JP2020127967A - Electric resistance welding electrode and cooling method thereof - Google Patents

Electric resistance welding electrode and cooling method thereof Download PDF

Info

Publication number
JP2020127967A
JP2020127967A JP2019034923A JP2019034923A JP2020127967A JP 2020127967 A JP2020127967 A JP 2020127967A JP 2019034923 A JP2019034923 A JP 2019034923A JP 2019034923 A JP2019034923 A JP 2019034923A JP 2020127967 A JP2020127967 A JP 2020127967A
Authority
JP
Japan
Prior art keywords
guide pin
welding
sliding member
receiving hole
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019034923A
Other languages
Japanese (ja)
Other versions
JP7021425B2 (en
Inventor
青山 好高
Yoshitaka Aoyama
好高 青山
青山 省司
Shoji Aoyama
省司 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019034923A priority Critical patent/JP7021425B2/en
Publication of JP2020127967A publication Critical patent/JP2020127967A/en
Application granted granted Critical
Publication of JP7021425B2 publication Critical patent/JP7021425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To excellently execute heat radiation to the hollow space side of a guide pin and heat radiation to the electrode body side.SOLUTION: A projection bolt 19 including a shaft part 20, a circular flange 21 and a plurality of deposition projections 22 is an object of welding; a guide pin 12 projecting from an end surface of an electrode body 1 and penetrating a prepared hole 10 of a steel plate part 3 is formed in a hollow shape of including a receiving hole 35 of the shaft part 20; a cross-sectional circular sliding member 13 is constituted by being integrated into the guide pin 12 and being fitted in a slidable state to a guide hole 6 of the electrode body 1; hot air in the receiving hole 35 is pushed out, heat is absorbed by the shaft part 20 in a normal temperature state, and cold air of an external part is sucked in the receiving hole 35; and welding heat is transmitted to the electrode body 1 to radiate heat to outside air, setting the ratio of a thickness T2 of the guide pin 12 to a thickness T1 of the sliding member 13 as 0.15 or more and less than 0.32.SELECTED DRAWING: Figure 3

Description

この発明は、耐熱硬質材料で構成された中空のガイドピンと、絶縁性合成樹脂材料で構成された摺動部材を有する電気抵抗溶接電極およびその冷却方法に関している。 The present invention relates to an electric resistance welding electrode having a hollow guide pin made of a heat-resistant hard material and a sliding member made of an insulating synthetic resin material, and a cooling method thereof.

特許第6395068号公報には、電極本体の端面から突出し鋼板部品の下孔を貫通する断面円形のガイドピンが、プロジェクションボルトの受入孔を有する中空形状とされているとともに、耐熱硬質材料で構成され、ガイドピンに一体化され電極本体のガイド孔に摺動できる状態で嵌め込まれている断面円形の摺動部材が、絶縁性合成樹脂材料で構成されていることが記載されている。 In Japanese Patent No. 6395068, a guide pin having a circular cross-section that projects from the end face of the electrode body and penetrates a pilot hole of a steel plate component is formed into a hollow shape having a receiving hole for a projection bolt and is made of a heat-resistant hard material. It is described that the sliding member having a circular cross section which is integrated with the guide pin and is slidably fitted in the guide hole of the electrode body is made of an insulating synthetic resin material.

特許第6395068号公報Japanese Patent No. 6395068

上記耐熱硬質材料製のガイドピンと絶縁性合成樹脂材料製の摺動部材からなる一体化部材が電極本体に収容されているので、この一体化部材に伝達された溶接熱を放熱させるためには、ガイドピンの中空空間側への放熱と、電極本体側への放熱を良好に行う必要がある。特許文献1に記載された技術においては、溶接熱の放熱に関することは一切記載されておらず、中空空間側への放熱と電極本体側への放熱の、内外両方向に向けての熱流に関しても、何も開示されていない。 Since the integrated member composed of the guide pin made of the heat-resistant hard material and the sliding member made of the insulating synthetic resin material is housed in the electrode body, in order to radiate the welding heat transmitted to the integrated member, It is necessary to satisfactorily dissipate heat to the hollow space side of the guide pin and to the electrode body side. In the technique described in Patent Document 1, nothing about heat dissipation of welding heat is described, and regarding heat flow toward both the inside and outside of heat dissipation to the hollow space side and heat dissipation to the electrode body side, Nothing is disclosed.

本発明は、上記の問題点を解決するために提供されたもので、ガイドピンの中空空間側への放熱と、電極本体側への放熱を良好に行うことを目的とする。 The present invention is provided to solve the above problems, and an object thereof is to satisfactorily perform heat dissipation to the hollow space side of the guide pin and heat dissipation to the electrode body side.

請求項1記載の発明は、電気抵抗溶接電極の発明であり、
雄ねじが形成された軸部と、軸部に一体的に設けられた円形のフランジと、軸部側のフランジ面に設けた複数の溶着用突起を有するプロジェクションボルトが溶接の対象とされ、
円形断面とされた電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、軸部の受入孔を有する中空形状とされているとともに、耐熱硬質材料で構成され、
ガイドピンに一体化され電極本体のガイド孔に摺動できる状態で嵌め込まれている断面円形の摺動部材が、絶縁性合成樹脂材料で構成され、
軸部を受入孔に挿入するとき、受入孔内の熱気を押し出すとともに、ガイドピンおよび摺動部材に蓄熱されている溶接熱を常温状態の軸部で吸熱し、鋼板部品への溶接完了後に軸部を受入孔から抜き取るとき、外部の冷気を受入孔内に吸入するように構成し、
摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満として、ガイドピンおよび摺動部材に蓄熱されている溶接熱を電極本体に伝達して外気へ放熱することを特徴としている。
The invention according to claim 1 is an invention of an electric resistance welding electrode,
A shaft portion on which a male screw is formed, a circular flange integrally provided on the shaft portion, and a projection bolt having a plurality of welding projections provided on the flange surface of the shaft portion are targets for welding,
Projecting from the end surface of the electrode body having a circular cross section, a guide pin having a circular cross section that penetrates the pilot hole of the steel plate component is a hollow shape having a shaft receiving hole, and is made of a heat-resistant hard material,
The sliding member having a circular cross section which is integrated with the guide pin and is slidably fitted in the guide hole of the electrode body is made of an insulating synthetic resin material,
When inserting the shaft into the receiving hole, the hot air in the receiving hole is pushed out, and the welding heat stored in the guide pin and the sliding member is absorbed by the shaft at room temperature. When pulling out the part from the receiving hole, it is configured to suck outside cool air into the receiving hole,
By setting the ratio of the thickness of the guide pin to the thickness of the sliding member to 0.15 or more and less than 0.32, the welding heat accumulated in the guide pin and the sliding member is transmitted to the electrode body and radiated to the outside air. It is characterized by doing.

以下の説明において、プロジェクションボルトを単にボルトと表現する場合もある。 In the following description, the projection bolt may be simply expressed as a bolt.

プロジェクションボルトを受入孔に挿入するとき、受入孔内の熱気を押し出すとともに、ガイドピンおよび摺動部材に蓄熱されている溶接熱を常温状態のボルトで吸熱し、鋼板部品への溶接完了後にボルトを抜き取るとき、外部の冷気を受入孔内に吸入する。熱気の排出や冷気の吸入は、ボルトと受入孔内面との間の隙間を介して行われる。 When inserting the projection bolt into the receiving hole, push out the hot air in the receiving hole and absorb the welding heat stored in the guide pin and the sliding member with the bolt at room temperature. When extracting, cool air outside is sucked into the receiving hole. The hot air is discharged and the cool air is sucked in through the gap between the bolt and the inner surface of the receiving hole.

上記のように、ボルトが受入孔に押し込まれるときに熱気を排出すると同時に、常温状態の低温のボルトにガイドピンや摺動部材の残熱が吸熱され、さらに溶接完了後にボルトを抜き取るときには、受入孔内部の気圧が低下して外部の冷気が受入孔内へ吸入される。このため、ガイドピンと摺動部材の一体化部材は、内側から冷却される。ボルトがあたかもピストンのような役割を果たして、ガイドピン内に対する給排が行われ、前記一体化部材の冷却が内側から進行する。 As described above, when the bolt is pushed into the receiving hole, hot air is discharged and at the same time, the residual heat of the guide pin and the sliding member is absorbed by the low temperature bolt at room temperature. The air pressure inside the hole is lowered, and cold air outside is sucked into the receiving hole. Therefore, the integrated member of the guide pin and the sliding member is cooled from the inside. The bolt plays a role as if it were a piston to supply/discharge the inside of the guide pin, and the cooling of the integrated member proceeds from the inside.

摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満としてある。上記比は、摺動部材の肉厚を大きくすると、ガイドピンの肉厚も大きくなることを意味している。 The ratio of the thickness of the guide pin to the thickness of the sliding member is 0.15 or more and less than 0.32. The above ratio means that when the thickness of the sliding member is increased, the thickness of the guide pin is also increased.

ガイドピンの肉厚が厚くなると、摺動部材の肉厚も厚くなって蓄熱量が増大し、しかも軸部直径と鋼板部品の下孔内径の差が大きくなる。したがって、下孔に対する軸部の偏心量が過大になる恐れがあり、溶接精度低下の原因になる。ガイドピンの肉厚が過大になると、下孔の内径が大きくなって、溶着部が下孔の開口縁の間際に位置することになったり、溶着部が下孔開口縁からはみ出て、溶着強度の低下の原因になったりする。また、一般的に、ボルトの各部寸法は規格化されているので、溶着用突起と軸部間の間隔に対して、ガイドピンの肉厚が過大になり、規格外のボルトを製作する必要が発生し、規格化推進の面で好ましくない。 When the wall thickness of the guide pin becomes thick, the wall thickness of the sliding member also becomes thick and the amount of heat storage increases, and moreover, the difference between the shaft portion diameter and the prepared hole inner diameter of the steel plate component becomes large. Therefore, the amount of eccentricity of the shaft portion with respect to the prepared hole may be excessive, which causes a decrease in welding accuracy. If the guide pin is too thick, the inner diameter of the pilot hole will increase, and the weld will be located near the opening edge of the pilot hole. May cause a decrease in In addition, since the dimensions of each part of the bolt are generally standardized, the wall thickness of the guide pin becomes too large with respect to the distance between the welding projection and the shaft, and it is necessary to manufacture a nonstandard bolt. Occurs and is not preferable in terms of promoting standardization.

また、ガイドピンの肉厚が薄くなると、中空ガイドピンとしての強度が低下する。鋼板部品を電極にセットするときに、下孔の内面がガイドピンに衝突するようなことが発生すると、ガイドピンの円形中空形状が異常形状に変形する。同時に、摺動部材の肉厚も薄くなるので、上記一体化部材としての全体的強度が低下する。 Further, when the wall thickness of the guide pin becomes thin, the strength as a hollow guide pin decreases. When the inner surface of the pilot hole collides with the guide pin when the steel plate component is set on the electrode, the circular hollow shape of the guide pin is deformed into an abnormal shape. At the same time, since the thickness of the sliding member is also reduced, the overall strength of the integrated member is reduced.

上記の各種条件の下で、摺動部材の肉厚に対するガイドピンの肉厚の比を0.15未満とした場合には、ガイドピンの肉厚が薄すぎて、中空ガイドピンの強度が不足したり、ガイドピンと摺動部材の一体化部材としての強度が不足したりする。また、一体化部材の熱的容量が小さくなると、溶接熱によるガイドピンや摺動部材の加熱温度が異常に高温となり、熱的耐久性の面で良好ではない。 Under the above various conditions, if the ratio of the thickness of the guide pin to the thickness of the sliding member is less than 0.15, the guide pin is too thin and the hollow guide pin lacks strength. Or the strength as an integrated member of the guide pin and the sliding member is insufficient. Further, when the thermal capacity of the integrated member becomes small, the heating temperature of the guide pin and the sliding member due to welding heat becomes extremely high, which is not good in terms of thermal durability.

上記比を0.32以上とした場合には、下記のような問題が発生する。すなわち、ガイドピンの肉厚が厚くなり、合わせて摺動部材の肉厚も厚くなって蓄熱量が増大する。しかも軸部直径と鋼板部品の下孔内径の差が大きくなるので、下孔に対する軸部の偏心量が過大になる恐れがあり、溶接精度低下の原因になる。ガイドピンの肉厚が過大になると、下孔の内径が大きくなって、溶着部が下孔の開口縁の間際に位置することになったり、溶着部が下孔開口縁からはみ出て、溶着強度低下の原因になったりする。また、一般的に、ボルトの各部寸法は規格化されているので、溶着用突起と軸部間の間隔に対して、ガイドピンの肉厚が過大になり、規格外のボルトを製作する必要が発生し、規格化推進の面で好ましくない。 When the above ratio is 0.32 or more, the following problems occur. That is, the wall thickness of the guide pin becomes thicker, and the wall thickness of the sliding member becomes thicker at the same time, and the heat storage amount increases. Moreover, since the difference between the shaft diameter and the inner diameter of the pilot hole of the steel plate component becomes large, the amount of eccentricity of the shaft portion with respect to the pilot hole may become excessive, which causes a decrease in welding accuracy. If the guide pin is too thick, the inner diameter of the pilot hole will increase, and the weld will be located near the opening edge of the pilot hole. It may cause a drop. In addition, since the dimensions of each part of the bolt are generally standardized, the wall thickness of the guide pin becomes too large with respect to the distance between the welding projection and the shaft, and it is necessary to manufacture a nonstandard bolt. Occurs and is not preferable in terms of promoting standardization.

上記比を0.15以上〜0.32未満とした場合には、上述の問題点が解消される。すなわち、中空ガイドピンや一体化部材の強度が十分に確保できる。一体化部材としての熱的容量が適正化され、熱的耐久性が向上する。ガイドピンの外径と下孔の内径の差が過大にならないので、下孔に対する軸部の偏心量が少なくなる。溶着箇所が下孔の開口縁に対して、適正な箇所となり、上述の異常溶着箇所の問題が解消される。ボルトの溶着用突起と軸部間の間隔が、中空ガイドピンの肉厚にとって適正な値となり、規格化されたボルトへの対応が適正に実施できる。 When the ratio is 0.15 or more and less than 0.32, the above problems are solved. That is, the strength of the hollow guide pin and the integrated member can be sufficiently ensured. The thermal capacity as an integrated member is optimized, and the thermal durability is improved. Since the difference between the outer diameter of the guide pin and the inner diameter of the pilot hole does not become excessive, the amount of eccentricity of the shaft portion with respect to the pilot hole decreases. The welded portion becomes a proper portion with respect to the opening edge of the prepared hole, and the problem of the abnormal welded portion described above is solved. The distance between the welding protrusion of the bolt and the shaft portion has an appropriate value for the wall thickness of the hollow guide pin, and it is possible to properly implement the standardized bolt.

ガイドピンと摺動部材の一体化部材に蓄熱された溶接熱は、受入孔の空間を経て外気に放熱されたり、低温の軸部によって受入孔側へ吸熱されたりする。このような内側に向かう放熱経路とともに、外側である電極本体側へ向かう放熱経路も重要である。 The welding heat stored in the integrated member of the guide pin and the sliding member is radiated to the outside air through the space of the receiving hole, or is absorbed by the low temperature shaft portion toward the receiving hole. In addition to such an inward heat dissipation path, an outward heat dissipation path toward the electrode body side is also important.

電極本体への放熱については、ガイドピンと摺動部材による一体化部材全体の熱量と、ガイドピン自体の肉厚の選定が重要である。ガイドピンの肉厚は、溶着用突起と軸部間の間隔や、鋼板部品が衝突したときの強度との関係が深いものとして位置づけられる。ガイドピンの肉厚が過大であると、鋼板部品の下孔の内径も大きくなるので、溶着用突起の溶着部が下孔の開口縁の間際になったり、開口縁からはみ出たりして、溶着強度に不足が生じる恐れがある。さらに、ガイドピンの肉厚増大にともなって摺動部材の肉厚も大きくなるので、一体化部材としての熱容量が過大になり、受入孔経由の放熱に対して電極本体側への放熱が十分に確保できず、結果的には、冷却不足を招いて、電極全体の熱的耐久性の低下を来す。 Regarding heat dissipation to the electrode body, it is important to select the heat quantity of the entire integrated member formed by the guide pin and the sliding member and the thickness of the guide pin itself. The wall thickness of the guide pin is positioned as having a deep relationship with the distance between the welding projection and the shaft portion and the strength when the steel plate component collides. If the guide pin is too thick, the inner diameter of the pilot hole of the steel plate part will also be large, so the welded part of the welding projection will be near the opening edge of the pilot hole, or it will stick out from the opening edge and cause welding. There is a risk of insufficient strength. Further, as the thickness of the guide pin increases, the thickness of the sliding member also increases, so the heat capacity of the integrated member becomes excessive, and the heat dissipation to the electrode body side is sufficient for the heat dissipation via the receiving hole. This cannot be ensured, and as a result, insufficient cooling is brought about and the thermal durability of the entire electrode is reduced.

電極本体側への放熱を適正化することについては、一体化部材の熱量が過大にならないことである。一体化部材の熱量が過大になると、つまり、ガイドピンの肉厚や摺動部材の肉厚が過大になると、一体化部材の蓄熱量が過剰となり、電極本体側への放熱量に不足を来すこととなる。一定の放熱時間内において、分厚い一体化部材の場合と、薄い一体化部材の場合を比べると、分厚いものは残留熱が蓄熱しやすくなるが、薄いものは残留熱の蓄熱性が低いので、短時間で放熱できる。このような観点から、ガイドピンの肉厚と摺動部材の肉厚との関係が重要なものとなる。 The optimization of heat dissipation to the electrode body side is that the amount of heat of the integrated member does not become excessive. If the amount of heat of the integrated member becomes too large, that is, if the thickness of the guide pin or the thickness of the sliding member becomes too large, the amount of heat accumulated in the integrated member will become excessive and the amount of heat released to the electrode body side will be insufficient. It will be. Compared to the case of thick integrated member and the case of thin integrated member within a certain heat radiation time, the thick one tends to accumulate residual heat, but the thin one has a low residual heat accumulation property, so short Can radiate heat in time. From this point of view, the relationship between the thickness of the guide pin and the thickness of the sliding member is important.

一体化部材の肉厚が少なくなり、これにともなって下孔の内径を極力小さくすることができ、鋼板部品の剛性低下を最小化できる。 Since the thickness of the integrated member is reduced, the inner diameter of the prepared hole can be reduced as much as possible, and the reduction in rigidity of the steel plate component can be minimized.

上記のように、比が0.32未満とされているので、一体化部材の外径が過大にならないので、それにともない電極本体の直径も細くすることができて、狭い箇所での電極設置や、電極材料の節減にとっても効果的である。 As described above, since the ratio is less than 0.32, the outer diameter of the integrated member does not become excessively large, and accordingly, the diameter of the electrode body can be reduced, and the electrode installation in a narrow place or It is also effective for saving electrode materials.

上記の各効果は、ボルトの軸部の直径が基点になっている。すなわち、ボルト軸部の直径に対する下孔の内径、この内径の開口縁から溶着部までの適正な距離、軸部と溶着用突起との間の間隔に対するガイドピンの肉厚値等に相関させて、摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満に設定したことが、本願発明の効果を導き出している。 Each of the above effects is based on the diameter of the shaft of the bolt. That is, by correlating with the inner diameter of the pilot hole with respect to the diameter of the bolt shaft portion, the appropriate distance from the opening edge of this inner diameter to the welding portion, the wall thickness value of the guide pin with respect to the distance between the shaft portion and the welding protrusion, etc. The effect of the present invention is derived from the fact that the ratio of the thickness of the guide pin to the thickness of the sliding member is set to 0.15 or more and less than 0.32.

請求項2記載の発明は、電気抵抗溶接電極の冷却方法の発明であり、
雄ねじが形成された軸部と、軸部に一体的に設けられた円形のフランジと、軸部側のフランジ面に設けた複数の溶着用突起を有するプロジェクションボルトが溶接の対象とされ、
円形断面とされた電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、軸部の受入孔を有する中空形状とされているとともに、耐熱硬質材料で構成され、
ガイドピンに一体化され電極本体のガイド孔に摺動できる状態で嵌め込まれている断面円形の摺動部材が、絶縁性合成樹脂材料で構成された電気抵抗溶接電極を準備し、
軸部を受入孔に挿入するとき、受入孔内の熱気を押し出すとともに、ガイドピンおよび摺動部材に蓄熱されている溶接熱を常温状態の軸部で吸熱し、鋼板部品への溶接完了後に軸部を受入孔から抜き取るとき、外部の冷気を受入孔内に吸入することによって、受入孔内から外気の方へ溶接熱を放熱し、
摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満として、ガイドピンおよび摺動部材に蓄熱されている溶接熱を電極本体に伝達して外気へ放熱することを特徴としている。
The invention according to claim 2 is an invention of a method for cooling an electric resistance welding electrode,
A shaft portion on which a male screw is formed, a circular flange integrally provided on the shaft portion, and a projection bolt having a plurality of welding projections provided on the flange surface of the shaft portion are targets for welding,
Projecting from the end surface of the electrode body having a circular cross section, a guide pin having a circular cross section that penetrates the pilot hole of the steel plate component is a hollow shape having a shaft receiving hole, and is made of a heat-resistant hard material,
A sliding member having a circular cross section which is integrated with the guide pin and fitted in a guide hole of the electrode body in a slidable state prepares an electric resistance welding electrode composed of an insulating synthetic resin material,
When inserting the shaft into the receiving hole, the hot air in the receiving hole is pushed out, and the welding heat stored in the guide pin and the sliding member is absorbed by the shaft at room temperature, and after the welding to the steel plate parts is completed, When removing the part from the receiving hole, by sucking outside cool air into the receiving hole, the welding heat is radiated from the inside of the receiving hole to the outside air,
By setting the ratio of the thickness of the guide pin to the thickness of the sliding member to 0.15 or more and less than 0.32, the welding heat accumulated in the guide pin and the sliding member is transmitted to the electrode body and radiated to the outside air. It is characterized by doing.

請求項2記載の冷却方法の発明の効果は、上記電気抵抗溶接電極の発明の効果と同じである。 The effect of the invention of the cooling method according to the second aspect is the same as the effect of the invention of the electric resistance welding electrode.

電極全体の断面図である。It is sectional drawing of the whole electrode. 電極にボルトが挿入されてゆく状態を順次示す断面図である。It is sectional drawing which shows the state in which a bolt is inserted in an electrode one by one. 肉厚寸法を示す断面図である。It is sectional drawing which shows a wall thickness dimension. ガイドピンと摺動部材の肉厚の異常状態を示す断面図である。It is sectional drawing which shows the abnormal state of the thickness of a guide pin and a sliding member.

つぎに、本発明の電気抵抗溶接電極およびその冷却方法を実施するための形態を説明する。 Next, modes for carrying out the electric resistance welding electrode and the cooling method thereof according to the present invention will be described.

図1〜図4は、本発明の実施例を示す。 1 to 4 show an embodiment of the present invention.

最初に、プロジェクションボルトについて説明する。 First, the projection bolt will be described.

図1に示すように、ボルト19は、雄ねじが形成された軸部20と、軸部20に一体的に設けられた円形で平板状のフランジ21と、軸部20側のフランジ面に設けた複数の溶着用突起22から構成されている。溶着用突起22は同一円上に120度間隔で3個設けてあり、図2(A)に示すように、溶着用突起22と軸部20との間に平坦な面で連なり、この部分が間隔Lとされている。 As shown in FIG. 1, the bolt 19 is provided on a shaft portion 20 formed with a male screw, a circular flat plate-shaped flange 21 integrally provided on the shaft portion 20, and a flange surface on the shaft portion 20 side. It is composed of a plurality of welding projections 22. Two welding protrusions 22 are provided on the same circle at intervals of 120 degrees. As shown in FIG. 2(A), the welding protrusions 22 and the shaft portion 20 are connected by a flat surface. The interval L is set.

ボルト19の各部寸法は、軸部20の直径と長さはそれぞれ8mmと30mm、フランジの厚さと直径はそれぞれ3.2mmと20mm、間隔Lは2.3mmである。 Regarding the dimensions of each part of the bolt 19, the diameter and the length of the shaft part 20 are 8 mm and 30 mm, the thickness and the diameter of the flange are 3.2 mm and 20 mm, respectively, and the interval L is 2.3 mm.

クロム銅のような銅合金製導電性材料で作られた電極本体1は、円筒状の形状であり、断面円形とされ、静止部材11に差し込まれる固定部2と、鋼板部品3が載置されるキャップ部4がねじ部5において結合されて、断面円形の電極本体1が形成されている。電極本体1には断面円形のガイド孔6が形成され、このガイド孔6は、固定部2に形成された大径孔7と、この大径孔7よりも小径でキャップ部4に形成された中径孔8、この中径孔8よりも小径の小径孔9が形成され、大径孔7、中径孔8、小径孔9は、電極本体1の中心軸線O−O上に整列した同軸状態で配置されている。 The electrode body 1 made of a conductive material made of a copper alloy such as chrome copper has a cylindrical shape and a circular cross section, on which the fixing portion 2 to be inserted into the stationary member 11 and the steel plate component 3 are placed. The cap portion 4 is coupled with the screw portion 5 to form the electrode body 1 having a circular cross section. A guide hole 6 having a circular cross section is formed in the electrode body 1. The guide hole 6 is formed in the cap portion 4 with a large diameter hole 7 formed in the fixed portion 2 and a diameter smaller than the large diameter hole 7. A medium-diameter hole 8 and a small-diameter hole 9 having a smaller diameter than the medium-diameter hole 8 are formed, and the large-diameter hole 7, the medium-diameter hole 8 and the small-diameter hole 9 are coaxial with each other and aligned on the central axis O-O of the electrode body 1. It is arranged in a state.

鋼板部品3が載置される電極本体1の端面から突出し、鋼板部品3の下孔10を貫通する断面円形のガイドピン12が、ステンレス鋼のような金属材料またはセラミック材料などの耐熱硬質材料で構成されている。ガイドピン12には、軸部20が挿入される受入孔35が設けてあり、その深さ寸法は図2(B)に示すように、軸部20の長さよりも短く設定してある。 The guide pin 12 having a circular cross-section that protrudes from the end surface of the electrode body 1 on which the steel plate component 3 is placed and penetrates the prepared hole 10 of the steel plate component 3 is made of a heat-resistant hard material such as a metal material such as stainless steel or a ceramic material. It is configured. The guide pin 12 is provided with a receiving hole 35 into which the shaft portion 20 is inserted, and the depth dimension thereof is set shorter than the length of the shaft portion 20 as shown in FIG. 2(B).

ガイドピン12に一体化され電極本体1のガイド孔6に摺動できる状態で嵌め込まれている断面円形の摺動部材13が、絶縁性合成樹脂材料、例えば、ポリテトラフルオロエチレン(商品名=テフロン・登録商標)によって構成されている。別の材料として、ポリアミド樹脂の中から、耐熱性、耐摩耗性にすぐれた樹脂を採用することも可能である。 A sliding member 13 having a circular cross section, which is integrated with the guide pin 12 and is slidably fitted in the guide hole 6 of the electrode body 1, is made of an insulating synthetic resin material such as polytetrafluoroethylene (trade name: Teflon).・Registered trademark). As another material, a resin having excellent heat resistance and abrasion resistance can be adopted from polyamide resins.

つぎに、ガイドピンと摺動部材の一体化部材を説明する。 Next, an integrated member of the guide pin and the sliding member will be described.

摺動部材13の中心部にガイドピン12を差し込んで、ガイドピン12と摺動部材13の一体化が図られている。ガイドピン12を摺動部材13に一体化する構造としては、摺動部材13のインジェクション成型時に、ガイドピン12を一緒にモールドインする方法や、ガイドピン12に結合ボルト構造部を設ける方法など、種々なものが採用できる。 The guide pin 12 is inserted into the center of the sliding member 13 so that the guide pin 12 and the sliding member 13 are integrated. As the structure for integrating the guide pin 12 with the sliding member 13, a method of molding the guide pin 12 together during injection molding of the sliding member 13, a method of providing a coupling bolt structure portion on the guide pin 12, and the like, Various types can be adopted.

ここでは、後者の結合ボルト構造部のタイプである。 Here, it is the latter type of connecting bolt structure.

すなわち、ガイドピン12の下端部にこれと一体的にボルト14が形成され、摺動部材13の底部材15にボルト14を貫通し、ワッシャ16を組み付けてロックナット17で締め付けてある。摺動部材13は、電極本体1と対をなす可動電極が動作して溶接電流が通電されたときに、電流がフランジ21の溶着用突起22から鋼板部品3にのみ流れるように、絶縁機能を果たしている。 That is, the bolt 14 is formed integrally with the lower end portion of the guide pin 12, the bolt 14 penetrates the bottom member 15 of the sliding member 13, the washer 16 is assembled, and the lock nut 17 is tightened. The sliding member 13 has an insulating function so that when the movable electrode paired with the electrode body 1 operates and a welding current is applied, the current flows only from the welding projection 22 of the flange 21 to the steel plate component 3. Is playing.

圧縮コイルスプリング23は、ワッシャ16とガイド孔6の内底面の間に嵌め込まれており、その張力が摺動部材13に作用している。なお、符号24は、ガイド孔6の内底面に嵌め込んだ絶縁シートを示している。圧縮コイルスプリング23の張力が、後述の静止内端面に対する可動端面の加圧密着を成立させている。圧縮コイルスプリング23は、加圧手段であり、これに換えて圧縮空気の圧力を利用することも可能である。 The compression coil spring 23 is fitted between the washer 16 and the inner bottom surface of the guide hole 6, and the tension thereof acts on the sliding member 13. Note that reference numeral 24 indicates an insulating sheet fitted on the inner bottom surface of the guide hole 6. The tension of the compression coil spring 23 establishes pressure contact of the movable end face with the stationary inner end face, which will be described later. The compression coil spring 23 is a pressurizing unit, and instead of this, the pressure of compressed air can be used.

つぎに、摺動部材の各部とガイド孔各部の対応関係を説明する。 Next, the correspondence between each part of the sliding member and each part of the guide hole will be described.

見やすさの関係上、ハッチングを不記入とした図3にしたがって説明する。 It will be described with reference to FIG. 3 in which hatching is not entered for the sake of easy viewing.

摺動部材13には、大径部26と中径部27が形成され、中径部27よりも小径のガイドピン12が一体化されている。大径部26が、大径孔7の内面との間に実質的に隙間がなくて摺動できる状態で大径孔7に嵌め込んであり、中径部27が、中径孔8の内面との間に冷却空気の通気隙間28を残して挿入されている。上述の「・・実質的に隙間がなくて摺動できる状態・・」というのは、摺動部材13に電極本体1の直径方向の力を作用させても、隙間感覚のあるカタカタといったがたつき感触がなく、しかも中心軸線O−O方向の摺動が可能な状態を意味している。小径孔9を貫通してガイドピン12が電極本体1の上面から突き出ている。ガイドピン12が押し下げられたとき、冷却空気が通過する通気隙間29が、小径孔9とガイドピン12の間に形成してある。 A large diameter portion 26 and a medium diameter portion 27 are formed in the sliding member 13, and the guide pin 12 having a diameter smaller than that of the medium diameter portion 27 is integrated. The large-diameter portion 26 is fitted into the large-diameter hole 7 in a state where the large-diameter portion 26 can slide without any substantial gap between the large-diameter portion 7 and the inner surface of the large-diameter hole 7. And a ventilation gap 28 for cooling air is left between them. The above-mentioned "... state in which sliding is possible with substantially no gap" means that the sliding member 13 has a rattling sensation of a gap even when a force in the diametrical direction of the electrode body 1 is applied. This means a state in which there is no feeling of sticking and sliding in the direction of the central axis O--O is possible. A guide pin 12 projects from the upper surface of the electrode body 1 through the small diameter hole 9. A ventilation gap 29 through which cooling air passes when the guide pin 12 is pushed down is formed between the small diameter hole 9 and the guide pin 12.

つぎに、冷却空気の断続構造を説明する。 Next, the intermittent structure of the cooling air will be described.

冷却空気をガイド孔6に導く通気口30が形成してある。大径部26と大径孔7の摺動箇所の空気通路を確保するために、大径部26の外周面に中心軸線O−O方向の凹溝を形成することもできるが、ここでは図1(B)に示すように、大径部26の外周面に中心軸線O−O方向の平面部31を形成して、平面部31と大径孔7の円弧型内面で構成された空気通路32が形成されている。このような平面部31を180度間隔で形成して、2箇所に空気通路を設けている。 A vent 30 is formed to guide the cooling air to the guide hole 6. In order to secure an air passage for the sliding portion of the large diameter portion 26 and the large diameter hole 7, a concave groove in the direction of the central axis O--O can be formed on the outer peripheral surface of the large diameter portion 26. As shown in FIG. 1(B), an air passage formed by forming a flat surface portion 31 in the direction of the central axis O--O on the outer peripheral surface of the large diameter portion 26 and by the flat surface portion 31 and the arc-shaped inner surface of the large diameter hole 7. 32 is formed. Such flat portions 31 are formed at intervals of 180 degrees, and air passages are provided at two locations.

ガイド孔6の中径孔8と大径孔7の境界部に環状の静止内端面33が形成されている。また、摺動部材13の中径部27と大径部26の境界部に環状の可動端面34が形成されている。静止内端面33と可動端面34は電極本体1の中心軸線O−Oが垂直に交わる仮想平面上に配置してあり、圧縮コイルスプリング23の張力によって可動端面34が静止内端面33に対して環状状態で密着し、この密着によって冷却空気の封止がなされている。 An annular stationary inner end surface 33 is formed at the boundary between the medium diameter hole 8 and the large diameter hole 7 of the guide hole 6. An annular movable end surface 34 is formed at the boundary between the medium diameter portion 27 and the large diameter portion 26 of the sliding member 13. The stationary inner end surface 33 and the movable end surface 34 are arranged on a virtual plane where the central axis O-O of the electrode body 1 intersects perpendicularly, and the movable end surface 34 is annular with respect to the stationary inner end surface 33 due to the tension of the compression coil spring 23. In close contact with each other, cooling air is sealed by this close contact.

つぎに、プロジェクションボルトの供給機構について説明する。 Next, a projection bolt supply mechanism will be described.

上記供給機構としては、斜め方向に進退する供給ロッドの先端部にボルトを保持して、ガイドピンの受入孔に供給する形式、先端部にボルトを保持した供給ロッドを横方向にスクエアーモーションをさせる形式、作業者が手作業でボルト挿入を行うものなど、種々なものが採用できる。ここでは、横方向作動式スクエアーモーションのタイプである。 As the above-mentioned supply mechanism, a type in which a bolt is held at the tip of a supply rod that moves forward and backward in an oblique direction and is supplied to a receiving hole of a guide pin, a supply rod having a bolt at the tip is subjected to a square motion in the lateral direction. Various types such as a type and a type in which a worker manually inserts a bolt can be adopted. Here it is of the laterally actuated square motion type.

ボルト19の供給管36が機枠などの静止部材11の所定位置に固定され、その管端は上方に開口している。パーツフィーダ(図示していない)などの部品供給原から送出されたボルト19は、噴射された搬送空気によって供給管36へ送られてくる。水平方向に進退する供給ロッド37の先端部下面にボルト19のフランジ21を吸着して、ボルト19を吊り下げた状態で保持する。この保持は、供給ロッド37内を進退する動作ロッド38に永久磁石39が組み付けてあり、動作ロッド38を進退させて、永久磁石39を吸引位置と開放位置に位置替えする。供給管36には、軸部20が通過する割り溝41が設けてある。 The supply pipe 36 of the bolt 19 is fixed to a predetermined position of the stationary member 11 such as a machine frame, and its pipe end is open upward. The bolts 19 sent from a parts supply source such as a parts feeder (not shown) are sent to the supply pipe 36 by the jetted carrier air. The flange 21 of the bolt 19 is attracted to the lower surface of the tip of the supply rod 37 that moves in the horizontal direction, and the bolt 19 is held in a suspended state. In this holding, a permanent magnet 39 is attached to the operating rod 38 that moves forward and backward in the supply rod 37, and the operating rod 38 is moved forward and backward to switch the permanent magnet 39 between the attraction position and the open position. The supply pipe 36 is provided with a split groove 41 through which the shaft portion 20 passes.

つぎに、ボルトの供給動作とその時の熱流を説明する。 Next, the bolt supply operation and the heat flow at that time will be described.

図1に示すように、供給ロッド37の進出は軸部20が中心軸線O−Oと同軸になった位置で停止する。ついで、供給ロッド37全体が下降すると、軸部20が受入孔35に挿入される。この挿入時に図2(A)に示すように、受入孔35内の熱気が軸部20と受入孔35内面との間の隙間を経て押し出される。この押出し時に、ガイドピン12や摺動部材13からなる一体化部材25に蓄熱されていた溶接熱も一緒に放熱される。 As shown in FIG. 1, the advancing of the supply rod 37 is stopped at a position where the shaft portion 20 is coaxial with the central axis line OO. Then, when the entire supply rod 37 descends, the shaft portion 20 is inserted into the receiving hole 35. At the time of this insertion, as shown in FIG. 2(A), the hot air in the receiving hole 35 is pushed out through the gap between the shaft portion 20 and the inner surface of the receiving hole 35. At the time of this extrusion, the welding heat stored in the integrated member 25 including the guide pin 12 and the sliding member 13 is also radiated.

受入孔35への軸部20の挿入が進行すると、その途中で作動ロッド38が後退するので、永久磁石39の吸引力が消滅し、ボルト19は自重で落下して、軸部20の先端部が受入孔35の底部に着座することによって、ボルト1の挿入が完了する(図2(B)参照)。この自重で落下する過渡期においても、図1(A)に矢線で示した熱気の排出が継続する。挿入されるボルト19は、常温状態であり、ガイドピン12や摺動部材13に残留している溶接熱がボルト19に吸熱される。このようにして、ガイドピン12と摺動部材13による一体化部材25の温度低下がなされる。 When the insertion of the shaft portion 20 into the receiving hole 35 progresses, the operating rod 38 retracts in the middle thereof, so that the attractive force of the permanent magnet 39 disappears, the bolt 19 falls by its own weight, and the tip portion of the shaft portion 20. Is seated on the bottom of the receiving hole 35, the insertion of the bolt 1 is completed (see FIG. 2B). Even in the transitional period of falling by its own weight, the discharge of hot air shown by the arrow in FIG. 1A continues. The inserted bolt 19 is at room temperature, and the welding heat remaining on the guide pin 12 and the sliding member 13 is absorbed by the bolt 19. In this way, the temperature of the integrated member 25 is reduced by the guide pin 12 and the sliding member 13.

その後、供給ロッド37が後退して可動電極が進出し、加圧通電がなされて、溶着用突起22が図2(C)に黒く塗り潰して示したように、鋼板部品3に溶着する。この溶着部は、符号40で示されている。 After that, the supply rod 37 is retracted, the movable electrode is advanced, and pressurization and energization are performed, and the welding projection 22 is welded to the steel plate component 3 as shown in black in FIG. 2(C). This welded portion is indicated by reference numeral 40.

溶着後、図2(C)に示すように、供給ロッド37内の永久磁石39の吸引力を利用して、鋼板部品3に溶接されたボルト19が受入孔35から抜き出される。このときに、受入孔35内は負圧になるので、外部の冷気が図2(C)に示すように、受入孔35に吸い込まれて一体化部材25の温度低下がなされる。このボルト抜き出しは、ロボット装置で鋼板部品3を保持して行ったり、作業者の手作業で行ったりすることができる。 After the welding, as shown in FIG. 2C, the bolt 19 welded to the steel plate component 3 is extracted from the receiving hole 35 by utilizing the attractive force of the permanent magnet 39 in the supply rod 37. At this time, since the inside of the receiving hole 35 has a negative pressure, the external cool air is sucked into the receiving hole 35 and the temperature of the integrated member 25 is lowered, as shown in FIG. 2C. This bolt extraction can be performed by holding the steel plate component 3 with a robot device or manually by an operator.

つぎに,ガイドピンと摺動部材の肉厚について説明する。 Next, the thickness of the guide pin and the sliding member will be described.

一体化部材25において、摺動部材13の肉厚T1に対するガイドピン12の肉厚T2の比を、0.15以上〜0.32未満としてある。図4に示すように、肉厚T2が過大になると、フランジ部分の間隔Lと肉厚T2との差が少なくなるので、同図(A2)に示すように、下孔10の直径が大きくなり、開口縁10Aの間際に溶接部40が位置する。また、僅かな直径方向のずれによって、同図(A3)に示すように、溶接部40が開口縁10Aから中心側へはみ出したりする。このような問題は、摺動部材13の肉厚T1に対するガイドピン12の肉厚T2の比を、0.15以上〜0.32未満とすることによって、前述のようにして解消される。 In the integrated member 25, the ratio of the wall thickness T2 of the guide pin 12 to the wall thickness T1 of the sliding member 13 is 0.15 or more and less than 0.32. As shown in FIG. 4, when the wall thickness T2 becomes excessively large, the difference between the distance L between the flange portions and the wall thickness T2 decreases, so that the diameter of the pilot hole 10 increases as shown in FIG. The weld 40 is located just before the opening edge 10A. Further, due to a slight deviation in the diametrical direction, the welded portion 40 may protrude from the opening edge 10A toward the center side, as shown in FIG. Such a problem is solved as described above by setting the ratio of the thickness T2 of the guide pin 12 to the thickness T1 of the sliding member 13 to be 0.15 or more and less than 0.32.

上記比が0.32以上になると、溶接部40の箇所に不良が発生し、上記比が0.15未満であると、ガイドピン12の肉厚が薄すぎて、図4(B1)や(B2)に示すように、ガイドピン12に下孔10の内面が衝突すると、円形中空形状が異常変形をし、軸部20の挿入が不可能となる。 When the ratio is 0.32 or more, a defect occurs in the welded portion 40, and when the ratio is less than 0.15, the thickness of the guide pin 12 is too small, and the guide pin 12 shown in FIG. As shown in B2), when the inner surface of the pilot hole 10 collides with the guide pin 12, the circular hollow shape is abnormally deformed, and the shaft portion 20 cannot be inserted.

また、上記比が0.15未満であると、ガイドピン12の円形中空形状が異常変形をきたすのであるが、一体化部材25全体の肉厚が薄すぎて熱容量が過小となり、溶接熱による温度上昇が急激に上昇し、一体化部材25の熱的耐久性が十分に保持できなくなる。他方、上記比が0.32以上となると、一体化部材25の厚さが厚くなりすぎて蓄熱量が過大になり、電極本体1側への放熱がなされても、その放熱量が十分ではなくなり、最終的には一体化部材25における残留熱量が多大になって、電極全体の冷却が不十分なものとなる。 Further, if the ratio is less than 0.15, the circular hollow shape of the guide pin 12 causes abnormal deformation, but the wall thickness of the entire integrated member 25 is too thin and the heat capacity becomes too small. The temperature rises rapidly, and the thermal durability of the integrated member 25 cannot be sufficiently maintained. On the other hand, when the ratio is 0.32 or more, the thickness of the integrated member 25 becomes too thick and the heat storage amount becomes excessive, and even if heat is radiated to the electrode body 1 side, the heat radiation amount is not sufficient. Eventually, the amount of residual heat in the integrated member 25 becomes large, and the cooling of the entire electrode becomes insufficient.

したがって、摺動部材13の肉厚T1に対するガイドピン12の肉厚T2の比を、0.15以上〜0.32未満とすることによって、一体化部材25の熱量を適正化し、電極本体1側への放熱を効果的に行うことができる。そして、ガイドピン12の肉厚の適正化によって、下孔10の開口縁10Aに対する溶着部40の位置が良好なものとなる。 Therefore, by setting the ratio of the wall thickness T2 of the guide pin 12 to the wall thickness T1 of the sliding member 13 to be 0.15 or more and less than 0.32, the heat quantity of the integrated member 25 is optimized and the electrode body 1 side. It is possible to effectively radiate heat to the. Then, by optimizing the thickness of the guide pin 12, the position of the welded portion 40 with respect to the opening edge 10A of the pilot hole 10 becomes favorable.

可動電極は固定電極と同軸に配置してあり、その図示は省略してある。 The movable electrode is arranged coaxially with the fixed electrode, and its illustration is omitted.

上記の永久磁石を電磁石に置き換えることも可能である。 It is also possible to replace the permanent magnet with an electromagnet.

上述の供給ロッドの進退動作や昇降動作は、一般的に採用されている制御手法で容易に行うことが可能である。制御装置またはシーケンス回路からの信号で動作する空気切換弁や、エアシリンダの所定位置で信号を発して前記制御装置に送信するセンサー等を組み合わせることによって、所定の動作を確保することができる。 The above-described advancing/retreating operation and elevating operation of the supply rod can be easily performed by a generally adopted control method. A predetermined operation can be ensured by combining an air switching valve that operates with a signal from the control device or the sequence circuit, a sensor that emits a signal at a predetermined position of the air cylinder, and transmits the signal to the control device.

以上に説明した実施例の作用効果は、つぎのとおりである。 The effects of the embodiment described above are as follows.

プロジェクションボルト19を受入孔35に挿入するとき、受入孔35内の熱気を押し出すとともに、ガイドピン12および摺動部材13に蓄熱されている溶接熱を常温状態のボルト19で吸熱し、鋼板部品3への溶接完了後にボルト19を抜き取るとき、外部の冷気を受入孔35内に吸入する。熱気の排出や冷気の吸入は、ボルト19と受入孔35内面との間の隙間を介して行われる。 When the projection bolt 19 is inserted into the receiving hole 35, the hot air in the receiving hole 35 is pushed out, and the welding heat accumulated in the guide pin 12 and the sliding member 13 is absorbed by the bolt 19 in the room temperature state, so that the steel plate part 3 When the bolt 19 is pulled out after the completion of the welding to the outside, cold air outside is sucked into the receiving hole 35. The hot air is discharged and the cool air is sucked in through a gap between the bolt 19 and the inner surface of the receiving hole 35.

上記のように、ボルト19が受入孔35に押し込まれるときに熱気を排出すると同時に、常温状態の低温のボルト19にガイドピン12や摺動部材13の残熱が吸熱され、さらに溶接完了後にボルト19を抜き取るときには、受入孔35内部の気圧が低下して外部の冷気が受入孔35内へ吸入される。このため、ガイドピン12と摺動部材13の一体化部材25は、内側から冷却される。ボルト19があたかもピストンのような役割を果たして、ガイドピン12内に対する給排が行われ、前記一体化部材25の冷却が進行する。 As described above, when the bolt 19 is pushed into the receiving hole 35, hot air is discharged, and at the same time, the residual heat of the guide pin 12 and the sliding member 13 is absorbed by the low-temperature bolt 19 at room temperature. When 19 is taken out, the atmospheric pressure inside the receiving hole 35 is lowered and the outside cool air is sucked into the receiving hole 35. Therefore, the integrated member 25 of the guide pin 12 and the sliding member 13 is cooled from the inside. The bolt 19 plays a role as if it were a piston, so that the supply and discharge to and from the inside of the guide pin 12 are performed, and the cooling of the integrated member 25 proceeds.

摺動部材13の肉厚T1に対するガイドピン12の肉厚T2の比を、0.15以上〜0.32未満としてある。上記比は、摺動部材13の肉厚T1を大きくすると、ガイドピン12の肉厚T2も大きくなることを意味している。 The ratio of the wall thickness T2 of the guide pin 12 to the wall thickness T1 of the sliding member 13 is 0.15 or more and less than 0.32. The above ratio means that when the wall thickness T1 of the sliding member 13 is increased, the wall thickness T2 of the guide pin 12 is also increased.

ガイドピン12の肉厚T2が厚くなると、摺動部材13の肉厚T1も厚くなって蓄熱量が増大し、しかも軸部20の直径と鋼板部品3の下孔10の内径の差が大きくなる。したがって、下孔10に対する軸部20の偏心量が過大になる恐れがあり、溶接精度低下の原因になる。ガイドピン12の肉厚T2が過大になると、下孔10の内径が大きくなって、溶着部40が下孔10の開口縁10Aの間際に位置することになったり、溶着部40が下孔開口縁10Aからはみ出て、溶着強度の低下の原因になったりする。また、一般的に、ボルト19の各部寸法は規格化されているので、溶着用突起22と軸部20間の間隔Lに対して、ガイドピン12の肉厚T2が過大になり、規格外のボルト19を製作する必要が発生し、規格化推進の面で好ましくない。 When the wall thickness T2 of the guide pin 12 becomes thicker, the wall thickness T1 of the sliding member 13 also becomes thicker and the amount of accumulated heat increases, and moreover, the difference between the diameter of the shaft portion 20 and the inner diameter of the prepared hole 10 of the steel plate component 3 becomes large. .. Therefore, the amount of eccentricity of the shaft portion 20 with respect to the prepared hole 10 may be excessive, which causes a decrease in welding accuracy. When the wall thickness T2 of the guide pin 12 becomes excessively large, the inner diameter of the pilot hole 10 becomes large, and the welded portion 40 is positioned just before the opening edge 10A of the pilot hole 10, or the welded portion 40 is opened by the pilot hole. It may protrude from the edge 10A and cause a decrease in welding strength. In addition, since the dimensions of each part of the bolt 19 are generally standardized, the wall thickness T2 of the guide pin 12 becomes excessively large with respect to the distance L between the welding projection 22 and the shaft part 20, which is outside the standard. Since it is necessary to manufacture the bolt 19, it is not preferable in terms of promoting standardization.

また、ガイドピン12の肉厚T2が薄くなると、中空ガイドピン12としての強度が低下する。鋼板部品3を電極にセットするときに、下孔10の内面がガイドピン12に衝突するようなことが発生すると、ガイドピン12の円形中空形状が異常形状に変形する。同時に、摺動部材13の肉厚T1も薄くなるので、上記一体化部材25としての全体的強度が低下する。 Further, when the wall thickness T2 of the guide pin 12 becomes thin, the strength of the hollow guide pin 12 decreases. When the inner surface of the pilot hole 10 collides with the guide pin 12 when the steel plate component 3 is set on the electrode, the circular hollow shape of the guide pin 12 is deformed into an abnormal shape. At the same time, the thickness T1 of the sliding member 13 is also reduced, so that the overall strength of the integrated member 25 is reduced.

上記の各種条件の下で、摺動部材13の肉厚T1に対するガイドピン12の肉厚T2の比を0.15未満とした場合には、ガイドピン12の肉厚T2が薄すぎて、中空ガイドピン12の強度が不足したり、ガイドピン12と摺動部材13の一体化部材25としての強度が不足したりする。また、一体化部材25の熱的容量が小さくなると、溶接熱によるガイドピン12や摺動部材13の加熱温度が異常に高温となり、熱的耐久性の面で良好ではない。 Under the above various conditions, when the ratio of the wall thickness T2 of the guide pin 12 to the wall thickness T1 of the sliding member 13 is set to less than 0.15, the wall thickness T2 of the guide pin 12 is too thin, and the hollow The strength of the guide pin 12 may be insufficient, or the strength of the integrated member 25 of the guide pin 12 and the sliding member 13 may be insufficient. Further, when the thermal capacity of the integrated member 25 becomes small, the heating temperature of the guide pin 12 and the sliding member 13 due to welding heat becomes abnormally high, which is not good in terms of thermal durability.

上記比を0.32以上とした場合には、下記のような問題が発生する。すなわち、ガイドピン12の肉厚T2が厚くなり、合わせて摺動部材13の肉厚T1も厚くなって蓄熱量が増大する。しかも軸部20の直径と鋼板部品3の下孔10の内径の差が大きくなるので、下孔10に対する軸部20の偏心量が過大になる恐れがあり、溶接精度低下の原因になる。ガイドピン12の肉厚が過大になると、下孔10の内径が大きくなって、溶着部40が下孔10の開口縁10Aの間際に位置することになったり、溶着部40が下孔開口縁10Aからはみ出て、溶着強度低下の原因になったりする。また、一般的に、ボルト19の各部寸法は規格化されているので、溶着用突起22と軸部20間の間隔Lに対して、ガイドピン12の肉厚T2が過大になり、規格外のボルト19を製作する必要が発生し、規格化推進の面で好ましくない。 When the above ratio is 0.32 or more, the following problems occur. That is, the wall thickness T2 of the guide pin 12 becomes thicker, and the wall thickness T1 of the sliding member 13 also becomes thicker, so that the heat storage amount increases. Moreover, since the difference between the diameter of the shaft portion 20 and the inner diameter of the pilot hole 10 of the steel plate component 3 becomes large, the eccentric amount of the shaft portion 20 with respect to the pilot hole 10 may become excessive, which causes a decrease in welding accuracy. When the thickness of the guide pin 12 becomes excessively large, the inner diameter of the pilot hole 10 becomes large, and the welded portion 40 is positioned just before the opening edge 10A of the pilot hole 10, or the welded portion 40 is positioned at the pilot hole opening edge. It may protrude from 10 A and cause a decrease in welding strength. In addition, since the dimensions of each portion of the bolt 19 are generally standardized, the wall thickness T2 of the guide pin 12 becomes excessive with respect to the distance L between the welding projection 22 and the shaft portion 20, which is outside the standard. It is necessary to manufacture the bolt 19, which is not preferable in terms of promoting standardization.

上記比を0.15以上〜0.32未満とした場合には、上述の問題点が解消される。すなわち、中空ガイドピン12や一体化部材25の強度が十分に確保できる。一体化部材25としての熱的容量が適正化され、熱的耐久性が向上する。ガイドピン12の外径と下孔10の内径の差が過大にならないので、下孔10に対する軸部20の偏心量が少なくなる。溶着箇所が下孔10の開口縁10Aに対して、適正な箇所となり、上述の異常溶着箇所の問題が解消される。ボルト19の溶着用突起22と軸部20間の間隔Lが、中空ガイドピン12の肉厚T2にとって適正な値となり、規格化されたボルト19への対応が適正に実施できる。 When the ratio is 0.15 or more and less than 0.32, the above problems are solved. That is, the strength of the hollow guide pin 12 and the integrated member 25 can be sufficiently ensured. The thermal capacity of the integrated member 25 is optimized, and the thermal durability is improved. Since the difference between the outer diameter of the guide pin 12 and the inner diameter of the pilot hole 10 does not become excessive, the amount of eccentricity of the shaft portion 20 with respect to the pilot hole 10 decreases. The welded portion becomes a proper portion with respect to the opening edge 10A of the pilot hole 10, and the problem of the abnormal welded portion described above is solved. The distance L between the welding projection 22 of the bolt 19 and the shaft portion 20 has an appropriate value for the wall thickness T2 of the hollow guide pin 12, and thus the standardized bolt 19 can be properly handled.

ガイドピン12と摺動部材13の一体化部材25に蓄熱された溶接熱は、受入孔35の空間を経て外気に放熱されたり、低温の軸部20によって受入孔35側へ吸熱されたりする。このような内側に向かう放熱経路とともに、外側である電極本体1側へ向かう放熱経路も重要である。 The welding heat accumulated in the integrated member 25 of the guide pin 12 and the sliding member 13 is radiated to the outside air through the space of the receiving hole 35, or is absorbed by the low temperature shaft portion 20 to the receiving hole 35 side. In addition to such an inward heat dissipation path, an outward heat dissipation path toward the electrode body 1 side is also important.

電極本体1への放熱については、ガイドピン12と摺動部材13による一体化部材25全体の熱量と、ガイドピン12自体の肉厚T2の選定が重要である。ガイドピン12の肉厚T2は、溶着用突起22と軸部20間の間隔Lや、鋼板部品3が衝突したときの強度との関係が深いものとして位置づけられる。ガイドピン12の肉厚T2が過大であると、鋼板部品3の下孔10の内径も大きくなるので、溶着用突起22の溶着部40が下孔10の開口縁10Aの間際になったり、開口縁10Aからはみ出たりして、溶着強度に不足が生じる恐れがある。さらに、ガイドピン12の肉厚増大にともなって摺動部材13の肉厚T1も大きくなるので、一体化部材25としての熱容量が過大になり、受入孔35経由の放熱に対して電極本体1側への放熱が十分に確保できず、結果的には、冷却不足を招いて、電極全体の熱的耐久性の低下を来す。 Regarding heat dissipation to the electrode body 1, it is important to select the amount of heat of the entire integrated member 25 by the guide pin 12 and the sliding member 13 and the thickness T2 of the guide pin 12 itself. The wall thickness T2 of the guide pin 12 is positioned as having a deep relationship with the space L between the welding projection 22 and the shaft portion 20 and the strength when the steel plate component 3 collides. When the wall thickness T2 of the guide pin 12 is excessively large, the inner diameter of the pilot hole 10 of the steel plate component 3 also becomes large, so that the welded portion 40 of the welding projection 22 is located near the opening edge 10A of the pilot hole 10 or the opening. There is a possibility that the welding strength may be insufficient due to the protrusion from the edge 10A. Furthermore, since the thickness T1 of the sliding member 13 increases as the thickness of the guide pin 12 increases, the heat capacity of the integrated member 25 becomes excessive, and the electrode body 1 side with respect to the heat radiation through the receiving hole 35. Heat cannot be sufficiently radiated to the electrode, resulting in insufficient cooling, resulting in a decrease in thermal durability of the entire electrode.

電極本体1側への放熱を適正化することについては、一体化部材25の熱量が過大にならないことである。一体化部材25の熱量が過大になると、つまり、ガイドピン12の肉厚T2や摺動部材13の肉厚T1が過大になると、一体化部材25の蓄熱量が過剰となり、電極本体1側への放熱量に不足を来すこととなる。一定の放熱時間内において、分厚い一体化部材25の場合と、薄い一体化部材25の場合を比べると、分厚いものは残留熱が蓄熱しやすくなるが、薄いものは残留熱の蓄熱性が低いので、短時間で放熱できる。このような観点から、ガイドピン12の肉厚T2と摺動部材13の肉厚T1との関係が重要なものとなる。 The optimization of heat dissipation to the electrode body 1 side is that the amount of heat of the integrated member 25 does not become excessive. If the amount of heat of the integrated member 25 becomes excessively large, that is, if the thickness T2 of the guide pin 12 or the thickness T1 of the sliding member 13 becomes excessively large, the amount of heat accumulated in the integrated member 25 becomes excessive and the electrode body 1 side There will be a shortage of heat radiation. When the thick integrated member 25 and the thin integrated member 25 are compared within a certain heat radiation time, the thick one easily accumulates residual heat, but the thin one has low residual heat storage property. , Can radiate heat in a short time. From such a viewpoint, the relationship between the wall thickness T2 of the guide pin 12 and the wall thickness T1 of the sliding member 13 becomes important.

一体化部材25の肉厚が少なくなり、これにともなって下孔10の内径を極力小さくすることができ、鋼板部品3の剛性低下を最小化できる。 Since the thickness of the integrated member 25 is reduced, the inner diameter of the prepared hole 10 can be reduced as much as possible, and the reduction in rigidity of the steel plate component 3 can be minimized.

上記比が0.32未満とされているので、一体化部材25の外径が過大にならないので、それにともない電極本体1の直径も細くすることができて、狭い箇所での電極設置や、電極材料の節減にとっても効果的である。 Since the above-mentioned ratio is less than 0.32, the outer diameter of the integrated member 25 does not become excessively large, so that the diameter of the electrode body 1 can be made thin accordingly, and the electrode can be installed in a narrow place or the electrode can be installed. It is also effective in saving material.

冷却方法の実施例の効果は、上記電気抵抗溶接電極の実施例の効果と同じである。 The effect of the embodiment of the cooling method is the same as the effect of the embodiment of the electric resistance welding electrode.

上述のように、本発明の電極とその冷却方法によれば、ガイドピンの中空空間側への放熱と、電極本体側への放熱を良好に行うことができる。したがって、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。 As described above, according to the electrode and the cooling method thereof of the present invention, heat dissipation to the hollow space side of the guide pin and heat dissipation to the electrode body side can be favorably performed. Therefore, it can be used in a wide range of industrial fields such as car body welding processes and sheet metal welding processes for home appliances.

1 電極本体
3 鋼板部品
10 下孔
10A 開口縁
12 ガイドピン
13 摺動部材
19 プロジェクションボルト
20 軸部
21 フランジ
22 溶着用突起
25 一体化部材
35 受入孔
40 溶着部
O−O 中心軸線
T1 摺動部材の肉厚
T2 ガイドピンの肉厚
L 溶着用突起と軸部の間隔
DESCRIPTION OF SYMBOLS 1 Electrode main body 3 Steel plate component 10 Lower hole 10A Opening edge 12 Guide pin 13 Sliding member 19 Projection bolt 20 Shaft portion 21 Flange 22 Welding projection 25 Integrated member 35 Receiving hole 40 Welding portion OO Center axis T1 Sliding member Thickness of T2 Guide pin thickness L Distance between welding protrusion and shaft

Claims (2)

雄ねじが形成された軸部と、軸部に一体的に設けられた円形のフランジと、軸部側のフランジ面に設けた複数の溶着用突起を有するプロジェクションボルトが溶接の対象とされ、
円形断面とされた電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、軸部の受入孔を有する中空形状とされているとともに、耐熱硬質材料で構成され、
ガイドピンに一体化され電極本体のガイド孔に摺動できる状態で嵌め込まれている断面円形の摺動部材が、絶縁性合成樹脂材料で構成され、
軸部を受入孔に挿入するとき、受入孔内の熱気を押し出すとともに、ガイドピンおよび摺動部材に蓄熱されている溶接熱を常温状態の軸部で吸熱し、鋼板部品への溶接完了後に軸部を受入孔から抜き取るとき、外部の冷気を受入孔内に吸入するように構成し、
摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満として、ガイドピンおよび摺動部材に蓄熱されている溶接熱を電極本体に伝達して外気へ放熱することを特徴とする電気抵抗溶接電極。
A shaft portion on which a male screw is formed, a circular flange integrally provided on the shaft portion, and a projection bolt having a plurality of welding projections provided on the flange surface of the shaft portion are targets for welding,
Projecting from the end surface of the electrode body having a circular cross section, a guide pin having a circular cross section that penetrates the pilot hole of the steel plate component is a hollow shape having a shaft receiving hole, and is made of a heat-resistant hard material,
The sliding member having a circular cross section which is integrated with the guide pin and is slidably fitted in the guide hole of the electrode body is made of an insulating synthetic resin material,
When inserting the shaft into the receiving hole, the hot air in the receiving hole is pushed out, and the welding heat stored in the guide pin and the sliding member is absorbed by the shaft at room temperature, and after the welding to the steel plate parts is completed, When pulling out the part from the receiving hole, it is configured to suck the outside cool air into the receiving hole.
By setting the ratio of the thickness of the guide pin to the thickness of the sliding member to 0.15 or more and less than 0.32, the welding heat accumulated in the guide pin and the sliding member is transmitted to the electrode body and radiated to the outside air. An electric resistance welding electrode characterized by being.
雄ねじが形成された軸部と、軸部に一体的に設けられた円形のフランジと、軸部側のフランジ面に設けた複数の溶着用突起を有するプロジェクションボルトが溶接の対象とされ、
円形断面とされた電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、軸部の受入孔を有する中空形状とされているとともに、耐熱硬質材料で構成され、
ガイドピンに一体化され電極本体のガイド孔に摺動できる状態で嵌め込まれている断面円形の摺動部材が、絶縁性合成樹脂材料で構成された電気抵抗溶接電極を準備し、
軸部を受入孔に挿入するとき、受入孔内の熱気を押し出すとともに、ガイドピンおよび摺動部材に蓄熱されている溶接熱を常温状態の軸部で吸熱し、鋼板部品への溶接完了後に軸部を受入孔から抜き取るとき、外部の冷気を受入孔内に吸入することによって、受入孔内から外気の方へ溶接熱を放熱し、
摺動部材の肉厚に対するガイドピンの肉厚の比を、0.15以上〜0.32未満として、ガイドピンおよび摺動部材に蓄熱されている溶接熱を電極本体に伝達して外気へ放熱することを特徴とする電気抵抗溶接電極の冷却方法。
A shaft portion on which a male screw is formed, a circular flange integrally provided on the shaft portion, and a projection bolt having a plurality of welding projections provided on the flange surface of the shaft portion are targets for welding,
Projecting from the end surface of the electrode body having a circular cross section, a guide pin having a circular cross section that penetrates the pilot hole of the steel plate component is a hollow shape having a shaft receiving hole, and is made of a heat-resistant hard material,
A sliding member having a circular cross section which is integrated with the guide pin and fitted in a guide hole of the electrode body in a slidable state prepares an electric resistance welding electrode composed of an insulating synthetic resin material,
When inserting the shaft into the receiving hole, the hot air in the receiving hole is pushed out, and the welding heat stored in the guide pin and the sliding member is absorbed by the shaft at room temperature, and after the welding to the steel plate parts is completed, When removing the part from the receiving hole, by sucking outside cool air into the receiving hole, the welding heat is radiated from the inside of the receiving hole to the outside air,
By setting the ratio of the thickness of the guide pin to the thickness of the sliding member to 0.15 or more and less than 0.32, the welding heat accumulated in the guide pin and the sliding member is transmitted to the electrode body and radiated to the outside air. A method for cooling an electric resistance welding electrode, comprising:
JP2019034923A 2019-02-07 2019-02-07 Electrical resistance welding electrode and its cooling method Active JP7021425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034923A JP7021425B2 (en) 2019-02-07 2019-02-07 Electrical resistance welding electrode and its cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034923A JP7021425B2 (en) 2019-02-07 2019-02-07 Electrical resistance welding electrode and its cooling method

Publications (2)

Publication Number Publication Date
JP2020127967A true JP2020127967A (en) 2020-08-27
JP7021425B2 JP7021425B2 (en) 2022-02-17

Family

ID=72175255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034923A Active JP7021425B2 (en) 2019-02-07 2019-02-07 Electrical resistance welding electrode and its cooling method

Country Status (1)

Country Link
JP (1) JP7021425B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253547A (en) * 2009-03-30 2010-11-11 Yoshitaka Aoyama Component detection type electrode
JP2017006983A (en) * 2015-06-23 2017-01-12 青山 省司 Electrode for electric resistance-welding, and welding method
JP2017006982A (en) * 2015-06-23 2017-01-12 青山 省司 Electrode for electric resistance welding
JP6395068B1 (en) * 2017-08-17 2018-09-26 青山 省司 Electrode for electric resistance welding and airtight maintenance method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253547A (en) * 2009-03-30 2010-11-11 Yoshitaka Aoyama Component detection type electrode
JP2017006983A (en) * 2015-06-23 2017-01-12 青山 省司 Electrode for electric resistance-welding, and welding method
JP2017006982A (en) * 2015-06-23 2017-01-12 青山 省司 Electrode for electric resistance welding
JP6395068B1 (en) * 2017-08-17 2018-09-26 青山 省司 Electrode for electric resistance welding and airtight maintenance method

Also Published As

Publication number Publication date
JP7021425B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP4273185B2 (en) Projection welding electrode
JP4203672B2 (en) Projection nut welding apparatus and welding method
CN108027167B (en) Fluid heating device and method for manufacturing the same
JP2020127967A (en) Electric resistance welding electrode and cooling method thereof
JP4665194B2 (en) Electrical resistance welding method and apparatus for small-diameter shaft parts
JP5207107B2 (en) Hollow steel plate parts welding equipment
US11453082B2 (en) Electric resistance welding electrode and method for maintaining airtightness
JP2015051457A (en) Electrode for electrical resistance welding
JP6004346B2 (en) Electrode for resistance welding and cooling method thereof
US11230439B2 (en) Feeding rod for shaft-shaped component and feeding method
KR20170115654A (en) Solenoid valve
JP2011000637A (en) Electrode with discrimination cap and welding method for electric resistance welding
JP7108250B2 (en) Electric resistance welding electrode and part detection method
CN215966228U (en) Die casting mechanism for die casting machine
CN219760507U (en) Wire pressing device
JP7017716B2 (en) Electrode for electric resistance welding
JP2023069974A (en) Electrode for electric resistance welding
JP2023071134A (en) Electrode for electrical resistance welding
JP6086351B6 (en) Air injection type electric resistance welding electrode
JP6086351B2 (en) Air injection type electric resistance welding electrode
JP6004345B2 (en) Projection welding apparatus and welding method
CN209943525U (en) Electromagnetic valve
JP2017074616A (en) Electric resistance-welding electrode
JP2012106470A (en) Local heating device and molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7021425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150