JP2020132237A - Heat insulating container using vacuum heat insulating material - Google Patents

Heat insulating container using vacuum heat insulating material Download PDF

Info

Publication number
JP2020132237A
JP2020132237A JP2019029963A JP2019029963A JP2020132237A JP 2020132237 A JP2020132237 A JP 2020132237A JP 2019029963 A JP2019029963 A JP 2019029963A JP 2019029963 A JP2019029963 A JP 2019029963A JP 2020132237 A JP2020132237 A JP 2020132237A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
contact
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019029963A
Other languages
Japanese (ja)
Inventor
謙次 井手
Kenji Ide
謙次 井手
宅島 司
Tsukasa Takushima
司 宅島
裕一 秦
Yuichi Hata
裕一 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019029963A priority Critical patent/JP2020132237A/en
Publication of JP2020132237A publication Critical patent/JP2020132237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Packages (AREA)

Abstract

To provide a heat insulating container using a vacuum heat insulating material which can overcome a problem that the heat insulating performance of the heat insulating container is low due to heat flowing in and out through an elastic member used for a gap and a gap generated between the vacuum heat insulating materials, and heat flowing in and out through a heat insulating material other than the vacuum heat insulating material used for reducing the gap.SOLUTION: A heat insulating container includes: a first vacuum heat insulating material having an end portion, a central portion thicker than the end portion, and a thickness change portion which exists between the end portion and the central portion and whose thickness continuously changes; and a flat second vacuum heat insulating material whose end is in contact with the thickness change portion of the first vacuum heat insulating material.SELECTED DRAWING: Figure 1

Description

本発明は、血液や薬品、検体などの保冷または保温が必要な荷物を輸送する場合に使用する、梱包用断熱容器に関するものである。 The present invention relates to a heat insulating container for packing used for transporting a package such as blood, a drug, or a sample that needs to be kept cold or warm.

保冷または保温が必要な荷物を輸送するための梱包容器には、容器外の温度が及ぼす荷物への影響を最小限にとどめるため、従来から発泡体などの断熱材を含む構成が用いられる。 A packaging container for transporting a package that requires cold or heat insulation has conventionally been configured to include a heat insulating material such as a foam in order to minimize the influence of the temperature outside the container on the package.

また荷物を目的の温度に維持するためには、可搬性の面から、外部電源を用いないものが好まれ、一般的には目的の温度で相変化するよう調整した相変化材が用いられる。 Further, in order to maintain the load at the target temperature, it is preferable that the load does not use an external power source from the viewpoint of portability, and generally, a phase change material adjusted to change the phase at the target temperature is used.

上記断熱容器の内部に、上記相変化材を配置することで、可搬性に優れ、なおかつ荷物を外部の低い温度あるいは高い温度から熱的に保護可能な梱包容器となる(特許文献1)
上記断熱容器の内部に梱包された荷物を、目的の温度に維持できる時間は、外気温のほかに、相変化材の重量と、断熱容器の断熱性能の影響を受ける。
By arranging the phase change material inside the heat insulating container, it becomes a packing container that is excellent in portability and can thermally protect the luggage from a low or high temperature outside (Patent Document 1).
The time during which the luggage packed inside the heat insulating container can be maintained at the target temperature is affected by the weight of the phase change material and the heat insulating performance of the heat insulating container in addition to the outside air temperature.

相変化材の重量を増やせば、断熱容器内部の荷物を比較的長い時間目的の温度に維持できるが、容器を含む荷物の重量が重くなる課題があるため、断熱容器に真空断熱材を使用し、断熱容器の断熱性能を上げた構成が提案されている。(特許文献2)
しかしながら、上記真空断熱材を使用した断熱容器では、真空断熱材同士の接合部に発生する隙間のため、熱の流出入が大きくなるため、この低減を目的に、真空断熱材同士の接合部に、弾性部材を用いる方法も提案されている。(特許文献3)
他にも、真空断熱材と、真空断熱材以外の成形性の良い材料の複層材料とする事で、断熱材同士を嵌め合い形状にし、上記真空断熱材同士の接合部における熱の流出入を低減する方式も提案されている。(特許文献4)
By increasing the weight of the phase change material, the luggage inside the heat insulating container can be maintained at the target temperature for a relatively long time, but there is a problem that the weight of the luggage including the container becomes heavy, so vacuum heat insulating material is used for the heat insulating container. , A configuration with improved heat insulation performance of the heat insulating container has been proposed. (Patent Document 2)
However, in the heat insulating container using the vacuum heat insulating material, heat inflow and outflow becomes large due to the gap generated at the joint between the vacuum heat insulating materials. Therefore, for the purpose of reducing this, the joint between the vacuum heat insulating materials is used. , A method using an elastic member has also been proposed. (Patent Document 3)
In addition, by using a vacuum heat insulating material and a multi-layer material other than the vacuum heat insulating material with good moldability, the heat insulating materials are fitted together to form a shape, and heat flows in and out at the joint between the vacuum heat insulating materials. A method for reducing the amount of heat is also proposed. (Patent Document 4)

特表2010−525996号公報Special Table 2010-525996 特開2016−222271号公報Japanese Unexamined Patent Publication No. 2016-222271 特開2017−141053号公報Japanese Unexamined Patent Publication No. 2017-141053 特許第5435435号公報Japanese Patent No. 5435435

しかしながら、特許文献3に記載の内容では、断熱材に真空断熱材を用い、なおかつ真空断熱材同士に発生する隙間を弾性部材で埋める事により断熱容器の断熱性能を向上させているが、一般的に弾性部材の熱伝導率は真空断熱材よりも低く、真空断熱材同士が接している部分を介して流出入する熱量は、依然として大きい課題がある。 However, in the content described in Patent Document 3, the heat insulating performance of the heat insulating container is generally improved by using the vacuum heat insulating material as the heat insulating material and filling the gaps generated between the vacuum heat insulating materials with elastic members. In addition, the thermal conductivity of the elastic member is lower than that of the vacuum heat insulating material, and the amount of heat flowing in and out through the portion where the vacuum heat insulating materials are in contact still has a big problem.

さらには、断熱容器は、通常は断熱容器の組立て時や解体時の作業性や、パネル同士の干渉性を考慮して設計されるため、一般的に真空断熱材間に配置する弾性部材の厚みを厚くするために、弾性部材を介して流出入する熱量が、さらに大きくなる課題がある。 Furthermore, since the heat insulating container is usually designed in consideration of workability during assembly and disassembly of the heat insulating container and interference between panels, the thickness of the elastic member generally arranged between the vacuum heat insulating materials is used. There is a problem that the amount of heat flowing in and out through the elastic member is further increased in order to increase the thickness.

特許文献4に記載の内容は、高い断熱性能の真空断熱材以外の断熱ボードを組み合わせた構成であるために、断熱容器の壁厚さが厚くなり、断熱容器の容積率が下がるという課題を有している。 The content described in Patent Document 4 has a problem that the wall thickness of the heat insulating container becomes thick and the floor area ratio of the heat insulating container decreases because it is configured by combining a heat insulating board other than the vacuum heat insulating material having high heat insulating performance. are doing.

本発明は上記課題を解決するためのものであり、端部と、端部より厚みがある中央部と、端部と中央部の間に存在してその厚みが連続的に変化する厚み変化部と、を有する第1真空断熱材と、第1真空断熱材の厚み変化部に、端部が接触している平板状の第2真空断熱材とを含む事を特徴とする断熱容器である。 The present invention is for solving the above-mentioned problems, and is a thickness changing portion that exists between an end portion, a central portion thicker than the end portion, and the end portion and the central portion, and the thickness thereof continuously changes. It is a heat insulating container characterized by including the first vacuum heat insulating material having the above, and a flat plate-shaped second vacuum heat insulating material whose end is in contact with the thickness changing portion of the first vacuum heat insulating material.

真空断熱材の表面には、真空断熱材の芯材に主に使われるグラスウールの凹凸や、製造工程で真空断熱材の外被材に発生する微細なシワが存在するが、断熱容器内部に配置された真空断熱材同士を、第一の真空断熱材の厚み変化部に、第二の真空断熱材が接するように配置する事で、真空断熱材同士が線接触するために、真空断熱材同士が接する部分に集中的に荷重が加わり、真空断熱材表面に発生する凹凸やシワに形状に真空断熱材表面が追従し、上記隙間を大幅に低減できる。 On the surface of the vacuum heat insulating material, there are irregularities of glass wool mainly used for the core material of the vacuum heat insulating material and fine wrinkles generated on the outer cover material of the vacuum heat insulating material in the manufacturing process, but they are arranged inside the heat insulating container. By arranging the vacuum heat insulating materials so that the second vacuum heat insulating material is in contact with the thickness change portion of the first vacuum heat insulating material, the vacuum heat insulating materials are in line contact with each other. The load is concentratedly applied to the portion in contact with the vacuum heat insulating material, and the surface of the vacuum heat insulating material follows the irregularities and wrinkles generated on the surface of the vacuum heat insulating material, so that the gap can be significantly reduced.

接する断熱材同士が接合する部分を、テーパー形状にする事でも隙間を減らす事が可能になるが、上記真空断熱材の表面に発生する凹凸やシワの影響を強く受けるため、本発明の記手段によれば、真空断熱材同士の隙間を、より減らす事が可能になる。 It is possible to reduce the gap by making the portion where the heat insulating materials in contact are joined into a tapered shape, but since it is strongly affected by the unevenness and wrinkles generated on the surface of the vacuum heat insulating material, the description means of the present invention. According to this, the gap between the vacuum heat insulating materials can be further reduced.

本発明の手段によれば、真空断熱材に、厚みが連続的に変化する部分が存在ため、例えば断熱容器を組立て可能にしたり、真空断熱材を交換可能にしたりした場合において、上記厚み変化部により、断熱容器の内部に配置する真空断熱材の位置が規制されるため、断熱容器の組み立て時の作業性の向上も期待できる。 According to the means of the present invention, since the vacuum heat insulating material has a portion whose thickness continuously changes, for example, when the heat insulating container can be assembled or the vacuum heat insulating material can be replaced, the thickness changing portion As a result, the position of the vacuum heat insulating material placed inside the heat insulating container is restricted, so that workability at the time of assembling the heat insulating container can be expected to be improved.

また、嵌め合い形状を形成するための、真空断熱材以外の断熱部材を必要としないため、断熱容器の容積率を向上できる。 Further, since a heat insulating member other than the vacuum heat insulating material is not required to form the fitted shape, the floor area ratio of the heat insulating container can be improved.

本発明により、真空断熱材を用いる断熱容器の断熱性能および容積率を向上させることができ、保冷または保温が必要な荷物を断熱容器に梱包して輸送する際、断熱容器を含む貨物を軽く、なおかつ長い輸送時間を要する遠隔地まで運搬する事が可能になる。 According to the present invention, the heat insulating performance and the floor area ratio of the heat insulating container using the vacuum heat insulating material can be improved, and when the cargo requiring cold insulation or heat insulation is packed in the heat insulating container and transported, the cargo including the heat insulating container is lightened. Moreover, it can be transported to remote areas that require a long transportation time.

本発明の第1実施の形態における、断熱容器の断面の概略図Schematic of a cross section of a heat insulating container according to the first embodiment of the present invention. 本発明の実施例1における、断熱容器の断面の概略図Schematic diagram of the cross section of the heat insulating container in Example 1 of the present invention. 本発明の実施例1において、断熱容器の底部に配置した真空断熱材の概略図Schematic diagram of the vacuum heat insulating material arranged at the bottom of the heat insulating container in Example 1 of the present invention. 本発明の実施例1において、断熱容器の側面に配置した真空断熱材の概略図Schematic diagram of the vacuum heat insulating material arranged on the side surface of the heat insulating container in Example 1 of the present invention. 本発明の実施例1において、断熱容器の側面に配置した真空断熱材の概略図Schematic diagram of the vacuum heat insulating material arranged on the side surface of the heat insulating container in Example 1 of the present invention. 本発明の第2実施の形態における、断熱容器の断面の概略図Schematic of a cross section of a heat insulating container according to a second embodiment of the present invention. 本発明の第2実施の形態における、断熱容器の断面の概略図Schematic of a cross section of a heat insulating container according to a second embodiment of the present invention. 本発明の実施例2における、断熱容器の断面の概略図Schematic diagram of the cross section of the heat insulating container in Example 2 of the present invention.

以下、図表を参照しながら、本発明の実施の形態について説明する。
(第1実施の形態)
図1は、本発明の第1実施の形態における、断熱容器の断面の概略図である。
Hereinafter, embodiments of the present invention will be described with reference to figures and tables.
(First Embodiment)
FIG. 1 is a schematic cross-sectional view of a heat insulating container according to the first embodiment of the present invention.

断熱容器1は、内部に物品を収容する空間部2を有し、空間部2は真空断熱材3を外箱4内部に配置して形成される。 The heat insulating container 1 has a space portion 2 for accommodating an article inside, and the space portion 2 is formed by arranging the vacuum heat insulating material 3 inside the outer box 4.

真空断熱材3は、芯材(図に記載無し)を、気体難透過性素材からなる外被材(図に記載無し)で覆い、前記外被材の内側の圧力が、大気圧よりも低い圧力に減圧されたものである。 In the vacuum heat insulating material 3, the core material (not shown) is covered with an outer cover material (not shown) made of a gas impervious material, and the pressure inside the outer cover material is lower than the atmospheric pressure. It is decompressed to pressure.

真空断熱材3のうち少なくとも1枚は、端部5と、端部5より厚みがある中央部6と、端部5と中央部6の間に存在してその厚みが連続的に変化する厚み変化部7を有する。 At least one of the vacuum heat insulating materials 3 exists between the end portion 5, the central portion 6 thicker than the end portion 5, and the end portion 5 and the central portion 6, and the thickness thereof continuously changes. It has a changing part 7.

外箱4は、内部に真空断熱材3を保持できればよく、例えば樹脂製や、ダンボールのケースなどを用いる事ができる。 The outer box 4 only needs to be able to hold the vacuum heat insulating material 3 inside, and for example, a resin case or a cardboard case can be used.

外箱4内部に配置される少なくとも2枚の真空断熱材3同士は、厚み変化部7を有する真空断熱材3の厚み変化部7と、もう一方の真空断熱材3の端部5とが接触して配置される。 At least two vacuum heat insulating materials 3 arranged inside the outer box 4 are in contact with the thickness changing portion 7 of the vacuum heat insulating material 3 having the thickness changing portion 7 and the end portion 5 of the other vacuum heat insulating material 3. Is placed.

上記の構成とすることで、真空断熱材3の端部5と厚み変化部7は、線で接触する事になり、平面で接触させた場合や、弾性部材を介して接触させた場合に比べ、真空断熱材3同士の接触部分に集中的に力が加わるため、接触する2枚の真空断熱材3の表面は、それぞれの真空断熱材3の表面が有するシワや凹凸に追従してそれぞれ変形し、断熱容器1の断熱性能を悪化させるような真空断熱材3同士の隙間が、大幅に減少する。 With the above configuration, the end 5 of the vacuum heat insulating material 3 and the thickness changing portion 7 are in contact with each other by a line, as compared with the case where they are in contact with each other on a flat surface or through an elastic member. Since the force is concentrated on the contact portion between the vacuum heat insulating materials 3, the surfaces of the two vacuum heat insulating materials 3 in contact are deformed following the wrinkles and irregularities of the surfaces of the vacuum heat insulating materials 3. However, the gap between the vacuum heat insulating materials 3 that deteriorates the heat insulating performance of the heat insulating container 1 is significantly reduced.

また厚み変化部7は、厚みが連続的に変化しているため、断熱容器1を分解および組立て可能とした場合、断熱容器1の組立時に外箱4の内部に真空断熱材3を組み付ける際、上記厚み変化部7により、組み付け後の真空断熱材3の位置が外箱4側に規制されるため、組立ての作業性を大幅に改善できる。 Further, since the thickness of the thickness changing portion 7 is continuously changing, when the heat insulating container 1 can be disassembled and assembled, when the vacuum heat insulating material 3 is assembled inside the outer box 4 at the time of assembling the heat insulating container 1. Since the position of the vacuum heat insulating material 3 after assembly is restricted to the outer box 4 side by the thickness changing portion 7, the workability of assembly can be significantly improved.

本実施の形態では、真空断熱材3同士は、1箇所のみが、厚み変化部7と端部5の組み合わせで接触しているが、厚み変化部7を適切に配置する事で、全ての真空断熱材3同士の接触部を、厚み変化部7と端部5が接触するようにできる。
(実施例1)
次に、第1実施の形態における断熱容器1について説明する。
In the present embodiment, only one place of the vacuum heat insulating materials 3 is in contact with the combination of the thickness changing portion 7 and the end portion 5, but by appropriately arranging the thickness changing portion 7, all the vacuums are vacuumed. The contact portion between the heat insulating materials 3 can be brought into contact with the thickness changing portion 7 and the end portion 5.
(Example 1)
Next, the heat insulating container 1 in the first embodiment will be described.

図2は、本実施例において使用した断熱容器1を上側からみた断面の概略図である。 FIG. 2 is a schematic cross-sectional view of the heat insulating container 1 used in this embodiment as viewed from above.

外箱4の材質は、厚さ5mmのダンボールを使用した。 The outer box 4 was made of corrugated cardboard having a thickness of 5 mm.

外箱4の外寸は、幅400mm、奥行き400mm、高さ350mmとした。
外箱4の内部に、本実施例の測定の安定化を目的に、フォーム材8を配置した。フォーム材8は発泡させたポリスチレンを使用し、外箱4の内側の6面全てを、厚み25mmで、隙間無く配置した。
The outer dimensions of the outer box 4 are width 400 mm, depth 400 mm, and height 350 mm.
A foam material 8 was arranged inside the outer box 4 for the purpose of stabilizing the measurement of this embodiment. Foamed polystyrene was used as the foam material 8, and all six inner surfaces of the outer box 4 were arranged with a thickness of 25 mm without any gaps.

上記フォーム材8の内側の計6面に、真空断熱材3を配置した。 The vacuum heat insulating material 3 was arranged on a total of 6 surfaces inside the foam material 8.

そして真空断熱材3の内面に、蓄冷材9を配置した。 Then, the cold storage material 9 was arranged on the inner surface of the vacuum heat insulating material 3.

蓄冷材9は、合計で4個配置した。 A total of four cold storage materials 9 were arranged.

上記蓄冷材9のうち2個は、真空断熱材3の側面の2面に接するように配置した。 Two of the cold storage materials 9 were arranged so as to be in contact with the two side surfaces of the vacuum heat insulating material 3.

上記蓄冷材9のうち残りの2個のうち、1個は底部に配置した真空断熱材3と接するように、また残りの1個は、天面に配置した真空断熱材3と接するようにはいちした。 Of the remaining two of the cold storage materials 9, one is in contact with the vacuum heat insulating material 3 arranged at the bottom, and the remaining one is in contact with the vacuum heat insulating material 3 arranged on the top surface. I got it.

次に、外箱4の内部に配置したフォーム材8の内部の6面に配置した、合計6枚の真空断熱材3について順次説明する。 Next, a total of six vacuum heat insulating materials 3 arranged on six surfaces inside the foam material 8 arranged inside the outer box 4 will be sequentially described.

まず、底面に使用した真空断熱材3について説明する。 First, the vacuum heat insulating material 3 used for the bottom surface will be described.

図3に、底面に使用した真空断熱材3の概略図を示す。 FIG. 3 shows a schematic view of the vacuum heat insulating material 3 used for the bottom surface.

真空断熱材3は、ガスバリア性の外被材10の内部に芯材11および水分吸着材12を挿入し、外被材10の内部を減圧して作成した。 The vacuum heat insulating material 3 was created by inserting the core material 11 and the moisture adsorbent 12 into the gas barrier outer cover material 10 and reducing the pressure inside the outer cover material 10.

芯材11には、グラスウールを用いた。芯材11のサイズは幅340mm、奥行き340mmであり、重量は592gとした。 Glass wool was used as the core material 11. The size of the core material 11 was 340 mm in width and 340 mm in depth, and the weight was 592 g.

外被材10には、ポリエチレンテレフタレート層と、アルミニウム層と、ポリプロピレン層を重ね、総厚を100μmとした複層フィルムを用いた。 As the outer cover material 10, a multilayer film in which a polyethylene terephthalate layer, an aluminum layer, and a polypropylene layer were laminated and the total thickness was 100 μm was used.

本実施例では、上記樹脂とアルミニウム箔から成る複層フィルムを用いたが、ガスバリア性があれば、その他の材質でも良い。 In this embodiment, a multi-layer film made of the above resin and aluminum foil is used, but other materials may be used as long as they have gas barrier properties.

上記フィルム2枚を、ポリプロピレン層同士を対向させ、周縁部を熱溶着することで袋状に形成した。 The two films were formed into a bag shape by facing the polypropylene layers and heat-welding the peripheral edges.

水分吸着材12には、酸化カルシウムの粉末20gを使用した。 As the water adsorbent 12, 20 g of calcium oxide powder was used.

プレス機を用い、真空断熱材3の全体の厚みを24mmに成型した後、真空断熱材3の周辺部の端部から10mmの幅について、全周にわたって、プレス機を用いて、厚みを15mmに成型した薄肉部13を形成した。厚み変化部7は、真空断熱材3の片側のみに形成した。 After molding the entire thickness of the vacuum heat insulating material 3 to 24 mm using a press machine, the thickness is increased to 15 mm by using a press machine over the entire circumference of the width of 10 mm from the edge of the peripheral portion of the vacuum heat insulating material 3. The molded thin-walled portion 13 was formed. The thickness changing portion 7 was formed only on one side of the vacuum heat insulating material 3.

この事で、中央部6と端部5の厚みを変化させるとともに、中央部6と端部5の間に厚み変化部7を形成した。 As a result, the thickness of the central portion 6 and the end portion 5 was changed, and the thickness changing portion 7 was formed between the central portion 6 and the end portion 5.

上記成型後の真空断熱材3の熱伝導率は2.3mW/m・Kにした。 The thermal conductivity of the vacuum heat insulating material 3 after the molding was set to 2.3 mW / m · K.

上記真空断熱材3の、外箱4の内部での配置は、厚み変化部7がある側と逆の真空断熱材3の表面が、外箱4の底面側を覆うフォーム材8と接するように配置した。 The arrangement of the vacuum heat insulating material 3 inside the outer box 4 is such that the surface of the vacuum heat insulating material 3 opposite to the side where the thickness changing portion 7 is located is in contact with the foam material 8 covering the bottom surface side of the outer box 4. Placed.

次に、図4および図5を用いて、側面に使用した合計4枚の真空断熱材3について説明する。 Next, a total of four vacuum heat insulating materials 3 used on the side surfaces will be described with reference to FIGS. 4 and 5.

図4に示す真空断熱材3は、寸法を除き、上記底面に使用した真空断熱材3と同じである。 The vacuum heat insulating material 3 shown in FIG. 4 is the same as the vacuum heat insulating material 3 used for the bottom surface except for the dimensions.

図4に示す真空断熱材3の寸法は、幅が340mm、奥行き250mmとし、真空断熱材3の全体の厚みを24mmに成型した後、長さが250mmの辺2箇所について、プレス機を用いて厚みを15mmに成型し、薄肉部13を形成した。 The dimensions of the vacuum heat insulating material 3 shown in FIG. 4 are 340 mm in width and 250 mm in depth, and after molding the entire thickness of the vacuum heat insulating material 3 to 24 mm, a press machine is used for two sides having a length of 250 mm. The thickness was molded to 15 mm to form the thin portion 13.

この事により、中央部6と端部5の厚みが連続的に変化する厚み変化部7を形成した。厚み変化部7は、真空断熱材3の片側のみに形成した。 As a result, the thickness changing portion 7 in which the thickness of the central portion 6 and the end portion 5 continuously changes is formed. The thickness changing portion 7 was formed only on one side of the vacuum heat insulating material 3.

上記成型後の真空断熱材3の熱伝導率は2.5mW/m・Kにした。 The thermal conductivity of the vacuum heat insulating material 3 after the molding was 2.5 mW / m · K.

図5に示す真空断熱材3は、寸法を除き、上記底面に使用した図3に示す真空断熱材3と同じである。 The vacuum heat insulating material 3 shown in FIG. 5 is the same as the vacuum heat insulating material 3 shown in FIG. 3 used for the bottom surface except for the dimensions.

図5に示す真空断熱材3の寸法は、幅が300mm、奥行き250mmとし、真空断熱材3の全体の厚みを24mmに成型した。 The dimensions of the vacuum heat insulating material 3 shown in FIG. 5 were 300 mm in width and 250 mm in depth, and the total thickness of the vacuum heat insulating material 3 was molded to 24 mm.

上記成型後の真空断熱材3の熱伝導率は2.5mW/m・Kにした。 The thermal conductivity of the vacuum heat insulating material 3 after the molding was 2.5 mW / m · K.

上記、図4に示す真空断熱材3を2枚と、上記図5に示す真空断熱材3を2枚の、合計4枚を、外箱4の内部に配置されたフォーム材8の内面に配置した。 Two vacuum heat insulating materials 3 shown in FIG. 4 and two vacuum heat insulating materials 3 shown in FIG. 5 are arranged on the inner surface of the foam material 8 arranged inside the outer box 4. did.

配置する際、図4に示す2枚の真空断熱材3は、厚み変化部7が無いほうの面が、フォーム材8に接するように配置した。 When arranging, the two vacuum heat insulating materials 3 shown in FIG. 4 were arranged so that the surface without the thickness changing portion 7 was in contact with the foam material 8.

上記側面に配置した合計4枚の真空断熱材3は、底部に配置した真空断熱材3と、340mmの辺で接するように、底部に配置した真空断熱材3に対して垂直に配置した。 The total of four vacuum heat insulating materials 3 arranged on the side surface were arranged perpendicular to the vacuum heat insulating material 3 arranged at the bottom so as to be in contact with the vacuum heat insulating material 3 arranged at the bottom at the side of 340 mm.

また、4枚の真空断熱材3同士の位置関係は、図2に示すように、図4に示す厚み変化部7を有する真空断熱材3同士が接しないように、図4に示す真空断熱材3と、図5に示す真空断熱材3が接するように配置した。この事は、側面に配置した真空断熱材3は、全て、厚み変化部7と端部5が接して配置される事を意味する。 Further, as shown in FIG. 2, the positional relationship between the four vacuum heat insulating materials 3 is such that the vacuum heat insulating materials 3 having the thickness changing portions 7 shown in FIG. 4 do not come into contact with each other. 3 and the vacuum heat insulating material 3 shown in FIG. 5 were arranged so as to be in contact with each other. This means that all the vacuum heat insulating materials 3 arranged on the side surface are arranged so that the thickness changing portion 7 and the end portion 5 are in contact with each other.

上記のようにフォーム材8を配置した外箱4の内部に、底部および側面に真空断熱材3を配置した後、天面に真空断熱材3を配置した。 Inside the outer box 4 in which the foam material 8 was arranged as described above, the vacuum heat insulating material 3 was arranged on the bottom and the side surface, and then the vacuum heat insulating material 3 was arranged on the top surface.

天面に配置した真空断熱材3は、図3に示す底部に配置した真空断熱材3と同一のものを使用した。 The vacuum heat insulating material 3 arranged on the top surface was the same as the vacuum heat insulating material 3 arranged on the bottom as shown in FIG.

天面に配置した真空断熱材3は、厚み変化部7が、側面に配置した真空断熱材3の端部5と接するように配置した。 The vacuum heat insulating material 3 arranged on the top surface was arranged so that the thickness changing portion 7 was in contact with the end portion 5 of the vacuum heat insulating material 3 arranged on the side surface.

最後に、使用した合計4個の蓄冷材9について説明する。 Finally, a total of four cold storage materials 9 used will be described.

蓄冷材9の材質は、融点が4℃のパラフィンを用いた。重量は、800gとし、ガスバリア性の樹脂製複層材料で覆ったものを使用した。サイズは、幅200mm、奥行き300mmのものを使用した。 As the material of the cold storage material 9, paraffin having a melting point of 4 ° C. was used. The weight was 800 g, and the one covered with a gas barrier resin multilayer material was used. The size used was 200 mm in width and 300 mm in depth.

蓄冷材9は、−25℃で、24時間以上冷却した後、断熱容器1の内部に配置した。断熱容器1の内部に配置した位置は、前記の通り、合計4個の蓄冷材9を配置し、そのうち2個を真空断熱材3の側面の2面に接するように配置し、1個を底部に配置した真空断熱材3と接するように配置し、残りの1個を天面に配置した真空断熱材3と接するように配置した。 The cold storage material 9 was cooled at −25 ° C. for 24 hours or more, and then placed inside the heat insulating container 1. As described above, a total of four cold storage materials 9 are arranged inside the heat insulating container 1, two of which are arranged so as to be in contact with the two side surfaces of the vacuum heat insulating material 3, and one is at the bottom. It was arranged so as to be in contact with the vacuum heat insulating material 3 arranged in the above, and the remaining one was arranged so as to be in contact with the vacuum heat insulating material 3 arranged on the top surface.

測定のため、側面の真空断熱材3に配置した2個の蓄冷材9のうちの1個について、物品を収容するための空間部2側の表面の温度を測定するための熱電対(図に記載無し)を配置した。 For measurement, for one of the two cold storage materials 9 arranged on the vacuum heat insulating material 3 on the side surface, a thermocouple for measuring the temperature of the surface on the space 2 side for accommodating the article (in the figure). (Not described) was placed.

上記の構成の断熱容器1を、30℃の恒温室に放置し、放置してから、上記熱電対の温度が7℃を超えるまでの時間を測定した。 The heat insulating container 1 having the above configuration was left in a constant temperature room at 30 ° C., and the time from the leaving to the temperature of the thermocouple exceeding 7 ° C. was measured.

上記蓄冷材9は融点が4℃であるため、上記7℃を超えるまでの時間を測定する事により、―25℃で24時間冷却した固体状の上記蓄冷材9が完全に融解するまでの時間を間接的に評価する事ができ、さらには、断熱容器1の断熱性能を評価する事ができる。 Since the cold storage material 9 has a melting point of 4 ° C., the time until the solid cold storage material 9 cooled at −25 ° C. for 24 hours is completely melted by measuring the time until the temperature exceeds 7 ° C. Can be indirectly evaluated, and further, the heat insulating performance of the heat insulating container 1 can be evaluated.

その結果、上記の断熱容器1を30℃の恒温室に放置してから、上記熱電対の温度が7℃を超えるまでの時間は80時間だった。
(比較例1)
次に、比較例1について説明する。
As a result, the time from when the heat insulating container 1 was left in a constant temperature room at 30 ° C. until the temperature of the thermocouple exceeded 7 ° C. was 80 hours.
(Comparative Example 1)
Next, Comparative Example 1 will be described.

比較例1で使用した断熱容器1は、真空断熱材3の形状を除き、実施例1の通りである。 The heat insulating container 1 used in Comparative Example 1 is the same as in Example 1 except for the shape of the vacuum heat insulating material 3.

本比較例で、外箱4の内面に配置されたフォーム材8の、底部に使用した真空断熱材3は、実施例1同様に、ガスバリア性の外被材10の内部に芯材11および水分吸着材12を挿入し、外被材10の内部を減圧して作成した。 In this comparative example, the vacuum heat insulating material 3 used for the bottom of the foam material 8 arranged on the inner surface of the outer box 4 has the core material 11 and the moisture inside the gas barrier outer cover material 10 as in the first embodiment. The adsorbent 12 was inserted and the inside of the outer cover material 10 was depressurized.

芯材11には、グラスウールを用い、芯材11のサイズは幅340mm、奥行き340mmであり、重量は592gとした。 Glass wool was used for the core material 11, and the size of the core material 11 was 340 mm in width and 340 mm in depth, and the weight was 592 g.

外被材10には、ポリエステルテレフタレート層と、アルミニウム層と、ポリプロピレン層を重ね合わせ、総厚みを100μmとした複層フィルムを用いた。本実施例では、上記の通り樹脂とアルミニウム箔から成る複層フィルムを用いたが、ガスバリア性があれば、その他の材質でも良い。 As the outer cover material 10, a multilayer film in which a polyester terephthalate layer, an aluminum layer, and a polypropylene layer were superposed to have a total thickness of 100 μm was used. In this embodiment, a multi-layer film made of resin and aluminum foil is used as described above, but other materials may be used as long as they have gas barrier properties.

上記フィルム2枚を、ポリプロピレン層同士を対向させ、周縁部を熱溶着することで袋状に形成した。 The two films were formed into a bag shape by facing the polypropylene layers and heat-welding the peripheral edges.

水分吸着材12には、酸化カルシウムの粉末20gを使用した。 As the water adsorbent 12, 20 g of calcium oxide powder was used.

真空断熱材3の外被材10の内部を減圧した後、プレス機にて、真空断熱材3の全体の厚みを24mmに成型した。 After depressurizing the inside of the outer cover material 10 of the vacuum heat insulating material 3, the total thickness of the vacuum heat insulating material 3 was molded to 24 mm by a press machine.

上記成型後の真空断熱材3の熱伝導率は2.3mW/m・Kにした。 The thermal conductivity of the vacuum heat insulating material 3 after the molding was set to 2.3 mW / m · K.

上記真空断熱材3を、外箱4の内面に配置されたフォーム材8の内面に、真空断熱材3の平面が接するように配置した。 The vacuum heat insulating material 3 was arranged so that the flat surface of the vacuum heat insulating material 3 was in contact with the inner surface of the foam material 8 arranged on the inner surface of the outer box 4.

次に、本比較例で外箱4の内面に配置されたフォーム材8の側面に使用した真空断熱材3について説明する。 Next, the vacuum heat insulating material 3 used for the side surface of the foam material 8 arranged on the inner surface of the outer box 4 in this comparative example will be described.

側面に使用した真空断熱材3は、寸法を除き、上記比較例1にて底部に使用した真空断熱材3と同じである。 The vacuum heat insulating material 3 used for the side surface is the same as the vacuum heat insulating material 3 used for the bottom in Comparative Example 1 above, except for the dimensions.

側面に使用した真空断熱材3の寸法は、幅を315mm、奥行きを302mmにし、真空断熱材3の外被材10の内部を減圧したのち、厚みをプレス機にて、真空断熱材3の全体の厚みを24mmに成型し、熱伝導率は2.3mW/m・Kにした。 The dimensions of the vacuum heat insulating material 3 used for the side surface are such that the width is 315 mm and the depth is 302 mm, the inside of the outer cover material 10 of the vacuum heat insulating material 3 is depressurized, and then the thickness is adjusted by a press machine to the entire vacuum heat insulating material 3. The thickness of the was molded to 24 mm, and the thermal conductivity was 2.3 mW / m · K.

上記、本比較例で側面に使用した真空断熱材3を合計4枚、外箱4の内面に配置されたフォーム材8の内面の合計4つの側面に、真空断熱材3の平面が接するように配置した。 A total of four vacuum heat insulating materials 3 used on the side surfaces in this comparative example, and a total of four inner surfaces of the foam material 8 arranged on the inner surface of the outer box 4 so that the flat surface of the vacuum heat insulating material 3 is in contact with the four side surfaces. Placed.

また、側面に使用した真空断熱材3は、天面および底部の真空断熱材3と、側面に使用した真空断熱材3の幅が315mmの辺が接するように、配置した。 Further, the vacuum heat insulating material 3 used on the side surface was arranged so that the vacuum heat insulating material 3 on the top surface and the bottom surface and the side of the vacuum heat insulating material 3 used on the side surface had a width of 315 mm were in contact with each other.

次に、本比較例で外箱4の内面に配置されたフォーム材8の天面に使用した真空断熱材3について説明する。 Next, the vacuum heat insulating material 3 used for the top surface of the foam material 8 arranged on the inner surface of the outer box 4 in this comparative example will be described.

上記天面に使用した真空断熱材3は、本比較例にて底部に使用した真空断熱材3と同じものを使用した。 As the vacuum heat insulating material 3 used for the top surface, the same vacuum heat insulating material 3 used for the bottom surface in this comparative example was used.

断熱容器1内部での配置は、外箱4の内面に配置されたフォーム材8の内面の合計4つの側面に、上記天面に使用した真空断熱材3の平面が接するように配置した。 The arrangement inside the heat insulating container 1 was such that the flat surface of the vacuum heat insulating material 3 used for the top surface was in contact with a total of four side surfaces of the inner surface of the foam material 8 arranged on the inner surface of the outer box 4.

上記構成の断熱容器1を、実施例1同様に、30℃の恒温室に放置し、放置してから、側面に配置した真空断熱材3と接して配置された蓄冷材9の表面の温度が7℃を超えるまでの時間を測定した。 Similar to Example 1, the heat insulating container 1 having the above configuration is left in a constant temperature room at 30 ° C., and then the temperature of the surface of the cold storage material 9 arranged in contact with the vacuum heat insulating material 3 arranged on the side surface is changed. The time until the temperature exceeded 7 ° C. was measured.

その結果、上記の断熱容器1を30℃の恒温室に放置してから、上記蓄冷材9の表面温度が7℃を超えるまでの時間は53時間だった。 As a result, the time from when the heat insulating container 1 was left in a constant temperature room at 30 ° C. until the surface temperature of the cold storage material 9 exceeded 7 ° C. was 53 hours.

実施例1は断熱容器1を構成する真空断熱材3の厚み変化部7が真空断熱材3の端部5と接するように配置したが、本比較例で断熱容器1を構成する真空断熱材3は厚み変化部7が無く、真空断熱材3同士の接触は、真空断熱材3の表面と、真空断熱材3の端部5が接触する形で配置され、この事により、上記、断熱容器1を30℃の恒温室に放置してから、側面に配置された蓄冷材9の温度が7℃を超えるまでの時間が、実施例1は80時間だったのに対し、本比較例は53時間まで短くなった。 In the first embodiment, the thickness changing portion 7 of the vacuum heat insulating material 3 constituting the heat insulating container 1 is arranged so as to be in contact with the end portion 5 of the vacuum heat insulating material 3, but in this comparative example, the vacuum heat insulating material 3 constituting the heat insulating container 1 is arranged. There is no thickness changing portion 7, and the contact between the vacuum heat insulating materials 3 is arranged so that the surface of the vacuum heat insulating material 3 and the end portion 5 of the vacuum heat insulating material 3 are in contact with each other. The time from when the heat was left in the thermostatic chamber at 30 ° C. until the temperature of the heat insulating material 9 arranged on the side surface exceeded 7 ° C. was 80 hours in Example 1, whereas in this comparative example it was 53 hours. It became shorter.

上記時間の差は、実施例1と比較例1の真空断熱材3の熱伝導率が若干異なるが、この差では説明できない大きさである。 The difference in time is a size that cannot be explained by the difference in thermal conductivity between the vacuum heat insulating material 3 of Example 1 and Comparative Example 1.

この事は、本発明の、断熱容器1を構成する複数の真空断熱材3について、その接触方法を、第一の真空断熱材3の端部5と、第二の真空断熱材3の端部5と中央部6の間に存在してその厚みが連続的に変化する厚み変化部7とを接触させて配置する事により、断熱容器1の断熱性能が向上した事を意味する。
(第2実施の形態)
図6は、本発明の第2実施の形態において、使用した断熱容器1の断面の概略図である。
This means that the contact method of the plurality of vacuum heat insulating materials 3 constituting the heat insulating container 1 of the present invention is the end portion 5 of the first vacuum heat insulating material 3 and the end portion of the second vacuum heat insulating material 3. It means that the heat insulating performance of the heat insulating container 1 is improved by arranging the thickness changing portion 7 which exists between the central portion 5 and the central portion 6 and whose thickness continuously changes.
(Second Embodiment)
FIG. 6 is a schematic cross-sectional view of the heat insulating container 1 used in the second embodiment of the present invention.

主な構成は第1実施の形態と同じだが、断熱容器1を構成する真空断熱材3のうち、厚み変化部7を有する真空断熱材3と、外箱4の間に、軟質材14を圧縮して配置した。 The main configuration is the same as that of the first embodiment, but among the vacuum heat insulating materials 3 constituting the heat insulating container 1, the soft material 14 is compressed between the vacuum heat insulating material 3 having the thickness changing portion 7 and the outer box 4. And placed.

圧縮された軟質材14は復元しようとするために、外箱4を外側に広げる力と、軟質材14が接する、厚み変化部7を有する真空断熱材3が空間部2に向かって押される力が働く。厚み変化部7を有する真空断熱材3は、別の真空断熱材3と接して配置されているため、厚み変化部7を有する真空断熱材3の厚み変化部7と、別の真空断熱材3の端部5が接する部分に、荷重が加わる。 In order to restore the compressed soft material 14, the force that spreads the outer box 4 outward and the force that the vacuum heat insulating material 3 having the thickness changing portion 7 in contact with the soft material 14 is pushed toward the space portion 2. Works. Since the vacuum heat insulating material 3 having the thickness changing portion 7 is arranged in contact with another vacuum heat insulating material 3, the thickness changing portion 7 of the vacuum heat insulating material 3 having the thickness changing portion 7 and another vacuum heat insulating material 3 A load is applied to the portion in contact with the end portion 5 of the.

この事により、上記厚み変化部7と端部5で接する真空断熱材3の間の隙間は、第1実施の形態に比べ、上記真空断熱材3同士の接触部分に、より集中的に力が加わるため、接触する2枚の真空断熱材3の表面は、それぞれの真空断熱材3の表面が有するシワや凹凸に追従して、より大きく変形し、断熱容器1の断熱性能を悪化させるような真空断熱材3間の隙間を、より低減することができる。 As a result, the gap between the vacuum heat insulating material 3 in contact between the thickness changing portion 7 and the end portion 5 exerts a more concentrated force on the contact portion between the vacuum heat insulating materials 3 as compared with the first embodiment. Because of the addition, the surfaces of the two vacuum heat insulating materials 3 that come into contact with each other follow the wrinkles and irregularities of the surfaces of the vacuum heat insulating materials 3 and are deformed more greatly, so that the heat insulating performance of the heat insulating container 1 is deteriorated. The gap between the vacuum heat insulating materials 3 can be further reduced.

また、上記、圧縮された軟質材14は常に真空断熱材3を空間部2に向かって荷重を加えるため、外箱4内部に配置する真空断熱材3を確実に固定させることができる。 Further, since the compressed soft material 14 always applies a load toward the space portion 2 of the vacuum heat insulating material 3, the vacuum heat insulating material 3 arranged inside the outer box 4 can be reliably fixed.

本実施の形態では、真空断熱材3同士は、1箇所のみが、厚み変化部7と端部5の組み合わせで接触しているが、接触箇所はこの限りではなく、例えば全ての真空断熱材3同士の接触部を、厚み変化部7と端部5が接触する真空断熱材3の配置および寸法にしても良い。 In the present embodiment, the vacuum heat insulating materials 3 are in contact with each other only at one place by the combination of the thickness changing portion 7 and the end part 5, but the contact points are not limited to this, for example, all the vacuum heat insulating materials 3 The contact portions may be the arrangement and dimensions of the vacuum heat insulating material 3 in which the thickness changing portion 7 and the end portion 5 are in contact with each other.

本実施の形態では、軟質材14を1箇所のみ配置したが、圧縮された軟質材14が復元する力が、真空断熱材3の端部と、別の真空断熱材3の厚み変化部7が接する位置に荷重を加える範囲で、軟質材14を複数配置しても良い。 In the present embodiment, the soft material 14 is arranged at only one place, but the restoring force of the compressed soft material 14 is exerted by the end portion of the vacuum heat insulating material 3 and the thickness changing portion 7 of another vacuum heat insulating material 3. A plurality of soft materials 14 may be arranged within a range in which a load is applied to the contacting positions.

また本実施の形態では、軟質材14を、厚み変化部7と外箱4の間に配置したが、圧縮された軟質材14が復元する力が、真空断熱材3の端部と、別の真空断熱材3の厚み変化部7が接する位置に荷重を加える範囲で、軟質材14を別の位置に配置しても良い。 Further, in the present embodiment, the soft material 14 is arranged between the thickness changing portion 7 and the outer box 4, but the restoring force of the compressed soft material 14 is different from that of the end portion of the vacuum heat insulating material 3. The soft material 14 may be arranged at another position within the range in which the load is applied to the position where the thickness changing portion 7 of the vacuum heat insulating material 3 comes into contact.

また本実施の形態では、軟質材14を用いたが、例えば外箱4に弾性を持たせ、さらに外箱4の寸法を、真空断熱材3を空間部2の方向に果汁を加えるよう、より小さな寸法にするなど、軟質材14の機能を、断熱容器1を構成する別の材料で代替しても実現可能である。
(実施例2)
図7は、本発明の実施例2で使用した断熱容器1の断面の概略図を示す。
Further, in the present embodiment, the soft material 14 is used, but for example, the outer box 4 is made elastic, and the dimensions of the outer box 4 are adjusted so that the vacuum heat insulating material 3 is added with fruit juice in the direction of the space portion 2. It is also possible to replace the function of the soft material 14 with another material constituting the heat insulating container 1, such as making the size smaller.
(Example 2)
FIG. 7 shows a schematic cross-sectional view of the heat insulating container 1 used in the second embodiment of the present invention.

主な構成は実施例1の通りであるが、図の上部に示す、天面に配置された真空断熱材3と、フォーム材8の間に、軟質材14を配置した。 The main configuration is as in Example 1, but the soft material 14 is arranged between the vacuum heat insulating material 3 arranged on the top surface and the foam material 8 shown in the upper part of the figure.

軟質材14の材質は、幅が300mm、奥行きが300mm、厚みが10mmのウレタン製の発泡材を使用した。 As the material of the soft material 14, a urethane foam material having a width of 300 mm, a depth of 300 mm, and a thickness of 10 mm was used.

上記寸法と、構成によれば、真空断熱材3とフォーム材8の間で、本来10mmの厚みがある軟質材14が圧縮され、天面および底部の真空断熱材3と、側面に配置された真空断熱材3の接触部分に、より強く接触させる方向に荷重を加える。 According to the above dimensions and configuration, the soft material 14 originally having a thickness of 10 mm was compressed between the vacuum heat insulating material 3 and the foam material 8 and arranged on the top and bottom vacuum heat insulating materials 3 and the side surfaces. A load is applied to the contact portion of the vacuum heat insulating material 3 in the direction of stronger contact.

この事により、上記真空断熱材3同士の接触部分の真空断熱材3の表面は、それぞれの真空断熱材3の表面が有するシワや凹凸に追従してそれぞれ変形し、断熱容器1の断熱性能を悪化させるような真空断熱材3同士の隙間が、実施例1と比較してさらに減少する。 As a result, the surface of the vacuum heat insulating material 3 at the contact portion between the vacuum heat insulating materials 3 is deformed following the wrinkles and irregularities of the surface of each vacuum heat insulating material 3, and the heat insulating performance of the heat insulating container 1 is improved. The gap between the vacuum heat insulating materials 3 that deteriorates is further reduced as compared with Example 1.

上記構成の断熱容器1を、実施例1同様に、30℃の恒温室に放置し、放置してから、側面に配置した真空断熱材3と接して配置された蓄冷材9の表面の温度が7℃を超えるまでの時間を測定した。 Similar to Example 1, the heat insulating container 1 having the above configuration is left in a constant temperature room at 30 ° C., and then the temperature of the surface of the cold storage material 9 arranged in contact with the vacuum heat insulating material 3 arranged on the side surface is changed. The time until the temperature exceeded 7 ° C. was measured.

その結果、上記の断熱容器1を30℃の恒温室に放置してから、上記蓄冷材9の表面温度が7℃を超えるまでの時間は84時間だった。 As a result, the time from when the heat insulating container 1 was left in a constant temperature room at 30 ° C. until the surface temperature of the cold storage material 9 exceeded 7 ° C. was 84 hours.

この事は、実施例1の結果と比べ、上記の断熱容器1を30℃の恒温室に放置してから、上記蓄冷材9の表面温度が7℃を超えるまでの時間が4時間延びている事を示すが、軟質材14は断熱材としても機能するものの、圧縮されたときの厚みは真空断熱材3と比べ非常に薄く、軟質材14自体の断熱性能は真空断熱材3よりも遥かに低いため、上記4時間の差は、真空断熱材3同士の接触部分の隙間が減少した影響である事を示す。 This means that, as compared with the result of Example 1, the time from when the heat insulating container 1 is left in a constant temperature room at 30 ° C. until the surface temperature of the cold storage material 9 exceeds 7 ° C. is extended by 4 hours. Although the soft material 14 also functions as a heat insulating material, the thickness when compressed is much thinner than that of the vacuum heat insulating material 3, and the heat insulating performance of the soft material 14 itself is much higher than that of the vacuum heat insulating material 3. Since it is low, the difference of 4 hours indicates that the gap between the contact portions of the vacuum heat insulating materials 3 is reduced.

上記軟質材14を構成により、断熱容器1の断熱性能を向上させることができる。 By configuring the soft material 14, the heat insulating performance of the heat insulating container 1 can be improved.

(第3実施の形態)
図8は、本発明の第2実施の形態において、使用した断熱容器1の断面の概略図である。
(Third Embodiment)
FIG. 8 is a schematic cross-sectional view of the heat insulating container 1 used in the second embodiment of the present invention.

主な構成は第1実施の形態と同じだが、断熱容器1を構成する真空断熱材3のうち、厚み変化部7を有する真空断熱材3の、端部5から、厚み変化部7に弾性部材15を配置した。 The main configuration is the same as that of the first embodiment, but among the vacuum heat insulating materials 3 constituting the heat insulating container 1, the elastic member from the end 5 to the thickness changing portion 7 of the vacuum heat insulating material 3 having the thickness changing portion 7. 15 were placed.

弾性部材15は、例えば発泡されたウレタンや、ゴム系の材質など、弾性があり、シート状のものであればどのようなものでも使用可能である。 The elastic member 15 can be made of any elastic, sheet-like material such as foamed urethane or a rubber-based material.

上記の構成とすることで、外箱4内部で接触する真空断熱材3の端部5と厚み変化部7に挟まれた弾性部材15には、従来例のように真空断熱材3の平面部分により圧縮させた場合に比べ、集中的に力が加わるため、弾性部材15をより圧縮可能になり、弾性部材15の厚みをより薄くできる。 With the above configuration, the elastic member 15 sandwiched between the end portion 5 of the vacuum heat insulating material 3 and the thickness changing portion 7 that come into contact with each other inside the outer box 4 has a flat portion of the vacuum heat insulating material 3 as in the conventional example. Since the force is applied intensively as compared with the case where the elastic member 15 is compressed, the elastic member 15 can be compressed more, and the thickness of the elastic member 15 can be made thinner.

この事は、例えば弾性部材15を真空断熱材3の端部5に配置し、端部5と真空断熱材3の平面を、弾性部材15を介して接触させた場合など、弾性部材15を真空断熱材3と平面で接触させた場合に比べ、本実施の形態においては、真空断熱材3に比べ熱伝導率の悪い弾性部材15の厚みをより薄くできるため、弾性部材15を介して流出入する熱量を低減でき、断熱容器1の断熱性能が向上できる。 This means that, for example, when the elastic member 15 is arranged at the end 5 of the vacuum heat insulating material 3 and the flat surface of the end 5 and the vacuum heat insulating material 3 is brought into contact with each other via the elastic member 15, the elastic member 15 is vacuumed. Compared to the case where the heat insulating material 3 is brought into contact with the heat insulating material 3 in a flat surface, in the present embodiment, the thickness of the elastic member 15 having poor thermal conductivity can be made thinner than that of the vacuum heat insulating material 3, so that the material flows in and out through the elastic member 15. The amount of heat generated can be reduced, and the heat insulating performance of the heat insulating container 1 can be improved.

また、弾性部材15により、断熱容器1の断熱性能を悪化させるような真空断熱材3同士の隙間も大幅に減少するため、断熱容器1の断熱性能を向上できる。 Further, since the elastic member 15 significantly reduces the gap between the vacuum heat insulating materials 3 that deteriorates the heat insulating performance of the heat insulating container 1, the heat insulating performance of the heat insulating container 1 can be improved.

本実施の形態では、弾性部材15を、厚み変化部7だけでなく薄肉部13にも配置したが、熱の流出入は断熱容器1の内部に配置される真空断熱材3同士の隙間で主に起こる事から、弾性部材15は、真空断熱材3同士が接する場所に配置される範囲で、位置を変更しても良い。
(実施例3)
次に、本発明の実施例2について図2を用いて説明する。
In the present embodiment, the elastic member 15 is arranged not only in the thickness changing portion 7 but also in the thin-walled portion 13, but the inflow and outflow of heat is mainly in the gap between the vacuum heat insulating materials 3 arranged inside the heat insulating container 1. The position of the elastic member 15 may be changed within the range where the vacuum heat insulating materials 3 are in contact with each other.
(Example 3)
Next, Example 2 of the present invention will be described with reference to FIG.

主な構成は実施例1の通りであるが、使用した真空断熱材3は、厚み変化部7および薄肉部13の全てを、弾性部材(図に記載無し)で覆った後、断熱容器1内部に配置した。 The main configuration is as in Example 1, but in the vacuum heat insulating material 3 used, after covering all of the thickness changing portion 7 and the thin wall portion 13 with an elastic member (not shown), the inside of the heat insulating container 1 is used. Placed in.

上記弾性部材は、発泡させたポリエチレン製のシートを使用した。厚みは1mmとした。 As the elastic member, a foamed polyethylene sheet was used. The thickness was 1 mm.

上記弾性部材の、真空断熱材3への固定は、ポリプロピレン製の粘着テープを用いた。 An adhesive tape made of polypropylene was used to fix the elastic member to the vacuum heat insulating material 3.

上記寸法と、構成によれば、断熱容器1の内部で真空断熱材3は上記弾性部材を介して接触し、上記弾性部材に強い圧縮を加え、上記弾性部材の厚みが薄くなると共に、真空断熱材3の表面が、真空断熱材3の凹凸やシワに追従して変形するため、各々の真空断熱材3が接触する部分の隙間を通って流出入する熱量を大幅に低減できる。 According to the above dimensions and configuration, the vacuum heat insulating material 3 comes into contact with the inside of the heat insulating container 1 via the elastic member, applies strong compression to the elastic member, reduces the thickness of the elastic member, and vacuum heat insulating. Since the surface of the material 3 is deformed following the unevenness and wrinkles of the vacuum heat insulating material 3, the amount of heat flowing in and out through the gaps of the portions where the vacuum heat insulating materials 3 come into contact can be significantly reduced.

上記構成の断熱容器1を、実施例1同様に、30℃の恒温室に放置し、放置してから、側面に配置した真空断熱材3と接して配置された蓄冷材9の表面の温度が7℃を超えるまでの時間を測定した。 Similar to Example 1, the heat insulating container 1 having the above configuration is left in a constant temperature room at 30 ° C., and then the temperature of the surface of the cold storage material 9 arranged in contact with the vacuum heat insulating material 3 arranged on the side surface is changed. The time until the temperature exceeded 7 ° C. was measured.

その結果、上記の時間は90時間だった。 As a result, the above time was 90 hours.

上記の結果は、実施例1の結果と比べ、上記の断熱容器1を30℃の恒温室に放置してから、上記蓄冷材9の表面温度が7℃を超えるまでの時間が9時間延びている事を示し、この事は真空断熱材3同士の接触部分の隙間が減少した影響である事を示す。 Compared with the result of Example 1, the above result shows that the time from when the heat insulating container 1 is left in a constant temperature room at 30 ° C. until the surface temperature of the cold storage material 9 exceeds 7 ° C. is extended by 9 hours. This indicates that the vacuum heat insulating material 3 has a reduced gap between the contact portions.

弾性部材を厚み変化部7および薄肉部13に配置する事により、断熱容器1の断熱性能を向上させることができる。 By arranging the elastic members in the thickness changing portion 7 and the thin-walled portion 13, the heat insulating performance of the heat insulating container 1 can be improved.

本実施例では、厚み変化部7だけでなく薄肉部13にも上記弾性部材を配置したが、熱の流出入は断熱容器1の内部に配置される真空断熱材3同士の隙間で主に起こる事から、上記弾性部材を配置する場所は真空断熱材3同士が接する場所のみあれば良い。 In this embodiment, the elastic member is arranged not only in the thickness changing portion 7 but also in the thin wall portion 13, but the inflow and outflow of heat mainly occurs in the gap between the vacuum heat insulating materials 3 arranged inside the heat insulating container 1. Therefore, the place where the elastic member is arranged need only be the place where the vacuum heat insulating materials 3 are in contact with each other.

本発明は、血液や薬品、検体などの保冷または保温が必要な荷物を輸送する場合に使用する、梱包用断熱容器に対して、断熱性能の高い真空断熱材を用いる際に生じる、真空断熱材同士の接合面の隙間を低減する事ができ、断熱容器の断熱性能と容積率の両方が改善される。 The present invention is a vacuum heat insulating material generated when a vacuum heat insulating material having high heat insulating performance is used for a heat insulating container for packing used when transporting a package such as blood, chemicals, or a sample that needs to be kept cold or warm. The gap between the joint surfaces can be reduced, and both the heat insulating performance and the floor area ratio of the heat insulating container are improved.

1 断熱容器
2 空間部
3 真空断熱材
4 外箱
5 端部
6 中央部
7 厚み変化部
8 フォーム材
9 蓄冷材
10 外被材
11 芯材
12 水分吸着材
13 薄肉部
14 軟質材
15 弾性部材
1 Insulation container 2 Space part 3 Vacuum heat insulating material 4 Outer box 5 End part 6 Central part 7 Thickness change part 8 Foam material 9 Cold storage material 10 Outer cover material 11 Core material 12 Moisture adsorbent 13 Thin wall part 14 Soft material 15 Elastic member

Claims (4)

端部と、端部より厚みがある中央部と、端部と中央部の間に存在してその厚みが連続的に変化する厚み変化部と、を有する第1真空断熱材と、第1真空断熱材の厚み変化部に、端部が接触している平板状の第2真空断熱材とを含む断熱容器。 A first vacuum heat insulating material having an end portion, a central portion thicker than the end portion, and a thickness changing portion existing between the end portion and the central portion and whose thickness continuously changes, and a first vacuum heat insulating material. A heat insulating container including a flat plate-shaped second vacuum heat insulating material whose end is in contact with the thickness changing portion of the heat insulating material. 第1真空断熱材と第2真空断熱材の外側にある外箱をさらに含む断熱容器。 A heat insulating container further including a first vacuum heat insulating material and an outer box outside the second vacuum heat insulating material. 外箱内に配置された真空断熱材のうち、
少なくとも1枚の真空断熱材の外箱側に軟質材が配置され、
軟質材が、外箱と真空断熱材の間で圧縮されていることを特徴とする請求項1から2に記載の断熱容器。
Of the vacuum heat insulating materials placed inside the outer box
A soft material is placed on the outer box side of at least one vacuum heat insulating material,
The heat insulating container according to claim 1 to 2, wherein the soft material is compressed between the outer box and the vacuum heat insulating material.
外箱内部に配置される複数の真空断熱材同士が接触する部分に、弾性部材が設けられている、請求項1から3に記載の断熱容器。 The heat insulating container according to claim 1 to 3, wherein an elastic member is provided at a portion where a plurality of vacuum heat insulating materials arranged inside the outer box come into contact with each other.
JP2019029963A 2019-02-22 2019-02-22 Heat insulating container using vacuum heat insulating material Pending JP2020132237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029963A JP2020132237A (en) 2019-02-22 2019-02-22 Heat insulating container using vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029963A JP2020132237A (en) 2019-02-22 2019-02-22 Heat insulating container using vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2020132237A true JP2020132237A (en) 2020-08-31

Family

ID=72262101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029963A Pending JP2020132237A (en) 2019-02-22 2019-02-22 Heat insulating container using vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2020132237A (en)

Similar Documents

Publication Publication Date Title
US10647497B2 (en) Compostable insert for shipping container
WO2013140816A1 (en) Vacuum insulation material and insulated housing using same
KR101788653B1 (en) Insulation sheet including Microencapsulated phase change material and aerogel, manufacturing method and package using the same, cover type keeping cold container for transport, and roll container
JP2017141053A (en) Folding type cold insulation hot insulation box
JP2019014489A (en) Heat insulation container
JP2017081646A (en) Folding type cold and heat insulation box and assembly type cold and heat insulation box
KR20100119939A (en) Vacuum insulator and envelope for vacuum insulator
KR950012782B1 (en) Heat-insulating packaging box
JP2020132237A (en) Heat insulating container using vacuum heat insulating material
KR101560125B1 (en) Method for manufacturing insulation box improved insulation performance and insulation box for the same
JP2007155083A (en) Vacuum thermal-insulating material
JP6742090B2 (en) Vacuum insulation
CN212862549U (en) Insulation structure and insulation can for cold chain transportation
JP6742076B2 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
CN107816601B (en) Vacuum heat insulation piece
JP6874529B2 (en) Vacuum heat insulating material
JPH0557896B2 (en)
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
JP2694356B2 (en) Insulation structure
JP7241919B2 (en) Vacuum insulation material and insulation box
JP4654840B2 (en) Vacuum insulation and composite insulation
KR102566976B1 (en) Container using vacuum insulation panel and manufacturing method of same
JP6134919B2 (en) Vacuum insulation
JP2019002581A (en) refrigerator