JP2020130599A - Ultrasound measurement method and measurement apparatus for measurement object - Google Patents

Ultrasound measurement method and measurement apparatus for measurement object Download PDF

Info

Publication number
JP2020130599A
JP2020130599A JP2019027901A JP2019027901A JP2020130599A JP 2020130599 A JP2020130599 A JP 2020130599A JP 2019027901 A JP2019027901 A JP 2019027901A JP 2019027901 A JP2019027901 A JP 2019027901A JP 2020130599 A JP2020130599 A JP 2020130599A
Authority
JP
Japan
Prior art keywords
vibrating element
measured
ultrasonic waves
ultrasonic
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019027901A
Other languages
Japanese (ja)
Inventor
晃史 所
Akinori Tokoro
晃史 所
康祥 星
Yasuhiro Hoshi
康祥 星
恵美子 尾上
Emiko Onoe
恵美子 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ces Descartes Co Ltd
Original Assignee
Ces Descartes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ces Descartes Co Ltd filed Critical Ces Descartes Co Ltd
Priority to JP2019027901A priority Critical patent/JP2020130599A/en
Publication of JP2020130599A publication Critical patent/JP2020130599A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

To provide a method and a measurement apparatus for measuring behaviors of ultrasound waves in a mode different from that of a reflection image.SOLUTION: An ultrasound measurement method and a measurement apparatus for a measurement object include: contacting an ultrasound probe including a projection transducer group having three or more transducers and a reception transducer group having a plurality of transducers with a measurement object such that the ultrasound probe passes through the inside of the measurement object from the projection transducer group to the reception transducer group; causing each of the transducers in the projection transducer group to sequentially project an ultrasound wave to inside the measurement object and causing respective transducers in the reception transducer group to receive the ultrasound wave projected by the respective transducer in the projection transducer group and transmitted through the measurement object as the reception data of each of the projecting transducers; and calculating the intensity attenuation of the ultrasound wave and the propagation velocity of the ultrasound wave at each position inside the measurement object by applying an aperture synthesis method on the basis of the reception data.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象物の内部を透過する超音波の速度及び強度の減衰挙動を取得する方法及びそのための測定装置に関する。 The present invention relates to a method for acquiring the attenuation behavior of the velocity and intensity of ultrasonic waves transmitted through the inside of a measurement object, and a measuring device for that purpose.

超音波測定においては、測定対象物に超音波を照射し、測定対象物からの応答を検知して分析が行われる。超音波測定は、測定対象物への破壊が全く無いかあるいは極めて小さいことが多い点で優れた測定法である。通常、超音波プローブを測定対象物に接触させて、超音波プローブに内蔵される振動素子から測定対象物へ超音波が照射される。そして、測定対象物からの応答が超音波などの振動情報である場合には、前記振動素子を受動素子として用いることもしばしば行われる。 In ultrasonic measurement, an object to be measured is irradiated with ultrasonic waves, and a response from the object to be measured is detected for analysis. Ultrasonic measurement is an excellent measurement method in that there is often no or very small damage to the object to be measured. Normally, the ultrasonic probe is brought into contact with the object to be measured, and the vibration element built in the ultrasonic probe irradiates the object to be measured with ultrasonic waves. When the response from the object to be measured is vibration information such as ultrasonic waves, the vibration element is often used as a passive element.

測定対象物に超音波を照射すると、測定対象物の物性に応じて超音波が反射したり透過したり干渉したりするなどの変異が想定される。それら変位を観測して、観測により得られたデータを処理することで測定対象物の内部構造や内部物性を推定することが提案される。例えば、特許文献1では、プローブを備える超音波診断装置において、被検体内で反射した超音波を前記プローブを介して受信する発明が開示されている。 When the object to be measured is irradiated with ultrasonic waves, variations such as reflection, transmission, and interference of the ultrasonic waves are assumed depending on the physical properties of the object to be measured. It is proposed to estimate the internal structure and physical properties of the object to be measured by observing these displacements and processing the data obtained by the observation. For example, Patent Document 1 discloses an invention in which an ultrasonic diagnostic apparatus including a probe receives ultrasonic waves reflected in a subject via the probe.

特許第6145202号公報Japanese Patent No. 6145202

超音波による測定や診断は測定対象物の破壊が全く無いかあるいは小さいことが多く、優れた測定、診断法であり、さらなる適用の拡大が望まれる。そのような観点から、測定対象物の内部状態の把握を種々の態様で実現できることが好ましい。比較的多くの場合、測定対象物の各位置における照射超音波の反射挙動を観測する、いわゆる反射像の取得が行われている。本発明は、反射像とは異なるモードの超音波への挙動を把握する方法および測定装置の提供を目的とする。 Measurement and diagnosis by ultrasonic waves are excellent measurement and diagnostic methods because there is often no or little destruction of the object to be measured, and further expansion of application is desired. From such a viewpoint, it is preferable that the internal state of the object to be measured can be grasped in various ways. In a relatively large number of cases, so-called reflection images are acquired by observing the reflection behavior of the irradiated ultrasonic waves at each position of the object to be measured. An object of the present invention is to provide a method and a measuring device for grasping the behavior of an ultrasonic wave in a mode different from that of a reflected image.

本発明者らが鋭意検討した結果、以下のような本発明を完成した。
(1)(A)第1〜第M(但し、Mは3以上の整数である。)の振動素子を有する照射用振動素子群と、照射用振動素子群とは別個に複数の振動素子を有する受信用振動素子群と、を有する1又は複数の超音波プローブを測定対象物に当接させ、このとき、照射用振動素子群が有する振動素子と受信用振動素子群が有する振動素子とを結ぶ直線が測定対象物の内部を通過するように、前記超音波プローブを測定対象物に当接させるステップ、(B)前記第1の振動素子から第Mの振動素子まで順々に超音波を測定対象物の内部に照射し、測定対象物を透過した超音波を、照射した振動素子ごとに各々の受信データとして受信用振動素子群が有する複数の振動素子にそれぞれ受信させるステップ、及び(C)前記受信データに基づいて開口合成法を適用することにより、測定対象物の内部の各位置における超音波の強度減衰と超音波の伝播速度とを算出するステップ、を有し、前記各々の受信データは、照射した振動素子の位置データ、受信した振動素子の位置データ、照射から受信までの到達時間、照射した超音波の強度のデータ、受信した超音波の強度のデータを少なくとも含む、測定対象物の超音波測定方法。
(2)Mが200以上の整数である(1)の方法。
(3)測定対象物が生体である(1)又は(2)の方法。
(4)第1〜第M(但し、Mは3以上の整数である。)の振動素子を有する照射用振動素子群と、第1の振動素子群とは別個に複数の振動素子を有する受信用振動素子群と、を有する1又は複数の超音波プローブと、制御装置と、出力装置とを備え、前記制御装置は以下の(B)及び(C)、すなわち、(B)前記第1の振動素子から第Mの振動素子まで順々に超音波を測定対象物の内部に照射し、測定対象物を透過した超音波を、照射した振動素子ごとに各々の受信データとして受信用振動素子群が有する複数の振動素子にそれぞれ受信させること、及び(C)前記受信データに基づいて開口合成法を適用することにより、測定対象物の内部の各位置における超音波の強度減衰と超音波の伝播速度とを算出すること、を実行させるよう構成されており、前記出力装置は前記(C)において生成した超音波の強度減衰及び超音波の伝播速度の少なくとも1つを出力するものであり、前記各々の受信データは、照射した振動素子の位置データ、受信した振動素子の位置データ、照射から受信までの到達時間、照射した超音波の強度のデータ、受信した超音波の強度のデータを少なくとも含む、測定対象物の超音波測定装置。
(5)Mが200以上の整数である(4)の測定装置。
(6)測定対象物が生体である(4)又は(5)の測定装置。
As a result of diligent studies by the present inventors, the following invention has been completed.
(1) (A) A group of vibration elements for irradiation having first to first M (where M is an integer of 3 or more) and a plurality of vibration elements separately from the group of vibration elements for irradiation. A group of receiving vibrating elements and one or a plurality of ultrasonic probes having are brought into contact with an object to be measured, and at this time, the vibrating elements of the group of vibrating elements for irradiation and the vibrating elements of the group of vibrating receiving elements are brought into contact with each other. The step of bringing the ultrasonic probe into contact with the measurement object so that the connecting straight line passes through the inside of the measurement object, (B) ultrasonic waves are sequentially applied from the first vibration element to the M vibration element. A step of irradiating the inside of the object to be measured and causing the plurality of vibrating elements of the receiving vibrating element group to receive the ultrasonic waves transmitted through the object to be measured as the received data for each vibrating element (C). ) By applying the aperture synthesis method based on the received data, there is a step of calculating the intensity attenuation of the ultrasonic wave and the propagation speed of the ultrasonic wave at each position inside the object to be measured, and each of the above-mentioned receptions. The data includes at least the position data of the irradiated vibrating element, the position data of the received vibrating element, the arrival time from irradiation to reception, the intensity data of the irradiated ultrasonic wave, and the intensity data of the received ultrasonic wave. Ultrasonic measurement method for objects.
(2) The method of (1) in which M is an integer of 200 or more.
(3) The method of (1) or (2) in which the object to be measured is a living body.
(4) A group of vibration elements for irradiation having first to third M (where M is an integer of 3 or more) and a reception having a plurality of vibration elements separately from the first group of vibration elements. The control device includes the following (B) and (C), that is, (B) the first, which includes one or a plurality of ultrasonic probes having a vibration element group for vibration, a control device, and an output device. A group of receiving vibrating elements is used to irradiate the inside of the object to be measured with ultrasonic waves in sequence from the vibrating element to the Mth vibrating element, and the ultrasonic waves transmitted through the object to be measured are received as received data for each irradiated vibrating element. By receiving each of the multiple vibrating elements of the device and (C) applying the aperture synthesis method based on the received data, the intensity attenuation of the ultrasonic waves and the propagation of the ultrasonic waves at each position inside the object to be measured The output device is configured to perform the calculation of the velocity, and outputs at least one of the intensity attenuation of the ultrasonic waves generated in (C) and the propagation velocity of the ultrasonic waves. Each received data includes at least the position data of the irradiated vibrating element, the position data of the received vibrating element, the arrival time from irradiation to reception, the intensity data of the irradiated ultrasonic waves, and the intensity data of the received ultrasonic waves. , An ultrasonic measuring device for the object to be measured.
(5) The measuring device of (4) in which M is an integer of 200 or more.
(6) The measuring device according to (4) or (5), wherein the object to be measured is a living body.

本発明によれば、複数の照射ポイントから測定対象物に対して超音波を照射して、その透過データを開口合成法により統合することにより、測定対象物の内部の形状や組成に由来する超音波の強度減衰や伝播速度を高精度に測定することができる。 According to the present invention, ultrasonic waves are applied to a measurement object from a plurality of irradiation points, and the transmission data thereof are integrated by an aperture synthesis method to obtain an ultrasonic wave derived from the internal shape and composition of the measurement object. It is possible to measure the intensity attenuation and propagation speed of ultrasonic waves with high accuracy.

本発明で用いることができる超音波プローブの一例の模式図である。It is a schematic diagram of an example of an ultrasonic probe that can be used in the present invention. 本発明で用いることができる超音波プローブの一例の模式図である。It is a schematic diagram of an example of an ultrasonic probe that can be used in the present invention. 受信データの解析の説明図である。It is explanatory drawing of the analysis of the received data.

以下、図面を適宜参照しながら本発明を説明する。本発明は、図示された態様に限定されるわけではない。 Hereinafter, the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the illustrated embodiments.

本発明によれば、測定対象物の超音波測定装置は、照射用及び受信用の振動素子群を有する超音波プローブと、制御装置と、出力装置とを備える。制御装置において成すべき制御は後述する。照射用及び受信用の振動素子群は1つの超音波プローブに備えられていてもよいし、複数の超音波プローブに分散して備えられていてもよい。 According to the present invention, the ultrasonic measuring device for a measurement object includes an ultrasonic probe having a group of vibrating elements for irradiation and reception, a control device, and an output device. The control to be performed in the control device will be described later. The group of vibrating elements for irradiation and reception may be provided in one ultrasonic probe, or may be dispersed in a plurality of ultrasonic probes.

照射用振動素子群に含まれる3つ以上の振動素子について、便宜上、第1〜第M(但し、Mは3以上の整数である。)の振動素子と呼ぶ。第1〜第Mの振動素子は、測定時に超音波を照射する振動素子である。測定精度向上の観点から、Mは好ましくは32〜1024であり、より好ましくは256〜512である。 For convenience, the three or more vibrating elements included in the irradiation vibrating element group are referred to as the first to Mth vibrating elements (where M is an integer of 3 or more). The first to first M vibration elements are vibration elements that irradiate ultrasonic waves at the time of measurement. From the viewpoint of improving the measurement accuracy, M is preferably 32 to 1024, and more preferably 256 to 512.

受信用振動素子群に含まれる複数の振動素子は、測定時に超音波を受信する振動素子である。測定精度向上の観点から、受信用振動素子群は、好ましくは32〜1024個、より好ましくは256〜512個の振動素子を有する。 The plurality of vibrating elements included in the receiving vibrating element group are vibrating elements that receive ultrasonic waves at the time of measurement. From the viewpoint of improving the measurement accuracy, the receiving vibrating element group preferably has 32 to 1024 vibrating elements, more preferably 256 to 512 vibrating elements.

本発明では、振動素子そのものについては、従来公知のものをそのまま用いることができる。従来の超音波プローブで用いられている振動素子を適宜採り入れることができる。 In the present invention, as the vibrating element itself, a conventionally known one can be used as it is. The vibrating element used in the conventional ultrasonic probe can be appropriately adopted.

本発明では、超音波測定に際して、照射用振動素子群が有する振動素子から照射される超音波が、測定対象物の内部を透過して、受信用振動素子群が有する振動素子へと受信させるようにする。よって、振動素子の配置に関しては、照射用振動素子群が有する振動素子と、受信用振動素子群が有する振動素子とが結ぶ直線が、測定対象物の内部を通過するような配置にする。そのような振動素子の配置の非限定的な例を以下に挙げる。 In the present invention, in ultrasonic measurement, the ultrasonic waves emitted from the vibrating elements of the irradiation vibrating element group pass through the inside of the measurement object and are received by the vibrating element of the receiving vibrating element group. To. Therefore, the arrangement of the vibrating elements is such that the straight line connecting the vibrating elements of the irradiation vibrating element group and the vibrating elements of the receiving vibrating element group passes through the inside of the object to be measured. Non-limiting examples of such arrangement of vibrating elements are given below.

図1に、超音波プローブの一例の模式図を示す。図1(A)は外観斜視図であり、図1(B)は、プローブ本体の内部模式図である。 FIG. 1 shows a schematic diagram of an example of an ultrasonic probe. FIG. 1A is an external perspective view, and FIG. 1B is an internal schematic view of a probe body.

測定対象物(図示せず)の測定に際して、超音波プローブ10におけるプローブ本体12は測定対象物宇の表面に接触させられる。プローブ本体12は第1〜第Mの振動素子11を備える。制御装置等(図示せず)から送信部を介して、プローブ本体12の各振動素子11に送信信号が送られる。この送信信号に基づいて、振動素子11から超音波が照射される。 When measuring the object to be measured (not shown), the probe body 12 of the ultrasonic probe 10 is brought into contact with the surface of the object to be measured U. The probe main body 12 includes first to M first vibrating elements 11. A transmission signal is transmitted from a control device or the like (not shown) to each vibrating element 11 of the probe main body 12 via a transmission unit. Ultrasonic waves are emitted from the vibrating element 11 based on this transmission signal.

図1のプローブは、振動素子は測定対象物に対して凹曲面を形成し得るように構成される。プローブ本体12が凹曲面を形成していて、その中に振動素子11が組み込まれることにより、複数の振動素子11が全体として、測定対象物に対して凹曲面を形成している。凹曲面で測定対象物を包むようにプローブ10を測定対象物に当接させると、複数の振動素子11のうち凹曲面の片端付近の振動素子11aと、多端付近の振動素子11bとが結ぶ直線は、測定対象物の内部を通過することになる。よって、図1(B)に示す形態の場合には、例えば、振動素子11aが照射用振動素子群を構成し、振動素子11bが受信用振動素子群を構成することができる。 The probe of FIG. 1 is configured such that the vibrating element can form a concave curved surface with respect to the object to be measured. The probe main body 12 forms a concave curved surface, and the vibrating element 11 is incorporated therein, so that the plurality of vibrating elements 11 as a whole form a concave curved surface with respect to the object to be measured. When the probe 10 is brought into contact with the object to be measured so as to wrap the object to be measured with a concave curved surface, a straight line connecting the vibrating element 11a near one end of the concave curved surface and the vibrating element 11b near multiple ends among the plurality of vibrating elements 11 , It will pass inside the object to be measured. Therefore, in the case of the form shown in FIG. 1B, for example, the vibrating element 11a can form the irradiation vibrating element group, and the vibrating element 11b can form the receiving vibrating element group.

プローブの別の例として、別途、フレームを備え、プローブ本体が前記フレーム内で可動となっている形態が挙げられる。図2は、本発明の超音波プローブの一形態の模式図である。この超音波プローブ20は、プローブ本体22・23が、フレーム24に取り付けられた状態で移動可能になっている。 Another example of the probe is a form in which a frame is separately provided and the probe main body is movable in the frame. FIG. 2 is a schematic view of one form of the ultrasonic probe of the present invention. The ultrasonic probe 20 is movable with the probe bodies 22 and 23 attached to the frame 24.

図2(A)においては、超音波プローブ20には、プローブ本体22・23とフレーム24とが備えられ、プローブ本体22とプローブ本体23とは一体となって、フレーム24に取り付けられている。プローブ本体22には複数の振動素子21aが設けられ、図面では破線で指し示しているように、プローブ本体23にも複数の振動素子22bが設けられている。 In FIG. 2A, the ultrasonic probe 20 is provided with probe main bodies 22 and 23 and a frame 24, and the probe main body 22 and the probe main body 23 are integrally attached to the frame 24. The probe main body 22 is provided with a plurality of vibrating elements 21a, and the probe main body 23 is also provided with a plurality of vibrating elements 22b as indicated by broken lines in the drawings.

ここで、プローブ本体22とプローブ本体23は、フレーム24に設けられた曲線状の溝25に沿って、動かすことができる。そのようにプローブ本体22とプローブ本体23を動かして、図2(B)に示すように、プローブ本体22とプローブ本体23とを別々の部材、すなわち複数の部材へと分離することができる。このように分離した形態では、プローブ本体22に組み込まれた振動素子21aとプローブ本体23に組み込まれた振動素子21bとが、全体として、測定対象物に対して凹曲面を成していると解釈することができる。このように、プローブ本体を分離可能にすることで、使用する振動素子の数を減らすことができ、製造コストの低減を図ることができる。また、生体を測定対象物にする場合には、体の部位は大きさや形状において個体差の存在が想定されるところ、図2の形態のように、プローブ本体を分離可能にすることで、測定する個体にとって最適な位置にプローブ本体を移動させることができる。 Here, the probe main body 22 and the probe main body 23 can be moved along the curved groove 25 provided in the frame 24. By moving the probe body 22 and the probe body 23 in this way, as shown in FIG. 2B, the probe body 22 and the probe body 23 can be separated into separate members, that is, a plurality of members. In such a separated form, it is interpreted that the vibrating element 21a incorporated in the probe main body 22 and the vibrating element 21b incorporated in the probe main body 23 form a concave curved surface as a whole with respect to the object to be measured. can do. By making the probe main body separable in this way, the number of vibrating elements used can be reduced, and the manufacturing cost can be reduced. In addition, when a living body is used as a measurement object, individual differences are expected in the size and shape of the body part, but as shown in the form of FIG. 2, the probe body can be separated for measurement. The probe body can be moved to the optimum position for the individual.

図2(B)のようにプローブ本体22とプローブ本体23とを複数の部材へと分離することにより、プローブ本体22に設けられる振動素子21aと、プローブ本体23に設けられる振動素子21bとは測定対象物を挟む形態となる。よって、振動素子21aと振動素子22bとを結ぶ直線は、測定対象物の内部を通過する。そこで、例えば、振動素子221aを照射用振動素子群として用い、振動素子21bを受信用振動素子群として用いることができる。 By separating the probe main body 22 and the probe main body 23 into a plurality of members as shown in FIG. 2B, the vibrating element 21a provided on the probe main body 22 and the vibrating element 21b provided on the probe main body 23 are measured. It is in the form of sandwiching an object. Therefore, the straight line connecting the vibrating element 21a and the vibrating element 22b passes through the inside of the object to be measured. Therefore, for example, the vibrating element 221a can be used as the irradiation vibrating element group, and the vibrating element 21b can be used as the receiving vibrating element group.

本発明によれば、プローブ本体の材質については特に限定は無く、公知の材料を適宜用いることができる。複数の振動素子をプローブ本体に組み込む手段についても特に限定は無く、超音波プローブにおける従来発明を適宜参照することができる。 According to the present invention, the material of the probe body is not particularly limited, and known materials can be appropriately used. The means for incorporating the plurality of vibrating elements into the probe body is not particularly limited, and the conventional invention of the ultrasonic probe can be appropriately referred to.

測定の際には、このような超音波プローブを測定対象物に当接させる。次いで、照射用振動素子群の第1の振動素子から順々に超音波を測定対象物の内部に照射する。超音波振動子から測定対象物の内部に超音波が照射されると、測定対象物の内部構造、内部物性に応じて超音波の伝播速度が変化したり、減衰により超音波強度が低下する。本発明によれば、測定対象物の内部を透過した超音波を受信用振動素子群が有する2個以上の振動素子で受信させる。 At the time of measurement, such an ultrasonic probe is brought into contact with the object to be measured. Next, ultrasonic waves are sequentially applied to the inside of the object to be measured from the first vibrating element of the irradiation vibrating element group. When ultrasonic waves are applied to the inside of the object to be measured from the ultrasonic transducer, the propagation speed of the ultrasonic waves changes according to the internal structure and internal physical properties of the object to be measured, or the ultrasonic intensity decreases due to attenuation. According to the present invention, the ultrasonic waves transmitted through the inside of the object to be measured are received by two or more vibrating elements included in the receiving vibrating element group.

受信した超音波の信号、すなわち受信データは、少なくとも以下の情報が含まれるべきである。含まれるべき情報とは、照射した振動素子の位置データ、受信した振動素子の位置データ、照射から受信までの到達時間、照射した超音波の強度のデータ、受信した超音波の強度のデータである。 The received ultrasonic signal, i.e. the received data, should contain at least the following information: The information to be included is the position data of the irradiated vibrating element, the position data of the received vibrating element, the arrival time from irradiation to reception, the intensity data of the irradiated ultrasonic wave, and the data of the intensity of the received ultrasonic wave. ..

超音波の照射は第1の超音波素子から第Mの超音波素子へと順々に行われ、その都度、受信用振動素子群が有する振動素子にて超音波の受信が行われる。よって、受信データの個数は、原則として、照射用振動素子群が有する振動素子の数、すなわちMと、受信用振動素子群が有する振動素子の数との乗算により得られる数である。 The irradiation of ultrasonic waves is sequentially performed from the first ultrasonic element to the Mth ultrasonic element, and each time, the ultrasonic wave is received by the vibrating element of the receiving vibrating element group. Therefore, the number of received data is, in principle, a number obtained by multiplying the number of vibrating elements of the irradiation vibrating element group, that is, M and the number of vibrating elements of the receiving vibrating element group.

このようにして得られた受信データから測定対象物の内部の各位置における超音波伝播速度及び超音波強度の減衰態様を算出することができる。上記の受信データから超音波伝播速度及び超音波強度の減衰態様を得ること自体は、例えば、領域抽出、マッピング、ビューイング、シェイディングなどの作業を経る、いわゆるレンダリング技術を適宜参照することができる。本発明によれば、その際に開口合成法が適用され、それにより、高精度に超音波伝播速度及び超音波強度の減衰率を求めることが期待される。 From the received data thus obtained, it is possible to calculate the attenuation mode of the ultrasonic wave propagation velocity and the ultrasonic wave intensity at each position inside the measurement object. Obtaining the attenuation mode of the ultrasonic wave propagation velocity and the ultrasonic wave intensity from the above received data itself can appropriately refer to a so-called rendering technique that undergoes operations such as region extraction, mapping, viewing, and shading. .. According to the present invention, the aperture synthesis method is applied at that time, and it is expected that the ultrasonic wave velocity and the attenuation rate of the ultrasonic intensity can be obtained with high accuracy.

開口合成法においては、上述したように、第1〜第Mの振動素子から順々に超音波が送信され、送信された超音波は、測定対象物の内部の、形状不連続や組成相違などに基づいて伝播速度が変化したり強度減衰が生じる。そのため、超音波の伝播速度変化や超音波強度減衰の原因となる形状不連続や組成相違などを種々の方向から見た透過源像を得ることになる。これによって、形状不連続などのように超音波の伝播速度変化や超音波強度減衰が常に生じる測定対象物の内部の位置からは、そのままのデータが得られ、逆に、組成のノイズ源のような超音波の挙動に関してランダム性の高い位置からの信号は、打ち消しあって目立たなくなる傾向がある。このことは、信号のS/N比が向上することを意味し、得られるデータの高精度化に寄与する。 In the aperture synthesis method, as described above, ultrasonic waves are sequentially transmitted from the first to Mth vibrating elements, and the transmitted ultrasonic waves have a shape discontinuity or a composition difference inside the object to be measured. The propagation velocity changes or the intensity decays based on the above. Therefore, it is possible to obtain a transmission source image in which shape discontinuities and composition differences that cause changes in the propagation velocity of ultrasonic waves and attenuation of ultrasonic wave intensity are viewed from various directions. As a result, the data as it is can be obtained from the position inside the measurement object where the propagation speed of ultrasonic waves changes and the ultrasonic wave intensity decays constantly, such as shape discontinuity, and conversely, it looks like a noise source of composition. Signals from highly random positions with respect to the behavior of ultrasonic waves tend to cancel each other out and become inconspicuous. This means that the S / N ratio of the signal is improved, which contributes to high accuracy of the obtained data.

本発明によれば、測定対象物は特に限定は無く、好ましくは生体であり、特に人体である。例えば、ヒトのふくらはぎやヒトの太腿などに超音波プローブを当接させてもよい。 According to the present invention, the object to be measured is not particularly limited, and is preferably a living body, particularly a human body. For example, the ultrasonic probe may be brought into contact with a human calf or a human thigh.

測定対象物の内部の各位置における超音波の伝播速度や、超音波の強度減衰率を知ることにより、当該位置における組成や形状を推定することができ、測定対象物が生体である場合には、筋肉や臓器等の状態把握に寄与することになる。 By knowing the propagation velocity of ultrasonic waves at each position inside the object to be measured and the intensity attenuation rate of ultrasonic waves, the composition and shape at that position can be estimated. When the object to be measured is a living body , It will contribute to grasping the condition of muscles and organs.

また、本発明によれば、超音波測定装置は、制御装置を備えて、制御装置は、照射用振動素子群及び受信用振動素子群が有する各振動素子が上述のように超音波の照射や受信をするように作動させるとともに、得られた受信データから上述のように測定対象物の内部の各位置における超音波の伝播速度や、超音波の強度減衰率を算出する演算を行うよう、構成されている。算出された各パラメータは、出力装置から出力される。出力装置としてはモニタ、プリンタ、外部メモリ、他の機器への有線又は無線による送信手段など、特に限定されない。 Further, according to the present invention, the ultrasonic measuring device includes a control device, and the control device is capable of irradiating ultrasonic waves as described above by each of the vibrating elements for irradiation and the vibrating elements for receiving. It is configured to operate so as to receive, and to calculate the propagation speed of ultrasonic waves and the intensity attenuation rate of ultrasonic waves at each position inside the measurement object as described above from the obtained received data. Has been done. Each calculated parameter is output from the output device. The output device is not particularly limited, such as a monitor, a printer, an external memory, and a wired or wireless transmission means to other devices.

以下、本発明について上述した内容をより具体的に紹介する。以下の例は本発明を限定的に解釈するための記載ではなく一例に過ぎない。 Hereinafter, the above-mentioned contents of the present invention will be introduced more specifically. The following example is not a description for a limited interpretation of the present invention, but is merely an example.

一例として、照射用振動素子群及び受信用振動素子群がそれぞれ256個ずつ、合計で512個の振動素子を有するプローブの使用を考慮する。照射用振動素子群の第1の振動素子から順に照射シーケンスを実施する。1つのシーケンスでは、1つの振動素子のみが励起され、受信用振動素子群が有する振動素子はすべて受信のために起動される。第1、第2、、、の順に第Mの振動素子まで1つずつ励起・照射されるまで、このプロセスが繰り返される。 As an example, consider the use of a probe having 256 vibrating elements for irradiation and 256 vibrating elements for receiving, for a total of 512 vibrating elements. The irradiation sequence is carried out in order from the first vibrating element of the irradiation vibrating element group. In one sequence, only one vibrating element is excited and all vibrating elements of the receiving vibrating element group are activated for reception. This process is repeated until the third vibrating element is excited and irradiated one by one in the order of the first, the second, and the like.

測定対象物の各位置における伝播速度(音速)を計算するために、受信データには照射した振動素子の位置、受信した振動素子の位置、照射から受信までの到達時間が必要である。伝播経路と到着時間の両方を考慮することにより、音速を決定することができる。減衰量の推定に関しては、すべての照射データに振動素子のピークエネルギーを記録した。減衰はエネルギーピークの逆数として定義される。図3は受信データの解析の説明図である。具体的には、まず、波形データ(RFデータ)の絶対値を算出し(図3(A)、(B))、次いで、時間とともにエネルギーを蓄積し、各振動素子のピークエネルギーを記録し(図3(C)、図3(D))、累積エネルギーを0〜1に正規化し(図3(E))、到達時間を決定するエネルギー閾値を設定し、伝播距離を考慮して音速を推定する。 In order to calculate the propagation velocity (sound velocity) at each position of the object to be measured, the received data requires the position of the irradiated vibrating element, the position of the received vibrating element, and the arrival time from irradiation to reception. The speed of sound can be determined by considering both the propagation path and the arrival time. Regarding the estimation of the amount of attenuation, the peak energy of the vibrating element was recorded in all the irradiation data. Attenuation is defined as the reciprocal of the energy peak. FIG. 3 is an explanatory diagram of analysis of received data. Specifically, first, the absolute value of the waveform data (RF data) is calculated (FIGS. 3A and 3B), then energy is accumulated over time, and the peak energy of each vibrating element is recorded ( Fig. 3 (C), Fig. 3 (D)), normalize the cumulative energy to 0 to 1 (Fig. 3 (E)), set the energy threshold that determines the arrival time, and estimate the sound velocity in consideration of the propagation distance. To do.

本発明の装置、方法により超音波の透過データにより得られる各パラメータについては、超音波を使用する各種測定・診断の基礎として用いることができる。超音波を用いる測定や診断は特に限定は無く、従来行われていた測定・診断などを適宜行うことができる。その際、本発明によれば、従来しばしば行われる超音波の反射に基づく解析とは別の解析や高確度・高精度の測定・診断に寄与し得る。そのような観点から、本発明の装置、方法は、生体測定に用いることが特に好ましい。測定の際に照射する超音波の周波数は特に限定は無く、好ましくは3MHz〜7MHzである。 Each parameter obtained from the transmission data of ultrasonic waves by the apparatus and method of the present invention can be used as the basis of various measurements and diagnoses using ultrasonic waves. The measurement and diagnosis using ultrasonic waves are not particularly limited, and the conventional measurement and diagnosis can be appropriately performed. At that time, according to the present invention, it is possible to contribute to an analysis different from the analysis based on the reflection of ultrasonic waves, which is often performed in the past, and a measurement / diagnosis with high accuracy and high accuracy. From such a viewpoint, the apparatus and method of the present invention are particularly preferably used for biometric measurement. The frequency of the ultrasonic wave irradiated at the time of measurement is not particularly limited, and is preferably 3 MHz to 7 MHz.

また、例えば、受信した超音波を波形データとして保存し、CTやMRI等といった他のデータと比較することで、波形データから測定対象の状態や症状等を判断できる特徴を見つける、といった応用も考えられる。これにより、アノテーション付きの波形データを作ることができ、機械学習のための学習用データとして活用するといったことも想定される。 In addition, for example, by saving the received ultrasonic wave as waveform data and comparing it with other data such as CT and MRI, it is possible to consider an application such as finding a feature capable of determining the state or symptom of the measurement target from the waveform data. Be done. As a result, waveform data with annotations can be created, and it is expected that it will be used as learning data for machine learning.

10・20 超音波プローブ
11・21 振動素子
12・22・23 プローブ本体
24 フレーム
25 溝
10/20 Ultrasonic probe 11.21 Vibrating element 12/22/23 Probe body 24 Frame 25 Groove

Claims (6)

(A)第1〜第M(但し、Mは3以上の整数である。)の振動素子を有する照射用振動素子群と、照射用振動素子群とは別個に複数の振動素子を有する受信用振動素子群と、を有する1又は複数の超音波プローブを測定対象物に当接させ、このとき、
照射用振動素子群が有する振動素子と受信用振動素子群が有する振動素子とを結ぶ直線が測定対象物の内部を通過するように、前記超音波プローブを測定対象物に当接させるステップ、
(B)前記第1の振動素子から第Mの振動素子まで順々に超音波を測定対象物の内部に照射し、測定対象物を透過した超音波を、照射した振動素子ごとに各々の受信データとして受信用振動素子群が有する複数の振動素子にそれぞれ受信させるステップ、及び
(C)前記受信データに基づいて開口合成法を適用することにより、測定対象物の内部の各位置における超音波の強度減衰と超音波の伝播速度とを算出するステップ、を有し、
前記各々の受信データは、照射した振動素子の位置データ、受信した振動素子の位置データ、照射から受信までの到達時間、照射した超音波の強度のデータ、受信した超音波の強度のデータを少なくとも含む、
測定対象物の超音波測定方法。
(A) The irradiation vibrating element group having the first to first M (where M is an integer of 3 or more) and the receiving vibrating element group having a plurality of vibrating elements separately from the irradiation vibrating element group. A group of vibrating elements and one or more ultrasonic probes having the same are brought into contact with the object to be measured, and at this time,
A step of bringing the ultrasonic probe into contact with a measurement object so that a straight line connecting the vibration element of the irradiation vibration element group and the vibration element of the reception vibration element group passes through the inside of the measurement object.
(B) Ultrasonic waves are sequentially irradiated to the inside of the object to be measured from the first vibrating element to the Mth vibrating element, and the ultrasonic waves transmitted through the object to be measured are received for each irradiated vibrating element. By applying the step of receiving each of the plurality of vibrating elements of the receiving vibrating element group as data and (C) the aperture synthesis method based on the received data, the ultrasonic waves at each position inside the object to be measured It has a step of calculating the intensity attenuation and the propagation velocity of the ultrasonic waves,
Each of the received data includes at least the position data of the irradiated vibrating element, the position data of the received vibrating element, the arrival time from irradiation to reception, the intensity data of the irradiated ultrasonic waves, and the intensity data of the received ultrasonic waves. Including,
Ultrasonic measurement method for the object to be measured.
Mが200以上の整数である請求項1記載の方法。 The method according to claim 1, wherein M is an integer of 200 or more. 測定対象物が生体である請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the object to be measured is a living body. 第1〜第M(但し、Mは3以上の整数である。)の振動素子を有する照射用振動素子群と、第1の振動素子群とは別個に複数の振動素子を有する受信用振動素子群と、を有する1又は複数の超音波プローブと、制御装置と、出力装置とを備え、前記制御装置は以下の(B)及び(C)、
(B)前記第1の振動素子から第Mの振動素子まで順々に超音波を測定対象物の内部に照射し、測定対象物を透過した超音波を、照射した振動素子ごとに各々の受信データとして受信用振動素子群が有する複数の振動素子にそれぞれ受信させること、及び
(C)前記受信データに基づいて開口合成法を適用することにより、測定対象物の内部の各位置における超音波の強度減衰と超音波の伝播速度とを算出すること、
を実行させるよう構成されており、
前記出力装置は前記(C)において生成した超音波の強度減衰及び超音波の伝播速度の少なくとも1つを出力するものであり、
前記各々の受信データは、照射した振動素子の位置データ、受信した振動素子の位置データ、照射から受信までの到達時間、照射した超音波の強度のデータ、受信した超音波の強度のデータを少なくとも含む、
測定対象物の超音波測定装置。
An irradiation vibrating element group having first to third M (where M is an integer of 3 or more) and a receiving vibrating element having a plurality of vibrating elements separately from the first vibrating element group. The control device includes one or more ultrasonic probes having a group, a control device, and an output device, and the control device includes the following (B) and (C).
(B) Ultrasonic waves are sequentially irradiated to the inside of the object to be measured from the first vibrating element to the Mth vibrating element, and the ultrasonic waves transmitted through the object to be measured are received for each irradiated vibrating element. By receiving the ultrasonic waves as data to a plurality of vibrating elements of the receiving vibrating element group, and (C) applying the aperture synthesis method based on the received data, the ultrasonic waves at each position inside the object to be measured Calculating the intensity decay and the propagation velocity of ultrasonic waves,
Is configured to run
The output device outputs at least one of the intensity attenuation of the ultrasonic wave generated in (C) and the propagation velocity of the ultrasonic wave.
Each of the received data includes at least the position data of the irradiated vibrating element, the position data of the received vibrating element, the arrival time from irradiation to reception, the intensity data of the irradiated ultrasonic waves, and the intensity data of the received ultrasonic waves. Including,
Ultrasonic measuring device for the object to be measured.
Mが200以上の整数である請求項4記載の測定装置。 The measuring device according to claim 4, wherein M is an integer of 200 or more. 測定対象物が生体である請求項4又は5記載の測定装置。 The measuring device according to claim 4 or 5, wherein the object to be measured is a living body.
JP2019027901A 2019-02-19 2019-02-19 Ultrasound measurement method and measurement apparatus for measurement object Pending JP2020130599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027901A JP2020130599A (en) 2019-02-19 2019-02-19 Ultrasound measurement method and measurement apparatus for measurement object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027901A JP2020130599A (en) 2019-02-19 2019-02-19 Ultrasound measurement method and measurement apparatus for measurement object

Publications (1)

Publication Number Publication Date
JP2020130599A true JP2020130599A (en) 2020-08-31

Family

ID=72277197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027901A Pending JP2020130599A (en) 2019-02-19 2019-02-19 Ultrasound measurement method and measurement apparatus for measurement object

Country Status (1)

Country Link
JP (1) JP2020130599A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192333A (en) * 1992-01-21 1993-08-03 Shimadzu Corp Ultrasonic transmitting testing device
JPH05228141A (en) * 1992-02-25 1993-09-07 Hitachi Ltd Bone diagnostic device by ultrasonic wave
JPH08299336A (en) * 1995-05-09 1996-11-19 Touin Gakuen Perioperative measuring method and ultrasonic probe for perioperative measurement of acoustic characteristics of organism tissue
US20140364734A1 (en) * 2012-02-03 2014-12-11 Los Alamos National Security, Llc Systems and methods for synthetic aperture ultrasound tomography
JP2017018478A (en) * 2015-07-14 2017-01-26 国立大学法人 東京大学 Ultrasonic measuring apparatus
WO2017221381A1 (en) * 2016-06-23 2017-12-28 株式会社日立製作所 Ultrasonic imaging device and ultrasonic imaging method using ultrasonic imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192333A (en) * 1992-01-21 1993-08-03 Shimadzu Corp Ultrasonic transmitting testing device
JPH05228141A (en) * 1992-02-25 1993-09-07 Hitachi Ltd Bone diagnostic device by ultrasonic wave
JPH08299336A (en) * 1995-05-09 1996-11-19 Touin Gakuen Perioperative measuring method and ultrasonic probe for perioperative measurement of acoustic characteristics of organism tissue
US20140364734A1 (en) * 2012-02-03 2014-12-11 Los Alamos National Security, Llc Systems and methods for synthetic aperture ultrasound tomography
JP2017018478A (en) * 2015-07-14 2017-01-26 国立大学法人 東京大学 Ultrasonic measuring apparatus
WO2017221381A1 (en) * 2016-06-23 2017-12-28 株式会社日立製作所 Ultrasonic imaging device and ultrasonic imaging method using ultrasonic imaging device

Similar Documents

Publication Publication Date Title
JP6169707B2 (en) Ultrasonic diagnostic apparatus and elasticity evaluation method
US20180192883A1 (en) Biological information imaging apparatus and biological information imaging method
CA2068740C (en) Method and apparatus for measurement and imaging of tissue compressibility or compliance
CN103269639B (en) Utilize centroid estimation shear wave velocity
KR102287021B1 (en) Imaging Methods and Apparatuses for Performing Shear Wave Elastography Imaging
CN103026257B (en) Imaging method and apparatus using shear waves
KR101984824B1 (en) Method and apparatus for analyzing elastography of tissue using ultrasound
CN104013438A (en) Image generating apparatus, image generating method, and program
KR20170129099A (en) Shear wave elastography method and apparatus for imaging anisotropic media
JP2010526626A (en) Method and apparatus for measuring the average value of viscoelasticity of a region of interest
JP5496031B2 (en) Acoustic wave signal processing apparatus, control method thereof, and control program
CN106232013B (en) Ultrasonic method and apparatus for characterizing a weakly anisotropic soft medium, and ultrasonic probe assembly for use in the characterizing apparatus
JP2021528157A (en) Anatomical viscosity shear wave detection, related devices, systems, and methods
US9683970B2 (en) Object information acquiring apparatus and control method for the object information acquiring apparatus
CN110573084B (en) Ultrasonic elasticity detection equipment and shear wave elasticity imaging method and device
JP7354632B2 (en) Ultrasonic diagnostic device and method of controlling the ultrasonic diagnostic device
JP2020130599A (en) Ultrasound measurement method and measurement apparatus for measurement object
WO2022114070A1 (en) Swallowing evaluation system and swallowing evaluation method
US20210177380A1 (en) Method and apparatus for quantitative ultrasound imaging using single-ultrasound probe
US20170156701A1 (en) System and method for gradient-based k-space search for shear wave velocity dispersion estimation
JP7347445B2 (en) Ultrasonic signal processing device, ultrasonic diagnostic device, and ultrasonic signal processing method
JP5491671B2 (en) Method for measuring the average value of viscoelasticity of a region of interest
JP2020130597A (en) Method and measurement apparatus for acquiring three-dimensional reflection image inside measurement object
KR102704209B1 (en) Ultrasound image apparatus and method for controlling thereof
JP2004261245A (en) Ultrasonograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230619