JP2020131886A - Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle - Google Patents

Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle Download PDF

Info

Publication number
JP2020131886A
JP2020131886A JP2019027135A JP2019027135A JP2020131886A JP 2020131886 A JP2020131886 A JP 2020131886A JP 2019027135 A JP2019027135 A JP 2019027135A JP 2019027135 A JP2019027135 A JP 2019027135A JP 2020131886 A JP2020131886 A JP 2020131886A
Authority
JP
Japan
Prior art keywords
tank
liquid
flow path
storage structure
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019027135A
Other languages
Japanese (ja)
Inventor
森 淳
Atsushi Mori
淳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2019027135A priority Critical patent/JP2020131886A/en
Publication of JP2020131886A publication Critical patent/JP2020131886A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

To collect air bubbles mixed into a liquid in a tank effectively.SOLUTION: A liquid storage structure includes: a tank 60 which stores a liquid; a feed passage 53 which sends the liquid from the tank 60; a return passage 52 which returns the liquid to the tank 60; a float member 70 which floats in the liquid in the tank 60; and a partition member 81 in which one end is rotatably connected to the float member 70 and the other end is formed as a free end which contacts with a bottom part of the tank 60 and which partitions the liquid in the tank 60 into the return passage 52 side and the feed passage 53 side. The partition member 81 is formed with holes that may collect air bubbles in the liquid while allowing circulation.SELECTED DRAWING: Figure 3

Description

本開示は、液体貯留構造及び、油圧ハイブリッド車両の作動油貯留構造に関する。 The present disclosure relates to a liquid storage structure and a hydraulic oil storage structure of a hydraulic hybrid vehicle.

従来、エンジンをクラッチ装置や変速機等を含む動力伝達装置を介して駆動輪に接続すると共に、該動力伝達装置にポンプ及びモータとして作動するポンプ・モータを接続した油圧ハイブリッド車両が知られている(例えば、特許文献1等参照)。 Conventionally, there is known a hydraulic hybrid vehicle in which an engine is connected to a drive wheel via a power transmission device including a clutch device, a transmission and the like, and a pump and a motor operating as a motor are connected to the power transmission device. (See, for example, Patent Document 1 and the like).

この種の油圧ハイブリッド車両においては、発進時や加速時等にアキュムレータに蓄圧した油圧でポンプ・モータをモータとして作動させて駆動輪に動力を伝達する一方、制動時に駆動輪から逆伝達される動力でポンプ・モータをポンプとして作動させてアキュムレータを蓄圧するように構成されている。 In this type of hydraulic hybrid vehicle, the pump motor is operated as a motor by the hydraulic pressure accumulated in the accumulator at the time of starting or accelerating to transmit power to the drive wheels, while the power transmitted back from the drive wheels during braking. It is configured to operate the pump motor as a pump to accumulate pressure in the accumulator.

特開2013−189085号公報Japanese Unexamined Patent Publication No. 2013-189805

上記油圧ハイブリッド車両においては、例えば、ポンプ・モータをポンプとして作動させる制動時、或いは、車両が走行する路面形状等によっては、油タンク内の作動油の油面が大きく変動することで、作動油内に気泡が発生する場合がある。このような気泡がポンプ・モータに供給される作動油に混入すると、ポンプ・モータの動作不良を引き起こす可能性がある。また、作動油内の気泡を除去するための回路等を油タンクとは別体に設けると、装置全体の大型化を招く可能性もある。 In the above hydraulic hybrid vehicle, for example, when braking by operating a pump / motor as a pump, or depending on the shape of the road surface on which the vehicle travels, the oil level of the hydraulic oil in the oil tank fluctuates greatly, so that the hydraulic oil Bubbles may be generated inside. If such air bubbles are mixed with the hydraulic oil supplied to the pump motor, it may cause the pump motor to malfunction. Further, if a circuit or the like for removing air bubbles in the hydraulic oil is provided separately from the oil tank, the size of the entire device may be increased.

本開示の技術は、簡素な構成で、タンク内の液体に混入した気泡を効果的に捕集することを目的とする。 The technique of the present disclosure aims to effectively collect air bubbles mixed in a liquid in a tank with a simple structure.

本開示の液体貯留構造は、液体を貯留するタンクと、前記タンク内から前記液体を送り出す送り流路と、前記タンク内に前記液体を戻す戻し流路と、前記タンク内の前記液体に浮かぶフロート部材と、一端を前記フロート部材に回転可能に連結されると共に、他端を前記タンクの底部に接触させる自由端とされており、前記タンク内の前記液体を前記戻し流路側と前記送り流路側とに仕切る仕切部材と、を備え、前記仕切部材には、前記液体の前記戻し流路側から前記送り流路側に向けた流通を許容しつつ、該液体内に含まれる気泡を捕集可能な複数の孔が形成されていることを特徴とする。 The liquid storage structure of the present disclosure includes a tank for storing liquid, a feed flow path for sending out the liquid from the tank, a return flow path for returning the liquid to the tank, and a float floating on the liquid in the tank. One end of the member is rotatably connected to the float member, and the other end is a free end that contacts the bottom of the tank, so that the liquid in the tank is rotatably connected to the return flow path side and the feed flow path side. A plurality of partition members capable of collecting air bubbles contained in the liquid while allowing the liquid to flow from the return flow path side to the feed flow path side. It is characterized in that a hole is formed.

また、前記仕切部材は、前記タンク内の前記液体の液面降下に伴う前記フロート部材の降下に連動して、前記一端を支点に回転しながら姿勢を変化させることにより、前記タンク内の前記液体を前記戻し流路側と前記送り流路側とに常時仕切ることが好ましい。 Further, the partition member changes its posture while rotating with one end as a fulcrum in conjunction with the drop of the float member accompanying the drop of the liquid level in the tank, whereby the liquid in the tank. Is preferable to always partition the return flow path side and the feed flow path side.

また、前記フロート部材は、前記タンクの横断面形状と同形状に形成されて前記タンクの前記液体の液面全体を覆うことが好ましい。 Further, it is preferable that the float member is formed in the same shape as the cross-sectional shape of the tank and covers the entire liquid surface of the liquid in the tank.

また、前記仕切部材は、複数の小孔を有する網状部材で形成されていることが好ましい。 Further, the partition member is preferably formed of a net-like member having a plurality of small holes.

また、前記仕切部材として、前記送り流路側の第1仕切部材と、前記戻し流路側の第2仕切部材とを備えており、前記第2仕切部材の孔が前記第1仕切部材の孔よりも小径に形成されていることが好ましい。 Further, as the partition member, a first partition member on the feed flow path side and a second partition member on the return flow path side are provided, and the hole of the second partition member is larger than the hole of the first partition member. It is preferably formed with a small diameter.

また、前記液体貯留構造は、油圧ハイブリッド車両の作動油貯留構造であり、該油圧ハイブリッド車両は、蓄圧器と、該蓄圧器から供給される作動油でモータとして作動して駆動輪に動力を伝達すると共に、前記駆動輪から伝達される動力でポンプとして作動して前記蓄圧器を蓄圧するポンプ・モータと、を備えており、前記ポンプ・モータがモータとして作動すると、前記戻し流路を介して前記タンクに作動油が戻されると共に、前記ポンプ・モータがポンプとして作動すると、前記送り流路を介して前記タンクから作動油が送り出されることを特徴とする。 Further, the liquid storage structure is a hydraulic oil storage structure of a hydraulic hybrid vehicle, and the hydraulic hybrid vehicle operates as a motor with a pressure accumulator and hydraulic oil supplied from the pressure accumulator to transmit power to drive wheels. At the same time, it is provided with a pump motor that operates as a pump by the power transmitted from the drive wheels to accumulate the accumulator, and when the pump motor operates as a motor, the pump motor operates as a motor through the return flow path. When the hydraulic oil is returned to the tank and the pump motor operates as a pump, the hydraulic oil is discharged from the tank through the feed flow path.

本開示の技術によれば、簡素な構成で、タンク内の液体に混入した気泡を効果的に捕集することができる。 According to the technique of the present disclosure, it is possible to effectively collect air bubbles mixed in the liquid in the tank with a simple structure.

本実施形態に係る油圧ハイブリッド車両を示す模式的な全体構成図である。It is a schematic overall block diagram which shows the hydraulic hybrid vehicle which concerns on this embodiment. (A)は、本実施形態に係る回生装置の「回生モード」を、(B)は、回生装置の「駆動モード」を説明する模式図である。(A) is a schematic diagram for explaining the "regeneration mode" of the regenerative device according to the present embodiment, and (B) is a schematic diagram for explaining the "drive mode" of the regenerative device. 第一実施形態に係る油タンク、フロート部材及び、捕集機構を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the oil tank, the float member, and the collection mechanism which concerns on 1st Embodiment. 図4において、油面が降下した状態を説明する模式的な縦断面図である。FIG. 4 is a schematic vertical sectional view illustrating a state in which the oil level has dropped. 第二実施形態に係る油タンク、フロート部材及び、捕集機構を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the oil tank, the float member, and the collection mechanism which concerns on 2nd Embodiment. 図5において、油面が降下した状態を説明する模式的な縦断面図である。FIG. 5 is a schematic vertical sectional view illustrating a state in which the oil level has dropped. 他の実施形態に係る油タンク、フロート部材及び、捕集機構を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the oil tank, the float member, and the collection mechanism which concerns on another embodiment.

以下、添付図面に基づいて、本実施形態に係る液体貯留構造及び、油圧ハイブリッド車両の作動油貯留構造について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, the liquid storage structure and the hydraulic oil storage structure of the hydraulic hybrid vehicle according to the present embodiment will be described with reference to the accompanying drawings. The same parts have the same reference numerals, and their names and functions are also the same. Therefore, detailed explanations about them will not be repeated.

[全体構成]
図1は、本実施形態に係る油圧ハイブリッド車両1を示す模式的な全体構成図である。
[overall structure]
FIG. 1 is a schematic overall configuration diagram showing a hydraulic hybrid vehicle 1 according to the present embodiment.

図1に示すように、油圧ハイブリッド車両1には、駆動力源の一例として、エンジン10が搭載されている。エンジン10のクランク軸11には、クラッチ装置12を介して変速機20の入力軸21が接続されている。変速機20の出力軸22には、プロペラシャフト13、デファレンシャルギヤ装置24及び、左右の駆動軸25,26を介して左右の駆動輪27,28がそれぞれ接続されている。なお、油圧ハイブリッド車両1は、図示例の後輪駆動車に限定されず、前輪駆動車、又は、四輪駆動車であってもよい。 As shown in FIG. 1, the hydraulic hybrid vehicle 1 is equipped with an engine 10 as an example of a driving force source. The input shaft 21 of the transmission 20 is connected to the crankshaft 11 of the engine 10 via the clutch device 12. The output shaft 22 of the transmission 20 is connected to the left and right drive wheels 27 and 28 via the propeller shaft 13, the differential gear device 24, and the left and right drive shafts 25 and 26, respectively. The hydraulic hybrid vehicle 1 is not limited to the rear-wheel drive vehicle shown in the illustrated example, and may be a front-wheel drive vehicle or a four-wheel drive vehicle.

変速機20には、出力軸22に動力を伝達可能、又は、出力軸22から動力を取り出し可能な動力取り出し(Power take-off:以下、PTO)装置30が設けられている。PTO装置30のPTO軸31には、回生装置40のポンプ・モータ41が接続されている。なお、PTO装置30は、エンジン10のクランク軸11と一体回転可能な不図示のフライホイールに設けられてもよい。また、回生装置40のポンプ・モータ41は、クラッチ装置12と変速機20との間に介装されてもよい。 The transmission 20 is provided with a power take-off (PTO) device 30 capable of transmitting power to the output shaft 22 or taking out power from the output shaft 22. The pump motor 41 of the regenerative device 40 is connected to the PTO shaft 31 of the PTO device 30. The PTO device 30 may be provided on a flywheel (not shown) that can rotate integrally with the crankshaft 11 of the engine 10. Further, the pump motor 41 of the regenerative device 40 may be interposed between the clutch device 12 and the transmission 20.

回生装置40は、PTO軸31に接続されたポンプ・モータ41と、油圧エネルギを蓄圧するアキュムレータ42(蓄圧器)と、これらポンプ・モータ41及び、アキュムレータ42に作動油を給排するための油圧回路50と、作動油を貯留する油タンク60とを備えている。 The regeneration device 40 includes a pump motor 41 connected to a PTO shaft 31, an accumulator 42 (accumulator) for accumulating hydraulic energy, and hydraulic pressure for supplying and discharging hydraulic oil to the pump motor 41 and the accumulator 42. It includes a circuit 50 and an oil tank 60 for storing hydraulic oil.

油圧回路50は、ポンプ・モータ41とアキュムレータ42とを接続する供給油路51と、ポンプ・モータ41から油タンク60に作動油を戻すリターン油路52(戻し流路)と、油タンク60からポンプ・モータ41に作動油を送る吸込み油路53(送り流路)とを備えている。吸込み油路53の下流端は、リターン油路52の所定部に合流する。吸込み油路53には、油タンク60側からポンプ・モータ41側への作動油の流通を許容しつつ、逆方向への作動油の流通を規制する逆止弁54が設けられている。 The hydraulic circuit 50 is composed of a supply oil passage 51 connecting the pump motor 41 and the accumulator 42, a return oil passage 52 (return flow path) for returning hydraulic oil from the pump motor 41 to the oil tank 60, and an oil tank 60. It is provided with a suction oil passage 53 (feed passage) for feeding hydraulic oil to the pump motor 41. The downstream end of the suction oil passage 53 joins a predetermined portion of the return oil passage 52. The suction oil passage 53 is provided with a check valve 54 that regulates the flow of hydraulic oil in the opposite direction while allowing the flow of hydraulic oil from the oil tank 60 side to the pump motor 41 side.

回生装置40は、油圧ハイブリッド車両1の制動時には、駆動輪27,28側からPTO装置30等を介して逆伝達される動力で、ポンプ・モータ41をポンプとして作動させる「回生モード」とされる。また、回生装置40は、油圧ハイブリッド車両1の発進時や加速時等には、ポンプ・モータ41をモータとして駆動させ、PTO装置30等から駆動輪27,28に動力を伝達する「駆動モード」とされる。 The regenerative device 40 is set to a "regenerative mode" in which the pump motor 41 is operated as a pump by the power transmitted back from the drive wheels 27 and 28 via the PTO device 30 and the like when the hydraulic hybrid vehicle 1 is braked. .. Further, the regenerative device 40 has a "drive mode" in which the pump motor 41 is driven as a motor and power is transmitted from the PTO device 30 or the like to the drive wheels 27 and 28 when the hydraulic hybrid vehicle 1 is started or accelerated. It is said that.

具体的には、図2(A)に示すように、ポンプ・モータ41がポンプとして作動する「回生モード」では、油タンク60から吸込み油路53を介して送り出された作動油が、ポンプ・モータ41により供給油路51に加圧圧送され、アキュムレータ42に油圧エネルギとして蓄圧される。一方、図2(B)に示す「駆動モード」では、アキュムレータ42から供給油路51を介して圧送される作動油がポンプ・モータ41に供給されることで、ポンプ・モータ41はモータとして作動する。ポンプ・モータ41に供給された作動油は、リターン油路52を介して油タンク60内に戻されるようになっている。 Specifically, as shown in FIG. 2A, in the "regenerative mode" in which the pump motor 41 operates as a pump, the hydraulic oil sent out from the oil tank 60 through the suction oil passage 53 is pumped. It is pressurized and pumped to the supply oil passage 51 by the motor 41, and is stored as hydraulic energy in the accumulator 42. On the other hand, in the "drive mode" shown in FIG. 2B, the pump motor 41 operates as a motor by supplying the hydraulic oil pumped from the accumulator 42 through the supply oil passage 51 to the pump motor 41. To do. The hydraulic oil supplied to the pump motor 41 is returned to the oil tank 60 via the return oil passage 52.

本実施形態において、油タンク60には、作動油の油面変動を抑止するフロート部材70及び、作動油内の気泡を捕集除去する捕集機構80が設けられている。以下、フロート部材70及び、捕集機構80の詳細について説明する。 In the present embodiment, the oil tank 60 is provided with a float member 70 that suppresses fluctuations in the oil level of the hydraulic oil and a collection mechanism 80 that collects and removes air bubbles in the hydraulic oil. The details of the float member 70 and the collection mechanism 80 will be described below.

[第一実施形態]
図3は、第一実施形態に係る油タンク60、フロート部材70及び、捕集機構80を示す模式的な縦断面図である。
[First Embodiment]
FIG. 3 is a schematic vertical sectional view showing an oil tank 60, a float member 70, and a collection mechanism 80 according to the first embodiment.

油タンク60は、例えば、6面が閉塞された箱状体であり、その内部には作動油が貯留されている。油タンク60の上板部61には、貫通穴61Aが設けられており、該貫通穴61Aにはリターン油路52が嵌入される。貫通穴61A及び、リターン油路52は、好ましくは、油タンク60の第1側板部62に隣接して配されている。 The oil tank 60 is, for example, a box-shaped body having six surfaces closed, and hydraulic oil is stored inside the oil tank 60. A through hole 61A is provided in the upper plate portion 61 of the oil tank 60, and a return oil passage 52 is fitted into the through hole 61A. The through hole 61A and the return oil passage 52 are preferably arranged adjacent to the first side plate portion 62 of the oil tank 60.

油圧タンク60の第1側板部62と対向する第2側板部63には、貫通穴63Aが設けられており、該貫通穴63Aには吸込み油路53が嵌入さる。貫通穴63A及び、吸込み油路53は、好ましくは、油タンク60の底板部63側に隣接して配されている。油圧タンク60内において、リターン油路52の出口部(下端部)は、好ましくは、吸込み油路53の入口部よりも上方に位置するように設けられている。 A through hole 63A is provided in the second side plate portion 63 facing the first side plate portion 62 of the hydraulic tank 60, and the suction oil passage 53 is fitted into the through hole 63A. The through hole 63A and the suction oil passage 53 are preferably arranged adjacent to the bottom plate portion 63 side of the oil tank 60. In the hydraulic tank 60, the outlet portion (lower end portion) of the return oil passage 52 is preferably provided so as to be located above the inlet portion of the suction oil passage 53.

フロート部材70は、油圧タンク60内の作動油の油面に浮かぶ板状部材である。フロート部材70の材質は、特に限定されず、作動油よりも比重が軽い材質であればよい。フロート部材70は、好ましくは、油圧タンク60内の作動油の油面略全体を覆うように、油圧タンク60の横断面形状と略同形状の矩形板状に形成されている。なお、フロート部材70の形状は、矩形板状に限定されず、油圧タンク60の横断面形状に応じて、作動油の油面略全体を覆う他の形状としてもよい。このように、フロート部材70を油圧タンク60内に作動油の油面全体を覆うように配することで、制動時や加速時等における油面変動が効果的に抑えられるようになる。 The float member 70 is a plate-shaped member that floats on the oil surface of the hydraulic oil in the hydraulic tank 60. The material of the float member 70 is not particularly limited as long as it has a lighter specific gravity than the hydraulic oil. The float member 70 is preferably formed in a rectangular plate shape having substantially the same shape as the cross-sectional shape of the hydraulic tank 60 so as to cover substantially the entire oil level of the hydraulic oil in the hydraulic tank 60. The shape of the float member 70 is not limited to the rectangular plate shape, and may be another shape that covers substantially the entire oil level of the hydraulic oil, depending on the cross-sectional shape of the hydraulic tank 60. By arranging the float member 70 in the hydraulic tank 60 so as to cover the entire oil level of the hydraulic oil in this way, fluctuations in the oil level during braking, acceleration, and the like can be effectively suppressed.

フロート部材70の第1側板部62と隣接する部位には、リターン油路52を挿入する貫通穴71が設けられている。なお、貫通穴71は、リターン油路52を挿入可能な形状であれば、フロート部材70の第1側板部62と隣接する縁部を凹状に切り欠いた凹溝で形成してもよい。 A through hole 71 into which the return oil passage 52 is inserted is provided at a portion of the float member 70 adjacent to the first side plate portion 62. The through hole 71 may be formed by a concave groove in which the edge portion adjacent to the first side plate portion 62 of the float member 70 is recessed, as long as the shape allows the return oil passage 52 to be inserted.

捕集機構80は、油圧タンク60内のフロート部材70よりも下方の作動油に浸漬された網状部材81(仕切部材の一例)と、網状部材81をフロート部材70に回転可能に連結するヒンジ機構82とを備えている。 The collection mechanism 80 is a hinge mechanism that rotatably connects the mesh member 81 (an example of a partition member) immersed in the hydraulic oil below the float member 70 in the hydraulic tank 60 to the float member 70. It is equipped with 82.

網状部材81は、複数の小孔を有する金属メッシュ等で略板状に形成されており、作動油内の気泡を捕集する。網状部材81の各小孔は、好ましくは、作動油内に生じる気泡の径よりも小径に形成されている。網状部材81の各小孔の孔径をどの程度にするかは、実際に使用する作動油の粘性等に応じて適宜に設定すればよい。 The net-like member 81 is formed in a substantially plate shape by a metal mesh or the like having a plurality of small holes, and collects air bubbles in the hydraulic oil. Each small hole of the net-like member 81 is preferably formed to have a diameter smaller than the diameter of bubbles generated in the hydraulic oil. The hole diameter of each small hole of the net-like member 81 may be appropriately set according to the viscosity of the hydraulic oil actually used.

網状部材81は、油タンク60内の作動油内を、フロート部材70の第2側板部63側の端部から底板部64に向けて斜め下方に延設されている。具体的には、網状部材81の一端81Aは、フロート部材70の第2側板部63側の端部にヒンジ機構82を介して回転可能に連結支持されている。また、網状部材81の他端81Bは、リターン油路52の出口端が臨む底板部64に接触する自由端とされている。 The net-like member 81 extends obliquely downward from the end of the float member 70 on the second side plate portion 63 side toward the bottom plate portion 64 in the hydraulic oil in the oil tank 60. Specifically, one end 81A of the net-like member 81 is rotatably connected and supported at the end of the float member 70 on the second side plate portion 63 side via a hinge mechanism 82. Further, the other end 81B of the net-like member 81 is a free end that contacts the bottom plate portion 64 facing the outlet end of the return oil passage 52.

網状部材81の一端81Aから他端81Bまでの長さL1は、その他端81Bがリターン油路52に干渉することを防止すべく、フロート部材70の第2側板部63側の端部から貫通穴71までの長さL2よりも短く形成されている(L1<L2)。また、網状部材81の長さL1は、作動油をリターン油路52側と吸込み油路53側とに確実に仕切るように、油タンク60内に作動油が最も戻されたときの油面高さH(底部からの高さ)よりも長く形成されている(L1>H)。 The length L1 from one end 81A to the other end 81B of the mesh member 81 is a through hole from the end of the float member 70 on the second side plate portion 63 side in order to prevent the other end 81B from interfering with the return oil passage 52. It is formed shorter than the length L2 up to 71 (L1 <L2). Further, the length L1 of the mesh member 81 is the height of the oil level when the hydraulic oil is most returned to the oil tank 60 so as to reliably partition the hydraulic oil between the return oil passage 52 side and the suction oil passage 53 side. It is formed longer than the H (height from the bottom) (L1> H).

油タンク60内に作動油が最も戻された図3に示す状態において、油タンク60内の作動油は、網状部材81によってリターン油路52側と吸込み油路53側とに仕切られている。この状態から油タンク60内の作動油が吸込み油路53を介してポンプ・モータ41(図1,2参照)に汲み上げられると、図4に示すように、作動油の油面が降下し、これに追従してフロート部材70も降下する。フロート部材70が降下する間、網状部材81は、一端81A側のヒンジ機構82を支点にフロート部材70に対して他端81Bが円弧を描くように相対回転し、その姿勢をフロート部材70の降下に連動させて、底板部64に対する傾斜角が次第に小さくなるように変化させることで、作動油をリターン油路52側と吸込み油路53側とに常時仕切るように構成されている。 In the state shown in FIG. 3 in which the hydraulic oil is most returned to the oil tank 60, the hydraulic oil in the oil tank 60 is divided into a return oil passage 52 side and a suction oil passage 53 side by a mesh member 81. From this state, when the hydraulic oil in the oil tank 60 is pumped to the pump motor 41 (see FIGS. 1 and 2) through the suction oil passage 53, the oil level of the hydraulic oil drops as shown in FIG. Following this, the float member 70 also descends. While the float member 70 descends, the net-like member 81 rotates relative to the float member 70 so that the other end 81B draws an arc with the hinge mechanism 82 on the one end 81A side as a fulcrum, and the posture of the float member 70 descends. By changing the inclination angle with respect to the bottom plate portion 64 so as to be gradually reduced in conjunction with the above, the hydraulic oil is always partitioned between the return oil passage 52 side and the suction oil passage 53 side.

これにより、網状部材81よりもリターン油路52側の作動油内に生じた気泡は、作動油がリターン油路52側から吸込み油路53側に向けて流れて網状部材81を通過する際に、網状部材81によって確実に捕集されるようになる。網状部材81に捕集された気泡は、互いに結合しながら浮力を増し、網状部材81に沿って斜め上方に浮上しながら油面に到達することで、作動油内の気泡が確実に除去されるようになっている。 As a result, the bubbles generated in the hydraulic oil on the return oil passage 52 side of the mesh member 81 flow from the return oil passage 52 side toward the suction oil passage 53 side and pass through the mesh member 81. , The net-like member 81 ensures that the oil is collected. The air bubbles collected in the net-like member 81 increase the buoyancy while binding to each other, and reach the oil surface while floating diagonally upward along the net-like member 81, so that the air bubbles in the hydraulic oil are surely removed. It has become like.

以上詳述した第一実施形態によれば、油タンク60内に作動油の油面略全体を覆うフロート部材70が設けられている。これにより、制動時や加速時等の振動を起因とした油タンク60内の油面変動を効果的に抑えることが可能になる。 According to the first embodiment described in detail above, the float member 70 is provided in the oil tank 60 to cover substantially the entire oil level of the hydraulic oil. This makes it possible to effectively suppress fluctuations in the oil level in the oil tank 60 caused by vibrations such as during braking and acceleration.

また、フロート部材70に対して、作動油内の気泡を捕集可能な網状部材81の一端81Aをヒンジ機構82により回転可能に連結し、フロート部材70の降下に連動させて網状部材81の姿勢を変化させることで、油タンク60内の作動油が網状部材81によってリターン油路52側と吸込み油路53側とに常時仕切られるように構成されている。これにより、作動油がリターン油路52側から吸込み油路53側に向けて流れて網状部材81を通過する際に、作動油内の気泡を網状部材81に確実に捕集することが可能になる。また、網状部材81に捕集した気泡を網状部材81に沿って浮上させながら油面に到達させることで、作動油内から気泡を確実に除去することが可能になる。また、作動油内から気泡が除去されることで、空気混入によるポンプ・モータ41の動作不良も効果的に抑制することが可能になる。 Further, one end 81A of the mesh member 81 capable of collecting air bubbles in the hydraulic oil is rotatably connected to the float member 70 by a hinge mechanism 82, and the posture of the mesh member 81 is interlocked with the descent of the float member 70. By changing the above, the hydraulic oil in the oil tank 60 is configured to be constantly partitioned between the return oil passage 52 side and the suction oil passage 53 side by the mesh member 81. As a result, when the hydraulic oil flows from the return oil passage 52 side toward the suction oil passage 53 side and passes through the mesh member 81, it is possible to reliably collect the bubbles in the hydraulic oil on the mesh member 81. Become. Further, by causing the air bubbles collected in the net-like member 81 to reach the oil surface while floating along the net-like member 81, the air bubbles can be reliably removed from the hydraulic oil. Further, by removing air bubbles from the hydraulic oil, it is possible to effectively suppress malfunction of the pump motor 41 due to air mixing.

[第二実施形態]
図5は、第二実施形態に係る油タンク60、フロート部材70及び、捕集機構80を示す模式的な縦断面図である。
[Second Embodiment]
FIG. 5 is a schematic vertical cross-sectional view showing the oil tank 60, the float member 70, and the collection mechanism 80 according to the second embodiment.

第二実施形態は、第一実施形態の捕集機構80において、第2網状部材83及び、第2ヒンジ機構84をさらに追加したものである。 In the second embodiment, the second net-like member 83 and the second hinge mechanism 84 are further added to the collection mechanism 80 of the first embodiment.

具体的には、第1網状部材81の一端81Aは、フロート部材70の第2側板部63側の端部に第1ヒンジ機構82を介して回転可能に連結支持されている。第2網状部材83は、好ましくは、第1網状部材81よりも目が粗い(小孔の径が大きい)金属メッシュ等で形成されている。第2網状部材83の一端83Aは、フロート部材70の第2側板部63側の端部と貫通穴71との間の所定部位に第2ヒンジ機構84を介して回転可能に連結支持されている。 Specifically, one end 81A of the first net-like member 81 is rotatably connected and supported at the end of the float member 70 on the second side plate portion 63 side via the first hinge mechanism 82. The second net-like member 83 is preferably formed of a metal mesh or the like having a coarser mesh (larger diameter of small holes) than the first net-like member 81. One end 83A of the second net-like member 83 is rotatably connected and supported at a predetermined portion between the end of the float member 70 on the second side plate portion 63 side and the through hole 71 via the second hinge mechanism 84. ..

油タンク60内に作動油が最も戻された図5に示す状態において、油タンク60内の作動油は、第1網状部材81及び、第2網状部材83によって3分割に仕切られている。この状態から油タンク60内の作動油が吸込み油路53を介してポンプ・モータ41(図1,2参照)に汲み上げられると、図6に示すように、作動油の油面が降下し、これに追従してフロート部材70も降下する。フロート部材70が降下する間、第1網状部材81及び、第2網状部材83は、フロート部材70に対して各ヒンジ機構82,84を支点に相対回転しながら姿勢を変化させることで、作動油を3分割に常時仕切るように構成されている。 In the state shown in FIG. 5 in which the hydraulic oil is most returned to the oil tank 60, the hydraulic oil in the oil tank 60 is divided into three by a first net-like member 81 and a second net-like member 83. From this state, when the hydraulic oil in the oil tank 60 is pumped to the pump motor 41 (see FIGS. 1 and 2) through the suction oil passage 53, the oil level of the hydraulic oil drops as shown in FIG. Following this, the float member 70 also descends. While the float member 70 descends, the first net-like member 81 and the second net-like member 83 change their postures while rotating relative to the float member 70 with the hinge mechanisms 82 and 84 as fulcrums to change the hydraulic oil. Is configured to be constantly divided into three parts.

これにより、第2網状部材83よりもリターン油路52側の作動油内に生じた気泡は、作動油がリターン油路52側から吸込み油路53側に向けて流れて第2網状部材83を通過する際に、該第2網状部材83によって捕集され、さらに、第2網状部材83を通過した気泡は、作動油が第1網状部材81を通過する際に、該第1網状部材81によって捕集されようになる。各網状部材81,83に捕集された気泡は、互いに結合しながら浮力を増し、各網状部材81,83に沿って斜め上方に浮上しながら油面に到達することで、作動油内の気泡が確実に除去されるようになっている。 As a result, the air bubbles generated in the hydraulic oil on the return oil passage 52 side of the second net-like member 83 flow from the return oil passage 52 side toward the suction oil passage 53 side to cause the second net-like member 83. When passing through, the air bubbles collected by the second net-like member 83 and further passing through the second net-like member 83 are collected by the first net-like member 81 when the hydraulic oil passes through the first net-like member 81. Will be collected. The bubbles collected in the reticulated members 81 and 83 increase the buoyancy while coupling with each other, and reach the oil surface while floating diagonally upward along the reticulated members 81 and 83 to reach the oil surface, thereby causing bubbles in the hydraulic oil. Is surely removed.

すなわち、第二実施形態の捕集機構80によれば、第一実施形態と同様の作用効果を奏しつつ、作動油内の気泡を第2網状部材83及び、第1網状部材81によって二段階で捕集することで、作動油内の気泡をより確実に捕集除去することが可能になる。 That is, according to the collection mechanism 80 of the second embodiment, the bubbles in the hydraulic oil are separated by the second net-like member 83 and the first net-like member 81 in two steps while exhibiting the same action and effect as those of the first embodiment. By collecting, it becomes possible to more reliably collect and remove air bubbles in the hydraulic oil.

[その他]
なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Other]
It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present disclosure.

例えば、図7に示すように、フロート部材70の第2側板部63側の端部に、上方に向けて湾曲しながら突出する空気貯留部75を設けると共に、該空気貯留部75の頂部に空気抜き穴76を設けて構成してもよい。このように、空気貯留部75及び、空気抜き穴76を設ければ、網状部材81に沿って浮上する気泡を空気貯留部75内に効果的に捕集しつつ、捕集した空気を空気抜き穴76から放出することで、油面に到達した気泡を作動油からより確実に分離除去させることが可能になる。 For example, as shown in FIG. 7, an air storage portion 75 that protrudes while curving upward is provided at the end of the float member 70 on the second side plate portion 63 side, and air is evacuated at the top of the air storage portion 75. A hole 76 may be provided. By providing the air storage unit 75 and the air vent hole 76 in this way, the air vent holes 76 collect the collected air while effectively collecting the air bubbles floating along the net-like member 81 in the air storage unit 75. By releasing from the oil, it becomes possible to more reliably separate and remove the air bubbles that have reached the oil surface from the hydraulic oil.

また、第二実施形態において、網状部材81,83の枚数は2枚に限定されず、油タンク60の容量に応じて3枚以上設けてもよい。 Further, in the second embodiment, the number of the mesh members 81 and 83 is not limited to two, and three or more may be provided depending on the capacity of the oil tank 60.

また、本開示の適用は、油圧ハイブリッド車両1の作動油を貯留する油タンク60に限定されず、エンジオイル又はミッションオイルを貯留するオイルパン、或は、油以外の液体を貯留する他のタンク構造(例えば、燃料タンク等)にも広く適用することが可能である。 Further, the application of the present disclosure is not limited to the oil tank 60 for storing the hydraulic oil of the hydraulic hybrid vehicle 1, but is an oil pan for storing engine oil or mission oil, or another tank for storing a liquid other than oil. It can be widely applied to structures (for example, fuel tanks, etc.).

1 油圧ハイブリッド車両
10 エンジン
12 クラッチ装置
13 プロペラシャフト
20 変速機
24 デファレンシャルギヤ装置
25,26 駆動軸
27,28 駆動輪
40 回生装置
41 ポンプ・モータ
42 アキュムレータ(蓄圧器)
50 油圧回路
51 供給油路
52 リターン油路(戻し流路)
53 吸込み油路(送り流路)
60 油タンク(タンク)
70 フロート部材
80 捕集機構
81 網状部材(仕切部材)
82 ヒンジ機構
1 Hydraulic hybrid vehicle 10 Engine 12 Clutch device 13 Propeller shaft 20 Transmission 24 Differential gear device 25, 26 Drive shaft 27, 28 Drive wheel 40 Regeneration device 41 Pump motor 42 Accumulator (accumulator)
50 Hydraulic circuit 51 Supply oil passage 52 Return oil passage (return flow path)
53 Suction oil passage (feed flow path)
60 Oil tank (tank)
70 Float member 80 Collection mechanism 81 Net-like member (partition member)
82 Hinge mechanism

Claims (6)

液体を貯留するタンクと、
前記タンク内から前記液体を送り出す送り流路と、
前記タンク内に前記液体を戻す戻し流路と、
前記タンク内の前記液体に浮かぶフロート部材と、
一端を前記フロート部材に回転可能に連結されると共に、他端を前記タンクの底部に接触させる自由端とされており、前記タンク内の前記液体を前記戻し流路側と前記送り流路側とに仕切る仕切部材と、を備え、
前記仕切部材には、前記液体の前記戻し流路側から前記送り流路側に向けた流通を許容しつつ、該液体内に含まれる気泡を捕集可能な複数の孔が形成されている
ことを特徴とする液体貯留構造。
A tank for storing liquid and
A feed flow path for feeding the liquid from the tank and
A return flow path for returning the liquid into the tank,
A float member that floats on the liquid in the tank,
One end is rotatably connected to the float member, and the other end is a free end that contacts the bottom of the tank, partitioning the liquid in the tank into the return flow path side and the feed flow path side. With a partition member,
The partition member is characterized in that a plurality of holes capable of collecting air bubbles contained in the liquid are formed while allowing the liquid to flow from the return flow path side to the feed flow path side. Liquid storage structure.
前記仕切部材は、前記タンク内の前記液体の液面降下に伴う前記フロート部材の降下に連動して、前記一端を支点に回転しながら姿勢を変化させることにより、前記タンク内の前記液体を前記戻し流路側と前記送り流路側とに常時仕切る
請求項1に記載の液体貯留構造。
The partition member changes its posture while rotating with one end as a fulcrum in conjunction with the drop of the float member accompanying the drop of the liquid level in the tank, thereby causing the liquid in the tank to move. The liquid storage structure according to claim 1, wherein the return flow path side and the feed flow path side are always partitioned.
前記フロート部材は、前記タンクの横断面形状と同形状に形成されて前記タンクの前記液体の液面全体を覆う
請求項1又は2に記載の液体貯留構造。
The liquid storage structure according to claim 1 or 2, wherein the float member is formed in the same shape as the cross-sectional shape of the tank and covers the entire liquid level of the liquid in the tank.
前記仕切部材は、複数の小孔を有する網状部材で形成されている
請求項1から3の何れか一項に記載の液体貯留構造。
The liquid storage structure according to any one of claims 1 to 3, wherein the partition member is formed of a mesh member having a plurality of small holes.
前記仕切部材として、前記送り流路側の第1仕切部材と、前記戻し流路側の第2仕切部材とを備えており、前記第2仕切部材の孔が前記第1仕切部材の孔よりも小径に形成されている
請求項1から4の何れか一項に記載の液体貯留構造。
As the partition member, a first partition member on the feed flow path side and a second partition member on the return flow path side are provided, and the hole of the second partition member has a smaller diameter than the hole of the first partition member. The liquid storage structure according to any one of claims 1 to 4, which is formed.
請求項1から5の何れか一項に記載の液体貯留構造であって、該液体貯留構造は、油圧ハイブリッド車両の作動油貯留構造であり、
該油圧ハイブリッド車両は、蓄圧器と、該蓄圧器から供給される作動油でモータとして作動して駆動輪に動力を伝達すると共に、前記駆動輪から伝達される動力でポンプとして作動して前記蓄圧器を蓄圧するポンプ・モータと、を備えており、前記ポンプ・モータがモータとして作動すると、前記戻し流路を介して前記タンクに作動油が戻されると共に、前記ポンプ・モータがポンプとして作動すると、前記送り流路を介して前記タンクから作動油が送り出される
ことを特徴とする油圧ハイブリッド車両の作動油貯留構造。
The liquid storage structure according to any one of claims 1 to 5, wherein the liquid storage structure is a hydraulic oil storage structure for a hydraulic hybrid vehicle.
The hydraulic hybrid vehicle operates as a motor with an accumulator and hydraulic oil supplied from the accumulator to transmit power to the drive wheels, and operates as a pump with the power transmitted from the drive wheels to operate the accumulator. A pump motor for accumulating pressure is provided, and when the pump motor operates as a motor, hydraulic oil is returned to the tank via the return flow path and the pump motor operates as a pump. , A hydraulic oil storage structure for a hydraulic hybrid vehicle, characterized in that hydraulic oil is pumped from the tank through the feed flow path.
JP2019027135A 2019-02-19 2019-02-19 Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle Pending JP2020131886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027135A JP2020131886A (en) 2019-02-19 2019-02-19 Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027135A JP2020131886A (en) 2019-02-19 2019-02-19 Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2020131886A true JP2020131886A (en) 2020-08-31

Family

ID=72262407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027135A Pending JP2020131886A (en) 2019-02-19 2019-02-19 Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2020131886A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503261A (en) * 1988-03-08 1991-07-25 マットソン カール‐エリック Methods of reducing the pressure drop during the passage of liquids, as well as hydraulic equipment tanks for circulation of liquids
JPH05321902A (en) * 1992-05-15 1993-12-07 Hitachi Constr Mach Co Ltd Hydraulic operating fluid tank
JP2005297986A (en) * 2004-04-08 2005-10-27 Tokai Univ Liquid storage tank
JP2013189085A (en) * 2012-03-14 2013-09-26 Honda Motor Co Ltd Hydraulic hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503261A (en) * 1988-03-08 1991-07-25 マットソン カール‐エリック Methods of reducing the pressure drop during the passage of liquids, as well as hydraulic equipment tanks for circulation of liquids
JPH05321902A (en) * 1992-05-15 1993-12-07 Hitachi Constr Mach Co Ltd Hydraulic operating fluid tank
JP2005297986A (en) * 2004-04-08 2005-10-27 Tokai Univ Liquid storage tank
JP2013189085A (en) * 2012-03-14 2013-09-26 Honda Motor Co Ltd Hydraulic hybrid vehicle

Similar Documents

Publication Publication Date Title
CN100516595C (en) Transmission device for motor vehicle
CN107031543A (en) Lubricating arrangement for the power transmission of vehicle
RU2643086C2 (en) System for lubricating two adjacent and vertically stacked gear trains
US20090127174A1 (en) Oil strainer for transmission
CN101606009A (en) The speed changer that is used for vehicle
CN114080520A (en) Transmission, in particular manual transmission, and bearing carrier for advantageous oil lubrication by means of a multi-chamber system, and method suitable for lubricating a transmission
JP2020131886A (en) Liquid storage structure and working fluid storage structure of hydraulic hybrid vehicle
US7988772B2 (en) Air/oil separator for transmissions and transaxles
CN103133084A (en) Four-stroke engine
JP2019218989A (en) Vehicle drive device
JP7249937B2 (en) transaxle
JP3691779B2 (en) Power transmission mechanism for four-wheel drive vehicles
JP2019215028A (en) Oil strainer
CN212203053U (en) Vehicle drive device
JP6152363B2 (en) Vehicle drive device
JP4023965B2 (en) Lubricating device for internal combustion engine
JP4876014B2 (en) Lubrication device
JP2020186765A (en) Vehicle driving device
CN212028493U (en) Novel gear box
JP2020186762A (en) Vehicle driving device
JPH0658132B2 (en) Oil circulation device in work vehicle
JP2020172994A (en) Axle device
CN107076293B (en) Power plant for a motor vehicle
JP2014118976A (en) Lubrication structure of transmission
JP2014043120A (en) Hybrid vehicle driving device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220