JP2020128969A - Sonic speed measuring device for wood - Google Patents

Sonic speed measuring device for wood Download PDF

Info

Publication number
JP2020128969A
JP2020128969A JP2019033337A JP2019033337A JP2020128969A JP 2020128969 A JP2020128969 A JP 2020128969A JP 2019033337 A JP2019033337 A JP 2019033337A JP 2019033337 A JP2019033337 A JP 2019033337A JP 2020128969 A JP2020128969 A JP 2020128969A
Authority
JP
Japan
Prior art keywords
probe
wood
wave
sound
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033337A
Other languages
Japanese (ja)
Other versions
JP7231141B2 (en
Inventor
山本 保則
Yasunori Yamamoto
保則 山本
建 國友
Ken Kunitomo
建 國友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAMOTO ELECTRIC Manufacturing CO Ltd
Original Assignee
SAKAMOTO ELECTRIC Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAMOTO ELECTRIC Manufacturing CO Ltd filed Critical SAKAMOTO ELECTRIC Manufacturing CO Ltd
Priority to JP2019033337A priority Critical patent/JP7231141B2/en
Publication of JP2020128969A publication Critical patent/JP2020128969A/en
Application granted granted Critical
Publication of JP7231141B2 publication Critical patent/JP7231141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide a sonic speed measuring device for wood, for example, which allows even an unskilled worker to measure the accurate hardness of wood.SOLUTION: The sonic speed measuring device according to the present invention includes a sending probe 6 and a reception probe 8 to be inserted into wood separately by a predetermined distance. The sending probe 6 sends sound waves and the reception probe 8 receives sound waves. A sound wave added to the sending probe 6 is a sine wave, and the reception probe 8 receives the top of the first wave of the sine wave output from the sending probe 8. The time taken for a signal output from the reception probe 6 to reach the reception probe 8 is measured and the hardness of the wood is measured by the time.SELECTED DRAWING: Figure 1

Description

物質内部を通過する音波の速度を測定すれば密度が既知のものであれば、その材質(硬さ=ヤング率)を測定することが知られている。
本発明は、木材等の内部音速を簡単に、かつ正確に測定できる装置に関するものである。特に木材の伐採現場で硬さを測定できるため、製材所に材木を送る前に硬さの測定ができ、製材所には木材の品質や用途を明示した上で送ることができるものである。
It is known that the material (hardness=Young's modulus) is measured if the density is known by measuring the velocity of a sound wave passing through the substance.
The present invention relates to a device that can easily and accurately measure the internal sound velocity of wood or the like. In particular, since the hardness can be measured at the logging site of the timber, the hardness can be measured before sending the timber to the sawmill, and can be sent to the sawmill after clearly indicating the quality and use of the timber.

近年、木造建築に国産材が多用されるようになった反面、林業従事者の高齢化が進み、林業に用いる機器も自動化やIT化が求められるようになった。一方、国産の杉や檜は米国産のものと比較して柔らかく、製材前に硬さを知ることができると、硬さに応じて柱材にするか、その他にするか等建築材の用途を決め、用途に応じた製材をすることができる。 In recent years, domestic timber has been frequently used for wooden construction, but as the forestry workers age, the equipment used for forestry is also required to be automated and IT. On the other hand, domestic cedar and cypress are softer than those made in the United States, and if the hardness can be known before sawing, whether it will be a pillar material or other depending on the hardness It is possible to make lumber according to the intended use.

このような硬さの測定装置の例として、特許文献1に開示されたものがある。これは、ハンマー等の打撃による応力波の伝搬速度から木材のヤング率を測定するものであり、前もって被測定木材等のヤング率と密度との関係をデータベース化しておき、木材の応力波伝搬速度(音速)を測定することで硬さ品質指標であるヤング率を求めるものである An example of such a hardness measuring device is disclosed in Patent Document 1. This is to measure the Young's modulus of the wood from the propagation speed of the stress wave due to the impact of a hammer, etc., the database of the relationship between the Young's modulus and the density of the measured wood in advance, and the stress wave propagation speed of the wood. The Young's modulus, which is a hardness quality index, is obtained by measuring (sonic velocity).

また特許文献2に示されたものは、試験体上に送信用探触子を当て、送信用探触子から特定の距離離れた位置に受信用探触子を設け、送信用探触子から出した音波を受信用探触子で受信して、試験体内の音波の伝搬速度を測定するものである。そして音波の表面波が特定できない場合、対象物の既知の厚みによる反射波の場合は受信信号から試験体の音速を算出する信号処理部を設けている。これによって試験体の音波の物質内伝搬速度を測定できるようにするものである。 Further, in the device disclosed in Patent Document 2, a transmission probe is applied to a test body, and a reception probe is provided at a position apart from the transmission probe by a specific distance. The emitted sound wave is received by the receiving probe, and the propagation velocity of the sound wave in the test body is measured. If the surface wave of the sound wave cannot be specified, or if the reflected wave has a known thickness of the object, a signal processing unit for calculating the sound velocity of the test object from the received signal is provided. This makes it possible to measure the propagation velocity of the sound wave of the test body in the substance.

特開2018−54550号公報JP, 2008-54550, A

特開2015−172528号公報JP, 2005-172528, A

上記の特許文献1に開示された技術には、木材のヤング率を測定する方法と装置が開示されているが、木材のヤング率と密度との関係を示すデータをデータベース化する必要があり、このデータを前もって多数求めておく必要がある。このため、実用化に際して多くのデータを収集するなどの手間がかかるという問題がある。
また、音速測定にはハンマー等の衝撃による応力波の速度を示しているがこのハンマー等による衝撃波を使用する場合、一定の角度及び衝撃力を保持することが困難である
The technique disclosed in the above Patent Document 1 discloses a method and an apparatus for measuring the Young's modulus of wood, but it is necessary to create a database of data showing the relationship between the Young's modulus of wood and the density. It is necessary to obtain a large number of this data in advance. For this reason, there is a problem that it takes time and effort to collect a large amount of data when putting it to practical use.
Also, the velocity of the stress wave due to the impact of a hammer or the like is shown in the sound velocity measurement, but when the shock wave from the hammer or the like is used, it is difficult to maintain a constant angle and impact force.

上記の特許文献2に開示された技術は、超音波の速度で試験体の音速を測定するものであり、表面波が特定できなくても試験体の厚みが既知であれば反射波による音速の測定が可能である。このようにするため、受信用探触子の受信信号を縦波と横波とに識別するようにしている。 The technique disclosed in Patent Document 2 described above measures the sound velocity of a test body at the speed of ultrasonic waves, and even if the surface wave cannot be specified, if the thickness of the test body is known, the sound velocity of the reflected wave It is possible to measure. For this reason, the reception signal of the reception probe is discriminated into a longitudinal wave and a transverse wave.

本発明は以上の点に着目し、より簡単な装置で正確に、かつ作業者が容易に音速測定作業を行うことができる、木材等の音速測定装置を提供するものである。 The present invention focuses on the above points, and provides a sound velocity measuring device for wood or the like, which enables a worker to accurately and easily perform a sound velocity measuring operation with a simpler device.

本発明の木材等(ここで、「木材等」とは樹木、使用前の木材、柱等木製建築物に使われている状態の木材を言う)の音速測定装置は、それぞれ所定距離離れて木材に打ち込まれる発信プローブと受信プローブ(図2)とを備え、発信プローブは音波電気信号を振動に変換する機械変換手段を有し、受信プローブは音波を電気信号に変換する電気変換手段を有する。(図1)
発信プローブに加えられる電気信号は音波であって頂点で微分値が正から負に変わる波形(正弦波或いは三角波)であり、発信プローブから出される信号の最初の波の頂点を受信プローブで受信し、発信プローブから出た信号が受信プローブに至る時間を測定し、その時間によって木材等の音速を測定するようにした。
The sound velocity measuring device of the present invention such as wood (herein, "wood etc." means wood, wood before use, wood used in wooden structures such as pillars) is separated by a predetermined distance. 2 is provided with a transmission probe and a reception probe (FIG. 2) which are driven into, the transmission probe has a mechanical conversion means for converting a sound wave electric signal into a vibration, and the reception probe has an electric conversion means for converting a sound wave into an electric signal. (Fig. 1)
The electric signal applied to the transmitting probe is a sound wave and has a waveform in which the differential value changes from positive to negative at the apex (sine wave or triangular wave), and the apex of the first wave of the signal emitted from the transmitting probe is received by the receiving probe. The time taken for the signal emitted from the transmitting probe to reach the receiving probe was measured, and the speed of sound of wood or the like was measured based on that time.

本発明の木質材の硬さ測定装置は、以上の手段により、次のような効果がある。つまり発信プローブより木材等に印加した音波は受信プローブで受信されるのであるが、この際に表面波だけでなく木材の内部を通過した無数の反射波が受信プローブで受信される。(図4)
さらに送信波が連続波や複数波である場合にはさらに多くの反射波が発生すし、最初に到達した信号以外はすべてノイズとなって正確な測定を阻害するのであるが、本発明のものであると、送信する信号の頂点と受信プローブで最初の波の頂点を受信し、これで音波の伝達時間を測定しているため、反射波による波形変形やノイズの影響を受けない。
また、送信信号が方形波やパルス波の場合、木材等の内部を音波が伝搬する時、受信波形は波形がなまり立ち上がりポイントや頂点ポイントも不明確となり、誤差を発生させる要因(図5)となるが、送信波を1サイクルのSIN波または三角波としたため、頂点ポイントが明確である(図3)
The wood hardness measuring device of the present invention has the following effects by the above means. That is, the sound wave applied to the wood or the like by the transmitting probe is received by the receiving probe, but at this time, not only the surface waves but also the countless reflected waves that have passed through the inside of the wood are received by the receiving probe. (Figure 4)
Further, when the transmitted wave is a continuous wave or a plurality of waves, more reflected waves are generated, and all except the first arriving signal become noise, which hinders accurate measurement. In this case, since the vertices of the signal to be transmitted and the vertices of the first wave are received by the receiving probe and the propagation time of the sound wave is measured by this, there is no influence of waveform deformation or noise due to the reflected wave.
Further, when the transmission signal is a square wave or a pulse wave, when the sound wave propagates inside the wood or the like, the reception waveform becomes dull and the rising point and the apex point become unclear, which causes an error (Fig. 5). However, since the transmitted wave is a 1-cycle SIN wave or triangular wave, the apex point is clear (Fig. 3).

木材等の種類ごとに、標準的な音速、密度、ヤング率をデーターベース化することで、測定対象の木材等が標準よりも硬い材質か、水分を多く含む材質かなど、木材等の品質を明示することができる。
また、木材内部に腐食等でやわらかくなったものが有る場合も、音速が標準に対し遅くなることで検出することができる。
By converting the standard sound velocity, density, and Young's modulus into a database for each type of wood, the quality of the wood, such as whether the wood to be measured is harder than standard or contains a lot of water, can be used. It can be specified.
Further, even if there is a softened wood inside due to corrosion or the like, it can be detected because the sound velocity becomes slower than the standard.

発信信号は周波数の低い音波領域の周波数であるが、1サイクルのみのSIN波又は三角波であり、この単一波のただ1つのピーク点から、受信プローブで受信した信号のうち最初の信号のピークまでの時間によって、発信プローブから受信プローブまでの音波の到達時間を測定するようにしているため、反射波などによるノイズの影響がない。また音波の周波数によらず測定することが可能であるため、木材等の内部での減衰が少なく、木材などの水分による信号の減衰も少なくなる。 The transmitted signal has a low frequency in the sound wave region, but it is a SIN wave or triangular wave of only one cycle, and the peak of the first signal received by the receiving probe from only one peak point of this single wave. Since the arrival time of the sound wave from the transmitting probe to the receiving probe is measured by the time until, there is no influence of noise due to reflected waves. Further, since the measurement can be performed regardless of the frequency of the sound wave, the attenuation inside the wood or the like is small, and the signal attenuation due to the water content of the wood or the like is also small.

センサの形状は、送受信それぞれ打込み部とセンサの間に45度の角度を持っており、プローブとセンサは分離することができる。
ハーベスタ等の装置に組み込む場合、また打込み部を木材等に打込む場合は再現性良く斜めに打込む事が困難である、本発明の打込み部とセンサは一定角度(45度)に固定されるため、打込みは対象物に垂直に打込むことで、センサ角度を常に45度に保持することができる。
このようにセンサを45度にすることによって、直接波の到達を容易にし、直接波が大きくなることによって安定して最初に到達した音波を容易に検出できるようになる。
また、樹木や立木、木製構造物等の場合、小口を使用して測定することが困難であるが、この形状にしたセンサであればその音速も測定することができる。
The shape of the sensor has an angle of 45 degrees between the driving part and the sensor for transmission and reception, respectively, and the probe and the sensor can be separated.
It is difficult to drive diagonally with good reproducibility when incorporating it into a device such as a harvester or when implanting the implant into wood or the like. The implant and the sensor of the present invention are fixed at a fixed angle (45 degrees). Therefore, the sensor angle can be constantly maintained at 45 degrees by driving the object vertically.
By setting the sensor at 45 degrees in this way, it becomes easy for the direct wave to reach and for the direct wave to become large, the sound wave that first arrives can be stably detected easily.
Further, in the case of a tree, a standing tree, a wooden structure, etc., it is difficult to measure using a small edge, but if the sensor has this shape, its sound velocity can also be measured.

木材生産機械(ハーベスタ等重機)に、この音速測定システムを組み込む場合、重機が有する木材の把持具に送受信センサを取り付け、伐採と同時に木材の音速の測定を行うようにすることができる。すると、この重機は伐採し、枝を払い、所定長さに切断してトラックに積載するという一連の動作を自動的に行うのであるが、これらの作業の中でその音速測定により木材の硬さ(ヤング率)を測定できるため、どの木材がどの硬さであるか識別する表示をしておくことで、製材所に搬送する時に既に硬さのデータを有する木材が搬入される。これによって製材所で、どのような目的の材料にするか製材の仕様を直ちに決定することができ、木材等の価値の創出や製材所の省力化にも寄与することができる。 When this sound velocity measurement system is incorporated in a wood production machine (heavy machinery such as a harvester), a transmission/reception sensor can be attached to a wood gripping tool of the heavy machinery to measure the sound velocity of wood at the same time as logging. Then, this heavy machine automatically cuts a tree, cuts branches, cuts to a predetermined length and loads it on a truck.In these operations, the sound velocity measurement measures the hardness of wood. Since the (Young's modulus) can be measured, by indicating which wood has which hardness, it is possible to carry in wood that already has hardness data when it is transported to a sawmill. As a result, it is possible to immediately determine the purpose of the sawmill at the sawmill, and it is possible to contribute to the creation of value such as wood and labor saving of the sawmill.

このように林業従事者が不足する現在にあって、自動化を進めることが容易になる。さらに従事者の熟練も要することがなく、正確に木材等の硬さ測定をすることができる。 In such a shortage of forestry workers, it will be easy to promote automation. Further, it is possible to accurately measure the hardness of wood or the like without requiring the skill of a worker.

本発明の木材等の音速測定装置の実施例1を示すブロック図である。 It is a block diagram which shows Example 1 of the sound velocity measuring apparatus of the wood etc. of this invention. 本発明の木材等の音速測定装置の発信プローブ及び受信プローブの部分分解側面図である。 FIG. 3 is a partially exploded side view of a transmission probe and a reception probe of the sound velocity measuring device for wood or the like according to the present invention. 本発明の木材等の音速測定装置の実施例1の発信・受信信号状態を示すグラフである。 It is a graph which shows the transmission/reception signal state of Example 1 of the sound velocity measuring apparatus for wood etc. of the present invention. 本発明の木材等の音速測定装置の実施例1における木材内の音波の伝達状態を示す断面図である。 FIG. 3 is a cross-sectional view showing a state of transmission of sound waves in wood in Example 1 of the sound velocity measuring device for wood and the like according to the present invention. 発信プローブに方形波を用いた場合の受信プローブの受信波を示す図である。 It is a figure which shows the received wave of a receiving probe when a square wave is used for an outgoing probe. 本発明の木材等の硬さ測定装置の実施例1における制御部の動作を示すフローチャートである。 It is a flow chart which shows operation of the control part in Example 1 of the hardness measuring device of the wood etc. of the present invention.

本発明の請求項1に記載の発明は、それぞれ所定距離離れて木材に打ち込まれる発信プローブと受信プローブとを備え、発信プローブは音波電気信号を振動に変換する機械変換手段を有し、受信プローブは音波を電気信号に変換する電気変換手段を有し、発信プローブに加えられる電気信号は音波であって頂点で微分値が正から負に変わる波形であり、発信プローブから出される信号の最初の波の頂点を受信プローブで受信し、発信プローブから出た信号が受信プローブに至る時間を測定し、その時間によって木材等の音速を測定するようにした構成を有する。これによって、上記の発明の効果を発揮する。 The invention according to claim 1 of the present invention comprises a transmitting probe and a receiving probe which are respectively driven into wood at a predetermined distance from each other, and the transmitting probe has a mechanical converting means for converting a sound wave electric signal into a vibration. Has an electric converting means for converting a sound wave into an electric signal, and the electric signal applied to the transmitting probe is a sound wave having a waveform whose differential value changes from positive to negative at the apex, It has a configuration in which the apex of a wave is received by a reception probe, the time taken for a signal emitted from the transmission probe to reach the reception probe, and the speed of sound of wood or the like is measured by the time. As a result, the effects of the invention described above are exhibited.

以下本発明の木材等の音速測定装置について、実施例を示す図面とともに説明する。1は主装置であり、この中に以下の回路や電子部品が収納されている。2は制御部であり、マイクロプロセッサ(以下「CPU」と書く)やフラッシュメモリーなどを有しており、木材等に対する音速データなどや演算式を格納している。3は指令、表示部であり液晶パネルとタッチパネルの組み合わせでできている。つまりCPUの動作に合わせて必要なデータが表示され、また操作者が必要な操作をタッチパネルを介して行うものである。4は信号発生部であり、ここで20hz〜20khz未満の正弦波が発生し、この正弦波を制御部2に送る。5は送信部であり、制御部2の指示に従い、発信プローブ6へ信号を送る。7は受信部であり、受信プローブ8からの信号を制御部2に送るものである。 Hereinafter, a sound velocity measuring device for wood or the like according to the present invention will be described with reference to the drawings showing an embodiment. Reference numeral 1 denotes a main device, in which the following circuits and electronic parts are housed. A control unit 2 has a microprocessor (hereinafter referred to as “CPU”), a flash memory, and the like, and stores sound velocity data for wood and the like and arithmetic expressions. Reference numeral 3 denotes a command/display unit, which is made up of a combination of a liquid crystal panel and a touch panel. That is, the necessary data is displayed according to the operation of the CPU, and the operator performs the necessary operation via the touch panel. A signal generator 4 generates a sine wave of 20 hz to less than 20 kHz, and sends the sine wave to the controller 2. Reference numeral 5 denotes a transmission unit, which sends a signal to the transmission probe 6 according to an instruction from the control unit 2. Reference numeral 7 denotes a receiving unit, which sends a signal from the receiving probe 8 to the control unit 2.

6は発信プローブであり、送信部5から音波信号が加えられる。8は受信プローブであり、受信部7へ受信した音波信号を送るものである。発信プローブ6及び受信プローブ8は、それぞれ測定対象の木材9に打ち込まれる。発信プローブ6及び受信プローブ8の詳細は、図2に沿って説明する。 Reference numeral 6 is a transmission probe, to which a sound wave signal is applied from the transmission unit 5. Reference numeral 8 denotes a receiving probe, which sends the received sound wave signal to the receiving unit 7. The transmitting probe 6 and the receiving probe 8 are driven into the wood 9 to be measured. Details of the transmission probe 6 and the reception probe 8 will be described with reference to FIG.

図2は、図1の6発信プローブ及び図1の8受信プローブの分解側面図である。ここで発信プローブ6及び受信プローブ8は共通部分が多く、図面としては両者を共通にして説明する。発信プローブ6及び受信プローブ8は両者とも本体10,11及び打ち込み部12,13を有している。打ち込み部12,13は図1の9木材等に打ち込まれる部分であるので、打込み取り外しが容易な形状で先端が尖っている。打ち込み部12,13の末端には図面1の9木材等への打ち込みに際して、ハーベスタ(林野庁の定義する林業用の機械)用の挿入用のツバ14,15が設けられている。ツバ部14,15はネジ構造を持ち、20、21の45度アタッチメントを介して、本体10,11に対し着脱自在であり、手動によりハンマーで打ち込む時には、20、21の45度アタッチメントと打ち込み部12,13を外して打込み部をハンマーで打ち込む。発信プローブ、受信プローブの本体10、11の中には、ピエゾ素子などからなる振動子16、17が設けられている本体10,11には振動子16、17を覆うケース18,19が設けられている。また打ち込み部12,13と振動子16、17との間で振動を伝える45度アタッチメント20,21が設けられ、ケース18,19と伝達部20,21の間にはシリコンゴムよりなる防振体22,23が設けられ、振動が効率よく伝達されるように構成されている。 FIG. 2 is an exploded side view of the 6 transmit probe of FIG. 1 and the 8 receive probe of FIG. Here, the transmitting probe 6 and the receiving probe 8 have many common parts, and both will be described as common in the drawings. Both the transmitting probe 6 and the receiving probe 8 have main bodies 10 and 11 and driving portions 12 and 13. Since the driving portions 12 and 13 are portions to be driven into the timber 9 or the like in FIG. 1, the driving portions 12 and 13 have a shape that can be easily driven and removed, and the tips thereof are pointed. At the ends of the driving portions 12 and 13, there are provided brims 14 and 15 for insertion of a harvester (machine for forestry defined by the Forestry Agency) when driving 9 woods or the like in FIG. The brim portions 14 and 15 have a screw structure and can be freely attached to and detached from the main body 10 and 11 through 45 and 45 degree attachments of 20 and 21. When hammering by hand, the 45 and 45 degree attachments of 20 and 21 Remove 12 and 13 and hammer in the hammering part. The oscillators 16 and 17 made of a piezo element or the like are provided in the main bodies 10 and 11 of the transmitting probe and the receiving probe. Cases 18 and 19 that cover the oscillators 16 and 17 are provided in the main bodies 10 and 11. ing. Further, 45-degree attachments 20 and 21 for transmitting vibration are provided between the driving portions 12 and 13 and the vibrators 16 and 17, and a vibration isolator made of silicon rubber is provided between the cases 18 and 19 and the transmission portions 20 and 21. 22 and 23 are provided so that vibrations can be efficiently transmitted.

本発明の木材等の音速測定装置は以上のような構成よりなり、以下その使用方法を説明する。
ハーベスタ等木材生産機械では、図2のプローブの14,15ツバ部を保持して木材等に油圧で垂直に打込む。
手動で木材等に図2プローブを打込む場合は図2打込み部12,13を45度アタッチメント20,21から外して対象の木材等に垂直に打込んだのちに45度アタッチメント、本体を接続する。
The sound velocity measuring device for wood or the like according to the present invention has the above-mentioned configuration, and its usage will be described below.
In a wood production machine such as a harvester, the probes 14 and 15 of the probe shown in FIG. 2 are held and driven vertically into wood or the like by hydraulic pressure.
When manually pushing the probe shown in FIG. 2 into wood or the like, remove the drive portions 12 and 13 shown in FIG. 2 from the 45° attachments 20 and 21 and vertically drive the target wood or the like, and then connect the 45° attachment and the main body. ..

次にハーベスタ等材木生産機械に組み込む場合は、電源部・送受信ケーブルのほか、ハーベスタ等と通信線を接続し、上位であるハーベスタ等の測定指示信号を受けて自動測定を行い、計測結果をハーベスタ等に自動通信を行う。
また手動によって計測する場合は、主装置1の指令、表示部3を操作し、測定開始を指示し、測定結果を表示する。これを図6のフローチャートで説明すると、ステップ1及びステップ2で測定開始を待ち、測定開始の指示があるとステップ3に進んで制御部2が信号発生器4に指令を出して正弦波を発生させ、それが送信部5に伝わる。送信部5では、送られて来た正弦波信号を増幅し、発信プローブ6の発振子16に送る。同時にステップ4で発信した時刻を制御部内のメモリーに記録する。
Next, when incorporating it into a timber production machine such as a harvester, in addition to the power supply/transmission/reception cable, connect the communication line with the harvester, etc., perform the automatic measurement in response to the measurement instruction signal from the higher-level harvester, etc. Etc. to automatically communicate.
In the case of manual measurement, the command of the main device 1 and the display unit 3 are operated to instruct measurement start, and the measurement result is displayed. This will be described with reference to the flowchart of FIG. 6. In step 1 and step 2, the measurement start is waited, and if there is a measurement start instruction, the process proceeds to step 3 and the control unit 2 issues a command to the signal generator 4 to generate a sine wave. Then, it is transmitted to the transmitter 5. The transmitter 5 amplifies the sent sine wave signal and sends it to the oscillator 16 of the transmitting probe 6. At the same time, the time transmitted in step 4 is recorded in the memory in the control unit.

図2の発信プローブ6内の発振子16は、その正弦波によって振動を発生し、伝達部20を介して打ち込み部12に正弦波振動を伝える。その振動は受信プローブ8の振動子1717で受けられ、電気信号を発生する。この電気信号は受信部7でアナログ・デジタル変換され、制御部2に送られる。制御部2はステップ5で受信した正弦波のピークを見つけ、その時刻をステップ6でメモリーに記録する。正弦波のピークを見つける方法は幾つかの方法があるが、簡単には入力された波の傾きを微分し、その値が正から負に変わった点をピークとすることができる。この状態は、図3に示す。発信プローブ6から出た正弦波の最初のピークは受信プローブ8で受信されて、最初のピークが捉えられ、木材9を通過した時間が計測される。 The oscillator 16 in the transmission probe 6 of FIG. 2 generates vibration by the sine wave, and transmits the sine wave vibration to the driving part 12 via the transmission part 20. The vibration is received by the vibrator 1717 of the reception probe 8 and generates an electric signal. This electric signal is converted from analog to digital by the receiving unit 7 and sent to the control unit 2. The control unit 2 finds the peak of the sine wave received in step 5 and records the time in the memory in step 6. There are several methods for finding the peak of a sine wave, but it is possible to easily differentiate the slope of the input wave and use the point at which its value changes from positive to negative as the peak. This state is shown in FIG. The first peak of the sine wave emitted from the transmission probe 6 is received by the reception probe 8, the first peak is captured, and the time passed through the wood 9 is measured.

ステップ4で記録した発信時刻のデータとステップ6で記録した受信時刻のデータの差から、ステップ7で木材内を伝わるのに要した時間を知ることができる。発信プローブ6と受信プローブ8の打ち込み部12,13の距離と上記の時間から木材9内の音波の速度を知ることができる。木材9の中を伝わる音波の速度は木の種類毎に、当該木の標準的な硬さでほぼ決まっている。よって、そのデータを用いて、標準的な硬さに対してどの程度硬いか柔らかいか、知ることができる。このようにして求めた硬さのデータをステップ9で指示・表示器3に表示する。この後、ステップ10で一連の動作を終了する。 From the difference between the transmission time data recorded in step 4 and the reception time data recorded in step 6, the time required to travel through the timber in step 7 can be known. The speed of the sound wave in the wood 9 can be known from the distance between the driving portions 12 and 13 of the transmitting probe 6 and the receiving probe 8 and the above time. The speed of the sound wave transmitted through the wood 9 is almost determined by the standard hardness of the wood for each kind of wood. Therefore, the data can be used to know how hard or soft the standard hardness is. The hardness data thus obtained is displayed on the pointing/display unit 3 in step 9. Then, in step 10, a series of operations ends.

ここで、発信プローブ6に方形波が加えられたとすると、図5に示すように受信プローブ8で受信される受信波は、不規則に乱れた波となる。これは図4で示すように、発信プローブ6から出た音波が直接受信プローブ8に入る以外に、木材9の表面で反射した波であったり、木の節で乱れた波などが受信プローブ8に入るためである。このため、送信プローブ6で発射する音波として方形波を用いると正確に音波の到達時間を測定することができない。 Here, if a square wave is applied to the transmission probe 6, the reception wave received by the reception probe 8 becomes an irregularly disturbed wave as shown in FIG. As shown in FIG. 4, in addition to the sound wave emitted from the transmitting probe 6 directly entering the receiving probe 8, a wave reflected on the surface of the wood 9 or a wave disturbed by a knot of a tree is received. To enter. Therefore, when a square wave is used as the sound wave emitted by the transmission probe 6, the arrival time of the sound wave cannot be accurately measured.

以上の説明で発信プローブ6と受信プローブ8の打ち込み部12,13は、ハンマーで打ち込むように説明したが、林野庁が高性能林業機械として定義している機械のハーベスター(従来チェンソーで行っていた立木の伐倒、枝払い、玉切りの各作業と玉切りした材の集積作業を一貫して行う自走式機械)やプロセッサ(林道や土場などで、全木集材されてきた材の枝払い、測尺、玉切りを連続して行う自走式機械)に取り付けて、伐採現場で自動的に木材の硬さを測定できるようにすることもできる。 In the above description, the hammering is used to drive the hammering into the driving parts 12 and 13 of the transmitting probe 6 and the receiving probe 8. However, the harvester of the machine defined by the Forestry Agency as a high-performance forestry machine Tree felling, pruning, beveling, and self-propelled machinery that consistently collects the sawn timber. Processors (forest roads, soil fields, etc.) It can also be attached to a self-propelled machine that continuously performs sweeping, measuring, and slicing) so that the hardness of wood can be automatically measured at the logging site.

ハーベスターやプロセッサは大型の機械であり、これらを用いる場合は特にエンジンや油圧機器の発生する振動がケーブルを介して発信プローブ6や受信プローブ8に伝わるが、これらのケース18,19は防振体22,23を介して伝達部20,21と結合しているため、振動の伝達が少ない。このため受信プローブ8からノイズとして振動が捉えられることが少ない。 Harvesters and processors are large machines, and when these are used, the vibrations generated by the engine and hydraulic equipment are transmitted to the transmitting probe 6 and the receiving probe 8 via cables. Since it is coupled to the transmission units 20 and 21 via 22 and 23, the transmission of vibration is small. Therefore, the reception probe 8 rarely catches vibration as noise.

上記説明のとおり本発明の木材等用の音速測定装置は、発信プローブ6と受信プローブ8の打ち込み部12,13を測定対象の木材に打ち込むだけで、自動的に木材を伝わる音波の音速を測定することができ、特段の熟練を要することがない。このため林業従事者の不足する昨今、林業の促進に寄与するものである。つまり、木材に加える音波が表面波以外の波を有する場合であっても、正弦波のピークを捉えて測定しているため、正確に測定が可能である。 As described above, the sound velocity measuring device for wood or the like according to the present invention automatically measures the sound velocity of sound waves transmitted through wood simply by driving the hammering parts 12, 13 of the transmitting probe 6 and the receiving probe 8 into the wood to be measured. Can be performed without requiring special skill. For this reason, it contributes to the promotion of forestry in the recent shortage of forestry workers. That is, even if the sound wave applied to the wood has a wave other than the surface wave, the peak of the sine wave is captured and measured, so that the measurement can be accurately performed.

1 主装置
2 制御部
3 指令・表示部
4 信号発生部
5 送信部
6 発信プローブ
7 受信部
8 受信プローブ
9 木材
10,11 本体
12,13 打ち込み部
14,15 ハンマー受け部
16 発振子
17 マイク
18,19 ケース
20,21 伝達部
22,23 防振体
1 Main Device 2 Control Section 3 Command/Display Section 4 Signal Generation Section 5 Transmitting Section 6 Transmitting Probe 7 Receiving Probe 8 Receiving Probe 9 Wood 10, 11 Main Body 12, 13 Driving Section 14, 15 Hammer Receiving Section 16 Oscillator 17 Microphone 18 , 19 Cases 20, 21 Transmission parts 22, 23 Vibration isolator

Claims (3)

それぞれ所定距離離れて木材に打ち込まれる発信プローブと受信プローブとを備え、発信プローブは音波電気信号を振動に変換する機械変換手段を有し、受信プローブは音波を電気信号に変換する電気変換手段を有し、発信プローブに加えられる電気信号は音波であって頂点で微分値が正から負に変わる波形を有し、発信プローブから出される信号の最初の波の頂点を受信プローブで受信し、発信プローブから出た信号が受信プローブに至る時間を測定し、その時間によって木材の硬さを測定することを特徴とする木材等用の音速測定装置。 Each of the transmitters has a transmitting probe and a receiving probe that are driven into the wood at a predetermined distance, and the transmitting probe has a mechanical converting means for converting a sound wave electric signal into a vibration, and the receiving probe has an electric converting means for converting a sound wave into an electric signal. And the electric signal applied to the transmission probe is a sound wave and has a waveform in which the differential value changes from positive to negative at the apex, and the apex of the first wave of the signal emitted from the transmission probe is received by the reception probe and transmitted. A sound velocity measuring device for wood and the like, which measures the time taken for a signal emitted from a probe to reach a receiving probe and measures the hardness of the wood based on the time. 発信プローブと受信プローブは、それぞれ測定対象の木材に斜めに打ち込むようにした請求項1記載の木材等用の音速測定装置。 2. The sound velocity measuring device for wood or the like according to claim 1, wherein the transmitting probe and the receiving probe are driven obliquely into the wood to be measured. 発信プローブと受信プローブは、それぞれ対象の木材に打ち込まれる部分とケースとの間に防振体を設け、ケースから入って来る振動を除去した請求項1記載の木材等用の音速測定装置。 The sound velocity measuring device for wood or the like according to claim 1, wherein each of the transmitting probe and the receiving probe is provided with a vibration isolator between a portion to be hammered into the target wood and the case to eliminate vibrations coming from the case.
JP2019033337A 2019-02-07 2019-02-07 Sound velocity measuring device for wood, etc. Active JP7231141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033337A JP7231141B2 (en) 2019-02-07 2019-02-07 Sound velocity measuring device for wood, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033337A JP7231141B2 (en) 2019-02-07 2019-02-07 Sound velocity measuring device for wood, etc.

Publications (2)

Publication Number Publication Date
JP2020128969A true JP2020128969A (en) 2020-08-27
JP7231141B2 JP7231141B2 (en) 2023-03-01

Family

ID=72174478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033337A Active JP7231141B2 (en) 2019-02-07 2019-02-07 Sound velocity measuring device for wood, etc.

Country Status (1)

Country Link
JP (1) JP7231141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022061340A (en) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 Measurement system, aerial movement device and measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271283A (en) * 1998-03-25 1999-10-05 Mitsubishi Cable Ind Ltd Measuring method for ultrasonic propagation characteristic
US6276209B1 (en) * 1999-09-30 2001-08-21 Perceptron, Inc. System and method of assessing the structural properties of wooden members using ultrasound
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
US20050005699A1 (en) * 2003-06-20 2005-01-13 Weyerhaeuser Company System and method for measuring stiffness in standing trees
US20050160819A1 (en) * 2004-01-22 2005-07-28 Xiping Wang Method and apparatus for evaluation of standing timber
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271283A (en) * 1998-03-25 1999-10-05 Mitsubishi Cable Ind Ltd Measuring method for ultrasonic propagation characteristic
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
US6276209B1 (en) * 1999-09-30 2001-08-21 Perceptron, Inc. System and method of assessing the structural properties of wooden members using ultrasound
US20050005699A1 (en) * 2003-06-20 2005-01-13 Weyerhaeuser Company System and method for measuring stiffness in standing trees
US20050160819A1 (en) * 2004-01-22 2005-07-28 Xiping Wang Method and apparatus for evaluation of standing timber
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022061340A (en) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 Measurement system, aerial movement device and measurement method
JP7298579B2 (en) 2020-10-06 2023-06-27 トヨタ自動車株式会社 Measurement system, airborne mobile device and measurement method

Also Published As

Publication number Publication date
JP7231141B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
Legg et al. Measurement of stiffness of standing trees and felled logs using acoustics: A review
US7603904B2 (en) Method and apparatus for assessing or predicting the characteristics of wood
US6347551B1 (en) Acoustic tree and wooden member imaging apparatus
EP1793225B1 (en) Internal tree nondestructive inspection method and apparatus using acoustic tomography
AU2005200236B2 (en) Method And Apparatus For Evaluation Of Standing Timber
FR2882596A1 (en) Measurement probe locating system for use in non-destructive testing equipment, has transmitters and receivers placed freely with respect to each other, where connection between transmitter and probe finds position of probe by triangulation
JP2020128969A (en) Sonic speed measuring device for wood
CN106767580A (en) A kind of ultrasonic method for determining defect laying depth in composite layer laminated structure
Wang et al. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools
US6769306B2 (en) Log cutting procedures
EP1471350A3 (en) Apparatus for in-situ nondestructive acoustic measurement of young's modulus of plate structures
JP2581929B2 (en) Measuring device for concrete thickness and intrinsic crack depth
AU751539B2 (en) Log cutting procedures
CN110702205A (en) Bending element system for in-situ continuous testing of soft soil wave velocity
JP5531251B2 (en) Tree characteristic measuring apparatus and characteristic measuring method using vibration
JP2002005908A (en) Control assurance method of concrete pile
JP2008076387A (en) Ultrasonic stress measuring method and instrument
JP6920729B2 (en) Moisture content estimation method for wood and its equipment
JPH028263B2 (en)
Hayes et al. A portable stress wave measurement system for timber inspection
Zad Determination of embedded length and general condition of utility poles using non-destructive testing methods
CN2723960Y (en) Concrete crack detector
JP2017078690A (en) Density calculation method of wooden component, and young's modulus calculation method of wooden component
JP2012233771A (en) Method for determining material of laid cast iron pipe and system for determining material of laid cast iron pipe
JP6723605B2 (en) Measuring method of Young's modulus of wood and its equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7231141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150