JP2020129457A - Electrode material including carbon as base substance, and redox flow battery arranged by use thereof - Google Patents

Electrode material including carbon as base substance, and redox flow battery arranged by use thereof Download PDF

Info

Publication number
JP2020129457A
JP2020129457A JP2019020995A JP2019020995A JP2020129457A JP 2020129457 A JP2020129457 A JP 2020129457A JP 2019020995 A JP2019020995 A JP 2019020995A JP 2019020995 A JP2019020995 A JP 2019020995A JP 2020129457 A JP2020129457 A JP 2020129457A
Authority
JP
Japan
Prior art keywords
carbon
electrode
electrode material
functional group
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019020995A
Other languages
Japanese (ja)
Inventor
宏昭 松浦
Hiroaki Matsuura
宏昭 松浦
内田 幸太
Kota Uchida
幸太 内田
恭平 菊池
Kyohei Kikuchi
恭平 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chikoji Gakuen Educational Foundation
Original Assignee
Chikoji Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chikoji Gakuen Educational Foundation filed Critical Chikoji Gakuen Educational Foundation
Priority to JP2019020995A priority Critical patent/JP2020129457A/en
Publication of JP2020129457A publication Critical patent/JP2020129457A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an electrode material including carbon as a base substance, which is applicable for a redox catalyst having a high catalytic activity, and a redox flow battery arranged by use thereof.SOLUTION: An electrode material comprises carbon as a base substance, in which a group of halogen-containing functional groups are bound to the surface of a carbon material such as graphite. The electrode material is produced in such a way that a halogen atom-containing atomic group is made to perform a covalent bond to carbon atoms of the surface of the carbon material by for instance, using the above-described carbon material as an electrode to perform electrolytic oxidation with a fixed electric potential on an aqueous solution having a halogen-containing compound such as HCl, NaCl, KCl or KBr dissolved therein.SELECTED DRAWING: None

Description

本発明は、炭素を基体とする電極材料及びこれを使用したレドックスフロー電池に関する。 The present invention relates to a carbon-based electrode material and a redox flow battery using the same.

炭素材料を基材とした電池用電極、電気化学センサ用電極等が広く用いられている。しかし、その酸化還元触媒としての触媒活性能は必ずしも満足できるものではなく(非特許文献1参照)、電極性能の改良のため、種々の技術が開発されている。 BACKGROUND ART Electrodes for batteries, electrodes for electrochemical sensors, etc. based on a carbon material are widely used. However, its catalytic activity as a redox catalyst is not always satisfactory (see Non-Patent Document 1), and various techniques have been developed to improve electrode performance.

例えば、下記特許文献1、2には、レドックスフロー電池電極用の炭素触媒が開示されている。また、下記特許文献3には、多孔質カーボンフェルトシートと、前記多孔質カーボンフェルトに含浸された炭素粒子と、前記多孔質カーボンフェルトに含浸されたイオノマーと、を備え、前記炭素粒子は、前記炭素粒子が親水性となるように酸化されることを特徴とする、レドックスフロー電池用電極が開示されている。 For example, Patent Documents 1 and 2 below disclose carbon catalysts for redox flow battery electrodes. Further, Patent Document 3 below includes a porous carbon felt sheet, carbon particles impregnated in the porous carbon felt, and an ionomer impregnated in the porous carbon felt, wherein the carbon particles are Disclosed is an electrode for a redox flow battery, in which carbon particles are oxidized so as to be hydrophilic.

なお、レドックスフロー電池用の電極材料に限らず、高い触媒活性能を備えた酸化還元触媒を実現できれば、現在様々な分野で使用されている酸化還元反応の効率を向上させることができる。 Not only the electrode material for the redox flow battery but also a redox catalyst having a high catalytic activity can realize the efficiency of the redox reaction currently used in various fields.

特開2017−152345号公報JP, 2017-152345, A 特開2017−152344号公報JP, 2017-152344, A 特表2018−538667号公報Special table 2018-538667 gazette

「燃料電池の電極触媒」 荒又明子 p.114 北海道大学図書刊行会(2005)"Fuel cell electrode catalyst" Akiko Aramata p. 114 Hokkaido University Library Publication Society (2005)

本発明の目的の一つは、高い触媒活性能を備えた酸化還元触媒に適用できる炭素を基体とする電極材料及びこれを使用したレドックスフロー電池を提供することにある。 One of the objects of the present invention is to provide a carbon-based electrode material applicable to a redox catalyst having a high catalytic activity and a redox flow battery using the same.

上記目的を達成するために、本発明は以下の実施態様を含む。 In order to achieve the above object, the present invention includes the following embodiments.

[1]炭素材料の表面に含ハロゲン官能基群が結合したことを特徴とする炭素を基体とする電極材料。 [1] An electrode material based on carbon, characterized in that a halogen-containing functional group group is bonded to the surface of the carbon material.

[2]前記含ハロゲン官能基群が、塩素または臭素の少なくとも一方を含む官能基群である、[1]に記載の炭素を基体とする電極材料。 [2] The carbon-based electrode material according to [1], wherein the halogen-containing functional group group is a functional group group containing at least one of chlorine and bromine.

[3]前記含ハロゲン官能基群が、さらに酸素を含む官能基群である、[2]に記載の炭素を基体とする電極材料。 [3] The carbon-based electrode material according to [2], wherein the halogen-containing functional group group is a functional group group further containing oxygen.

[4] [1]から[3]のいずれか一つに記載の炭素を基体とする電極材料を使用したことを特徴とするレドックスフロー電池。 [4] A redox flow battery using the carbon-based electrode material according to any one of [1] to [3].

本発明によれば、高い触媒活性能を備えた酸化還元触媒に適用できる炭素を基体とする電極材料及びこれを使用したレドックスフロー電池を提供できる。 According to the present invention, it is possible to provide a carbon-based electrode material applicable to a redox catalyst having a high catalytic activity and a redox flow battery using the same.

実施形態にかかる炭素を基体とする電極材料を電極として使用したレドックスフロー電池の構成例を示す図である。It is a figure which shows the structural example of the redox flow battery which used the electrode material which has carbon as a base|substrate based on embodiment as an electrode. 実施例において炭素材料を電解酸化処理する装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus which electrolytically oxidizes the carbon material in an Example. 導入例1で製造した含塩素官能基群を導入した炭素材料について測定したX線光電子スペクトルを示す図である。FIG. 5 is a diagram showing an X-ray photoelectron spectrum measured for a carbon material having a chlorine-containing functional group group introduced which was produced in Introduction Example 1. 導入例3で製造した含臭素官能基群を導入した炭素材料について測定したX線光電子スペクトルを示す図である。FIG. 7 is a diagram showing an X-ray photoelectron spectrum measured for a carbon material having a bromine-containing functional group group introduced therein which was produced in Introduction Example 3. 実施例1、2、比較例の放電試験の結果を示す図である。It is a figure which shows the result of the discharge test of Examples 1, 2 and a comparative example.

以下、本発明を実施するための形態(以下、実施形態という)を説明する。 Hereinafter, modes for carrying out the present invention (hereinafter, referred to as embodiments) will be described.

本実施形態にかかる炭素を基体とする電極材料は、炭素材料の表面に含ハロゲン官能基群が結合したことを特徴とする。 The carbon-based electrode material according to the present embodiment is characterized in that a halogen-containing functional group group is bonded to the surface of the carbon material.

上記炭素を基体とするとは、黒鉛等の炭素材料を使用していることをいう。炭素材料としては、例えば、グラッシーカーボン、カーボンナノチューブ、カーボンフェルト、フラーレン、カーボンナノホーン、プラスチック成型カーボンまたはダイヤモンド電極等を挙げることができる。黒鉛等の炭素材料は、電極材料としても好適に使用することができる。 The above-mentioned carbon as a base means that a carbon material such as graphite is used. Examples of the carbon material include glassy carbon, carbon nanotube, carbon felt, fullerene, carbon nanohorn, plastic molded carbon, diamond electrode and the like. A carbon material such as graphite can also be preferably used as an electrode material.

また、含ハロゲン官能基群とは、ハロゲンを含む原子団であり、酸素を含むのが好適である。このような官能基群は、例えばバナジウム等の対象物を酸化、還元する機能を有するものである。 The halogen-containing functional group group is an atomic group containing halogen, and preferably contains oxygen. Such a functional group group has a function of oxidizing and reducing an object such as vanadium.

実施形態にかかる炭素を基体とする電極材料は、上記炭素材料の表面に含ハロゲン官能基群を定電位電解酸化処理により共有結合させて製造する。この場合、上記炭素材料を電極として、例えば、HCl、NaCl、KClまたはNaBr、KBr等の含ハロゲン化合物を溶解した水溶液を定電位電解酸化することにより、炭素材料の表面の炭素原子にハロゲン原子を含む原子団を共有結合させて導入することができる。なお、塩素を結合させる場合には、塩素源として海水を使用することもできる。 The carbon-based electrode material according to the embodiment is produced by covalently bonding a halogen-containing functional group to the surface of the carbon material by a potentiostatic electrolytic oxidation treatment. In this case, by using the above-mentioned carbon material as an electrode, for example, an aqueous solution in which a halogen-containing compound such as HCl, NaCl, KCl or NaBr, KBr is dissolved is subjected to constant potential electrolytic oxidation, whereby halogen atoms are added to carbon atoms on the surface of the carbon material. The containing atomic group can be introduced by covalent bonding. When chlorine is bonded, seawater can be used as a chlorine source.

上記定電位電解酸化処理により、塩化物イオンや臭化物イオンが電解酸化されてそのラジカルが電極とした炭素材料の表面の炭素原子に結合し、その後も酸化電位が印加されることにより、それらがさらに酸化されて酸素を含む含ハロゲン官能基群に発展すると考えられる。 By the above potentiostatic electrolytic oxidation treatment, chloride ions and bromide ions are electrolytically oxidized and their radicals are bonded to the carbon atoms on the surface of the carbon material used as an electrode. It is considered to be oxidized to develop into a halogen-containing functional group group containing oxygen.

以上のようにして含ハロゲン官能基群を炭素材料の表面の炭素原子に直接共有結合させた例が以下に示される。なお、本発明にかかる含ハロゲン官能基群は、これらに限定されるものではない。 An example in which the halogen-containing functional group group is directly covalently bonded to the carbon atom on the surface of the carbon material as described above is shown below. The halogen-containing functional group group according to the present invention is not limited to these.

なお、上記構造式(化1〜化5)では、炭素材料の一部の構造が示されており、炭素原子の六角形格子構造の数並びに含ハロゲン官能基群等の数は、上記構造式(化1〜化5)のものに限定されない。また、炭素材料の表面に導入される含ハロゲン官能基群の構成は、化1〜化5に例示されたものの単独の場合、あるいはこれらの複数種類を組み合わせた場合のいずれも含む。 The above structural formulas (Chemical Formula 1 to Chemical Formula 5) show a part of the structure of the carbon material, and the number of hexagonal lattice structures of carbon atoms and the number of halogen-containing functional groups are the same as those in the structural formulas above. It is not limited to (Chemical Formula 1 to Chemical Formula 5). Further, the constitution of the halogen-containing functional group group introduced onto the surface of the carbon material includes any one of those exemplified in Chemical formulas 1 to 5 or a combination of plural kinds thereof.

以上に述べた実施形態にかかる炭素を基体とする電極材料は、例えばレドックスフロー電池用電極、電気化学センサ用電極等に使用できる。 The carbon-based electrode material according to the above-described embodiment can be used, for example, as an electrode for a redox flow battery or an electrode for an electrochemical sensor.

図1には、実施形態にかかる炭素を基体とする電極材料を電極として使用したレドックスフロー電池の構成例が示される。図1において、レドックスフロー電池は、正極10が収容された正極室12と負極14が収容された負極室16とが隔膜18により隔てられて一つのセル20を構成している。上記正極室12は、正極電解液槽22との間で正極ポンプ24を介して正極電解液が循環し、負極室16は、負極電解液槽26との間で負極ポンプ28を介して負極電解液が循環する。このようなレドックスフロー電池の充放電は、発電装置等の電源あるいは負荷との間に設けられた交流/直流変換器を介して行うことができるが、直流電源を正極10と負極14との間に接続して充電し、正極10と負極14とを直接負荷に接続して放電することもできる。 FIG. 1 shows a structural example of a redox flow battery using an electrode material having carbon as a base according to the embodiment as an electrode. In FIG. 1, the redox flow battery constitutes one cell 20 in which a positive electrode chamber 12 containing a positive electrode 10 and a negative electrode chamber 16 containing a negative electrode 14 are separated by a diaphragm 18. In the positive electrode chamber 12, the positive electrode electrolytic solution circulates with the positive electrode electrolytic solution tank 22 via the positive electrode pump 24, and in the negative electrode chamber 16 with the negative electrode electrolytic solution tank 26 via the negative electrode pump 28. Liquid circulates. Charging/discharging of such a redox flow battery can be performed through an AC/DC converter provided between the redox flow battery and a power source such as a power generator or a load. Alternatively, the positive electrode 10 and the negative electrode 14 may be directly connected to a load to be discharged.

図1の例において、上記正極電解液は、4価及び5価のバナジウムイオン(V4+、V5+)を含む硫酸溶液であり、負極電解液は、2価及び3価のバナジウムイオン(V2+、V3+)を含む硫酸溶液である。 In the example of FIG. 1, the positive electrode electrolyte is a sulfuric acid solution containing tetravalent and pentavalent vanadium ions (V 4+ , V 5+ ), and the negative electrode electrolyte is divalent and trivalent vanadium ions (V 2+ ). , V 3+ ) in sulfuric acid solution.

なお、図1の例は、正極10と負極14(正極室12と負極室16)とが一組の単セルを示しているが、用途に応じて複数の単セルを直列、並列に接続して使用することができる。 In the example of FIG. 1, the positive electrode 10 and the negative electrode 14 (the positive electrode chamber 12 and the negative electrode chamber 16) show one set of single cells, but a plurality of single cells may be connected in series or in parallel depending on the application. Can be used.

以下、本発明の実施例を説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Examples of the present invention will be described below. The following examples are for facilitating the understanding of the present invention, and the present invention is not limited to these examples.

<炭素材料への含塩素官能基群の導入>
導入例1.(塩酸による含塩素官能基群の導入)
図2には、実施例において炭素材料を電解酸化処理する装置の構成例が示される。まず、図2に示されるガラス容器30に1M(mol/dm)塩酸を準備した。
<Introduction of functional group containing chlorine into carbon material>
Introduction example 1. (Introduction of chlorine-containing functional group by hydrochloric acid)
FIG. 2 shows a configuration example of an apparatus for electrolytically oxidizing a carbon material in the example. First, 1 M (mol/dm 3 ) hydrochloric acid was prepared in the glass container 30 shown in FIG.

次に、炭素材料であるカーボンフェルト(CF)(JNTG社製、型式:GF061AH、商品名:Graphite Felt Electrode 1cm×4cm×0.5cm)を作用電極32とし、直径0.5mmの白金線を対極34、銀塩化銀電極(Ag/AgCl)(ビーエーエス(株)製)を参照電極36として、ポテンショスタット/ガルバノスタット(北斗電工株式会社製HA−151−B)をポテンショスタット38として用い、+1.5V(対参照電極)の一定電位を作用電極(カーボンフェルト)32に印加して、3電極法による定電位電解酸化を開始した。このときの上記水溶液の温度は常温(15〜25℃)とした。 Next, carbon felt (CF) (manufactured by JNTG, model: GF061AH, trade name: Graphite Felt Electrode 1 cm×4 cm×0.5 cm), which is a carbon material, was used as a working electrode 32, and a platinum wire having a diameter of 0.5 mm was used as a counter electrode. 34, a silver/silver chloride electrode (Ag/AgCl) (manufactured by BS Co., Ltd.) was used as a reference electrode 36, and a potentiostat/galvanostat (HA-151-B manufactured by Hokuto Denko KK) was used as a potentiostat 38. A constant potential of 5 V (against the reference electrode) was applied to the working electrode (carbon felt) 32 to start potentiostatic electrolytic oxidation by the three-electrode method. The temperature of the aqueous solution at this time was room temperature (15 to 25° C.).

上記定電位電解酸化は、上記水溶液を常温に維持しつつ、ポテンショスタット38により作用電極32に参照電極36に対して一定電位(1.5V)を印加して30分間行った。なお、定電位電解中はスターラー40により電解液を攪拌した。これにより、作用電極32の定電位電解酸化処理を行い、炭素材料の表面に含塩素官能基群を共有結合により導入した。 The constant potential electrolytic oxidation was performed for 30 minutes by applying a constant potential (1.5 V) to the working electrode 32 with respect to the reference electrode 36 by the potentiostat 38 while maintaining the aqueous solution at room temperature. The electrolytic solution was stirred by the stirrer 40 during the constant potential electrolysis. Thereby, the working electrode 32 was subjected to potentiostatic electrolytic oxidation treatment, and the chlorine-containing functional group group was covalently introduced onto the surface of the carbon material.

導入例2.(KClによる含塩素官能基群の導入)
塩酸の代わりにKClを1mol/dm含む水溶液を使用した以外は導入例1と同様にして炭素材料の表面に含塩素官能基群を共有結合により導入した。
Introduction example 2. (Introduction of functional group containing chlorine by KCl)
A chlorine-containing functional group was introduced onto the surface of the carbon material by a covalent bond in the same manner as in Introduction Example 1 except that an aqueous solution containing 1 mol/dm 3 of KCl was used instead of hydrochloric acid.

導入例3.(KBrによる含臭素官能基群の導入)
塩酸の代わりにKBrを1mol/dm含む水溶液を使用した以外は導入例1と同様にして炭素材料の表面に含臭素官能基群を共有結合により導入した。
Introduction example 3. (Introduction of bromine-containing functional group by KBr)
A bromine-containing functional group was introduced onto the surface of the carbon material by a covalent bond in the same manner as in Introduction Example 1 except that an aqueous solution containing 1 mol/dm 3 of KBr was used instead of hydrochloric acid.

<定電位電解酸化後の炭素材料(カーボンフェルト)の評価>
上記導入例1で製造した、含塩素官能基群を導入した炭素材料について、X線光電子スペクトルを測定し、カーボンフェルトに導入された置換基を分析した。X線光電子スペクトルの測定には、XPS,アルバックファイPHYSICAL ELECTRONICS QUANTUM 2000 SCANNING ESCA MICROSCOPEを使用した。
<Evaluation of carbon material (carbon felt) after constant potential electrolytic oxidation>
With respect to the carbon material into which the chlorine-containing functional group group was introduced, which was produced in the above-mentioned Introduction Example 1, the X-ray photoelectron spectrum was measured, and the substituent introduced into the carbon felt was analyzed. XPS, ULVAC-PHY ELECTRONICS QUANTUM 2000 SCANNING ESCA MICROSCOPE was used for the measurement of the X-ray photoelectron spectrum.

図3には、上記導入例1で製造した含塩素官能基群を導入した炭素材料について測定したX線光電子スペクトル(XPS)が示される。図3は、炭素材料に導入された塩素原子のXPSである。 FIG. 3 shows an X-ray photoelectron spectrum (XPS) measured for the carbon material having the chlorine-containing functional group group produced in Introduction Example 1 above. FIG. 3 is an XPS of chlorine atoms introduced into the carbon material.

図3において、定電位電解酸化処理後の炭素材料のXPSのピーク(Cl−2pのスペクトルのピーク)は200eV付近に現れている。ここで、Handbook of X−ray Photoelectron Spectroscopyによれば、クロロベンゼンのCl−2pのスペクトルのピークが200.1eVであり、ペンタクロロベンゼンのCl−2pのスペクトルのピークが200.0 eVであることから、上記炭素材料のXPSのピークは主としてC−Clの結合を表していると考えられる。 In FIG. 3, the XPS peak (peak of Cl-2p spectrum) of the carbon material after the potentiostatic electrolytic oxidation treatment appears near 200 eV. Here, according to Handbook of X-ray Photoelectron Spectroscopy, the peak of the spectrum of Cl-2p of chlorobenzene is 200.1 eV, and the peak of the spectrum of Cl-2p of pentachlorobenzene is 200.0 eV. It is considered that the XPS peak of the above carbon material mainly represents a C—Cl bond.

また、図4には、上記導入例3で製造した含臭素官能基群を導入した炭素材料について測定したX線光電子スペクトル(XPS)が示される。図4は、炭素材料に導入された臭素原子のXPSである。 Further, FIG. 4 shows an X-ray photoelectron spectrum (XPS) measured for the carbon material introduced with the bromine-containing functional group group produced in Introduction Example 3 above. FIG. 4 is an XPS of bromine atoms introduced into the carbon material.

図4において、KBrを含む水溶液を使用して定電位電解酸化処理した炭素材料のXPSのピーク(Br3dスペクトルのピーク)は69.8eV付近に現れている。また、KBrのBr3dスペクトルのピークは68.8eVであるため、それと1eVシフトしていることを考慮すると、上記炭素材料のXPSのピークは主としてC−Brの結合を表していると考えられる。 In FIG. 4, the XPS peak (Br3d spectrum peak) of the carbon material subjected to the potentiostatic electrolytic oxidation treatment using an aqueous solution containing KBr appears near 69.8 eV. Further, since the peak of the Br3d spectrum of KBr is 68.8 eV, it is considered that the XPS peak of the above carbon material mainly represents the bond of C—Br in consideration of the fact that it is shifted by 1 eV.

このように、炭素材料の表面の炭素原子にC−Cl結合あるいはC−Br結合が生じると、前述の通り、酸化電位がさらに印加されて電気化学的に酸化され、C−ClO、C−BrO等の酸素を含む含ハロゲン官能基群が生成すると考えられる。 As described above, when C—Cl bond or C—Br bond is generated in the carbon atom on the surface of the carbon material, as described above, the oxidation potential is further applied to electrochemically oxidize and C—ClO and C—BrO. It is considered that a halogen-containing functional group group containing oxygen such as

また、導入例1〜導入例3で製造した各カーボンフェルト、及び定電位電解酸化を行っていない(未処理)カーボンフェルトについてもX線光電子スペクトル(XPS)を測定した。測定結果を表1にまとめる。 In addition, the X-ray photoelectron spectrum (XPS) was also measured for each of the carbon felts produced in Introduction Example 1 to Introduction Example 3 and the carbon felt that was not subjected to potentiostatic electrolytic oxidation (untreated). The measurement results are summarized in Table 1.

表1に示されるように、定電位電解酸化を行った炭素材料(導入例1〜導入例3)は、定電位電解酸化を行っていないカーボンフェルトに比べ、塩素または臭素と酸素の量が増加している。これにより、単純に塩素または臭素がカーボンフェルトを構成する六員環炭素に直接結合しているだけでなく、−ClO、−BrOのような官能基や、フェニル環(Ph)同士をClまたはBrとOとで橋かけしたPh−Cl−O−Ph、Ph−Br−O−Ph等の塩素または臭素と酸素とで構成される官能基も六員環炭素に結合していることが考えられる。 As shown in Table 1, the carbon materials that have been subjected to potentiostatic electrolytic oxidation (Introduction Example 1 to Introductory Example 3) have an increased amount of chlorine or bromine and oxygen as compared to carbon felt that has not been subjected to potentiostatic electrolytic oxidation. doing. As a result, not only chlorine or bromine is directly bonded to the six-membered ring carbon constituting the carbon felt, but also functional groups such as -ClO and -BrO and phenyl rings (Ph) are Cl or Br. It is conceivable that a functional group composed of chlorine or bromine and oxygen such as Ph-Cl-O-Ph and Ph-Br-O-Ph bridged with O and O is also bonded to the 6-membered ring carbon. ..

実施例1.
上記導入例2で製造した、含塩素官能基群を導入した炭素材料を両極として、図1に示されたレドックスフロー電池(単セル)を構築し、放電試験を行った。
Example 1.
A redox flow battery (single cell) shown in FIG. 1 was constructed by using the carbon material having the chlorine-containing functional group group produced in the above-mentioned Introduction Example 2 as both electrodes, and a discharge test was conducted.

単セルには、2.5mol/dmの3.5価バナジウム(3価と4価のバナジウムの等モル混合物)を含む硫酸を電解液として使用し、この電解液を正極電解液槽22と負極電解液槽26とに投入した後、ポンプ24、28を用いて循環させた。電解液を循環させながら、0.5Aの定電流にて充電を行った。この場合の定電流源は、図2に示されたポテンショスタット/ガルバノスタット(北斗電工株式会社製HA−151−B)をガルバノスタットとして使用し、図1に示された正極10と負極14との間に接続して定電流充電を行った。 For the single cell, sulfuric acid containing 2.5 mol/dm 3 of 3.5-valent vanadium (equimolar mixture of trivalent and tetravalent vanadium) was used as an electrolytic solution, and this electrolytic solution was used as a positive electrode electrolytic solution tank 22. After being charged into the negative electrode electrolytic solution tank 26, it was circulated using pumps 24 and 28. Charging was performed at a constant current of 0.5 A while circulating the electrolytic solution. The constant current source in this case uses the potentiostat/galvanostat (HA-151-B manufactured by Hokuto Denko Co., Ltd.) shown in FIG. 2 as a galvanostat, and uses the positive electrode 10 and the negative electrode 14 shown in FIG. A constant current charge was performed by connecting between the two.

その後、放電試験を行った。この場合も、上記ポテンショスタット/ガルバノスタット(北斗電工株式会社製HA−151−B)をガルバノスタットとして使用し、ポンプ24、28を用いて充電後の電解液を循環させながら、100mA(0.1A)から700mA(0.7A)の電流領域で定電流にて放電を行い、その時の起電力(V)を測定することで、放電試験を行った。定電流で放電した電流値とその時の起電力を掛け合わせた数値を計算し、出力(W:ワット)を算出した。その出力に対して、定電流放電した電流値との関係を放電曲線としてまとめ、最大出力を比較した。 After that, a discharge test was conducted. Also in this case, the potentiostat/galvanostat (HA-151-B manufactured by Hokuto Denko Co., Ltd.) was used as a galvanostat, and 100 mA (0. A discharge test was performed by discharging at a constant current in the current region of 1 A) to 700 mA (0.7 A) and measuring the electromotive force (V) at that time. A value obtained by multiplying the current value discharged at a constant current by the electromotive force at that time was calculated, and the output (W: watt) was calculated. The relationship between the output and the current value of constant current discharge was summarized as a discharge curve, and the maximum outputs were compared.

実施例2.
上記導入例3で製造した、含臭素官能基群を導入した炭素材料を両極として使用した以外は、実施例1と同様にして放電試験を行った。
Example 2.
A discharge test was conducted in the same manner as in Example 1 except that the carbon material introduced with the bromine-containing functional group group produced in Introduction Example 3 was used as the electrodes.

比較例.
定電位電解酸化を行っていない未処理のカーボンフェルト(CF)を両極として使用した以外は、実施例1と同様にして放電試験を行った。
Comparative example.
A discharge test was conducted in the same manner as in Example 1 except that untreated carbon felt (CF) that had not been subjected to potentiostatic electrolytic oxidation was used as the both electrodes.

図5には、上記各放電試験の結果が示される。図5において、実施例1(KClにより含塩素官能基群を導入した電極を使用)では、400mA放電時の出力が、比較例(定電位電解酸化を行っていない電極を使用)と比較して約1.4倍(264.8mW)であった。 FIG. 5 shows the result of each discharge test. In FIG. 5, in Example 1 (using the electrode in which the chlorine-containing functional group group was introduced by KCl), the output at the time of 400 mA discharge was compared with that in the comparative example (using the electrode which was not subjected to potentiostatic electrolytic oxidation). It was about 1.4 times (264.8 mW).

また、実施例2(KBrにより含塩素官能基群を導入した電極を使用)の最大出力についても、比較例の最大出力を上回っていた。 Further, the maximum output of Example 2 (using the electrode in which the chlorine-containing functional group group was introduced by KBr) was also higher than that of the comparative example.

以上のことから、塩素原子や臭素原子がCF電極表面に導入されたことで、その部位がバナジウムとの電子移動の触媒活性点として機能し、電極反応特性が向上したものと考えられる。 From the above, it is considered that the introduction of a chlorine atom or a bromine atom on the CF electrode surface causes that site to function as a catalytic active site for electron transfer with vanadium, improving the electrode reaction characteristics.

10 正極、12 正極室、14 負極、16 負極室、18 隔膜、20 セル、22 正極電解液槽、24 正極ポンプ、26 負極電解液槽、28 負極ポンプ、30 ガラス容器、32 作用電極、34 対極、36 参照電極、38 ポテンショスタット、40 スターラー。 10 positive electrode, 12 positive electrode chamber, 14 negative electrode, 16 negative electrode chamber, 18 diaphragm, 20 cell, 22 positive electrode electrolytic solution tank, 24 positive electrode pump, 26 negative electrode electrolytic solution tank, 28 negative electrode pump, 30 glass container, 32 working electrode, 34 counter electrode , 36 reference electrode, 38 potentiostat, 40 stirrer.

Claims (4)

炭素材料の表面に含ハロゲン官能基群が結合したことを特徴とする炭素を基体とする電極材料。 An electrode material based on carbon, characterized in that a halogen-containing functional group is bonded to the surface of the carbon material. 前記含ハロゲン官能基群が、塩素または臭素の少なくとも一方を含む官能基群である、請求項1に記載の炭素を基体とする電極材料。 The carbon-based electrode material according to claim 1, wherein the halogen-containing functional group group is a functional group group containing at least one of chlorine and bromine. 前記含ハロゲン官能基群が、さらに酸素を含む官能基群である、請求項2に記載の炭素を基体とする電極材料。 The carbon-based electrode material according to claim 2, wherein the halogen-containing functional group group is a functional group group further containing oxygen. 請求項1から請求項3のいずれか一項に記載の炭素を基体とする電極材料を使用したことを特徴とするレドックスフロー電池。

A redox flow battery comprising the carbon-based electrode material according to any one of claims 1 to 3.

JP2019020995A 2019-02-07 2019-02-07 Electrode material including carbon as base substance, and redox flow battery arranged by use thereof Pending JP2020129457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019020995A JP2020129457A (en) 2019-02-07 2019-02-07 Electrode material including carbon as base substance, and redox flow battery arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019020995A JP2020129457A (en) 2019-02-07 2019-02-07 Electrode material including carbon as base substance, and redox flow battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2020129457A true JP2020129457A (en) 2020-08-27

Family

ID=72174718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020995A Pending JP2020129457A (en) 2019-02-07 2019-02-07 Electrode material including carbon as base substance, and redox flow battery arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2020129457A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183487A (en) * 1985-02-08 1986-08-16 Kenzo Yamaguchi Carbon electrode
JPS6482460A (en) * 1987-09-25 1989-03-28 Kawasaki Heavy Ind Ltd Activation processing of electrode
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183487A (en) * 1985-02-08 1986-08-16 Kenzo Yamaguchi Carbon electrode
JPS6482460A (en) * 1987-09-25 1989-03-28 Kawasaki Heavy Ind Ltd Activation processing of electrode
JP2000030715A (en) * 1998-07-10 2000-01-28 Sumitomo Electric Ind Ltd Battery electrode material, its manufacture, and electrochemical battery
JP2008019120A (en) * 2006-07-12 2008-01-31 Shunichi Uchiyama Electrode material, its production method, electrochemical sensor, electrode for fuel cell, oxygen reduction catalyst electrode and biosensor

Similar Documents

Publication Publication Date Title
Wang et al. CoP 2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting
Shitanda et al. Based disk-type self-powered glucose biosensor based on screen-printed biofuel cell array
Mavrikis et al. Boron-doped diamond electrocatalyst for enhanced anodic H2O2 production
Zhou et al. Electrocatalysis of template-electrosynthesized cobalt− porphyrin/polyaniline nanocomposite for oxygen reduction
Kipf et al. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1
Farahani et al. Carbon-supported Fe/Mn-based perovskite-type oxides boost oxygen reduction in bioelectrochemical systems
JPH01143152A (en) Oxidization-reduction battery
US11718919B2 (en) Electrochemical hydrogen peroxide generating device
Yang et al. Nafion/lead oxide–manganese oxide combined catalyst for use as a highly efficient alkaline air electrode in zinc–air battery
El-Deab et al. Electrocatalysis by design: Effect of the loading level of Au nanoparticles–MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen
Han et al. Electrochemically synthesized sulfur-doped graphene as a superior metal-free cathodic catalyst for oxygen reduction reaction in microbial fuel cells
CN107364934A (en) Electro-catalysis reduction combination electrode, preparation method and applications
JP5055557B2 (en) Oxygen reduction electrode for direct fuel cell
JP2013202430A (en) Oxidation reduction catalyst and fuel cell using the catalyst
Emran et al. Novel hydrazine sensors based on Pd electrodeposited on highly dispersed lanthanide-doped TiO2 nanotubes
CN106410213A (en) Electrochemical assembly polypyrrole/manganese dioxide compound modified electrode and preparation method and application thereof
JP2020129457A (en) Electrode material including carbon as base substance, and redox flow battery arranged by use thereof
Hosseini et al. Evaluation of the Performance of Platinum Nanoparticle–Titanium Oxide Nanotubes as a New Refreshable Electrode for Formic Acid Electro‐oxidation
JPWO2017006729A1 (en) Redox flow battery electrode and redox flow battery system
JP5653292B2 (en) Electrode material based on carbon, fuel cell using the same, method for electrolytic production of hydrogen, and method for producing electrode material based on carbon
JP2008243490A (en) Electrode material, manufacturing method therefor, electrochemical sensor, and electrode for fuel cell
WO2017145709A1 (en) Carbon catalyst for redox flow battery electrodes
WO2017145708A1 (en) Carbon catalyst for redox flow battery electrodes
JP2016186853A (en) Vanadium redox battery
JP6591235B2 (en) Method for producing redox catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404