two-layer system of pyridine / toluene, which was represented by the above formula (i), where X 1 was copper and X 2 was a dimethyl methylene group. , X 3 is an acetate anion complex (379 mg, 0.315 mmol, yield 76%).
A single crystal X-ray crystal structure analysis was performed on the obtained complex, and from the results, it was confirmed that the obtained complex had the structure shown in FIG.

(製造例3)
酢酸亜鉛二水和物(和光純薬株式会社製)(109.8mg、0.500mmol)にメタノール(20mL)と水(10mL)を加え溶解させ、2,3−ジヒドロキシベンゼン−1,4−ジカルボアルデヒド(83.1mg、0.500mmol)のクロロホルム溶液(10mL)を加え、室温で17時間攪拌した。溶媒を留去し減圧乾燥後、メタノール(30mL)を加え、塩化セリウム(III)(無水)(東京化成工業株式会社製)(41.1mg、0.166mmol)を加え、室温で1時間攪拌した。その後、2,2−ジメチル−1,3−プロパンジアミン(東京化成工業株式会社製)(52.8mg、0.516mmol)のメタノール溶液(3mL)を加えて、17時間室温で撹拌した。0.05mmHg下で、溶媒を留去し乾燥させ、メタノール(6mL)に溶かし、その溶液をジエチルエーテル(200mL)に滴下し錯体を再沈殿させた。得られた粉末をろ過し、乾燥させることで、前記式(i)で表され、式中のXが亜鉛、Xがジメチルメチレン基、Xが塩素イオンである錯体(132mg、0.117mmol、収率70%)を得た。得られた錯体の構造は、質量分析により確認した。
(Manufacturing Example 3)
Zinc acetate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (109.8 mg, 0.500 mmol) is dissolved by adding methanol (20 mL) and water (10 mL) to dissolve 2,3-dihydroxybenzene-1,4-di. A chloroform solution (10 mL) of carboaldehyde (83.1 mg, 0.500 mmol) was added, and the mixture was stirred at room temperature for 17 hours. After distilling off the solvent and drying under reduced pressure, methanol (30 mL) was added, cerium (III) chloride (anhydrous) (manufactured by Tokyo Chemical Industry Co., Ltd.) (41.1 mg, 0.166 mmol) was added, and the mixture was stirred at room temperature for 1 hour. .. Then, a methanol solution (3 mL) of 2,2-dimethyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) (52.8 mg, 0.516 mmol) was added, and the mixture was stirred at room temperature for 17 hours. Under 0.05 mmHg, the solvent was distilled off and dried, dissolved in methanol (6 mL), and the solution was added dropwise to diethyl ether (200 mL) to reprecipitate the complex. By filtering and drying the obtained powder, a complex represented by the above formula (i), in which X 1 is zinc, X 2 is a dimethylmethylene group, and X 3 is a chlorine ion (132 mg, 0. 117 mmol, yield 70%) was obtained. The structure of the obtained complex was confirmed by mass spectrometry.

(製造例4)
硝酸亜鉛六水和物(ナカライテスク製)(148.6mg、0.500mmol)と、セリウムアセテート一水和物(キシダ化学株式会社製)(55.9mg、0.166mmol)にメタノール(20mL)と水(10mL)を加え溶解させ、2,3−ジヒドロキシベンゼン−1,4−ジカルボアルデヒド(83.1mg、0.500mmol)のクロロホルム溶液(10mL)を加え、室温で17時間攪拌した。溶媒を留去し減圧乾燥後、メタノール(20mL)を加え、室温で1時間攪拌した。その後、2,2−ジメチル−1,3−プロパンジアミン(東京化成工業株式会社製)(52.8mg、0.516mmol)のメタノール溶液(3mL)を加えて、17時間室温で撹拌した。0.05mmHg下で、溶媒を留去し乾燥させ、メタノール(6mL)に溶かし、その溶液をジエチルエーテル(200mL)に滴下し錯体を再沈殿させた。得られた粉末をろ過し、乾燥させることで、前記式(i)で表され、式中のXが亜鉛、Xがジメチルメチレン基、Xが硝酸イオンである錯体(197mg、0.162mmol、収率98%)を得た。得られた錯体の構造は、質量分析により確認した。
(Manufacturing Example 4)
Zinc nitrate hexahydrate (manufactured by Nacalai Tesque) (148.6 mg, 0.500 mmol), cerium acetate monohydrate (manufactured by Kishida Chemical Co., Ltd.) (55.9 mg, 0.166 mmol) and methanol (20 mL) Water (10 mL) was added to dissolve the mixture, a chloroform solution (10 mL) of 2,3-dihydroxybenzene-1,4-dicarbaldehyde (83.1 mg, 0.500 mmol) was added, and the mixture was stirred at room temperature for 17 hours. After distilling off the solvent and drying under reduced pressure, methanol (20 mL) was added, and the mixture was stirred at room temperature for 1 hour. Then, a methanol solution (3 mL) of 2,2-dimethyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) (52.8 mg, 0.516 mmol) was added, and the mixture was stirred at room temperature for 17 hours. Under 0.05 mmHg, the solvent was evaporated to dryness, dissolved in methanol (6 mL) and the solution was added dropwise to diethyl ether (200 mL) to reprecipitate the complex. By filtering and drying the obtained powder, a complex represented by the above formula (i), in which X 1 is zinc, X 2 is a dimethyl methylene group, and X 3 is a nitrate ion (197 mg, 0. 162 mmol, yield 98%) was obtained. The structure of the obtained complex was confirmed by mass spectrometry.

(製造例5)
硝酸亜鉛六水和物とセリウムアセテート一水和物の代わりにトリフルオロメタンスルホン酸亜鉛(II)とトリフルオロメタンスルホン酸セリウム(III)を用いた以外は製造例4と同様にして、前記式(i)で表され、式中のXが亜鉛、Xがジメチルメチレン基、Xがトリフルオロメタンスルホン酸アニオン(以下、「OTf」とも記す。)である錯体(221mg、0.15mmol、収率90%)を得た。得られた錯体の構造は、質量分析により確認した。
(Manufacturing Example 5)
The above formula (i) is the same as in Production Example 4 except that zinc trifluoromethanesulfonate (II) and cerium trifluoromethanesulfonate (III) are used instead of zinc nitrate hexahydrate and cerium acetate monohydrate. ), X 1 is zinc, X 2 is a dimethyl methylene group, and X 3 is a trifluoromethanesulfonic acid anion (hereinafter, also referred to as “OTf”) (221 mg, 0.15 mmol, yield). 90%) was obtained. The structure of the obtained complex was confirmed by mass spectrometry.

(実施例1)
25mL丸底フラスコにスターラーチップを入れ、製造例1で得た錯体6.0mgを入れ、さらに基質としてベンジルフェニルケトン(東京化成工業株式会社製)を19.6mg入れ、液状媒体としてDMSO(ナカライテスク株式会社製)を2mL加え、還流管に接続し、1気圧の空気下90℃で18時間撹拌した。その後、内部標準としてトリフェニルメタン(ナカライテスク株式会社製)を22.5mg(0.0921mmol)を加え、ガスクロマトグラフィー測定を行った。その結果、転化率は97%、ジケトン(下記反応式中のA)の収率は59%であり、2−ヒドロキシ−1,2−ジフェニルエタノン(下記反応式中のB)は検出されなかった。
(Example 1)
Put the stirrer chip in a 25 mL round bottom flask, put 6.0 mg of the complex obtained in Production Example 1, 19.6 mg of benzyl phenyl ketone (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a substrate, and DMSO (Nacalai Tesque) as a liquid medium. 2 mL (manufactured by Co., Ltd.) was added, connected to a reflux tube, and stirred at 90 ° C. under air at 1 atm for 18 hours. Then, 22.5 mg (0.0921 mmol) of triphenylmethane (manufactured by Nacalai Tesque, Inc.) was added as an internal standard, and gas chromatography measurement was performed. As a result, the conversion rate was 97%, the yield of diketone (A in the reaction formula below) was 59%, and 2-hydroxy-1,2-diphenylethanone (B in the reaction formula below) was not detected. It was.

Figure 2020132573
Figure 2020132573

(実施例2)
DMSOの代わりにジクロロエタンを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は81%、ジケトンの収率は28%であり、2−ヒドロキシ−1,2−ジフェニルエタノンの収率は16%であった。
(Example 2)
The reaction was carried out under the same conditions as in Example 1 except that dichloroethane was used instead of DMSO. As a result, the conversion was 81%, the yield of diketone was 28%, and the yield of 2-hydroxy-1,2-diphenylethanone was 16%.

(実施例3)
DMSOの代わりにジメチルホルムアミドを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は94%、ジケトンの収率は40%であり、2−ヒドロキシ−1,2−ジフェニルエタノンの収率は8%であった。
(Example 3)
The reaction was carried out under the same conditions as in Example 1 except that dimethylformamide was used instead of DMSO. As a result, the conversion rate was 94%, the yield of diketone was 40%, and the yield of 2-hydroxy-1,2-diphenylethanone was 8%.

(実施例4)
DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は89%、ジケトンの収率は48%であり、2−ヒドロキシ−1,2−ジフェニルエタノンの収率は16%であった。
(Example 4)
The reaction was carried out under the same conditions as in Example 1 except that acetonitrile was used instead of DMSO. As a result, the conversion was 89%, the yield of diketone was 48%, and the yield of 2-hydroxy-1,2-diphenylethanone was 16%.

(実施例5)
製造例1で得た錯体の代わりに製造例3で得た錯体(Xが塩化物イオン)を触媒とし、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は64%、ジケトンの収率は19%であり、2−ヒドロキシ−1,2−ジフェニルエタノンの収率は30%であった。
(Example 5)
The complex obtained in Production Example 3 in place of the complex obtained in Production Example 1 (X 3 are chloride ions) as a catalyst, except that acetonitrile was used instead of DMSO to conduct the reaction under the same conditions as in Example 1 It was. As a result, the conversion was 64%, the yield of diketone was 19%, and the yield of 2-hydroxy-1,2-diphenylethanone was 30%.

(実施例6)
製造例1で得た錯体の代わりに製造例4で得た錯体(XがOTf)を触媒とし、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は59%、ジケトンの収率は20%であり、2−ヒドロキシ−1,2−ジフェニルエタノンの収率は22%であった。
(Example 6)
The complex obtained in Production Example 4 in place of the complex obtained in Production Example 1 (X 3 is OTf) with a catalyst, except that acetonitrile was used instead of DMSO Reaction was carried out under the same conditions as in Example 1. As a result, the conversion was 59%, the yield of diketone was 20%, and the yield of 2-hydroxy-1,2-diphenylethanone was 22%.

(比較例1)
触媒を用いず、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は0%、ジケトン及び2−ヒドロキシ−1,2−ジフェニルエタノンは未検出であった。
(Comparative Example 1)
The reaction was carried out under the same conditions as in Example 1 except that acetonitrile was used instead of DMSO without using a catalyst. As a result, the conversion rate was 0%, and diketone and 2-hydroxy-1,2-diphenylethanone were not detected.

(比較例2)
製造例1で得た錯体の代わりに酢酸セリウム一水和物を用い、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は0%、ジケトン及び2−ヒドロキシ−1,2−ジフェニルエタノンは未検出であった。
(Comparative Example 2)
The reaction was carried out under the same conditions as in Example 1 except that cerium acetate monohydrate was used instead of the complex obtained in Production Example 1 and acetonitrile was used instead of DMSO. As a result, the conversion rate was 0%, and diketone and 2-hydroxy-1,2-diphenylethanone were not detected.

(比較例3)
製造例1で得た錯体の代わりに酢酸亜鉛二水和物を用い、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は0%、ジケトン及び2−ヒドロキシ−1,2−ジフェニルエタノンは未検出であった。
(Comparative Example 3)
The reaction was carried out under the same conditions as in Example 1 except that zinc acetate dihydrate was used in place of the complex obtained in Production Example 1 and acetonitrile was used in place of DMSO. As a result, the conversion rate was 0%, and diketone and 2-hydroxy-1,2-diphenylethanone were not detected.

(比較例4)
製造例1で得た錯体の代わりに酢酸セリウム一水和物と酢酸亜鉛二水和物を用い、DMSOの代わりにアセトニトリルを用いた以外は実施例1と同様の条件で反応を行った。その結果、転化率は0%、ジケトン及び2−ヒドロキシ−1,2−ジフェニルエタノンは未検出であった。
(Comparative Example 4)
The reaction was carried out under the same conditions as in Example 1 except that cerium acetate monohydrate and zinc acetate dihydrate were used instead of the complex obtained in Production Example 1 and acetonitrile was used instead of DMSO. As a result, the conversion rate was 0%, and diketone and 2-hydroxy-1,2-diphenylethanone were not detected.

(実施例7)
25mL丸底フラスコにスターラーチップを入れ、製造例1で得た錯体1.29mgを入れ、さらにエチルベンゼン(Sigma−Aldrich製)を3mL入れ、還流管に接続し、1気圧の空気下140℃で18時間撹拌した。その後、内部標準としてトリフェニルメタン(ナカライテスク株式会社製)を22.3mg(0.0913mmol)を加え、ガスクロマトグラフィー測定を行った。その結果、1−フェニルエタノール(下記反応式中のB)の収率は3.4%、アセトフェノン(下記反応式中のA)の収率は0.8%であった。
(Example 7)
Put the stirrer chip in a 25 mL round bottom flask, put 1.29 mg of the complex obtained in Production Example 1, put 3 mL of ethylbenzene (manufactured by Sigma-Aldrich), connect to a reflux tube, and connect to a reflux tube at 140 ° C. at 140 ° C. at 1 atm. Stirred for hours. Then, 22.3 mg (0.0913 mmol) of triphenylmethane (manufactured by Nacalai Tesque, Inc.) was added as an internal standard, and gas chromatography measurement was performed. As a result, the yield of 1-phenylethanol (B in the following reaction formula) was 3.4%, and the yield of acetophenone (A in the following reaction formula) was 0.8%.

Figure 2020132573
Figure 2020132573

(実施例8)
25mL丸底フラスコにスターラーチップを入れ、製造例2で得た錯体1.2mgを入れ、さらにエチルベンゼン(Sigma−Aldrich製)を3mL入れ、還流管に接続し、1気圧の空気下140℃で18時間撹拌した。その後、内部標準としてトリフェニルメタン(ナカライテスク株式会社製)を22.9mg(0.0928mmol)を加え、ガスクロマトグラフィー測定を行った。その結果、1−フェニルエタノールの収率は1.5%、アセトフェノンの収率は0.8%であった。
(Example 8)
Put the stirrer chip in a 25 mL round bottom flask, put 1.2 mg of the complex obtained in Production Example 2, put 3 mL of ethylbenzene (manufactured by Sigma-Aldrich), connect to a reflux tube, and connect to a reflux tube at 140 ° C. at 140 ° C. at 1 atm. Stirred for hours. Then, 22.9 mg (0.0928 mmol) of triphenylmethane (manufactured by Nacalai Tesque, Inc.) was added as an internal standard, and gas chromatography measurement was performed. As a result, the yield of 1-phenylethanol was 1.5%, and the yield of acetophenone was 0.8%.

(比較例5)
触媒を用いなかった以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノン及び1−フェニルエタノールは痕跡量観測されたのみであった。
(Comparative Example 5)
The reaction was carried out under the same conditions as in Example 7 except that no catalyst was used. As a result, only trace amounts of acetophenone and 1-phenylethanol were observed.

(比較例6)
製造例1で得た錯体の代わりに酢酸セリウム一水和物を用いた以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノンの収率は0.3%、1−フェニルエタノールの収率は1.3%であった。
(Comparative Example 6)
The reaction was carried out under the same conditions as in Example 7 except that cerium acetate monohydrate was used instead of the complex obtained in Production Example 1. As a result, the yield of acetophenone was 0.3%, and the yield of 1-phenylethanol was 1.3%.

(比較例7)
製造例1で得た錯体の代わりに酢酸亜鉛二水和物を用いた以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノンの収率は0.5%、1−フェニルエタノールの収率は1.7%であった。
(Comparative Example 7)
The reaction was carried out under the same conditions as in Example 7 except that zinc acetate dihydrate was used instead of the complex obtained in Production Example 1. As a result, the yield of acetophenone was 0.5%, and the yield of 1-phenylethanol was 1.7%.

(比較例8)
製造例1で得た錯体の代わりに酢酸セリウム一水和物と酢酸亜鉛二水和物を用いた以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノンの収率は0.2%、1−フェニルエタノールの収率は0.9%であった。
(Comparative Example 8)
The reaction was carried out under the same conditions as in Example 7 except that cerium acetate monohydrate and zinc acetate dihydrate were used instead of the complex obtained in Production Example 1. As a result, the yield of acetophenone was 0.2%, and the yield of 1-phenylethanol was 0.9%.

(比較例9)
製造例1で得た錯体の代わりにヘキサニトラトセリウム(IV)酸アンモニウム(CAN)を用いた以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノンの収率は0.5%、1−フェニルエタノールの収率は2.2%であった。
(Comparative Example 9)
The reaction was carried out under the same conditions as in Example 7 except that ammonium hexanitratocerium (IV) (CAN) was used instead of the complex obtained in Production Example 1. As a result, the yield of acetophenone was 0.5%, and the yield of 1-phenylethanol was 2.2%.

(比較例10)
製造例1で得た錯体の代わりに酢酸を30μmol用いた以外は実施例7と同様の条件で反応を行った。その結果、アセトフェノンの収率は0.1%、1−フェニルエタノールの収率は0.5%であった。
(Comparative Example 10)
The reaction was carried out under the same conditions as in Example 7 except that 30 μmol of acetic acid was used instead of the complex obtained in Production Example 1. As a result, the yield of acetophenone was 0.1%, and the yield of 1-phenylethanol was 0.5%.

基質としてベンジルフェニルケトンを用いた実施例1〜6及び比較例1〜4の結果を表1に示す。
基質としてエチルベンゼンを用いた実施例7〜8及び比較例5〜10の結果を表2に示す。表2中、添加量は、エチルベンゼン3mL当たりの触媒の使用量を示す。
Table 1 shows the results of Examples 1 to 6 and Comparative Examples 1 to 4 using benzylphenyl ketone as a substrate.
Table 2 shows the results of Examples 7 to 8 and Comparative Examples 5 to 10 using ethylbenzene as a substrate. In Table 2, the addition amount indicates the amount of the catalyst used per 3 mL of ethylbenzene.

Figure 2020132573
Figure 2020132573

Figure 2020132573
Figure 2020132573

実施例1〜6及び比較例1〜4の対比から、二種以上の金属を含む多核金属錯体を触媒に用いた実施例1〜6では、触媒を用いなかった比較例1や他の触媒を用いた比較例2〜4に比べて効率良く基質のベンジル位を空気酸化でき、基質のベンジル位に水酸基又はオキソ基が導入された構造の有機化合物を高収率で得ることができることが確認できた。
実施例7〜8及び比較例5〜10の対比においても同様の結果が確認できた。
From the comparison of Examples 1 to 6 and Comparative Examples 1 to 4, in Examples 1 to 6 in which a polynuclear metal complex containing two or more kinds of metals was used as a catalyst, Comparative Example 1 and other catalysts without a catalyst were used. It can be confirmed that the benzyl position of the substrate can be more efficiently air-oxidized as compared with Comparative Examples 2 to 4 used, and an organic compound having a structure in which a hydroxyl group or an oxo group is introduced into the benzyl position of the substrate can be obtained in a high yield. It was.
Similar results were confirmed in the comparison between Examples 7 to 8 and Comparative Examples 5 to 10.

空気酸化によりベンジル位を直接的に酸化して水酸基又はオキソ基を導入することにより、医薬品、農薬等の中間体や樹脂の原料等として工業的に重要なアルコール化合物やカルボニル化合物が得られる。そして、本発明によれば、空気を酸化剤として、副生成物が水のみで、単純な触媒混合により、アルコール化合物又はカルボニル化合物を効率的に製造できるので、本発明は、医薬品、農薬等の中間体や樹脂の原料等の分野を中心に幅広く活用することができる。 By directly oxidizing the benzyl position by air oxidation and introducing a hydroxyl group or an oxo group, an industrially important alcohol compound or carbonyl compound can be obtained as an intermediate for pharmaceuticals, agricultural chemicals and the like, a raw material for a resin, and the like. According to the present invention, an alcohol compound or a carbonyl compound can be efficiently produced by using air as an oxidizing agent, using only water as an by-product, and a simple catalyst mixing. Therefore, the present invention relates to pharmaceuticals, pesticides, etc. It can be widely used mainly in fields such as intermediates and raw materials for resins.

Claims (11)

ベンジル位を有する有機化合物の前記ベンジル位を空気酸化する方法であって、
前記有機化合物を、二種以上の金属を含む多核金属錯体である触媒の存在下で分子状酸素と接触させることを特徴とする、空気酸化方法。
A method of air-oxidizing the benzyl position of an organic compound having a benzyl position.
A method for air oxidation, which comprises contacting the organic compound with molecular oxygen in the presence of a catalyst which is a polynuclear metal complex containing two or more kinds of metals.
前記多核金属錯体が、マクロサイクル配位子を含む、請求項1に記載の空気酸化方法。 The air oxidation method according to claim 1, wherein the polynuclear metal complex contains a macrocycle ligand. 前記二種以上の金属が、セリウムと周期表第四周期に属する遷移金属とを含む、請求項1又は2に記載の空気酸化方法。 The air oxidation method according to claim 1 or 2, wherein the two or more kinds of metals include cerium and a transition metal belonging to the fourth period of the periodic table. 前記多核金属錯体が、下記式(i)で表される、請求項1〜3のいずれか一項に記載の空気酸化方法。
Figure 2020132573
式中、Xは、周期表第四周期に属する遷移金属であり、
は、連結基であり、
は、対アニオンであり、
及びRは、それぞれ独立に水素原子、アルキル基、アリール基、水酸基もしくはアミノ基であるか、又は互いに結合して環を形成している。
The air oxidation method according to any one of claims 1 to 3, wherein the polynuclear metal complex is represented by the following formula (i).
Figure 2020132573
In the equation, X 1 is a transition metal belonging to the 4th period of the periodic table.
X 2 is a linking group
X 3 is a counter anion,
R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group or an amino group, or are bonded to each other to form a ring.
前記周期表第四周期に属する遷移金属が、マンガン、銅及び亜鉛からなる群から選ばれる少なくとも一種である、請求項3又は4に記載の空気酸化方法。 The air oxidation method according to claim 3 or 4, wherein the transition metal belonging to the fourth period of the periodic table is at least one selected from the group consisting of manganese, copper and zinc. 前記触媒の使用量が、前記有機化合物に対して1〜20質量%である、請求項1〜5のいずれか一項に記載の空気酸化方法。 The air oxidation method according to any one of claims 1 to 5, wherein the amount of the catalyst used is 1 to 20% by mass with respect to the organic compound. ベンジル位を有する有機化合物の前記ベンジル位を空気酸化するための触媒であって、
二種以上の金属を含む多核金属錯体であることを特徴とする、空気酸化触媒。
A catalyst for air-oxidizing the benzyl position of an organic compound having a benzyl position.
An air oxidation catalyst, which is a polynuclear metal complex containing two or more kinds of metals.
前記多核金属錯体が、マクロサイクル配位子を含む、請求項7に記載の空気酸化触媒。 The air oxidation catalyst according to claim 7, wherein the polynuclear metal complex contains a macrocycle ligand. 前記二種以上の金属が、セリウムと周期表第四周期に属する遷移金属とを含む、請求項7又は8に記載の空気酸化触媒。 The air oxidation catalyst according to claim 7 or 8, wherein the two or more metals include cerium and a transition metal belonging to the fourth period of the periodic table. 前記多核金属錯体が、下記式(i)で表される、請求項7〜9のいずれか一項に記載の空気酸化触媒。
Figure 2020132573
式中、Xは、周期表第四周期に属する遷移金属であり、
は、連結基であり、
は、対アニオンであり、
及びRは、それぞれ独立に水素原子、アルキル基、アリール基、水酸基もしくはアミノ基であるか、又は互いに結合して環を形成している。
The air oxidation catalyst according to any one of claims 7 to 9, wherein the polynuclear metal complex is represented by the following formula (i).
Figure 2020132573
In the equation, X 1 is a transition metal belonging to the 4th period of the periodic table.
X 2 is a linking group
X 3 is a counter anion,
R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group or an amino group, or are bonded to each other to form a ring.
前記周期表第四周期に属する遷移金属が、マンガン、銅及び亜鉛からなる群から選ばれる少なくとも一種である、請求項9又は10に記載の空気酸化触媒。 The air oxidation catalyst according to claim 9 or 10, wherein the transition metal belonging to the fourth period of the periodic table is at least one selected from the group consisting of manganese, copper and zinc.
JP2019028432A 2019-02-20 2019-02-20 Method for air oxidation of benzylic position of organic compound and air oxidation catalyst Active JP7232459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028432A JP7232459B2 (en) 2019-02-20 2019-02-20 Method for air oxidation of benzylic position of organic compound and air oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028432A JP7232459B2 (en) 2019-02-20 2019-02-20 Method for air oxidation of benzylic position of organic compound and air oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2020132573A true JP2020132573A (en) 2020-08-31
JP7232459B2 JP7232459B2 (en) 2023-03-03

Family

ID=72277610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028432A Active JP7232459B2 (en) 2019-02-20 2019-02-20 Method for air oxidation of benzylic position of organic compound and air oxidation catalyst

Country Status (1)

Country Link
JP (1) JP7232459B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327626A (en) * 1996-02-07 1997-12-22 Daicel Chem Ind Ltd Oxidizing catalyst system and oxidizing method using the same
JP2011156477A (en) * 2010-02-01 2011-08-18 Osaka Prefecture Univ Dissimilar metal tetranuclear complex and method of manufacturing oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327626A (en) * 1996-02-07 1997-12-22 Daicel Chem Ind Ltd Oxidizing catalyst system and oxidizing method using the same
JP2011156477A (en) * 2010-02-01 2011-08-18 Osaka Prefecture Univ Dissimilar metal tetranuclear complex and method of manufacturing oxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 57, JPN6022030268, 2018, pages 2492 - 2496, ISSN: 0004833895 *
EUR. J. INORG. CHEM., JPN6022030265, 2014, pages 6097 - 6103, ISSN: 0004833894 *

Also Published As

Publication number Publication date
JP7232459B2 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
Fernandes et al. Mild alkane C–H and O–H oxidations catalysed by mixed-N, S copper, iron and vanadium systems
Hu et al. Simple copper/TEMPO catalyzed aerobic dehydrogenation of benzylic amines and anilines
Hu et al. Room temperature aerobic oxidation of alcohols using CuBr2 with TEMPO and a tetradentate polymer based pyridyl-imine ligand
Chavez et al. Syntheses, Structures, and Reactivities of Cobalt (III)− Alkylperoxo Complexes and Their Role in Stoichiometric and Catalytic Oxidation of Hydrocarbons
Garcia-Alvarez et al. Ruthenium-catalyzed rearrangement of aldoximes to primary amides in water
Hasan et al. Iron-catalyzed epoxidation of olefins using hydrogen peroxide
Canseco-Gonzalez et al. Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation
Fernandes et al. Bis-and tris-pyridyl amino and imino thioether Cu and Fe complexes. Thermal and microwave-assisted peroxidative oxidations of 1-phenylethanol and cyclohexane in the presence of various N-based additives
Chakravarthy et al. Synthesis, structure and applications of [cis-dioxomolybdenum (VI)-(ONO)] type complexes
Sutradhar et al. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu (II) complexes
Shit et al. Azide/thiocyanate incorporated cobalt (III)-Schiff base complexes: Characterizations and catalytic activity in aerobic epoxidation of olefins
Kargar et al. Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of a dioxidomolybdenum complex with aminosalicyl-hydrazone Schiff base ligand: An experimental and theoretical approach
Kani et al. Effective catalytic oxidation of alcohols and alkenes with monomeric versus dimeric manganese (II) catalysts and t‐BuOOH
Sutradhar et al. Application of molybdenum complexes for the oxidation of cyclohexane in acetonitrile, ionic liquid and supercritical CO2 media, a comparative study
Hazra et al. A cyclic tetranuclear cuboid type copper (II) complex doubly supported by cyclohexane-1, 4-dicarboxylate: Molecular and supramolecular structure and cyclohexane oxidation activity
Sutradhar et al. 1D copper (II)-aroylhydrazone coordination polymers: magnetic properties and microwave assisted oxidation of a secondary alcohol
Hazra et al. Sulfonated Schiff base dimeric and polymeric copper (II) complexes: Temperature dependent synthesis, crystal structure and catalytic alcohol oxidation studies
Brown et al. Efficient catalytic cycloalkane oxidation employing a “helmet” phthalocyaninato iron (III) complex
Nandi et al. Peroxidative oxidation of cycloalkane by di-, tetra-and polynuclear copper (II) complexes
Gallo et al. Investigation of the reactivity of palladium (0) complexes with nitroso compounds: relevance to the palladium phenanthroline-catalysed carbonylation reactions of nitroarenes
Lapa et al. C-scorpionate Au (III) complexes as pre-catalysts for industrially significant toluene oxidation and benzaldehyde esterification reactions
Wu et al. Solvent strategy for unleashing the Lewis acidity of titanocene dichloride for rapid Mannich reactions
Pankhurst et al. Earth-abundant mixed-metal catalysts for hydrocarbon oxygenation
Basu et al. Designing of a new heterogeneous polymer supported naphthyl-azo iron catalyst for the selective oxidation of substituted methyl benzenes
Cheng et al. Highly efficient Cu (ii)-pyrazoledicarboxylate heterogeneous catalysts for a base-free aerobic oxidation of benzylic alcohol to benzaldehyde with hydrogen peroxide as the oxidant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7232459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150