JP2020131057A - Rotary evaporator - Google Patents

Rotary evaporator Download PDF

Info

Publication number
JP2020131057A
JP2020131057A JP2019023414A JP2019023414A JP2020131057A JP 2020131057 A JP2020131057 A JP 2020131057A JP 2019023414 A JP2019023414 A JP 2019023414A JP 2019023414 A JP2019023414 A JP 2019023414A JP 2020131057 A JP2020131057 A JP 2020131057A
Authority
JP
Japan
Prior art keywords
distillate
flask
optical fiber
fiber sensor
rotary evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019023414A
Other languages
Japanese (ja)
Inventor
眞一 有賀
Shinichi Ariga
眞一 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rikakikai Co Ltd
Original Assignee
Tokyo Rikakikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rikakikai Co Ltd filed Critical Tokyo Rikakikai Co Ltd
Priority to JP2019023414A priority Critical patent/JP2020131057A/en
Publication of JP2020131057A publication Critical patent/JP2020131057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

To accurately detect a liquid level in a distillation flask or a distillate recover flask and to enable continuous operation of a rotary evaporator.SOLUTION: A first optical fiber sensor 28, of which a tip 28a is located at a lower limit management position of a liquid level, is provided in a distillation flask 14, the first optical fiber sensor 28 emits a signal to a control part 25 after a mixed liquid in the distillation flask 14 reduces, the tip 28a thereof leaves the liquid level from the liquid immersion state, and a set time has lapsed, and the control part 25 operates an electromagnetic valve 15 on the basis of the signal, and supplies the mixed liquid into the distillation flask 14. A second optical fiber sensor 29, of which a tip 29a is located at an upper limit management position of the liquid level, is provided in a distillate recover flask 19, the second optical fiber sensor 29 emits a signal to the control part 25 after a distillate in the distillate recover flask 19 increases, the tip 29a thereof immerses into the distillate, and a set time has lapsed, and the control part 25 operates a distillate discharge pump 22 on the basis of the signal, and discharges the distillate from the distillate recover flask 19.SELECTED DRAWING: Figure 1

Description

本発明は、ロータリーエバポレーターに関し、詳しくは、混合液を投入した蒸発フラスコを回転させながら加熱し、混合液から蒸発した蒸気を冷却器に導入して冷却することにより、混合液中の各種成分を分離濃縮するために用いられるロータリーエバポレーターに関する。 The present invention relates to a rotary evaporator. Specifically, the evaporation flask containing the mixed solution is heated while rotating, and the vapor evaporated from the mixed solution is introduced into a cooler to cool the various components in the mixed solution. It relates to a rotary evaporator used for separation and concentration.

従来、ロータリーエバポレーターとして、混合液を収容する混合液容器と、該混合液容器から蒸留フラスコに混合液を供給する混合液供給ラインと、ロータリーエバポレーター系内を真空状態にする真空ポンプと、真空状態の蒸留フラスコを回転させる駆動手段と、蒸留フラスコを加温する加温バスと、混合液から蒸発した蒸気を冷却する冷却器と、該冷却器で凝縮した留出液を貯留する留出液回収フラスコと、該留出液回収フラスコから留出液を留出液回収容器に排出する留出液排出ポンプとを備えたものがあった(例えば、特許文献1参照。)。 Conventionally, as a rotary evaporator, a mixed liquid container for accommodating a mixed liquid, a mixed liquid supply line for supplying the mixed liquid from the mixed liquid container to a distillation flask, a vacuum pump for vacuuming the inside of the rotary evaporator system, and a vacuum state. A driving means for rotating the distillation flask, a heating bath for heating the distillation flask, a cooler for cooling the vapor evaporated from the mixed solution, and a distillate recovery for storing the distillate condensed by the cooler. Some were provided with a flask and a distillate discharge pump for discharging the distillate from the distillate recovery flask into the distillate recovery container (see, for example, Patent Document 1).

特開2009−106819号公報JP-A-2009-106819

上述の特許文献1のようなロータリーエバポレーターでは、処理量を多くするために連続運転を可能にすることが求められているが、そのためには、蒸留フラスコ内の混合液の液面や、留出液回収フラスコ内の留出液の液面を検知する手段が必要となっていた。しかし、従来、液面検知手段として用いられるフロート式液面スイッチ等の各種のスイッチでは、例えば、蒸留フラスコに混合液を注入する際に発生する泡や、蒸留フラスコの回転に伴う液面の乱れ、蒸留に伴う混合液の粘性、温度、色、静電容量の変化等によって、液面を正確に検知することが難しかった。 Rotary evaporators such as the above-mentioned Patent Document 1 are required to enable continuous operation in order to increase the amount of processing. For that purpose, the liquid level of the mixed solution in the distillation flask and the distillation of the mixed solution are required. There was a need for a means to detect the liquid level of the distillate in the liquid recovery flask. However, in various switches such as a float type liquid level switch conventionally used as a liquid level detecting means, for example, bubbles generated when a mixed solution is injected into a distillation flask and liquid level turbulence due to rotation of the distillation flask , It was difficult to accurately detect the liquid level due to changes in the viscosity, temperature, color, capacitance, etc. of the mixed liquid due to distillation.

そこで本発明は、蒸留フラスコ内の混合液の液面や、留出液回収フラスコ内の留出液の液面を正確に検知し、連続運転を可能にしたロータリーエバポレーターを提供することを目的としている。 Therefore, an object of the present invention is to provide a rotary evaporator that can accurately detect the liquid level of the mixed liquid in the distillation flask and the liquid level of the distillate in the distillate recovery flask and enable continuous operation. There is.

上記目的を達成するため、本発明のロータリーエバポレーターは、混合液を収容する混合液容器から蒸留フラスコに前記混合液を供給する混合液供給ラインと、該混合液供給ラインに設けられる電磁弁と、ロータリーエバポレーター系内を真空状態にする真空ポンプと、真空状態の前記蒸留フラスコを回転させる駆動手段と、前記蒸留フラスコを加温する加温バスと、混合液から蒸発した蒸気を冷却する冷却器と、該冷却器で凝縮した留出液を貯留する留出液回収フラスコと、該留出液回収フラスコから留出液を留出液回収容器に排出する留出液排出ポンプとを備えたロータリーエバポレーターであって、前記蒸留フラスコ内に気密に挿入され、先端部を液面の下限管理位置に配置する第1光ファイバーセンサを設け、該第1光ファイバーセンサは、前記蒸留フラスコ内の混合液が減少し、前記先端部が液浸状態から液面を離れて設定時間経過後に制御部に信号を発し、該信号に基づいて、前記制御部が前記電磁弁を作動させ、前記蒸留フラスコ内に前記混合液を供給するとともに、前記留出液回収フラスコ内に気密に挿入され、先端部を液面の上限管理位置に配置する第2光ファイバーセンサを設け、該第2光ファイバーセンサは、前記留出液回収フラスコ内の留出液が増加し、前記先端部が留出液中に浸入して設定時間経過後に前記制御部に信号を発し、該信号に基づいて前記制御部が前記留出液排出ポンプを作動させて前記留出液回収フラスコから留出液を前記留出液回収容器に排出する第2光ファイバーセンサとを備えていることを特徴としている。 In order to achieve the above object, the rotary evaporator of the present invention includes a mixed liquid supply line for supplying the mixed liquid from a mixed liquid container containing the mixed liquid to a distillation flask, an electromagnetic valve provided in the mixed liquid supply line, and the like. A vacuum pump that creates a vacuum inside the rotary evaporator system, a driving means that rotates the distillation flask in the vacuum state, a heating bath that heats the distillation flask, and a cooler that cools the vapor evaporated from the mixed solution. A rotary evaporator equipped with a distillate recovery flask for storing the distillate condensed by the cooler and a distillate discharge pump for discharging the distillate from the distillate recovery flask into the distillate recovery container. A first optical fiber sensor, which is airtightly inserted into the distillation flask and whose tip is arranged at a lower limit control position of the liquid level, is provided, and the first optical fiber sensor reduces the amount of mixed liquid in the distillation flask. A signal is sent to the control unit after the tip portion leaves the liquid surface from the immersion state and a set time elapses. Based on the signal, the control unit operates the electromagnetic valve, and the mixed liquid is placed in the distillation flask. Is provided, and a second optical fiber sensor is provided which is airtightly inserted into the distillate recovery flask and whose tip is arranged at the upper limit control position of the liquid level. The second optical fiber sensor is the distillate recovery flask. The amount of distillate in the flask increases, the tip of the flask infiltrates into the distillate, and after a lapse of a set time, a signal is sent to the control unit, and the control unit operates the distillate discharge pump based on the signal. It is characterized in that it is provided with a second optical fiber sensor that discharges the distillate from the distillate recovery flask to the distillate recovery container.

また、前記第1光ファイバーセンサと第2光ファイバーセンサとは、少なくともロータリーエバポレーター内に挿入される部分をフッ素樹脂で被覆すると好ましい。 Further, it is preferable that at least the portion of the first optical fiber sensor and the second optical fiber sensor to be inserted into the rotary evaporator is coated with fluororesin.

さらに、前記電磁弁と前記留出液排出ポンプの作動時間は、それぞれ個別に設定可能であると好適である。 Further, it is preferable that the operating times of the solenoid valve and the distillate discharge pump can be set individually.

本発明のロータリーエバポレーターによれば、第1光ファイバーセンサにより、蒸留フラスコ内の混合液が所定量以下に減少した際に、電磁弁が開となり、蒸留フラスコ内が真空状態となっていることから、混合液を蒸留フラスコ内に自動的に導入することができる。また、第1光ファイバーセンサは、先端部が液浸状態から液面を離れて設定時間経過後に制御部に信号を発することから、蒸留フラスコ内の混合液が、蒸留初期の真空上昇時や、混合液の追加供給時に発生する泡や液面の乱れや、混合液の濃度や変化などに影響されることなく確実に液面検知を行うことができ、混合液の液量を常時適正に維持することができる。 According to the rotary evaporator of the present invention, when the mixed solution in the distillation flask is reduced to a predetermined amount or less by the first optical fiber sensor, the electromagnetic valve is opened and the inside of the distillation flask is in a vacuum state. The mixture can be automatically introduced into the distillation flask. Further, since the tip of the first optical fiber sensor leaves the liquid surface from the immersion state and sends a signal to the control unit after a set time elapses, the mixed liquid in the distillation flask is mixed when the vacuum rises at the initial stage of distillation or when the mixture is mixed. It is possible to reliably detect the liquid level without being affected by bubbles or liquid level turbulence generated when additional liquid is supplied, or the concentration or change of the mixed liquid, and the liquid volume of the mixed liquid is always maintained at an appropriate level. be able to.

さらに、第2光ファイバーセンサにより、留出液回収フラスコ内の留出液が所定量以上に増加した際に、留出液排出ポンプが作動し、留出液回収フラスコから留出液を自動的に排出することができる。また、第2光ファイバーセンサは、先端部が留出液中に浸入して設定時間経過後に作動するので、留出液排出ポンプ側の配管からの気泡の戻りにより発生する液面の乱れに影響されることなく確実に液面検知を行うことができ、留出液の液量を常時適正に維持することができる。 Furthermore, when the amount of distillate in the distillate recovery flask increases to a predetermined amount or more by the second optical fiber sensor, the distillate discharge pump operates to automatically discharge the distillate from the distillate recovery flask. Can be discharged. Further, since the tip of the second optical fiber sensor penetrates into the distillate and operates after the set time has elapsed, it is affected by the turbulence of the liquid level generated by the return of air bubbles from the piping on the distillate discharge pump side. The liquid level can be reliably detected without any trouble, and the amount of the distillate can be maintained at an appropriate level at all times.

これにより、従来不可能であったロータリーエバポレーターの連続運転が可能になり、比較的大容量の混合液の処理も、小規模のロータリーエバポレーターで行うことができるようになり、設備設置スペースの縮小や、処理工程の削減を図ることができ、コストの削減化を図ることができるとともに、連続運転により蒸留品質の安定化を図ることができる。 This enables continuous operation of the rotary evaporator, which was not possible in the past, and it is now possible to process a relatively large volume of mixed solution with a small-scale rotary evaporator, reducing the equipment installation space and reducing the equipment installation space. , The processing process can be reduced, the cost can be reduced, and the distillation quality can be stabilized by continuous operation.

本発明の一形態例を示すロータリーエバポレーターの説明図である。It is explanatory drawing of the rotary evaporator which shows one embodiment of this invention. 同じく留出液回収フラスコと留出液排出ポンプを示す説明図である。Similarly, it is explanatory drawing which shows the distillate recovery flask and the distillate discharge pump. 同じく混合液供給ラインの導入管と第1光ファイバーセンサを導入する導入部の断面図である。Similarly, it is sectional drawing of the introduction pipe of the mixed liquid supply line and the introduction part which introduces the 1st optical fiber sensor. 同じく混合液を蒸留時の蒸留フラスコの要部断面図である。Similarly, it is a cross-sectional view of a main part of a distillation flask when distilling a mixed solution.

図1乃至図4は本発明のロータリーエバポレーターの一形態例を示す図である。本形態例のロータリーエバポレーター11は、混合液を収容する混合液容器12と、混合液容器12から混合液供給ライン13を介して混合液が注入される蒸留フラスコ14と、混合液供給ライン13に設けられる電磁弁15と、蒸留フラスコ14を回転させる駆動手段16と、蒸留フラスコ14を加熱する加温バス17と、蒸留フラスコ14から蒸発して蒸留フラスコ14から導出される蒸気を冷却して凝縮させる冷却器18と、冷却器18で凝縮した留出液を回収する留出液回収フラスコ19と、留出液回収フラスコ19から留出液を留出液回収容器20に導出する留出液回収ライン21と、該留出液回収ライン21に設けられる留出液排出ポンプ22及び逆止弁23と、前記蒸留フラスコ14及び冷却器18並びに留出液回収フラスコ19の内部(ロータリーエバポレーター系内)を減圧する真空ポンプ24と、真空度を制御する制御器24aと、ロータリーエバポレーター11を連続運転するための制御部25とを備えている。 1 to 4 are diagrams showing an example of a form of the rotary evaporator of the present invention. The rotary evaporator 11 of this embodiment is provided in the mixed liquid container 12 for accommodating the mixed liquid, the distillation flask 14 in which the mixed liquid is injected from the mixed liquid container 12 via the mixed liquid supply line 13, and the mixed liquid supply line 13. The electromagnetic valve 15 provided, the driving means 16 for rotating the distillation flask 14, the heating bath 17 for heating the distillation flask 14, and the steam evaporated from the distillation flask 14 and led out from the distillation flask 14 are cooled and condensed. The distillate recovery flask 19 for collecting the distillate condensed by the cooler 18, and the distillate recovery flask 19 for leading the distillate from the distillate recovery flask 19 to the distillate recovery container 20. Inside the line 21, the distillate discharge pump 22 and the check valve 23 provided in the distillate recovery line 21, the distillation flask 14, the cooler 18, and the distillate recovery flask 19 (inside the rotary evaporator system). It is provided with a vacuum pump 24 for reducing the pressure of the flask, a controller 24a for controlling the degree of vacuum, and a control unit 25 for continuously operating the rotary evaporator 11.

蒸留フラスコ14は、接続口を上方に向けて斜めの状態で固定され、底部側が加温バス17内に配置されている。接続口は、内部にロータリージョイント26を備えた前記駆動手段16の下端に、接続具26aを介して気密に接続され、駆動手段16の上端には略十字状に分岐した分岐管27が気密に接続されている。分岐管27は、上部に冷却器18が、下部に留出液回収フラスコ19が、一側方に前記駆動手段16がそれぞれ気密に連結され、他側方には、パッキン27aを介して混合液供給ライン13の導入管13aが貫通する導入部27bが形成されている。 The distillation flask 14 is fixed in an oblique state with the connection port facing upward, and the bottom side is arranged in the heating bath 17. The connection port is airtightly connected to the lower end of the drive means 16 provided with the rotary joint 26 internally via a connector 26a, and a branch pipe 27 branched in a substantially cross shape is airtightly connected to the upper end of the drive means 16. It is connected. In the branch pipe 27, the cooler 18 is airtightly connected to the upper part, the distillate recovery flask 19 is connected to the lower part, the driving means 16 is airtightly connected to one side, and the mixed liquid is airtightly connected to the other side via the packing 27a. An introduction portion 27b through which the introduction pipe 13a of the supply line 13 penetrates is formed.

混合液供給ライン13は、混合液容器12から、電磁弁15を介して分岐管27の導入部27bへ延出し、先端に設けられた前記導入管13aが、パッキン27aを貫通して導入部27bから、分岐管27及び駆動手段16内に気密に挿入され、さらに、接続具26aを介して蒸留フラスコ14内に気密に挿入される。また、導入管13aの先端部は、蒸留フラスコ14の下方の内壁に向けて折曲されている。 The mixed liquid supply line 13 extends from the mixed liquid container 12 to the introduction portion 27b of the branch pipe 27 via the solenoid valve 15, and the introduction pipe 13a provided at the tip penetrates the packing 27a to the introduction portion 27b. Is airtightly inserted into the branch pipe 27 and the driving means 16, and further airtightly inserted into the distillation flask 14 via the connector 26a. Further, the tip of the introduction pipe 13a is bent toward the inner wall below the distillation flask 14.

さらに、蒸留フラスコ14には、制御部25から導出される第1光ファイバーセンサ28が導入管13aに結束した状態で気密に挿入される。第1光ファイバーセンサ28は、可視光線、赤外線などの光を、投光部から発射し、検出物体によって反射する光や、遮光される光量の変化を受光部で検出し出力信号を得る光電センサで、少なくとも、分岐管27と駆動手段16と蒸留フラスコ14内に導入される部分がパイプ状のフッ素樹脂で被覆され、先端部28aは、フッ素樹脂で円錐状に溶封されている。 Further, the first optical fiber sensor 28 led out from the control unit 25 is airtightly inserted into the distillation flask 14 in a state of being bound to the introduction pipe 13a. The first optical fiber sensor 28 is a photoelectric sensor that emits light such as visible light or infrared light from a light projecting unit and detects light reflected by a detection object or a change in the amount of light to be shielded by a light receiving unit to obtain an output signal. At least, the branch pipe 27, the driving means 16, and the portion introduced into the distillation flask 14 are coated with a pipe-shaped fluororesin, and the tip portion 28a is sealed with the fluororesin in a conical shape.

第1光ファイバーセンサ28の先端部28aは受光部を備え、液面の下限管理位置に配置され、通常は、液浸状態となっている。蒸留フラスコ14内の混合液が減少した際には、先端部28aが液面を離れて設定時間経過後に、制御部25に信号を発し、該信号に基づいて、制御部25が電磁弁15を開き、蒸留フラスコ14内が真空状態であることから、蒸留フラスコ14内に混合液が自動的に吸引される。 The tip portion 28a of the first optical fiber sensor 28 includes a light receiving portion, is arranged at a lower limit control position of the liquid level, and is usually in an immersion state. When the amount of the mixed solution in the distillation flask 14 is reduced, the tip 28a leaves the liquid surface and after a lapse of a set time, a signal is sent to the control unit 25, and the control unit 25 presses the solenoid valve 15 based on the signal. Since it opens and the inside of the distillation flask 14 is in a vacuum state, the mixed solution is automatically sucked into the distillation flask 14.

留出液回収フラスコ19は、下部に留出液回収ライン21の配管21aが接続され、該配管21aは、留出液排出ポンプ22の吸い込み口に接続される。留出液排出ポンプ22の吐出口には、逆止弁23を介して留出液回収容器20に接続される配管21bが接続されている。 The distillate recovery flask 19 is connected to the pipe 21a of the distillate recovery line 21 at the bottom, and the pipe 21a is connected to the suction port of the distillate discharge pump 22. A pipe 21b connected to the distillate recovery container 20 is connected to the discharge port of the distillate discharge pump 22 via a check valve 23.

さらに、留出液回収フラスコ19には、制御部25から導出される第2光ファイバーセンサ29が気密に挿入される。第2光ファイバーセンサ29は、第1光ファイバーセンサ28と同様の光電センサで、少なくとも留出液回収フラスコ19内に導入される部分がパイプ状のフッ素樹脂で被覆され、先端部29aは、フッ素樹脂で円錐状に溶封されている。 Further, the second optical fiber sensor 29 led out from the control unit 25 is airtightly inserted into the distillate recovery flask 19. The second optical fiber sensor 29 is a photoelectric sensor similar to the first optical fiber sensor 28, and at least the portion introduced into the distillate recovery flask 19 is coated with a pipe-shaped fluororesin, and the tip portion 29a is made of fluororesin. It is sealed in a conical shape.

第2光ファイバーセンサ29の先端部29aは、受光部を備え、先端部を液面の上限管理位置に配置され、通常は、液面と接触しない状態となっている。留出液回収フラスコ19内の留出液が増加した際には、先端部29aが液面に接触して設定時間経過後に、制御部25に信号を発し、該信号に基づいて、制御部25が留出液排出ポンプ22を作動させて留出液回収フラスコ19から留出液回収容器20に留出液を自動的に排出する。 The tip portion 29a of the second optical fiber sensor 29 is provided with a light receiving portion, and the tip portion is arranged at an upper limit control position of the liquid level, and is usually in a state of not contacting the liquid level. When the amount of distillate in the distillate recovery flask 19 increases, the tip 29a comes into contact with the liquid surface, and after a lapse of a set time, a signal is sent to the control unit 25, and the control unit 25 is based on the signal. Operates the distillate discharge pump 22 to automatically discharge the distillate from the distillate recovery flask 19 into the distillate recovery container 20.

上述の形態例では、制御部25と、第1光ファイバーセンサ28と、電磁弁15と、第2光ファイバーセンサ29と、留出液排出ポンプ22とで、連続運転のための制御回路が構成されている。 In the above-described embodiment, the control unit 25, the first optical fiber sensor 28, the solenoid valve 15, the second optical fiber sensor 29, and the distillate discharge pump 22 form a control circuit for continuous operation. There is.

次に、上述のロータリーエバポレーター11を用いて、水道水を蒸留して蒸留水を回収する際の運転方法について説明する。まず、ロータリーエバポレーター11の運転条件として、真空度を53hPa、加温バス17の温度を70℃、蒸留フラスコ14の回転数を100rpm、冷却器18に導入する冷却水の温度を10℃とする。蒸留フラスコ14に導入された水道水は、35℃で蒸発し始め、蒸留フラスコ14が回転することにより、蒸発が促進される。蒸発が促進し、液面が下がると、第1光ファイバーセンサ28の先端部28aが液浸状態から露出した状態となり、予め設定された時間(2〜10秒)が経過すると、制御部25に信号を送り、この信号に基づいて、制御部25が電磁弁15が設定時間開き、水道水を蒸留フラスコ14に自動的に導入する。 Next, an operation method for recovering distilled water by distilling tap water using the rotary evaporator 11 described above will be described. First, as the operating conditions of the rotary evaporator 11, the degree of vacuum is 53 hPa, the temperature of the heating bath 17 is 70 ° C., the rotation speed of the distillation flask 14 is 100 rpm, and the temperature of the cooling water introduced into the cooler 18 is 10 ° C. The tap water introduced into the distillation flask 14 begins to evaporate at 35 ° C., and the rotation of the distillation flask 14 promotes evaporation. When evaporation is promoted and the liquid level is lowered, the tip 28a of the first optical fiber sensor 28 is exposed from the liquid immersion state, and when a preset time (2 to 10 seconds) elapses, a signal is sent to the control unit 25. The control unit 25 opens the solenoid valve 15 for a set time based on this signal, and automatically introduces tap water into the distillation flask 14.

蒸留フラスコ14内の水道水は、蒸留初期の真空上昇時と、水道水を追加供給された際には、水道水に含まれる気体の脱気現象により激しく発泡する。また、蒸留フラスコ14の回転により液面に揺れや乱れが生じることがあるが、第1光ファイバーセンサ28は、先端部28aが液面から露出してから、予め設定された時間が経過した後に作動することから、チャタリングなどの誤作動が発生する虞がない。 The tap water in the distillation flask 14 violently foams due to the degassing phenomenon of the gas contained in the tap water when the vacuum rises at the initial stage of distillation and when tap water is additionally supplied. Further, the rotation of the distillation flask 14 may cause shaking or turbulence on the liquid surface, but the first optical fiber sensor 28 operates after a preset time has elapsed after the tip 28a is exposed from the liquid surface. Therefore, there is no risk of malfunction such as chattering.

また、冷却器18で蒸気が凝縮液化し、留出液回収フラスコ19内に流下した留出液が溜まり、設定された液面に到達すると、第2光ファイバーセンサ29の先端部29aが液面に浸入し、予め設定された時間(2〜10秒)が経過すると、制御部25に信号を送り、この信号に基づいて、制御部25が留出液排出ポンプ22を作動し、留出液を留出液回収容器20に自動的に排出する。 Further, when the vapor is condensed and liquefied by the cooler 18, the distillate that has flowed down into the distillate recovery flask 19, reaches the set liquid level, the tip 29a of the second optical fiber sensor 29 reaches the liquid level. When the infiltration has elapsed and a preset time (2 to 10 seconds) has elapsed, a signal is sent to the control unit 25, and the control unit 25 operates the distillate discharge pump 22 based on this signal to discharge the distillate. It is automatically discharged to the distillate collection container 20.

第2光ファイバーセンサ29は、先端部29aが留出液に浸入し、予め設定された時間が経過した後に作動することから、留出液回収ライン21の配管21aからの気泡の戻りにより液面が乱れることがあっても、これに影響されることない。 Since the tip 29a of the second optical fiber sensor 29 enters the distillate and operates after a preset time has elapsed, the liquid level is raised by the return of air bubbles from the pipe 21a of the distillate recovery line 21. Even if it is disturbed, it will not be affected by it.

上述のように、本形態例のロータリーエバポレーターによれば、液面の揺れ、泡立ち、発泡、飛沫、及び液の濃度、色、粘性の変化、さらに、静電容量の変化や温度の変化などに影響されることなく、第1光ファイバーセンサ28と第2光ファイバーセンサ29とにより、蒸留フラスコ14内の液面と留出液回収フラスコ19内の液面を正確に検知し、液量をそれぞれ常時適正に維持することができることから、従来不可能であったロータリーエバポレーターの連続運転が可能になった。これにより、ロータリーエバポレーター11の設備設置スペースの縮小や、処理工程の削減を図ることができ、コストの削減化を図ることができるとともに、蒸留品質の安定化を図ることができる。 As described above, according to the rotary evaporator of this embodiment, the liquid surface sways, foams, foams, droplets, and changes in liquid concentration, color, and viscosity, as well as changes in capacitance and temperature. The liquid level in the distillation flask 14 and the liquid level in the distillate recovery flask 19 are accurately detected by the first optical fiber sensor 28 and the second optical fiber sensor 29 without being affected, and the liquid amount is always appropriate. Since it can be maintained at the above level, continuous operation of the rotary evaporator, which was not possible in the past, has become possible. As a result, the equipment installation space of the rotary evaporator 11 can be reduced, the processing process can be reduced, the cost can be reduced, and the distillation quality can be stabilized.

11…ロータリーエバポレーター、12…混合液容器、13…混合液供給ライン、13a…導入管、14…蒸留フラスコ、15…電磁弁、16…駆動手段、17…加温バス、18…冷却器、19…留出液回収フラスコ、20…留出液回収容器、21…留出液回収ライン、21a,21b…配管、22…留出液排出ポンプ、23…逆止弁、24…真空ポンプ、25…制御部、26…ロータリージョイント、26a…接続具、27…分岐管、27a…パッキン、27b…導入部、28…第1光ファイバーセンサ、28a…先端部、29…第2光ファイバーセンサ、29a…先端部 11 ... rotary evaporator, 12 ... mixed liquid container, 13 ... mixed liquid supply line, 13a ... introduction pipe, 14 ... distillation flask, 15 ... electromagnetic valve, 16 ... driving means, 17 ... heating bath, 18 ... cooler, 19 ... Distillate recovery flask, 20 ... Distillate recovery container, 21 ... Distillate recovery line, 21a, 21b ... Piping, 22 ... Distillate discharge pump, 23 ... Check valve, 24 ... Vacuum pump, 25 ... Control unit, 26 ... rotary joint, 26a ... connector, 27 ... branch pipe, 27a ... packing, 27b ... introduction unit, 28 ... first optical fiber sensor, 28a ... tip portion, 29 ... second optical fiber sensor, 29a ... tip portion

Claims (3)

混合液を収容する混合液容器から蒸留フラスコに前記混合液を供給する混合液供給ラインと、該混合液供給ラインに設けられる電磁弁と、ロータリーエバポレーター系内を真空状態にする真空ポンプと、真空状態の前記蒸留フラスコを回転させる駆動手段と、前記蒸留フラスコを加温する加温バスと、混合液から蒸発した蒸気を冷却する冷却器と、該冷却器で凝縮した留出液を貯留する留出液回収フラスコと、該留出液回収フラスコから留出液を留出液回収容器に排出する留出液排出ポンプとを備えたロータリーエバポレーターであって、
前記蒸留フラスコ内に気密に挿入され、先端部を液面の下限管理位置に配置する第1光ファイバーセンサを設け、該第1光ファイバーセンサは、前記蒸留フラスコ内の混合液が減少し、前記先端部が液浸状態から液面を離れて設定時間経過後に制御部に信号を発し、該信号に基づいて、前記制御部が前記電磁弁を作動させ、前記蒸留フラスコ内に前記混合液を供給するとともに、
前記留出液回収フラスコ内に気密に挿入され、先端部を液面の上限管理位置に配置する第2光ファイバーセンサを設け、該第2光ファイバーセンサは、前記留出液回収フラスコ内の留出液が増加し、前記先端部が留出液中に浸入して設定時間経過後に前記制御部に信号を発し、該信号に基づいて前記制御部が前記留出液排出ポンプを作動させて前記留出液回収フラスコから留出液を前記留出液回収容器に排出する第2光ファイバーセンサとを備えていることを特徴とするロータリーエバポレーター。
A mixed liquid supply line that supplies the mixed liquid from the mixed liquid container that houses the mixed liquid to the distillation flask, an electromagnetic valve provided in the mixed liquid supply line, a vacuum pump that creates a vacuum in the rotary evaporator system, and a vacuum. A driving means for rotating the distillation flask in the state, a heating bath for heating the distillation flask, a cooler for cooling the vapor evaporated from the mixed solution, and a distillate for storing the distillate condensed by the cooler. A rotary evaporator equipped with a distillate recovery flask and a distillate discharge pump for discharging distillate from the distillate recovery flask into a distillate recovery container.
A first optical fiber sensor that is airtightly inserted into the distillation flask and arranges the tip portion at the lower limit control position of the liquid level is provided, and the first optical fiber sensor reduces the mixed liquid in the distillation flask and the tip portion. Leaves the liquid surface from the liquid immersion state and emits a signal to the control unit after a lapse of a set time, and based on the signal, the control unit operates the electromagnetic valve to supply the mixed solution into the distillation flask. ,
A second optical fiber sensor that is airtightly inserted into the distillate recovery flask and whose tip is arranged at the upper limit control position of the liquid level is provided, and the second optical fiber sensor is used for the distillate in the distillate recovery flask. Increases, the tip portion infiltrates into the distillate, and after a lapse of a set time, a signal is emitted to the control unit, and the control unit operates the distillate discharge pump based on the signal to distill off the distillate. A rotary evaporator characterized by comprising a second optical fiber sensor for discharging the distillate from the liquid recovery flask into the distillate recovery container.
前記第1光ファイバーセンサと第2光ファイバーセンサとは、少なくともロータリーエバポレーター内に挿入される部分をフッ素樹脂で被覆したことを特徴とする請求項1記載のロータリーエバポレーター。 The rotary evaporator according to claim 1, wherein the first optical fiber sensor and the second optical fiber sensor are characterized in that at least a portion inserted into the rotary evaporator is coated with a fluororesin. 前記電磁弁と前記留出液排出ポンプの作動時間は、それぞれ個別に設定可能であることを特徴とする請求項1又は2記載のロータリーエバポレーター。 The rotary evaporator according to claim 1 or 2, wherein the operating time of the solenoid valve and the distillate discharge pump can be set individually.
JP2019023414A 2019-02-13 2019-02-13 Rotary evaporator Pending JP2020131057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023414A JP2020131057A (en) 2019-02-13 2019-02-13 Rotary evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023414A JP2020131057A (en) 2019-02-13 2019-02-13 Rotary evaporator

Publications (1)

Publication Number Publication Date
JP2020131057A true JP2020131057A (en) 2020-08-31

Family

ID=72261775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023414A Pending JP2020131057A (en) 2019-02-13 2019-02-13 Rotary evaporator

Country Status (1)

Country Link
JP (1) JP2020131057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976057A (en) * 2021-11-05 2022-01-28 温州医科大学 Preparation device of fluorescent nano material
WO2023090270A1 (en) * 2021-11-16 2023-05-25 慶應義塾 Ultrafine bubble concentrate production method and ultrafine bubble solution concentrator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395668A (en) * 1977-02-01 1978-08-22 Organo Kk Detecting switch for liquid level
JPH0985005A (en) * 1995-09-22 1997-03-31 Ebara Corp Concentrating and distilling apparatus provided with liquid surface controlling mechanism
JP2006153671A (en) * 2004-11-29 2006-06-15 Nissei Electric Co Ltd Optical fiber liquid level sensor
US20130153397A1 (en) * 2011-12-19 2013-06-20 Hans Heidolph Gmbh & Co. Kg Distillation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395668A (en) * 1977-02-01 1978-08-22 Organo Kk Detecting switch for liquid level
JPH0985005A (en) * 1995-09-22 1997-03-31 Ebara Corp Concentrating and distilling apparatus provided with liquid surface controlling mechanism
JP2006153671A (en) * 2004-11-29 2006-06-15 Nissei Electric Co Ltd Optical fiber liquid level sensor
US20130153397A1 (en) * 2011-12-19 2013-06-20 Hans Heidolph Gmbh & Co. Kg Distillation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976057A (en) * 2021-11-05 2022-01-28 温州医科大学 Preparation device of fluorescent nano material
CN113976057B (en) * 2021-11-05 2022-11-18 温州医科大学 Preparation device of fluorescent nano material
WO2023090270A1 (en) * 2021-11-16 2023-05-25 慶應義塾 Ultrafine bubble concentrate production method and ultrafine bubble solution concentrator

Similar Documents

Publication Publication Date Title
JP2020131057A (en) Rotary evaporator
US20110072983A1 (en) Cooking apparatus having a vapor condensation device
EP2682372A1 (en) System and method for dewatering oil/water sludge
US20220010969A1 (en) Cleaning chemical assembly, cleaning chemical modular system, and cooking appliance
JPH06500049A (en) Apparatus and method for processing emulsions
US20020063051A1 (en) Processing of shipboard wastewater
JP6814052B2 (en) Water server
KR100764594B1 (en) Deacidification method of library materials using deacidifiable apparatus by inundation of library materials
EP1974781A2 (en) Vacuum distillation method and vacuum distillation apparatus
WO2017164374A1 (en) Drying device and drying method
US3479252A (en) Apparatus for the degreasing of articles by means of a solvent
US3380895A (en) Water supply system
JPH0663304A (en) Vacuum distillation device
Biehler et al. Small laboratory centrifugal molecular still
US2289956A (en) Still for distilling or reclaiming
JP2004148181A (en) Oil-water separation method and oil-water separator
US3347755A (en) Temperature controlled convective distillation and vapor evacuation
FI107461B (en) Method and apparatus for removing soda melt from a soda boiler
JP2003245503A5 (en)
JP2004166868A (en) Electric water heater
US11040294B2 (en) Laboratory device for evaporating a substance
CN217921992U (en) Oil-water separation subassembly and distilling machinery
JP4723002B2 (en) Diluted oil concentration processing equipment
EP4049737A1 (en) Apparatus for the concentration of wastewater
CN215136942U (en) Centrifugal film vacuum evaporation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418