JP2020122715A - Analysis method and method for preparing sample for the same - Google Patents

Analysis method and method for preparing sample for the same Download PDF

Info

Publication number
JP2020122715A
JP2020122715A JP2019014929A JP2019014929A JP2020122715A JP 2020122715 A JP2020122715 A JP 2020122715A JP 2019014929 A JP2019014929 A JP 2019014929A JP 2019014929 A JP2019014929 A JP 2019014929A JP 2020122715 A JP2020122715 A JP 2020122715A
Authority
JP
Japan
Prior art keywords
sample
analysis
comparative example
mixed solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014929A
Other languages
Japanese (ja)
Other versions
JP7106789B2 (en
Inventor
毅 依田
Takeshi Yoda
毅 依田
幸仁 横澤
Yukito Yokozawa
幸仁 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Prefectural Industrial Technology Research Center
Original Assignee
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefectural Industrial Technology Research Center filed Critical Aomori Prefectural Industrial Technology Research Center
Priority to JP2019014929A priority Critical patent/JP7106789B2/en
Publication of JP2020122715A publication Critical patent/JP2020122715A/en
Application granted granted Critical
Publication of JP7106789B2 publication Critical patent/JP7106789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide an analysis method capable of highly accurately analyzing an inorganic component including an alkaline inorganic component contained in an oyster with less effort and smaller risk in a short period of time, and a method for preparing a sample for analysis needed for the analysis.SOLUTION: Edible parts of an oyster are pulverized, nitric acid and hydrogen peroxide are respectively separately added to the edible parts to prepare a mixed solution, the mixed solution is stored in a sealable container to achieve a sealed state, the mixed solution is heated to 200°C or more by microwaves in the sealed state, internal pressure of the sealed state is made higher than atmospheric pressure, an elevated temperature of 200°C or more is kept in the sealed state for at least 15 minutes, the edible parts are acid-decomposed, a sample for analysis is prepared, and a plurality of inorganic components included in the sample for analysis are analyzed by an inductive coupling plasma emission spectral analysis method.SELECTED DRAWING: Figure 22

Description

本発明は、牡蠣の無機成分の含有量の分析方法及びその試料の調製方法に関する。 The present invention relates to a method for analyzing the content of inorganic components of oysters and a method for preparing a sample thereof.

牡蠣は必須ミネラルである亜鉛を豊富に含み、国際連合食糧農業機関によると、急増する人口問題対策のために養殖が推進される等、近年重要性が高まってきている食品である。牡蠣は、亜鉛(Zn)の他にもナトリウム(Na)やカリウム(K)、カルシウム(Ca)、マグネシウム(Mg)等の必須ミネラルを豊富に含むことが知られている。ナトリウムやカリウム、カルシウム、マグネシウム等のアルカリ金属及びアルカリ土類金属は、生命活動維持のために重要な元素であり、その含有量を把握することの重要性は非常に高い。しかし、従来、これらのアルカリ金属やアルカリ土類金属等のアルカリ系の無機成分を測定するには長時間を要し、短時間で高精度にアルカリ系の無機成分を測定する分析方法が待望されている。 Oysters are rich in zinc, which is an essential mineral, and according to the United Nations Food and Agriculture Organization, oysters are a food of increasing importance in recent years, such as the promotion of aquaculture to counter the rapidly increasing population problem. It is known that oysters abundantly contain essential minerals such as sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) in addition to zinc (Zn). Alkali metals and alkaline earth metals such as sodium, potassium, calcium, and magnesium are important elements for maintaining life activity, and it is very important to know their contents. However, conventionally, it takes a long time to measure an alkaline inorganic component such as an alkali metal or an alkaline earth metal, and an analysis method for highly accurately measuring an alkaline inorganic component in a short time is desired. ing.

牡蠣に含有されるミネラルは、日本食品標準成分表2015年度版(七訂)によれば、主に乾式灰化法で分解後、原子吸光法や誘導結合プラズマ(ICP)発光分光分析法により元素分析されている。乾式灰化法ではサンプルを約500℃前後まで強熱するのが一般的であり、無機成分損失のおそれが大きく、かつ、時間がかかる手法である。 The minerals contained in oysters are, according to the Japanese Food Standards Table 2015 Edition (7th Edition), mainly decomposed by the dry ashing method and then analyzed by atomic absorption method or inductively coupled plasma (ICP) emission spectroscopy. Has been analyzed. In the dry ashing method, the sample is generally ignited to about 500° C., which has a high risk of loss of inorganic components and is a time-consuming method.

元素分析のサンプル調製には、より低温で分解を行うことができ、無機成分の損失のおそれが少ない湿式酸化法も知られている。牡蠣の湿式酸化法については、非特許文献1に示されているケルダール分解では、硝酸(HNO3)の他に硫酸(H2SO4)及び過塩素酸(HClO4)の添加が必要であり、かつ、過酸化水素を後追い添加している。非特許文献2には、硝酸及び塩酸(HCl)、過塩素酸、フッ素酸(HF)を用いてマイクロ波で酸分解する方法が示されている。いずれも3種以上の試薬の添加を必要とし、かつ、過塩素酸やフッ素酸という爆発の危険性のある強酸を用いており、扱いには細心の注意を必要とするという難点がある。特にフッ素酸は低濃度であっても人体の皮膚や骨に浸透性があり、フッ素症等の慢性中毒の危険性もあるので、フッ素を扱う作業従事者は6ケ月ごとに尿中のフッ化物の定量が推奨されている。又、非特許文献3においては、硝酸を用いた湿式灰化により原子吸光分析用のサンプルを調製しているが、湿式灰化法の詳細は示されていないため、硝酸のみを用いたのか、硝酸以外の試薬も用いたのか等が不明である。 For sample preparation for elemental analysis, a wet oxidation method is also known, which can be decomposed at a lower temperature and has less risk of loss of inorganic components. Regarding the wet oxidation method of oysters, Kjeldahl decomposition shown in Non-Patent Document 1 requires addition of sulfuric acid (H 2 SO 4 ) and perchloric acid (HClO 4 ) in addition to nitric acid (HNO 3 ). And, hydrogen peroxide is added later. Non-Patent Document 2 discloses a method of acid-decomposing by microwave using nitric acid and hydrochloric acid (HCl), perchloric acid, and fluoric acid (HF). All of them require the addition of three or more kinds of reagents, and use strong acids such as perchloric acid and fluoric acid, which are potentially explosive, and have the drawback of requiring careful handling. Especially, even if the concentration of fluoric acid is low, it penetrates the skin and bones of the human body, and there is a risk of chronic poisoning such as fluorosis. Quantitation is recommended. In Non-Patent Document 3, a sample for atomic absorption analysis is prepared by wet ashing using nitric acid, but since the details of the wet ashing method are not shown, is it possible to use only nitric acid? It is unclear whether reagents other than nitric acid were used.

小野塚春吉、外4名、「貝類中の微量元素濃度」、東京都立衛生研究所研究年報、東京都立衛生研究所、2002年、第53号、p.253-257Haruyoshi Onozuka, 4 others, “Trace Element Concentrations in Shellfish”, Tokyo Metropolitan Institute of Health Annual Report, Tokyo Metropolitan Institute of Health, 2002, No. 53, p. 253-257 磯山博文外4名、『マイクロ波分解後の断続的噴霧と組み合わせた誘導結合プラズマ発光分析法による生物試料中の微量金属の定量(Determination of Trace Metals in Biological Samples by Inductively Coupled Plasma Atomic Emission Spectrometry with Discrete Nebulization after Microwave Decomposition)』、分析科学(Analytical Sciences)、公益社団法人日本分析化学会、1990年、第6巻、第3号、p.385-388Hirofumi Isoyama, 4 persons, “Determination of Trace Metals in Biological Samples by Inductively Coupled Plasma Atomic Emission Spectrometry with Discrete Nebulization after Microwave Decomposition)", Analytical Sciences, Japan Society for Analytical Chemistry, 1990, Volume 6, Issue 3, p.385-388 小邨奈未、外5名、『生産地の異なるカキの体成分』、微量栄養素研究、日本微量栄養素学会、2008年、第25集、p.125-128Nana Kobe, 5 others, "Body composition of oysters in different production areas", Micronutrient Research, Japan Society of Micronutrients, 2008, Vol. 25, p.125-128

本発明は上記の問題に着目してなされたものであって、短時間且つより少ない手間、より低い危険性で牡蠣に含有されるアルカリ系無機成分を含む無機成分を高精度に分析できる分析方法、及び、その分析に必要な分析用試料の調製方法を提供することを目的とする。 The present invention has been made in view of the above problems, a short time and less labor, an analysis method capable of highly accurately analyzing an inorganic component including an alkaline inorganic component contained in oyster with a lower risk. And a method for preparing an analytical sample necessary for the analysis.

上記目的を達成するために、本発明の第1の態様は、(a)牡蠣の可食部を粉砕するステップと、(b)可食部に硝酸と過酸化水素をそれぞれ別個に加えて混合溶液を調製するステップと、(c)混合溶液を密閉可能容器に収納し、密閉状態を実現するステップと、(d)密閉状態で、混合溶液を200℃以上にマイクロ波加熱し、密閉状態の内部圧力を大気圧より高くし、この密閉状態で少なくとも15分間200℃以上の昇温状態を維持し、可食部を酸分解し、分析用試料を調製するステップを含む分析用試料の調製方法であることを要旨とする。 In order to achieve the above object, the first aspect of the present invention comprises (a) a step of pulverizing an edible portion of oysters, and (b) nitric acid and hydrogen peroxide are separately added to the edible portion and mixed. A step of preparing a solution, a step of (c) accommodating the mixed solution in a hermetically sealable container to realize a hermetically sealed state, and (d) a hermetically sealed state in which the mixed solution is heated to 200° C. or higher by microwave heating. A method for preparing a sample for analysis, comprising a step of preparing an analytical sample by increasing the internal pressure above atmospheric pressure, maintaining a temperature rising state of 200° C. or higher for at least 15 minutes in this sealed state, and subjecting the edible portion to acid decomposition The main point is.

上記目的を達成するために、本発明の第2の態様は、第1の態様で調製した分析用試料を、誘導結合プラズマ(ICP)発光分光分析法を用いて分析し、分析用試料に含まれる複数の無機成分を分析するステップを実施する分析方法であることを要旨とする。 In order to achieve the above-mentioned object, a second aspect of the present invention is to analyze the analytical sample prepared in the first aspect by using inductively coupled plasma (ICP) emission spectroscopy, The gist is that the method is an analysis method for carrying out the step of analyzing a plurality of inorganic components.

本発明によれば、短時間且つより少ない手間、より低い危険性で牡蠣に含有されるアルカリ系無機成分を含む無機成分を高精度に分析できる分析方法、及び、その分析に必要な分析用試料の調製方法を提供を提供することができる。 According to the present invention, an analysis method capable of highly accurately analyzing an inorganic component including an alkaline inorganic component contained in oyster in a short time and with less labor and a lower risk, and an analysis sample required for the analysis Can be provided.

本発明の実施形態に係る分析用試料の調製方法のフローチャートである。3 is a flowchart of a method for preparing an analytical sample according to an embodiment of the present invention. 実施例1におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。5 is a graph showing a temperature transition of the mixed solution at the time of microwave irradiation in Example 1. 実施例1及び比較例1に係る無機成分の分析用試料について、本発明の実施形態に係るICP発光分光分析法により分析した亜鉛濃度を示すグラフである。3 is a graph showing the zinc concentration analyzed by the ICP emission spectroscopic analysis method according to the embodiment of the present invention for the analysis sample of the inorganic component according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る無機成分の分析用試料について、本発明の実施形態に係るICP発光分光分析法により分析したナトリウム濃度を示すグラフである。3 is a graph showing the sodium concentration analyzed by the ICP emission spectroscopic analysis method according to the embodiment of the present invention with respect to the analysis samples of the inorganic components according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る無機成分の分析用試料について、本発明の実施形態に係るICP発光分光分析法により分析したカリウム濃度を示すグラフである。3 is a graph showing the potassium concentration analyzed by the ICP emission spectroscopic analysis method according to the embodiment of the present invention for the analysis sample of the inorganic component according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る無機成分の分析用試料について、本発明の実施形態に係るICP発光分光分析法により分析したカルシウム濃度を示すグラフである。5 is a graph showing the calcium concentration analyzed by the ICP emission spectroscopic analysis method according to the embodiment of the present invention for the analysis samples of the inorganic components according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る無機成分の分析用試料について、本発明の実施形態に係るICP発光分光分析法により分析したマグネシウム濃度を示すグラフである。3 is a graph showing the magnesium concentration analyzed by the ICP emission spectroscopic analysis method according to the embodiment of the present invention with respect to the analysis sample of the inorganic component according to Example 1 and Comparative Example 1. 比較例5におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。9 is a graph showing a temperature transition of a mixed solution at the time of microwave irradiation in Comparative Example 5. 比較例7におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。9 is a graph showing a temperature transition of a mixed solution at the time of microwave irradiation in Comparative Example 7. 比較例10におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。11 is a graph showing a temperature transition of the mixed solution at the time of microwave irradiation in Comparative Example 10. 比較例12におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。13 is a graph showing a temperature transition of the mixed solution at the time of microwave irradiation in Comparative Example 12. 実施例2及び比較例2〜8における亜鉛濃度の分析結果の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the analysis result of the zinc concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるナトリウム濃度の分析結果の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the analysis result of the sodium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるカリウム濃度の分析結果の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the analysis result of the potassium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるカルシウム濃度の分析結果の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the analysis result of the calcium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるマグネシウム濃度の分析結果の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the analysis result of the magnesium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8における亜鉛濃度を示すグラフである。It is a graph which shows the zinc concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるナトリウム濃度を示すグラフである。It is a graph which shows the sodium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるカリウム濃度を示すグラフである。It is a graph which shows the potassium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるカルシウム濃度を示すグラフである。It is a graph which shows the calcium concentration in Example 2 and Comparative Examples 2-8. 実施例2及び比較例2〜8におけるマグネシウム濃度を示すグラフである。It is a graph which shows the magnesium concentration in Example 2 and Comparative Examples 2-8. 本発明の実施形態に係る分析方法のフローチャートである。It is a flowchart of the analysis method which concerns on embodiment of this invention. 実施例3及び比較例9〜13における亜鉛濃度を示すグラフである。It is a graph which shows the zinc concentration in Example 3 and Comparative Examples 9-13. 実施例3及び比較例9〜13におけるナトリウム濃度を示すグラフである。It is a graph which shows the sodium concentration in Example 3 and Comparative Examples 9-13. 実施例3及び比較例9〜13におけるカリウム濃度を示すグラフである。It is a graph which shows the potassium concentration in Example 3 and Comparative Examples 9-13. 実施例3及び比較例9〜13におけるカルシウム濃度を示すグラフである。It is a graph which shows the calcium concentration in Example 3 and Comparative Examples 9-13. 実施例3及び比較例9〜13におけるマグネシウム濃度を示すグラフである。It is a graph which shows the magnesium concentration in Example 3 and Comparative Examples 9-13. 実施例3におけるマイクロ波照射時の混合溶液の温度推移を示すグラフである。9 is a graph showing a temperature transition of a mixed solution at the time of microwave irradiation in Example 3.

以下において、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。したがって、具体的な分解方法及び成分分析方法等は以下の説明から理解できる技術的思想の趣旨を参酌してより多様に判断すべきものである。 Embodiments of the present invention will be described below with reference to the drawings. In the following description of the drawings, the same or similar reference numerals are given to the same or similar parts. However, it should be noted that the drawings are schematic. Therefore, the specific decomposition method, component analysis method, and the like should be judged more variously in consideration of the purpose of the technical idea that can be understood from the following description.

又、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置及び物質、方法を例示するものであって、本発明の技術的思想は、装置及び物質の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、本発明の実施形態で記載された内容に限定されず、特許請求の範囲に記載された発明特定事項の有機的結合が規定する技術的範囲内において、種々の変更を加えることができる。 The following embodiments of the present invention exemplify devices, materials, and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material of the device and the material. The shapes, structures, arrangements, etc. are not specified below. The technical idea of the present invention is not limited to the contents described in the embodiments of the present invention, and various modifications are made within the technical scope defined by the organic combination of the matters specifying the invention described in the claims. Can be added.

(分析用試料の調製方法)
本発明の実施形態に係る分析用試料の調製方法は、図1のフローチャートに示すように、ステップS101における牡蠣の可食部を粉砕する均一化ステップと、ステップS103において、ステップS101で、密閉可能な容器に粉砕した牡蠣の可食部を収納し、更に粉砕した牡蠣の可食部に硝酸(HNO3)及び過酸化水素(H22)を加えて混合溶液を調製する分解液注入ステップと、ステップS105において、ステップS103で調製した混合溶液が収納された容器に蓋をして密閉状態とした後、調製した混合溶液にマイクロ波を照射し、200℃以上にマイクロ波加熱し、密閉状態の内部圧力を大気圧より高くし、この密閉状態で少なくとも15分間200℃以上の昇温状態を維持し、分析用試料を調製するマイクロ波照射ステップを含む手順を伴う。
(Method for preparing analytical sample)
As shown in the flowchart of FIG. 1, the method for preparing an analytical sample according to the embodiment of the present invention includes a homogenizing step of crushing the edible portion of the oyster in step S101, and a sealing step in step S101 in step S103. The edible part of crushed oysters is stored in a simple container, and nitric acid (HNO 3 ) and hydrogen peroxide (H 2 O 2 ) are added to the edible part of crushed oysters to prepare a mixed solution. Then, in step S105, the container containing the mixed solution prepared in step S103 is covered and sealed, and then the prepared mixed solution is irradiated with microwaves and heated to 200° C. or higher to be sealed. The procedure involves a microwave irradiation step of preparing a sample for analysis by raising the internal pressure of the state above atmospheric pressure, maintaining the temperature rising state at 200° C. or higher for at least 15 minutes in this sealed state.

ステップS101における均一化方法に特に指定はないが、アルカリ金属及びアルカリ土類金属の無機成分分析に用いるため、機器や工具等の金属部分には出来るだけ触れない方法が望ましい。例えば、包丁を用いる際はステンレス製やチタン製等の金属素材を用いたものは避けた方がよく、セラミック製等の非金属製の素材が好ましい。均一化の程度は、試料として数グラムを任意に採取した際に、牡蠣の可食部のうちの貝柱や腸、食道、胃、エラ等の各部位が偏りなく含まれる程度であればよい。本明細書中の牡蠣の「可食部」とは、牡蠣の貝殻を除いた貝柱や内臓等のすべての部位をいう。 The homogenizing method in step S101 is not particularly specified, but since it is used for the analysis of inorganic components of alkali metals and alkaline earth metals, it is desirable to use a method that does not touch metal parts such as instruments and tools as much as possible. For example, when using a kitchen knife, it is better to avoid using a metal material such as stainless steel or titanium, and a non-metal material such as ceramic is preferable. The degree of homogenization may be such that, when several grams are arbitrarily collected as a sample, each part such as the scallop, intestine, esophagus, stomach, gills and the like of the edible portion of the oyster is uniformly contained. The "edible portion" of oyster in the present specification refers to all parts such as scallops and internal organs excluding the shell of oyster.

ステップS103における硝酸及び過酸化水素は、分解液注入ステップの前には混合せず、密閉可能な容器に均一化した牡蠣の可食部を収納した後、密閉可能な容器に収納された牡蠣の可食部に対して、最初に硝酸、次に過酸化水素の順に別個の溶液として加えて、初めて混合されるものである。ステップS103では、分解液として硝酸及び過酸化水素を用いている。硝酸及び過酸化水素を別個の溶液として、密閉可能な容器中の牡蠣の可食部に加えた後の混合溶液は、均一化した牡蠣の可食部、硝酸、過酸化水素から構成される。分解液である硝酸と過酸化水素の容積比は6:1程度が好ましい。例示すれば、試料(可食部)約2gに対して、硝酸は6mL=6cm3、過酸化水素は1mL=1cm3を用いることが好ましい。調製された混合溶液については、密閉可能な容器中で撹拌や振盪を行ってもよいが、行わずに密閉可能な容器の蓋をして密閉状態とし、直ちに次のステップに進めてもよい。 Nitric acid and hydrogen peroxide in step S103 is not mixed before the decomposition solution injection step, after storing the edible portion of the homogenized oysters in a sealable container, the oysters stored in the sealable container First, nitric acid and then hydrogen peroxide are added to the edible portion in this order as separate solutions and mixed for the first time. In step S103, nitric acid and hydrogen peroxide are used as decomposition solutions. After adding nitric acid and hydrogen peroxide as separate solutions to the edible portion of oyster in a sealable container, the mixed solution is composed of the homogenized edible portion of oyster, nitric acid and hydrogen peroxide. It is preferable that the volume ratio of nitric acid and hydrogen peroxide, which are decomposition solutions, be about 6:1. By way of example, with respect to about 2g sample (edible part), nitric acid 6 mL = 6 cm 3, hydrogen peroxide is preferably used 1 mL = 1 cm 3. The prepared mixed solution may be agitated or shaken in an airtight container, but without performing the operation, the airtight container may be capped to bring it into an airtight state and immediately proceed to the next step.

ステップS105における「マイクロ波」は、水分子を振動・回転する周波数帯に含まれる2.45GHzのマイクロ波が好適である。2.45GHzのマイクロ波は、市場で容易に入手可能な300Wから10kW程度のマグネトロン等の高出力発振器で発生させることができる。マイクロ波発生機器の出力をコントロールし、分解液注入ステップにより得られた混合溶液のサンプル温度が液相状態を維持するように、密閉状態で200℃以上に達するようにし、密閉状態でサンプル温度が200℃以上の状態で少なくとも15分間、マイクロ波加熱を行う。マイクロ波加熱について、好ましくは、サンプル温度が200℃〜240℃の状態で30分間以上であり、より好ましくはサンプル温度が210℃〜235℃の状態で25分間以上であり、さらにより好ましくは220℃〜235℃の状態で20分間以上である。本明細書中での「サンプル温度」とは、分解液注入ステップにより得られた混合溶液の温度を言う。温度測定には、パイロメータ等の非接触式の温度計を用いても良いし、接触式の温度計を用いてもよい。後述する実施例においては、非接触式の放射温度計を用いて、サンプルの赤外線を検出することによりサンプル表面の温度を測定しているが、測定方法はこれに限ったものではない。 The "microwave" in step S105 is preferably a microwave of 2.45 GHz included in the frequency band in which water molecules vibrate and rotate. The microwave of 2.45 GHz can be generated by a high power oscillator such as a magnetron of 300 W to 10 kW which is easily available on the market. The output of the microwave generator is controlled so that the sample temperature of the mixed solution obtained in the decomposition liquid injection step is maintained at 200°C or higher in a closed state so that the sample temperature is kept in a closed state. Microwave heating is performed at 200° C. or higher for at least 15 minutes. Regarding microwave heating, preferably, the sample temperature is 200° C. to 240° C. for 30 minutes or more, more preferably the sample temperature is 210° C. to 235° C. for 25 minutes or more, and even more preferably 220. It is 20 minutes or more in the state of °C to 235 °C. The “sample temperature” in the present specification refers to the temperature of the mixed solution obtained in the decomposition solution injection step. A non-contact type thermometer such as a pyrometer or a contact type thermometer may be used for temperature measurement. In the examples described below, the temperature of the sample surface is measured by detecting infrared rays of the sample using a non-contact type radiation thermometer, but the measuring method is not limited to this.

混合溶液のサンプル温度が200℃以上に達するまでの時間は問わないが、150℃若しくは190℃のいずれかの昇温状態又は両方の昇温状態で、数分間以上保持する等、段階的に昇温させることが望ましい。マイクロ波加熱に供するため混合溶液を収納する容器の材質は電磁波が透過可能な耐熱耐圧素材が好ましい。例示するならば、石英ガラス等の耐熱ガラスやフッ素樹脂、シリコン樹脂等である。混合溶液や発生ガスに直接触れる部分の材質は、耐熱温度が200℃以上であり、耐薬品性があるフッ素樹脂、例えば、ポリテトラフルオロエチレン(PTFE)や四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂(PFA)等が好ましい。混合溶液に直接触れる容器(ベッセル等)と、その容器を収納するための密閉機能を有する耐熱耐圧容器とが別個にあってもよいし、混合溶液に直接触れる容器自体が密閉機能と耐熱耐圧機能を有していてもよい。 It does not matter how long it takes for the sample temperature of the mixed solution to reach 200°C or higher, but the temperature rises stepwise, such as holding it for several minutes or more at either 150°C or 190°C or both of them. It is desirable to heat. The material of the container for containing the mixed solution for use in microwave heating is preferably a heat-resistant and pressure-resistant material capable of transmitting electromagnetic waves. For example, heat-resistant glass such as quartz glass, fluororesin, silicon resin, or the like. The material of the part that comes into direct contact with the mixed solution or the generated gas has a heat resistance temperature of 200°C or higher and chemical resistance, such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene/perfluoroalkoxyethylene. Polymerized resin (PFA) and the like are preferable. The container (vessel, etc.) that directly contacts the mixed solution may be separated from the heat-resistant and pressure-resistant container that has the sealing function for housing the container, or the container itself that directly contacts the mixed solution may have the sealing function and the heat-resistant and pressure-resistant function. May have.

混合溶液が硝酸と過酸化水素を含む溶液となることにより、塩やイオンがより有効にマイクロ波のエネルギーを吸収するようになるので、密閉された容器中で電磁波によるジュール加熱が可能になり、純粋な水の場合よりも加熱効率が高くなる。岩波書店の理化学辞典第5版(2004年)によれば、大気圧(101.325kPa)における純粋な硝酸の沸点は83℃で、水と硝酸の共沸混合物の沸点は120.5℃である。大気圧における90%の過酸化水素の沸点は141℃で、水と過酸化水素の共沸混合物の沸点は150.2℃である。牡蠣の可食部、硝酸及び過酸化水素から構成される混合溶液は、密閉された容器中で加熱され、大気圧以上の高圧状態となるので沸点が上昇し、液相状態を維持する。マイクロ波加熱が進むにつれ、混合物中の水分が蒸発し各種成分の濃度が変化することによる沸点上昇もある。しかし、蒸発した水分は混合溶液が入れられて密閉された容器の上部で冷却され、大部分が再び液体となって容器下部の混合溶液に戻るため、混合溶液中から液体成分が完全に蒸発することはほとんどない。密閉状態での還流状態の中で牡蠣の可食部の分解が進められる。本明細書における「密閉状態」とは、容器に隙間がないことにより、容器内外の物質のやりとりがない状態を言う。すなわち、混合溶液の液体そのものや揮発した気体等の混合溶液由来の物質が容器外に漏出しないようにして大気圧以上の高圧状態が維持でき、かつ、容器外の物質が容器内へ侵入しない状態を指す。ただし圧力釜の安全弁のように、過剰圧の状態において若干の発生ガスの漏洩が行われる仕組みが容器に設けられてもよい。マイクロ波照射終了後は混合溶液を放冷及び冷却し、適宜希釈することで、無機成分の分析用試料を得ることができる。放冷及び冷却の方法や時間は問わないが、例えば、マイクロ波照射開始後50分間程度の短時間で分析用試料が調製できる。 When the mixed solution becomes a solution containing nitric acid and hydrogen peroxide, salts and ions absorb the microwave energy more effectively, so that Joule heating by electromagnetic waves in a sealed container becomes possible, The heating efficiency is higher than in the case of pure water. According to Iwanami Shoten's Physics and Chemistry Dictionary 5th Edition (2004), the boiling point of pure nitric acid at atmospheric pressure (101.325 kPa) is 83°C, and the boiling point of an azeotropic mixture of water and nitric acid is 120.5°C. .. The boiling point of 90% hydrogen peroxide at atmospheric pressure is 141°C, and the boiling point of the azeotrope of water and hydrogen peroxide is 150.2°C. The mixed solution composed of the edible portion of oysters, nitric acid and hydrogen peroxide is heated in a closed container and becomes a high pressure state above atmospheric pressure, so that the boiling point rises and the liquid state state is maintained. As the microwave heating progresses, water in the mixture evaporates, and the concentration of various components changes, which causes a boiling point increase. However, the evaporated water is cooled in the upper part of the container in which the mixed solution is placed and sealed, and most of it becomes liquid again and returns to the mixed solution in the lower part of the container, so that the liquid component is completely evaporated from the mixed solution. Almost never. The decomposition of the edible portion of oysters proceeds under the closed state of reflux. The "sealed state" in the present specification means a state in which there is no exchange of substances inside and outside the container because there is no gap in the container. That is, the liquid itself of the mixed solution or the substance derived from the mixed solution such as volatilized gas can be maintained at a high pressure above atmospheric pressure so as not to leak out of the container, and the substance outside the container does not enter the container. Refers to. However, the container may be provided with a mechanism such as a safety valve of a pressure cooker in which a slight amount of generated gas is leaked in an excessive pressure state. After completion of microwave irradiation, the mixed solution is allowed to cool and cool, and diluted appropriately to obtain a sample for analysis of inorganic components. Although the method and time of cooling and cooling are not limited, for example, the sample for analysis can be prepared in a short time of about 50 minutes after the start of microwave irradiation.

本発明の実施形態により得られた無機成分の分析用試料について、その後にICP発光分光分析等により、無機成分、特にアルカリ金属及びアルカリ土類金属の元素分析が行われる。従って、元素分析に資することができる程度に、本発明の実施形態に係る分析用試料の調製方法に含まれるマイクロ波照射ステップにおいて、サンプルを酸分解する必要がある。十分に酸分解するには、マイクロ波加熱によるサンプル温度が重要である。混合溶液のサンプル温度の最高温度が密閉状態で150℃又は190℃程度の場合は、加熱時間を長くしても酸分解が不十分であり、その後の元素分析においてデータのバラつきを生じやすくなる。少なくともサンプル温度が密閉状態で200℃以上の状態で少なくとも15分間のマイクロ波照射が必要である。マイクロ波加熱について、好ましくは、混合溶液の液相中のサンプル温度が200℃〜240℃の状態で30分間以上であり、より好ましくはサンプル温度が210℃〜235℃の状態で25分間以上であり、さらにより好ましくは220℃〜235℃の状態で20分間以上である。加熱方式については、外部加熱方式ではなく、内部加熱方式であるマイクロ波加熱を用いて効率良く加熱することにより、閉管(密閉容器)中での大気圧より高い圧力が達成される加熱を可能にし、大気圧における沸点以上の温度で混合溶液の液相の存在を維持できる。内部加熱方式であるマイクロ波加熱であるので、閉管中の混合溶液を短時間で昇温することが可能となり、牡蠣の可食部の短時間の酸分解が可能になる。 The inorganic component analysis sample obtained according to the embodiment of the present invention is then subjected to elemental analysis of the inorganic components, particularly alkali metals and alkaline earth metals, by ICP emission spectroscopy or the like. Therefore, the sample needs to be acid-decomposed in the microwave irradiation step included in the method for preparing an analytical sample according to the embodiment of the present invention to the extent that it can contribute to elemental analysis. The sample temperature by microwave heating is important for sufficient acid decomposition. When the maximum temperature of the sample temperature of the mixed solution is about 150° C. or 190° C. in the closed state, acid decomposition is insufficient even if the heating time is lengthened, and variations in data are likely to occur in the subsequent elemental analysis. Microwave irradiation is required for at least 15 minutes at least at a sample temperature of 200° C. or more in a sealed state. Regarding microwave heating, preferably, the sample temperature in the liquid phase of the mixed solution is 200° C. to 240° C. for 30 minutes or more, and more preferably the sample temperature is 210° C. to 235° C. for 25 minutes or more. Yes, and even more preferably, at a temperature of 220°C to 235°C for 20 minutes or more. As for the heating method, microwave heating, which is the internal heating method, is used instead of the external heating method to efficiently heat, thereby enabling heating that achieves a pressure higher than atmospheric pressure in a closed tube (sealed container). The presence of the liquid phase of the mixed solution can be maintained at a temperature above the boiling point at atmospheric pressure. Since microwave heating is an internal heating method, the temperature of the mixed solution in the closed tube can be raised in a short time, and acid decomposition of the edible portion of oysters can be performed in a short time.

(無機成分分析方法)
本発明の実施形態に係る分析方法は、図22のフローチャートに示すように、ステップS101における牡蠣の可食部を粉砕する均一化ステップと、ステップS103における密閉可能な容器に牡蠣の可食部を収納し、更にこの密閉容可能な容器中の牡蠣の可食部に硝酸及び過酸化水素を加えて混合溶液を調製する分解液注入ステップと、ステップS105における密閉可能な容器に蓋をして、密閉状態で混合溶液にマイクロ波を照射し、200℃以上となるまで高速加熱し、密閉状態で少なくとも15分間200℃以上の昇温状態を維持し、分析用試料を調製するマイクロ波照射ステップと、ステップS107における密閉可能な容器から牡蠣の可食部を分析用試料として取り出し、分析用試料に含まれる複数の無機成分を分析するICP発光分光分析を含む手順に従う。すなわち、本発明の実施形態に係る分析方法は、図1に示す分析用試料の調製方法を示すフローチャートにより得られた分析用試料に対してICP発光分光分析を行い、複数の無機成分を分析する方法である。
(Inorganic component analysis method)
The analysis method according to the embodiment of the present invention, as shown in the flowchart of FIG. 22, a homogenizing step of crushing the oyster edible portion in step S101, and the oyster edible portion in a sealable container in step S103. Store, further, a decomposition solution injection step of preparing a mixed solution by adding nitric acid and hydrogen peroxide to the edible portion of the oyster in the hermetically-sealed container, and capping the hermetically-sealed container in step S105, A microwave irradiation step of preparing a sample for analysis by irradiating the mixed solution with microwaves in a sealed state and rapidly heating to 200° C. or higher and maintaining a temperature rising state of 200° C. or higher in the sealed state for at least 15 minutes; In step S107, the edible portion of oysters is taken out from the sealable container as a sample for analysis, and a procedure including ICP emission spectroscopy for analyzing a plurality of inorganic components contained in the sample for analysis is followed. That is, in the analysis method according to the embodiment of the present invention, an ICP emission spectroscopic analysis is performed on the analysis sample obtained by the flowchart showing the method for preparing the analysis sample shown in FIG. 1 to analyze a plurality of inorganic components. Is the way.

本発明の実施形態に係るICP発光分光分析においては、従来短時間での測定が困難であった無機成分に含まれる、ナトリウム及びカリウム等のアルカリ金属、カルシウム及びマグネシウム等のアルカリ土類金属の複数元素を、高精度に短時間で同時分析することができる。従来は、ステップS103のような試薬を用いて大気圧下での酸処理を用いた場合では、酸との反応でアルカリ金属やアルカリ土類金属等のアルカリ系の無機成分が損失し、アルカリ系の無機成分の検出が困難になる問題があった。しかし、本発明の実施形態に係るICP発光分光分析では、ステップS105の密閉状態でのマイクロ波高速加熱により、大気圧の沸点よりも高い温度における高エネルギー状態での硝酸及び過酸化水素分子による反応を利用しているので、アルカリ系の無機成分が損失しにくくなるので、高精度かつ短時間でのアルカリ系の無機成分の分析ができる。亜鉛についても分析が可能である。アルカリ金属やアルカリ土類金属、亜鉛以外の元素を分析することも可能である。 In the ICP emission spectroscopic analysis according to the embodiment of the present invention, a plurality of alkali metals such as sodium and potassium, and alkaline earth metals such as calcium and magnesium, which are contained in the inorganic components which have conventionally been difficult to measure in a short time, are included. Elements can be simultaneously analyzed with high accuracy in a short time. Conventionally, in the case of using acid treatment under atmospheric pressure using a reagent such as step S103, alkali-based inorganic components such as alkali metal and alkaline earth metal are lost by reaction with acid, and alkali-based However, there is a problem that it becomes difficult to detect the inorganic component. However, in the ICP emission spectroscopic analysis according to the embodiment of the present invention, the reaction by nitric acid and hydrogen peroxide molecules in a high energy state at a temperature higher than the boiling point of atmospheric pressure is performed by the microwave rapid heating in the closed state of step S105. Since it is used, the alkaline inorganic component is less likely to be lost, so that the alkaline inorganic component can be analyzed with high accuracy and in a short time. It is also possible to analyze zinc. It is also possible to analyze elements other than alkali metals, alkaline earth metals and zinc.

ステップS101の均一化ステップ、ステップS103の分解液注入ステップ、ステップS105の閉管中での高圧状態でのマイクロ波照射ステップを行うことで、高エネルギー分子による反応を行い、アルカリ金属やアルカリ土類金属等のアルカリ系の無機成分を失うこと無く、より少ない試薬で少ない手間で、且つ、より低い危険性で牡蠣の可食部を分解することができる。又、得られた分析用試料をステップS107に示すICP発光分光分析を実施することにより、無機成分、特にナトリウム、カリウム、カルシウム、マグネシウムというアルカリ金属及びアルカリ土類金属について、データのバラつきのより少ない高精度な分析結果を短時間で得ることができる。 By performing the homogenization step of step S101, the decomposition liquid injection step of step S103, and the microwave irradiation step in a high pressure state in a closed tube of step S105, the reaction with high-energy molecules is performed, and alkali metal or alkaline earth metal It is possible to decompose the edible portion of oyster with less reagent and with less risk, without losing alkaline inorganic components such as. Further, by performing the ICP emission spectral analysis shown in step S107 on the obtained analytical sample, there is less variation in the data for inorganic components, particularly for alkali metals and alkaline earth metals such as sodium, potassium, calcium, and magnesium. Highly accurate analysis results can be obtained in a short time.

以下に実施例を示して本発明を具体的に説明するが、これは単に例示の目的で述べるものであり、以下の実施例に示した商品名、産地、購入先等を含め、本発明はこれらの実施例に限定されるものではない。
[実施例1]
Hereinafter, the present invention will be specifically described with reference to Examples, but this is merely for the purpose of illustration, and the present invention includes the trade names, production areas, purchase destinations, and the like shown in the following Examples. It is not limited to these examples.
[Example 1]

(均一化ステップ)
本発明の分析用試料の調製方法の原料となる牡蠣は、市販されている宮城県産マガキ(学名: Crassostrea gigas)を入手し、冷凍庫で保管後、解凍してから用いた。解凍したマガキ2個の貝殻の縁を食品用はさみで切り取り、2枚合わせの貝殻の隙間にセラミック製のスパチュラを差し入れ、貝の口を開けた。次に、スパチュラを用い、マガキの可食部を貝殻から分離させた。可食部を食品用ミキサー(商品名:フードプロセッサー1.0L、DLC−100J、株式会社クイジナート製。以下同様。)で粉砕し、可食部を均一化させた。均一化したマガキの可食部を湿重量で50〜60g程度得た。
(Uniformization step)
For the oysters used as the raw material for the method for preparing the sample for analysis of the present invention, commercially available oysters from Miyagi Prefecture (scientific name: Crassostrea gigas) were obtained, stored in a freezer, and thawed before use. The edges of the two thawed oyster shells were cut with food scissors, a ceramic spatula was inserted into the gap between the two shells, and the mouth of the shell was opened. Next, the edible part of the oyster was separated from the shell using a spatula. The edible portion was pulverized with a food mixer (trade name: food processor 1.0 L, DLC-100J, manufactured by Quiginate Co., Ltd.; the same applies below) to homogenize the edible portion. The homogenized edible portion of the oyster was obtained in a wet weight of about 50 to 60 g.

(分解液注入ステップ)
均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いてこのベッセルに硝酸(濃度69〜70%、精密分析用、関東化学工業株式会社製。以下同様。)6mL及び過酸化水素(濃度30.0%、原子吸光用、関東化学工業株式会社製。以下同様。)1mLを、最初に硝酸、次に過酸化水素の順番で入れて混合溶液を調製した。混合溶液は計3サンプル調製し、各サンプル中のマガキの可食部は、2.47g、2.13g、2.26gであった。混合溶液の色はいずれも黄褐色であった。
(Decomposition liquid injection step)
About 2 g (wet weight) of the edible portion of the homogenized oyster was weighed and placed in a vessel, and subsequently nitric acid (concentration 69 to 70%, for precision analysis, manufactured by Kanto Chemical Co., Inc.; the same applies hereinafter) in this vessel. A mixed solution was prepared by adding 6 mL and 1 mL of hydrogen peroxide (concentration: 30.0%, for atomic absorption, manufactured by Kanto Chemical Co., Inc.; the same below) first in the order of nitric acid and then hydrogen peroxide. A total of 3 samples of the mixed solution were prepared, and the edible portion of the oyster in each sample was 2.47 g, 2.13 g, and 2.26 g. The color of the mixed solution was yellowish brown.

(マイクロ波照射ステップ)
各サンプルのベッセルのふたを閉め、ベッセルを密閉容可能な耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして、耐熱耐圧容器を密閉した。マイクロ波オーブン(商品名:マイクロウェーブ試料分解装置、株式会社アナリティクイエナジャパン製。以下同様。)にセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、耐熱耐圧容器にマイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、その後の10分間で190℃に昇温し、5分間190℃を保つ。その後の10分間で230℃まで昇温し、20分間230℃を保ち、耐熱耐圧容器へのマイクロ波照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図2に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。実施例1に係るサンプル温度について、連続して200℃以上が32分間、210℃以上が25分間、220℃以上が20分間であり、最高温度は231℃であった。図2に示すように、マイクロ波照射開始後数分間については、マイクロ波オーブンのサンプル温度検出下限が50℃であることと、マイクロ波照射の偏りによるサンプル内での温度の偏りが生じていると考えられることから、サンプル温度は安定していない。マイクロ波照射開始後数分後以降は、マイクロ波加熱が進み、サンプル内の分子の動きが活発化してくるため、サンプル内で温度の偏りが生じにくくなり、検知されるサンプル温度の数値が安定化する。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、25℃における比抵抗18MΩ・cm以上の超純水(例えば、メルクミリポア社製Q-POD(登録商標) 素子で調製した超純水。以下同様。)で50mLにメスアップし、計3サンプルの実施例1に係る無機成分の分析用試料を得た。実施例1に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。
(Microwave irradiation step)
The lid of the vessel of each sample was closed, the vessel was stored in a heat-resistant and pressure-resistant container capable of being hermetically sealed, and the heat-resistant and pressure-resistant container was capped with a dedicated tool to seal the heat-resistant and pressure-resistant container. It was set in a microwave oven (trade name: microwave sample decomposing device, manufactured by Analytic Queena Japan Co., Ltd.; the same applies below) and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, 10 minutes after the start of microwave irradiation to the heat-resistant pressure-resistant container, the temperature is raised to 150° C., the temperature is kept at 150° C. for 5 minutes, the temperature is raised to 190° C. for 10 minutes thereafter, and the temperature is kept at 190° C. for 5 minutes. In the subsequent 10 minutes, the temperature was raised to 230° C., the temperature was maintained at 230° C. for 20 minutes, and the microwave irradiation treatment on the heat resistant and pressure resistant container was finished. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 2, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. Regarding the sample temperature according to Example 1, the temperature was 200° C. or higher for 32 minutes, 210° C. or higher for 25 minutes, 220° C. or higher for 20 minutes, and the maximum temperature was 231° C. As shown in FIG. 2, for a few minutes after the start of microwave irradiation, the lower limit of sample temperature detection in the microwave oven is 50° C., and the deviation of the temperature in the sample occurs due to the deviation of the microwave irradiation. Therefore, the sample temperature is not stable. A few minutes after the start of microwave irradiation, microwave heating progresses and the movement of molecules in the sample is activated, so that temperature deviation is less likely to occur in the sample, and the detected sample temperature value is stable. Turn into. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. With respect to each sample in the vessel, ultrapure water having a specific resistance of 18 MΩ·cm or more at 25° C. (for example, ultrapure water prepared by Q-POD (registered trademark) device manufactured by Merck Millipore, Inc.; the same applies below) was measured to a volume of 50 mL. Up to a total of 3 samples were obtained as samples for analysis of inorganic components according to Example 1. The color of the solution of the sample for analysis of the inorganic component according to Example 1 was colorless and transparent.

(ICP発光分光分析)
実施例1に係る無機成分の分析用試料について、超純水で10倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、ICP発光分光分析装置(ICPE−9820、株式会社島津製作所製。以下同様。)にて亜鉛(Zn)の含有量を分析した。又、実施例1に係る無機成分の分析用試料について、超純水で100倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、同様にICP発光分光分析装置にて、ナトリウム(Na)及びカリウム(K)、カルシウム(Ca)、マグネシウム(Mg)の各含有量を分析した。
(ICP emission spectroscopy)
The sample for analysis of the inorganic component according to Example 1 was diluted 10 times with ultrapure water, yttrium (Y) as an internal standard substance was added to a final concentration of 2 ppm, and an ICP emission spectrophotometer (ICPE- 9820, manufactured by Shimadzu Corporation, the same applies hereinafter), and the content of zinc (Zn) was analyzed. In addition, the sample for analysis of the inorganic component according to Example 1 was diluted 100 times with ultrapure water, and yttrium (Y) as an internal standard substance was added so as to have a final concentration of 2 ppm. Each content of sodium (Na) and potassium (K), calcium (Ca), and magnesium (Mg) was analyzed by the apparatus.

実施例1に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が9.0mg、ナトリウムが486.1mg、カリウムが250.8mg、カルシウムが156.7mg、マグネシウムが69.0mgであった。各データの標準偏差(表を除いて、数値は四捨五入した有効数字3桁で表記。以下同様。)は、亜鉛が0.0378、ナトリウムが0.679、カリウムが3.35、カルシウムが31.8、マグネシウムが0.798であった。
[比較例1]
The average value of the analysis results of the inorganic component according to Example 1 is 9.0 mg of zinc, 486.1 mg of sodium, 250.8 mg of potassium, 156.7 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 69.0 mg. The standard deviation of each data (except the table, the figures are rounded off to three significant figures and the same applies to the following), zinc is 0.0378, sodium is 0.679, potassium is 3.35, and calcium is 31. 8, magnesium was 0.798.
[Comparative Example 1]

実施例1と同様の原料を用い、本発明の実施例1に係る均一化ステップを経た後、均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例1に係る混合溶液を調製した。比較例1に係る混合溶液は計3サンプル調製し、比較例1に係る各サンプル中のマガキの可食部は、2.08g、2.39g、2.29gであった。ベッセルを耐熱耐圧容器に収納した後、耐熱耐圧容器に蓋をして密閉状態を実現した。各サンプルについて、本発明の実施例1に係る耐熱耐圧容器に対するマイクロ波照射ステップを行い、計3サンプルの比較例1に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図2とほぼ同様であった。比較例1に係るサンプル温度の最高温度は233℃であった。比較例1に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。比較例1に係る無機成分の分析用試料について、本発明の実施例1に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 1, after the homogenization step according to Example 1 of the present invention, about 2 g (wet weight) of the edible portion of the homogenized oyster was weighed and placed in a vessel, followed by nitric acid. 6 mL was added to prepare a mixed solution according to Comparative Example 1. A total of 3 samples of the mixed solution according to Comparative Example 1 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 1 was 2.08 g, 2.39 g, and 2.29 g. After the vessel was housed in a heat and pressure resistant container, the heat resistant and pressure resistant container was covered to realize a hermetically sealed state. For each sample, a microwave irradiation step was performed on the heat and pressure resistant container according to Example 1 of the present invention to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 1. In the microwave irradiation step, the actual sample temperature transition was almost the same as that in FIG. The maximum temperature of the sample temperature according to Comparative Example 1 was 233°C. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 1 was colorless and transparent. The analysis sample of the inorganic component according to Comparative Example 1 was subjected to the ICP emission spectroscopic analysis according to Example 1 of the present invention to measure the inorganic component.

比較例1に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が9.2mg、ナトリウムが491.3mg、カリウムが248.9mg、カルシウムが138.9mg、マグネシウムが69.1mgであった。各データの標準偏差は、亜鉛が0.543、ナトリウムが15.2、カリウムが7.42、カルシウムが55.1、マグネシウムが3.06であった。 The average value of the analysis results of the inorganic component according to Comparative Example 1 is 9.2 mg of zinc, 491.3 mg of sodium, 248.9 mg of potassium, 138.9 mg of calcium, and 138.9 mg of magnesium per 100 g (wet weight) of the edible portion. Was 69.1 mg. The standard deviation of each data was 0.543 for zinc, 15.2 for sodium, 7.42 for potassium, 55.1 for calcium, and 3.06 for magnesium.

図3〜7について、縦軸は各無機成分の成分濃度(mg/可食部100g当たり)を示し、最も左に位置する左下がり斜線の棒グラフは日本食品標準成分表2015年度版(七訂)における「生カキ(まがき)」の各無機成分濃度、中央に位置する白抜きの棒グラフは比較例1の各無機成分濃度、最も右に位置する右下がり斜線の棒グラフは実施例1の各無機成分濃度を示す。図3〜7の比較例1及び実施例1の棒グラフの上端にかかるI型のバーの上下方向の幅は、標準偏差を視覚的に表すものである。ただし、図3及び4における実施例1の棒グラフについては、幅を図示するには標準偏差が小さ過ぎたため、図示を省略した。 3 to 7, the vertical axis indicates the concentration of each inorganic component (mg/per 100 g of edible portion), and the bar graph with the diagonal line to the left that is located at the leftmost is the Japanese Food Standards Table 2015 version (7th edition). Concentration of each inorganic component of "raw oyster" in Fig. 3, the white bar graph in the center is the concentration of each inorganic component in Comparative Example 1, and the bar graph in the rightmost diagonal line with the downward sloping line is each inorganic substance in Example 1. The component concentration is shown. The vertical widths of the I-shaped bars on the upper ends of the bar graphs of Comparative Example 1 and Example 1 of FIGS. 3 to 7 visually represent the standard deviation. However, the bar graphs of Example 1 in FIGS. 3 and 4 were omitted because the standard deviation was too small to show the width.

実施例1及び比較例1に係る無機成分の分析用試料の各無機成分濃度の平均値及び標準偏差は、次の表1の通りである。表1の最上段の「Zn」は亜鉛、「Na」はナトリウム、「K」はカリウム、「Ca」はカルシウム、「Mg」はマグネシウムを示す。以降の表2及び表3においても同様である。

Figure 2020122715
The average values and standard deviations of the concentrations of the respective inorganic components of the samples for analyzing the inorganic components according to Example 1 and Comparative Example 1 are shown in Table 1 below. In the top row of Table 1, "Zn" indicates zinc, "Na" indicates sodium, "K" indicates potassium, "Ca" indicates calcium, and "Mg" indicates magnesium. The same applies to Tables 2 and 3 below.
Figure 2020122715

図3〜7及び表1によると、亜鉛、ナトリウム、カリウム、カルシウム、マグネシウムのすべての成分濃度において、分解液として過酸化水素を加える実施例1の方が、比較例1よりも、データのバラつきを表す標準偏差が小さいことが分かる。すなわち比較例1よりも、実施例1の方が分析手法として高精度であり、信頼性が高い。 According to FIGS. 3 to 7 and Table 1, the dispersion of data in Example 1 in which hydrogen peroxide was added as a decomposition solution was higher than that in Comparative Example 1 at all component concentrations of zinc, sodium, potassium, calcium, and magnesium. It can be seen that the standard deviation representing is small. That is, Example 1 has a higher accuracy as an analysis method and higher reliability than Comparative Example 1.

実施例1によると、牡蠣試料中のアルカリ金属及びアルカリ土類金属の定量分析を、従来技術より短時間で、同時に高精度で行うことが出来る。特に、ナトリウム、カリウム、カルシウム、マグネシウムの4種の元素の定量分析に適した方法である。実施例1では、過塩素酸やフッ素酸という爆発の危険性のある強酸を用いないため、より手間が少なく、より安全に分析を行うことができる。
[実施例2]
According to Example 1, the quantitative analysis of alkali metal and alkaline earth metal in the oyster sample can be carried out in a shorter time than in the prior art and at the same time with high accuracy. In particular, the method is suitable for quantitative analysis of four kinds of elements such as sodium, potassium, calcium and magnesium. In Example 1, since a strong acid such as perchloric acid or fluoric acid, which has a risk of explosion, is not used, it is possible to perform the analysis more safely with less labor.
[Example 2]

(均一化ステップ)
本発明の分析用試料の調製方法の原料となる牡蠣は、市販されている秋田県産イワガキ(学名: Crossostrea nippona)を入手し、冷凍庫で保管後、解凍してから用いた。解凍したイワガキ2個の貝殻の縁を食品用はさみで切り取り、2枚合わせの貝殻の隙間にセラミック製のスパチュラを差し入れ、貝の口を開けた。次に、スパチュラを用い、イワガキの可食部を貝殻から分離させた。可食部を食品用ミキサーで粉砕し、可食部を均一化させた。均一化したイワガキの可食部を湿重量で50〜60g程度得た。
(Uniformization step)
As the oysters used as a raw material for the method for preparing the sample for analysis of the present invention, commercially available oysters from Akita Prefecture (scientific name: Crossostrea nippona) were obtained, stored in a freezer, and thawed before use. The edges of the thawed two oyster shells were cut with food scissors, a ceramic spatula was inserted into the gap between the two shells, and the mouth of the shell was opened. Next, the edible part of the oyster was separated from the shell using a spatula. The edible portion was crushed with a food mixer to make the edible portion uniform. About 50 to 60 g of the homogenized edible oyster was obtained by wet weight.

(分解液注入ステップ)
均一化したイワガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸(6mL及び過酸化水素1mLを、最初に硝酸、次に過酸化水素の順番で入れて混合溶液を調製した。混合溶液は計3サンプル調製し、各サンプル中のイワガキの可食部は、1.67g、1.85g、1.50gであった。混合溶液の色はいずれも黄褐色であった。
(Decomposition liquid injection step)
About 2 g (wet weight) of the homogenized edible oyster was weighed and placed in a vessel, followed by nitric acid (6 mL and hydrogen peroxide 1 mL, first nitric acid and then hydrogen peroxide, in this order, mixed solution. A total of 3 samples of the mixed solution were prepared, and the edible parts of oysters in each sample were 1.67 g, 1.85 g, and 1.50 g. It was

(マイクロ波照射ステップ)
各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、その後の10分間で190℃に昇温し、5分間190℃を保つ。その後の10分間で230℃まで昇温し、20分間230℃を保ち、照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図28に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。実施例2に係るサンプル温度について、連続して200℃以上が35分間、210℃以上が28分間、220℃以上が23分間であり、最高温度は233℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの実施例2に係る無機成分の分析用試料を得た。実施例2に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。
(Microwave irradiation step)
The lid of the vessel of each sample was closed, the vessel was stored in a heat-resistant pressure-resistant container, and the heat-resistant pressure-resistant container was closed by using a dedicated tool to cover the heat-resistant pressure-resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature is raised to 150° C. in 10 minutes after the start of microwave irradiation, kept at 150° C. for 5 minutes, raised to 190° C. in the subsequent 10 minutes, and kept at 190° C. for 5 minutes. In the subsequent 10 minutes, the temperature was raised to 230° C., the temperature was maintained at 230° C. for 20 minutes, and the irradiation treatment was finished. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 28, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. Regarding the sample temperature according to Example 2, the temperature was 200° C. or higher for 35 minutes, 210° C. or higher for 28 minutes, 220° C. or higher for 23 minutes, and the maximum temperature was 233° C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, soaked in water at 5° C. or lower together with the heat-resistant pressure-resistant container taken out, cooled for about 30 minutes to 1 hour, and then the vessel was taken out from the heat-resistant pressure-resistant container. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Example 2. The color of the solution of the sample for analysis of the inorganic component according to Example 2 was colorless and transparent.

(ICP発光分光分析)
実施例2に係る無機成分の分析用試料について、超純水で10倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、ICP発光分光分析装置にて亜鉛(Zn)の含有量を分析した。又、実施例2に係る無機成分の分析用試料について、超純水で100倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、同様にICP発光分光分析装置にて、ナトリウム(Na)及びカリウム(K)、カルシウム(Ca)、マグネシウム(Mg)の各含有量を分析した。
(ICP emission spectroscopy)
The sample for analysis of the inorganic component according to Example 2 was diluted 10-fold with ultrapure water, yttrium (Y) as an internal standard substance was added so as to have a final concentration of 2 ppm, and zinc was analyzed with an ICP emission spectrometer. The content of (Zn) was analyzed. In addition, the sample for analysis of the inorganic component according to Example 2 was diluted 100 times with ultrapure water, yttrium (Y) as an internal standard substance was added so that the final concentration was 2 ppm, and ICP emission spectroscopy analysis was performed in the same manner. Each content of sodium (Na) and potassium (K), calcium (Ca), and magnesium (Mg) was analyzed by the apparatus.

実施例2に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が24.1mg、ナトリウムが676.1mg、カリウムが91.7mg、カルシウムが85.3mg、マグネシウムが91.1mgであった。各データの標準偏差は、亜鉛が0.0292、ナトリウムが2.92、カリウムが0.292、カルシウムが0.219、マグネシウムが0.386であった。
[比較例2]
The average value of the analysis results of the inorganic components according to Example 2 is 24.1 mg of zinc, 676.1 mg of sodium, 91.7 mg of potassium, 85.3 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 91.1 mg. The standard deviation of each data was 0.0292 for zinc, 2.92 for sodium, 0.292 for potassium, 0.219 for calcium, and 0.386 for magnesium.
[Comparative example 2]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップを経た後、均一化したイワガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例2に係る混合溶液を調製した。比較例2に係る混合溶液は計3サンプル調製し、比較例2に係る各サンプル中のイワガキの可食部は、1.87g、2.41g、2.34gであった。各サンプルについて、本発明の実施例2に係るマイクロ波照射ステップを行い、計3サンプルの比較例2に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図28とほぼ同様であった。比較例2に係るサンプル温度の最高温度は233℃であった。比較例2に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。比較例2に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 2, after the homogenizing step according to Example 2 of the present invention, about 2 g (wet weight) of the edible part of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. 6 mL was added to prepare a mixed solution according to Comparative Example 2. A total of 3 samples of the mixed solution according to Comparative Example 2 were prepared, and the edible portion of oysters in each sample according to Comparative Example 2 was 1.87 g, 2.41 g, and 2.34 g. The microwave irradiation step according to Example 2 of the present invention was performed on each sample to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 2. In the microwave irradiation step, the actual sample temperature transition was almost the same as in FIG. The maximum temperature of the sample temperature according to Comparative Example 2 was 233°C. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 2 was colorless and transparent. The analysis sample of the inorganic component according to Comparative Example 2 was subjected to ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例2に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が43.9mg、ナトリウムが764.3mg、カリウムが97.3mg、カルシウムが1,030.3mg、マグネシウムが85.1mgであった。各データの標準偏差は、亜鉛が4.10、ナトリウムが61.9、カリウムが0.156、カルシウムが677、マグネシウムが0.158であった。
[比較例3]
The average value of the analysis results of the inorganic components according to Comparative Example 2 is 43.9 mg of zinc, 764.3 mg of sodium, 97.3 mg of potassium, and 1.030.3 mg of calcium per 100 g (wet weight) of the edible portion. , Magnesium was 85.1 mg. The standard deviation of each data was 4.10 for zinc, 61.9 for sodium, 0.156 for potassium, 677 for calcium and 0.158 for magnesium.
[Comparative Example 3]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップ及び分解液注入ステップを経て、比較例3に係る混合溶液を調製した。比較例3に係る混合溶液は計3サンプル調製し、比較例3に係る各サンプル中のイワガキの可食部は、1.66g、1.53g、1.63gであった。各サンプルについてマイクロ波照射は行わず、比較例3に係る混合溶液を超純水で50mLにメスアップし、計3サンプルの比較例3に係る無機成分の分析用試料を得た。比較例3に係る無機成分の分析用試料の溶液の色はいずれも黄褐色であった。比較例3に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw materials as in Example 2, the mixed solution according to Comparative Example 3 was prepared through the homogenization step and the decomposition solution injection step according to Example 2 of the present invention. A total of 3 samples of the mixed solution according to Comparative Example 3 were prepared, and the edible portions of oysters in each sample according to Comparative Example 3 were 1.66 g, 1.53 g, and 1.63 g. Microwave irradiation was not performed on each sample, and the mixed solution according to Comparative Example 3 was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 3. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 3 was yellowish brown. The analysis sample of the inorganic component according to Comparative Example 3 was subjected to ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例3に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が27.1mg、ナトリウムが602.4mg、カリウムが101.0mg、カルシウムが1,841.6mg、マグネシウムが44.4mgであった。各データの標準偏差は、亜鉛が0.343、ナトリウムが17.0、カリウムが3.46、カルシウムが746、マグネシウムが5.21であった。
[比較例4]
The average value of the analysis results of the inorganic components according to Comparative Example 3 is 27.1 mg of zinc, 602.4 mg of sodium, 101.0 mg of potassium, and 1,841.6 mg of calcium per 100 g (wet weight) of the edible portion. And magnesium was 44.4 mg. The standard deviation of each data was 0.343 for zinc, 17.0 for sodium, 3.46 for potassium, 746 for calcium, and 5.21 for magnesium.
[Comparative Example 4]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップを経た後、均一化したイワガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例4に係る混合溶液を調製した。比較例4に係る混合溶液は計3サンプル調製し、比較例4に係る各サンプル中のイワガキの可食部は、1.66g、1.56g、1.56gであった。各サンプルについてマイクロ波照射は行わず、比較例4に係る混合溶液を超純水で50mLにメスアップし、計3サンプルの比較例4に係る無機成分の分析用試料を得た。比較例4に係る無機成分の分析用試料の溶液の色はいずれも黄褐色であった。比較例4に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 2, after the homogenizing step according to Example 2 of the present invention, about 2 g (wet weight) of the edible part of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. 6 mL was added to prepare a mixed solution according to Comparative Example 4. A total of 3 samples of the mixed solution according to Comparative Example 4 were prepared, and the edible portions of oysters in each sample according to Comparative Example 4 were 1.66 g, 1.56 g, and 1.56 g. Microwave irradiation was not performed on each sample, and the mixed solution according to Comparative Example 4 was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 4. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 4 was yellowish brown. The analysis sample of the inorganic component according to Comparative Example 4 was subjected to the ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例4に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が28.8mg、ナトリウムが619.7mg、カリウムが102.4mg、カルシウムが1,262.8mg、マグネシウムが54.0mgであった。各データの標準偏差は、亜鉛が1.78、ナトリウムが1.99、カリウムが0.970、カルシウムが930、マグネシウムが15.3であった。
[比較例5]
The average value of the analysis results of the inorganic components according to Comparative Example 4 is 28.8 mg of zinc, 619.7 mg of sodium, 102.4 mg of potassium, and 122.8 mg of calcium per 100 g (wet weight) of the edible portion. And magnesium was 54.0 mg. The standard deviation of each data was 1.78 for zinc, 1.99 for sodium, 0.970 for potassium, 930 for calcium and 15.3 for magnesium.
[Comparative Example 5]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップ及び分解液注入ステップを経て、比較例5に係る混合溶液を調製した。比較例5に係る混合溶液は計3サンプル調製し、比較例5に係る各サンプル中のイワガキの可食部は、2.13g、1.66g、2.01gであった。各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図8に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。比較例5に係るサンプル温度の最高温度は143℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの比較例5に係る無機成分の分析用試料を得た。比較例5に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であった。比較例5に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 The same raw material as in Example 2 was used to prepare a mixed solution according to Comparative Example 5 through the homogenization step and the decomposition solution injection step according to Example 2 of the present invention. A total of 3 samples of the mixed solution according to Comparative Example 5 were prepared, and the edible parts of oysters in each sample according to Comparative Example 5 were 2.13 g, 1.66 g, and 2.01 g. The lid of the vessel of each sample was closed, the vessel was stored in a heat and pressure resistant container, and the heat and pressure resistant container was closed by using a special tool to cover the heat and pressure resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature was raised to 150° C. in 10 minutes after the start of microwave irradiation, maintained at 150° C. for 5 minutes, and the irradiation treatment was finished. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 8, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. The maximum sample temperature of Comparative Example 5 was 143°C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 5. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 5 was light yellow-green and transparent. The analysis sample of the inorganic component according to Comparative Example 5 was subjected to the ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例5に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が27.4mg、ナトリウムが610.0mg、カリウムが100.8mg、カルシウムが275.1mg、マグネシウムが73.4mgであった。各データの標準偏差は、亜鉛が0.329、ナトリウムが16.9、カリウムが3.19、カルシウムが99.2、マグネシウムが3.28であった。
[比較例6]
The average value of the analysis result of the inorganic component according to Comparative Example 5 is 27.4 mg of zinc, 610.0 mg of sodium, 100.8 mg of potassium, 275.1 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 73.4 mg. The standard deviation of each data was 0.329 for zinc, 16.9 for sodium, 3.19 for potassium, 99.2 for calcium, and 3.28 for magnesium.
[Comparative Example 6]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップを経た後、均一化したイワガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例6に係る混合溶液を調製した。比較例6に係る混合溶液は計3サンプル調製し、比較例6に係る各サンプル中のイワガキの可食部は、1.67g、1.54g、1.56gであった。各サンプルについて、本発明の比較例5に係るマイクロ波照射ステップを行い、計3サンプルの比較例6に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図8とほぼ同様であった。比較例6に係るサンプル温度の最高温度は150℃であった。比較例6に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であった。比較例6に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 2, after the homogenizing step according to Example 2 of the present invention, about 2 g (wet weight) of the edible part of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. A mixed solution according to Comparative Example 6 was prepared by adding 6 mL. A total of 3 samples of the mixed solution according to Comparative Example 6 were prepared, and the edible parts of oysters in each sample according to Comparative Example 6 were 1.67 g, 1.54 g, and 1.56 g. The microwave irradiation step according to Comparative Example 5 of the present invention was performed on each sample to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 6. In the microwave irradiation step, the actual sample temperature transition was almost the same as in FIG. The maximum sample temperature according to Comparative Example 6 was 150°C. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 6 was light yellow-green and transparent. Regarding the sample for analysis of the inorganic component according to Comparative Example 6, the ICP emission spectral analysis according to Example 2 of the present invention was performed to measure the inorganic component.

比較例6に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が28.2mg、ナトリウムが592.9mg、カリウムが97.1mg、カルシウムが143.5mg、マグネシウムが80.1mgであった。各データの標準偏差は、亜鉛が0.305、ナトリウムが3.23、カリウムが1.31、カルシウムが12.9、マグネシウムが0.697であった。
[比較例7]
The average value of the analysis results of the inorganic components according to Comparative Example 6 is 28.2 mg of zinc, 592.9 mg of sodium, 97.1 mg of potassium, 143.5 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 80.1 mg. The standard deviation of each data was 0.305 for zinc, 3.23 for sodium, 1.31 for potassium, 12.9 for calcium, and 0.697 for magnesium.
[Comparative Example 7]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップ及び分解液注入ステップを経て、比較例7に係る混合溶液を調製した。比較例7に係る混合溶液は計3サンプル調製し、比較例7に係る各サンプル中のイワガキの可食部は、1.90g、2.30g、1.94gであった。各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、その後の10分間で190℃に昇温し、5分間190℃を保ち、照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図9に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。比較例7に係るサンプル温度の最高温度は191℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの比較例7に係る無機成分の分析用試料を得た。比較例7に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であり、比較例5及び6に係る無機成分の分析用試料の溶液の色より薄いものであった。比較例7に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw materials as in Example 2, the mixed solution according to Comparative Example 7 was prepared through the homogenization step and the decomposition liquid injection step according to Example 2 of the present invention. A total of 3 samples of the mixed solution according to Comparative Example 7 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 7 was 1.90 g, 2.30 g, and 1.94 g. The lid of the vessel of each sample was closed, the vessel was stored in a heat and pressure resistant container, and the heat and pressure resistant container was closed by using a special tool to cover the heat and pressure resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature is raised to 150° C. in 10 minutes after the start of microwave irradiation, kept at 150° C. for 5 minutes, raised to 190° C. in the subsequent 10 minutes, kept at 190° C. for 5 minutes, and the irradiation treatment is finished. Met. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 9, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. The maximum sample temperature of Comparative Example 7 was 191°C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 7. The color of the solution of the analysis sample of the inorganic component according to Comparative Example 7 was light yellow-green and transparent, which was lighter than the color of the solution of the analysis sample of the inorganic component according to Comparative Examples 5 and 6. The analysis sample of the inorganic component according to Comparative Example 7 was subjected to ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例7に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が31.8mg、ナトリウムが605.6mg、カリウムが99.1mg、カルシウムが214.8mg、マグネシウムが73.0mgであった。各データの標準偏差は、亜鉛が1.03、ナトリウムが3.03、カリウムが1.33、カルシウムが16.3、マグネシウムが1.47であった。
[比較例8]
The average value of the analysis results of the inorganic components according to Comparative Example 7 is 31.8 mg of zinc, 605.6 mg of sodium, 99.1 mg of potassium, 214.8 mg of calcium, and 214.8 mg of magnesium per 100 g (wet weight) of the edible portion. Was 73.0 mg. The standard deviation of each data was 1.03 for zinc, 3.03 for sodium, 1.33 for potassium, 16.3 for calcium, and 1.47 for magnesium.
[Comparative Example 8]

実施例2と同様の原料を用い、本発明の実施例2に係る均一化ステップを経た後、均一化したイワガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例8に係る混合溶液を調製した。比較例8に係る混合溶液は計3サンプル調製し、比較例8に係る各サンプル中のイワガキの可食部は、1.89g、1.62g、1.69gであった。各サンプルについて、本発明の比較例7に係るマイクロ波照射ステップを行い、計3サンプルの比較例8に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図9とほぼ同様であった。比較例8に係るサンプル温度の最高温度は190℃であった。比較例8に係る無機成分の分析用試料の溶液の色はいずれも無色透明であり、比較例5及び6に係る無機成分の分析用試料の溶液の色より薄いものであった。比較例8に係る無機成分の分析用試料について、本発明の実施例2に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 2, after the homogenizing step according to Example 2 of the present invention, about 2 g (wet weight) of the edible part of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. 6 mL was added to prepare a mixed solution according to Comparative Example 8. A total of 3 samples of the mixed solution according to Comparative Example 8 were prepared, and the edible parts of oysters in each sample according to Comparative Example 8 were 1.89 g, 1.62 g, and 1.69 g. The microwave irradiation step according to Comparative Example 7 of the present invention was performed on each sample to obtain a total of 3 samples of the inorganic component analysis samples according to Comparative Example 8. In the microwave irradiation step, the actual sample temperature transition was almost the same as in FIG. The maximum sample temperature according to Comparative Example 8 was 190°C. The color of the solution of the analysis sample of the inorganic component according to Comparative Example 8 was colorless and transparent, and was lighter than the color of the solution of the analysis sample of the inorganic component according to Comparative Examples 5 and 6. The analysis sample of the inorganic component according to Comparative Example 8 was subjected to ICP emission spectroscopic analysis according to Example 2 of the present invention to measure the inorganic component.

比較例8に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が30.0mg、ナトリウムが589.3mg、カリウムが98.8mg、カルシウムが295.1mg、マグネシウムが70.1mgであった。各データの標準偏差は、亜鉛が0.216、ナトリウムが23.6、カリウムが3.73、カルシウムが77.2、マグネシウムが1.84であった。 The average value of the analysis results of the inorganic components according to Comparative Example 8 is 30.0 mg of zinc, 589.3 mg of sodium, 98.8 mg of potassium, 295.1 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 70.1 mg. The standard deviation of each data was 0.216 for zinc, 23.6 for sodium, 3.73 for potassium, 77.2 for calcium, and 1.84 for magnesium.

図17〜21においては、縦軸は各無機成分の含有量(成分濃度、mg/可食部100g当たり)を示し、横軸はマイクロ波照射時のプログラム温度の最高温度(℃)を示す。図17〜21の白抜きの4つの丸は、各図の左から順に、比較例4,比較例6,比較例8,比較例2の成分濃度及び最高温度を示し、黒塗りの4つの丸は、各図の左から順に、比較例3,比較例5,比較例7,実施例2の成分濃度及び最高温度を示す。図17〜21の最高温度20℃付近の比較例3及び4は、マイクロ波照射ステップを行っていない比較例であるため、室温である「20(℃)」を最高温度として示した。 17 to 21, the vertical axis represents the content of each inorganic component (component concentration, mg/100 g of the edible portion), and the horizontal axis represents the maximum program temperature (° C.) during microwave irradiation. The four white circles in FIGS. 17 to 21 indicate the component concentrations and the maximum temperatures of Comparative Example 4, Comparative Example 6, Comparative Example 8, and Comparative Example 2, in order from the left of each figure, and the four black circles. Shows the component concentrations and maximum temperatures of Comparative Example 3, Comparative Example 5, Comparative Example 7, and Example 2 in order from the left of each figure. Since Comparative Examples 3 and 4 in FIGS. 17 to 21 having a maximum temperature of around 20° C. are comparative examples in which the microwave irradiation step is not performed, “20 (° C.)” which is room temperature is shown as the maximum temperature.

図12〜16においては、縦軸は標準偏差を示し、横軸はマイクロ波照射時のプログラム温度の最高温度(℃)を示す。図12〜16の白抜きの棒グラフは、図の左から順に、比較例4,比較例6,比較例8,比較例2の標準偏差を示し、右下がり斜線の棒グラフは、各図の左から順に、比較例3,比較例5,比較例7,実施例2の標準偏差を示す。図12〜16の最高温度20℃の2つの棒グラフに示される比較例3及び4は、マイクロ波照射ステップを行っていない比較例であるため、室温である「20(℃)」を最高温度として示した。 12 to 16, the vertical axis represents the standard deviation, and the horizontal axis represents the maximum program temperature (° C.) during microwave irradiation. 12 to 16 show the standard deviations of Comparative Example 4, Comparative Example 6, Comparative Example 8 and Comparative Example 2 in order from the left side of the figures, and the bar charts with diagonally downward-sloping lines from the left side of each figure. The standard deviations of Comparative Example 3, Comparative Example 5, Comparative Example 7, and Example 2 are shown in order. Since Comparative Examples 3 and 4 shown in the two bar graphs of the maximum temperature of 20° C. in FIGS. 12 to 16 are comparative examples in which the microwave irradiation step is not performed, the room temperature “20 (° C.)” is set as the maximum temperature. Indicated.

実施例2及び比較例2〜8に係る無機成分の分析用試料の各無機成分濃度の平均値及び標準偏差は、次の表2の通りである。

Figure 2020122715
Table 2 below shows average values and standard deviations of the concentrations of the respective inorganic components of the samples for analyzing the inorganic components according to Example 2 and Comparative Examples 2 to 8.
Figure 2020122715

図12〜16より、分解液として過酸化水素を加えた実施例2,比較例3,比較例5,比較例7については、マイクロ波照射時のプログラム温度の最高温度が高いものほど、各無機成分において標準偏差が小さくなる傾向にあることが分かる。図12〜16によると、分解液として過酸化水素を加えない比較例2,比較例4,比較例6,比較例8については、マイクロ波照射時のプログラム温度の最高温度の変化による顕著な傾向は特に見られない。図12〜16及び表2において、プログラム温度の最高温度が最も高い230℃の実施例2及び比較例2を比較すると、カリウムとマグネシウム以外では、実施例2の方が標準偏差が小さい。カリウムとマグネシウムについて、実施例2の標準偏差は比較例2と比較してそれぞれ2倍程度の数値に収まっている。 12 to 16, for Example 2, Comparative Example 3, Comparative Example 5, and Comparative Example 7 in which hydrogen peroxide was added as a decomposition liquid, the higher the maximum program temperature during microwave irradiation, the higher It can be seen that the standard deviation tends to be small for the components. According to FIGS. 12 to 16, for Comparative Example 2, Comparative Example 4, Comparative Example 6, and Comparative Example 8 in which hydrogen peroxide was not added as a decomposition liquid, a remarkable tendency due to a change in the maximum temperature of the program temperature during microwave irradiation. Is not particularly seen. 12 to 16 and Table 2, comparing Example 2 and Comparative Example 2 in which the highest program temperature is 230° C., the standard deviation of Example 2 is smaller than that of potassium and magnesium. Regarding potassium and magnesium, the standard deviations of Example 2 are about twice as large as those of Comparative Example 2.

マイクロ波照射時のプログラム温度の最高温度が190℃の比較例7では、同温度が20℃の比較例3及び同温度が150℃の比較例5よりも、亜鉛濃度についての標準偏差が大きい。比較例7においては、マイクロ波照射時における酸分解が不十分である。
[実施例3]
In Comparative Example 7 in which the maximum program temperature during microwave irradiation is 190° C., the standard deviation of the zinc concentration is larger than in Comparative Example 3 in which the same temperature is 20° C. and Comparative Example 5 in which the same temperature is 150° C. In Comparative Example 7, acid decomposition during microwave irradiation is insufficient.
[Example 3]

(均一化ステップ)
本発明の分析用試料の調製方法の原料となる牡蠣は、市販されている宮城県産マガキを入手し、冷凍庫で保管後、解凍してから用いた。解凍したマガキ2個の貝殻の縁を食品用はさみで切り取り、2枚合わせの貝殻の隙間にセラミック製のスパチュラを差し入れ、貝の口を開けた。次に、スパチュラを用い、マガキの可食部を貝殻から分離させた。可食部を食品用ミキサーで粉砕し、可食部を均一化させた。均一化したマガキの可食部を湿重量で50〜60g程度得た。
(Uniformization step)
As the oysters used as a raw material for the method for preparing the sample for analysis of the present invention, commercially available oysters from Miyagi Prefecture were obtained, stored in a freezer, and thawed before use. The edges of the two thawed oyster shells were cut with food scissors, a ceramic spatula was inserted into the gap between the two shells, and the mouth of the shell was opened. Next, the edible part of the oyster was separated from the shell using a spatula. The edible portion was crushed with a food mixer to make the edible portion uniform. The homogenized edible portion of the oyster was obtained in a wet weight of about 50 to 60 g.

(分解液注入ステップ)
均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mL及び過酸化水素1mLを、最初に硝酸、次に過酸化水素の順番で入れて混合溶液を調製した。混合溶液は計3サンプル調製し、各サンプル中のマガキの可食部は、1.91g、2.33g、2.11gであった。混合溶液の色はいずれも黄褐色であった。
(Decomposition liquid injection step)
Approximately 2 g (wet weight) of the homogenized edible oyster was weighed and placed in a vessel, and then 6 mL of nitric acid and 1 mL of hydrogen peroxide were added first in the order of nitric acid and then hydrogen peroxide to form a mixed solution. Prepared. A total of 3 samples of the mixed solution were prepared, and the edible portion of the oyster in each sample was 1.91 g, 2.33 g, and 2.11 g. The color of the mixed solution was yellowish brown.

(マイクロ波照射ステップ)
各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、その後の10分間で190℃に昇温し、5分間190℃を保つ。その後の10分間で230℃まで昇温し、20分間230℃を保ち、照射処理を終える、というものであった。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図2とほぼ同様であり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。実施例3に係るサンプル温度について、連続して200℃以上が34分間、210℃以上が28分間、220℃以上が23分間であり、最高温度は232℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの実施例3に係る無機成分の分析用試料を得た。実施例3に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。
(Microwave irradiation step)
The lid of the vessel of each sample was closed, the vessel was stored in a heat and pressure resistant container, and the heat and pressure resistant container was closed by using a special tool to cover the heat and pressure resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature is raised to 150° C. in 10 minutes after the start of microwave irradiation, kept at 150° C. for 5 minutes, raised to 190° C. in the subsequent 10 minutes, and kept at 190° C. for 5 minutes. In the subsequent 10 minutes, the temperature was raised to 230° C., the temperature was maintained at 230° C. for 20 minutes, and the irradiation treatment was finished. In the microwave irradiation step, the actual sample temperature transition is almost the same as that in FIG. 2, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. Regarding the sample temperature according to Example 3, the temperature was 200° C. or higher for 34 minutes, 210° C. or higher for 28 minutes, 220° C. or higher for 23 minutes, and the maximum temperature was 232° C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Example 3. The color of the solution of the sample for analysis of the inorganic component according to Example 3 was colorless and transparent.

(ICP発光分光分析)
実施例3に係る無機成分の分析用試料について、超純水で10倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、ICP発光分光分析装置にて亜鉛(Zn)の含有量を分析した。又、実施例3に係る無機成分の分析用試料について、超純水で100倍希釈し、内部標準物質となるイットリウム(Y)を最終濃度2ppmになるように加えて、同様にICP発光分光分析装置にて、ナトリウム(Na)及びカリウム(K)、カルシウム(Ca)、マグネシウム(Mg)の各含有量を分析した。
(ICP emission spectroscopy)
The sample for analysis of the inorganic component according to Example 3 was diluted 10-fold with ultrapure water, yttrium (Y) as an internal standard substance was added so as to have a final concentration of 2 ppm, and zinc was measured with an ICP emission spectrometer. The content of (Zn) was analyzed. In addition, the sample for analysis of the inorganic component according to Example 3 was diluted 100-fold with ultrapure water, yttrium (Y) as an internal standard substance was added so that the final concentration was 2 ppm, and ICP emission spectroscopy analysis was performed in the same manner. Each content of sodium (Na) and potassium (K), calcium (Ca), and magnesium (Mg) was analyzed by the apparatus.

実施例3に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が13.4mg、ナトリウムが635.3mg、カリウムが50.5mg、カルシウムが382.7mg、マグネシウムが256.3mgであった。各データの標準偏差は、亜鉛が0.123、ナトリウムが13.2、カリウムが1.97、カルシウムが6.21、マグネシウムが1.73であった。
[比較例9]
The average value of the analysis results of the inorganic components according to Example 3 is 13.4 mg of zinc, 635.3 mg of sodium, 50.5 mg of potassium, 382.7 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 256.3 mg. The standard deviation of each data was 0.123 for zinc, 13.2 for sodium, 1.97 for potassium, 6.21 for calcium and 1.73 for magnesium.
[Comparative Example 9]

実施例3と同様の原料を用い、本発明の実施例3に係る均一化ステップを経た後、均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例9に係る混合溶液を調製した。比較例9に係る混合溶液は計3サンプル調製し、比較例9に係る各サンプル中のマガキの可食部は、2.13g、2.10g、2.31gであった。各サンプルについて、本発明の実施例3に係るマイクロ波照射ステップを行い、計3サンプルの比較例9に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図2とほぼ同様であった。比較例9に係るサンプル温度の最高温度は232℃であった。比較例9に係る無機成分の分析用試料の溶液の色はいずれも無色透明であった。比較例9に係る無機成分の分析用試料について、本発明の実施例3に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 3, after performing the homogenizing step according to Example 3 of the present invention, about 2 g (wet weight) of the edible portion of the homogenized oyster was weighed and placed in a vessel, followed by nitric acid. 6 mL was added to prepare a mixed solution according to Comparative Example 9. A total of 3 samples of the mixed solution according to Comparative Example 9 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 9 was 2.13 g, 2.10 g, and 2.31 g. The microwave irradiation step according to Example 3 of the present invention was performed on each sample to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 9. In the microwave irradiation step, the actual sample temperature transition was almost the same as that in FIG. The maximum sample temperature according to Comparative Example 9 was 232°C. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 9 was colorless and transparent. The analysis sample of the inorganic component according to Comparative Example 9 was subjected to ICP emission spectroscopic analysis according to Example 3 of the present invention to measure the inorganic component.

比較例9に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が13.5mg、ナトリウムが630.5mg、カリウムが53.2mg、カルシウムが346.0mg、マグネシウムが258.5であった。各データの標準偏差は、亜鉛が0.284、ナトリウムが6.87、カリウムが2.67、カルシウムが3.35、マグネシウムが2.89であった。
[比較例10]
The average value of the analysis results of the inorganic component according to Comparative Example 9 is 13.5 mg of zinc, 630.5 mg of sodium, 53.2 mg of potassium, 346.0 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 258.5. The standard deviation of each data was 0.284 for zinc, 6.87 for sodium, 2.67 for potassium, 3.35 for calcium, and 2.89 for magnesium.
[Comparative Example 10]

実施例3と同様の原料を用い、本発明の実施例3に係る均一化ステップ及び分解液注入ステップを経て、比較例10に係る混合溶液を調製した。比較例10に係る混合溶液は計3サンプル調製し、比較例10に係る各サンプル中のマガキの可食部は、2.37g、1.65g、1.94gであった。各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、50分間150℃を保ち、照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図10に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。比較例10に係るサンプル温度の最高温度は152℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの比較例10に係る無機成分の分析用試料を得た。比較例10に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であった。比較例10に係る無機成分の分析用試料について、本発明の実施例3に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw materials as in Example 3, the mixed solution according to Comparative Example 10 was prepared through the homogenization step and the decomposition liquid injection step according to Example 3 of the present invention. A total of 3 samples of the mixed solution according to Comparative Example 10 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 10 was 2.37 g, 1.65 g, and 1.94 g. The lid of the vessel of each sample was closed, the vessel was stored in a heat and pressure resistant container, and the heat and pressure resistant container was closed by using a special tool to cover the heat and pressure resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature was raised to 150° C. in 10 minutes after the start of microwave irradiation, maintained at 150° C. for 50 minutes, and the irradiation treatment was finished. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 10, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. The maximum sample temperature of Comparative Example 10 was 152°C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 10. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 10 was light yellow-green and transparent. The analysis sample of the inorganic component according to Comparative Example 10 was subjected to ICP emission spectroscopic analysis according to Example 3 of the present invention to measure the inorganic component.

比較例10に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が9.8mg、ナトリウムが459.4mg、カリウムが43.0mg、カルシウムが504.8mg、マグネシウムが265.5mgであった。各データの標準偏差は、亜鉛が0.492、ナトリウムが31.1、カリウムが9.78、カルシウムが144、マグネシウムが3.00であった。
[比較例11]
The average value of the analysis result of the inorganic components according to Comparative Example 10 is 9.8 mg of zinc, 459.4 mg of sodium, 43.0 mg of potassium, 504.8 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 265.5 mg. The standard deviation of each data was 0.492 for zinc, 31.1 for sodium, 9.78 for potassium, 144 for calcium, and 3.00 for magnesium.
[Comparative Example 11]

実施例3と同様の原料を用い、本発明の実施例3に係る均一化ステップを経た後、均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例11に係る混合溶液を調製した。比較例11に係る混合溶液は計3サンプル調製し、比較例11に係る各サンプル中のマガキの可食部は、1.77g、1.70g、1.66gであった。各サンプルについて、本発明の比較例10に係るマイクロ波照射ステップを行い、計3サンプルの比較例11に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図10とほぼ同様であった。比較例11に係るサンプル温度の最高温度は152℃であった。比較例11に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であった。比較例11に係る無機成分の分析用試料について、本発明の実施例3に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 3, after the homogenizing step according to Example 3 of the present invention, about 2 g (wet weight) of the edible portion of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. 6 mL was added to prepare a mixed solution according to Comparative Example 11. A total of 3 samples of the mixed solution according to Comparative Example 11 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 11 was 1.77 g, 1.70 g, and 1.66 g. The microwave irradiation step according to Comparative Example 10 of the present invention was performed on each sample to obtain a total of 3 samples of the inorganic component analysis samples according to Comparative Example 11. In the microwave irradiation step, the actual sample temperature transition was almost the same as in FIG. The maximum sample temperature according to Comparative Example 11 was 152°C. The color of the solution of the sample for analysis of the inorganic component according to Comparative Example 11 was light yellow-green and transparent. With respect to the sample for analyzing the inorganic component according to Comparative Example 11, the ICP emission spectral analysis according to Example 3 of the present invention was performed to measure the inorganic component.

比較例11に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が10.2mg、ナトリウムが480.5mg、カリウムが57.8mg、カルシウムが426.6mg、マグネシウムが251.7mgであった。各データの標準偏差は、亜鉛が0.626、ナトリウムが29.5、カリウムが5.85、カルシウムが76.0、マグネシウムが15.7であった。
[比較例12]
The average value of the analysis result of the inorganic components according to Comparative Example 11 is 10.2 mg of zinc, 480.5 mg of sodium, 57.8 mg of potassium, 426.6 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 251.7 mg. The standard deviation of each data was 0.626 for zinc, 29.5 for sodium, 5.85 for potassium, 76.0 for calcium, and 15.7 for magnesium.
[Comparative Example 12]

実施例3と同様の原料を用い、本発明の実施例3に係る均一化ステップ及び分解液注入ステップを経て、比較例12に係る混合溶液を調製した。比較例12に係る混合溶液は計3サンプル調製し、比較例12に係る各サンプル中のマガキの可食部は、2.05g、1.93g、2.04gであった。各サンプルのベッセルのふたを閉め、ベッセルを耐熱耐圧容器へ収納し、専用器具を用いて耐熱耐圧容器に蓋をして耐熱耐圧容器を密閉した。マイクロ波オーブンにセットし、マイクロ波を照射した。マイクロ波オーブンの昇温プログラムは次の通りである。すなわち、マイクロ波照射開始後10分間で150℃まで昇温し、5分間150℃を保ち、その後の10分間で190℃に昇温し、35分間190℃を保ち、照射処理を終える、というものであった。マイクロ波照射時間と実際のサンプル温度推移の関係は図11に示す通りであり、ほぼ昇温プログラム通りに昇温処理がされていることが分かる。比較例12に係るサンプル温度の最高温度は193℃であった。マイクロ波照射終了後10分間放冷し、取り出した耐熱耐圧容器ごと5℃以下の水につけ30分から1時間程度冷却してから、ベッセルを耐熱耐圧容器から取り出した。ベッセル中の各サンプルについて、超純水で50mLにメスアップし、計3サンプルの比較例12に係る無機成分の分析用試料を得た。比較例12に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であり、比較例10及び11に係る無機成分の分析用試料の溶液の色より薄いものであった。比較例12に係る無機成分の分析用試料について、本発明の実施例3に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw materials as in Example 3, the mixed solution according to Comparative Example 12 was prepared through the homogenization step and the decomposition liquid injection step according to Example 3 of the present invention. A total of 3 samples of the mixed solution according to Comparative Example 12 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 12 was 2.05 g, 1.93 g, and 2.04 g. The lid of the vessel of each sample was closed, the vessel was stored in a heat and pressure resistant container, and the heat and pressure resistant container was closed by using a special tool to cover the heat and pressure resistant container. It was set in a microwave oven and irradiated with microwaves. The heating program for the microwave oven is as follows. That is, the temperature is raised to 150° C. in 10 minutes after the start of microwave irradiation, kept at 150° C. for 5 minutes, raised to 190° C. in the subsequent 10 minutes, kept at 190° C. for 35 minutes, and the irradiation treatment is finished. Met. The relationship between the microwave irradiation time and the actual sample temperature transition is as shown in FIG. 11, and it can be seen that the temperature raising process is performed almost according to the temperature raising program. The maximum temperature of the sample temperature according to Comparative Example 12 was 193°C. After the microwave irradiation was finished, the mixture was allowed to cool for 10 minutes, immersed in water at 5° C. or less for cooling for about 30 minutes to 1 hour, and then the vessel was taken out from the heat and pressure resistant vessel. Each sample in the vessel was made up to 50 mL with ultrapure water to obtain a total of 3 samples for analysis of inorganic components according to Comparative Example 12. The color of the solution of the analysis sample of the inorganic component according to Comparative Example 12 was light yellow-green and transparent, which was lighter than the color of the solution of the analysis sample of the inorganic component according to Comparative Examples 10 and 11. For the sample for analysis of the inorganic component according to Comparative Example 12, the ICP emission spectral analysis according to Example 3 of the present invention was performed to measure the inorganic component.

比較例12に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が10.3mg、ナトリウムが447.0mg、カリウムが52.6mg、カルシウムが339.2mg、マグネシウムが265.0mgであった。各データの標準偏差は、亜鉛が0.265、ナトリウムが16.4、カリウムが7.05、カルシウムが60.8、マグネシウムが13.8であった。
[比較例13]
The average value of the analysis results of the inorganic components according to Comparative Example 12 is 10.3 mg of zinc, 447.0 mg of sodium, 52.6 mg of potassium, 339.2 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 265.0 mg. The standard deviation of each data was 0.265 for zinc, 16.4 for sodium, 7.05 for potassium, 60.8 for calcium, and 13.8 for magnesium.
[Comparative Example 13]

実施例3と同様の原料を用い、本発明の実施例3に係る均一化ステップを経た後、均一化したマガキの可食部約2g(湿重量)を計り取ってベッセルに入れ、続いて硝酸6mLを加えて比較例13に係る混合溶液を調製した。比較例13に係る混合溶液は計3サンプル調製し、比較例13に係る各サンプル中のマガキの可食部は、1.82g、1.87g、2.18gであった。各サンプルについて、本発明の比較例12に係るマイクロ波照射ステップを行い、計3サンプルの比較例13に係る無機成分の分析用試料を得た。マイクロ波照射ステップにおいて、実際のサンプル温度推移は図11とほぼ同様であった。比較例13に係るサンプル温度の最高温度は193℃であった。比較例13に係る無機成分の分析用試料の溶液の色はいずれも薄黄緑の透明であり、比較例10及び11に係る無機成分の分析用試料の溶液の色より薄いものであった。比較例13に係る無機成分の分析用試料について、本発明の実施例3に係るICP発光分光分析を行い、無機成分の測定を行った。 Using the same raw material as in Example 3, after the homogenizing step according to Example 3 of the present invention, about 2 g (wet weight) of the edible portion of the homogenized oyster was weighed and placed in a vessel, and then nitric acid was added. 6 mL was added to prepare a mixed solution according to Comparative Example 13. A total of 3 samples of the mixed solution according to Comparative Example 13 were prepared, and the edible portion of the oyster in each sample according to Comparative Example 13 was 1.82 g, 1.87 g, and 2.18 g. The microwave irradiation step according to Comparative Example 12 of the present invention was performed on each sample to obtain a total of 3 samples of the inorganic component analysis samples according to Comparative Example 13. In the microwave irradiation step, the actual sample temperature transition was almost the same as in FIG. The maximum sample temperature of Comparative Example 13 was 193°C. The color of the solution of the analysis sample of the inorganic component according to Comparative Example 13 was light yellow-green and transparent, which was lighter than the color of the solution of the analysis sample of the inorganic component according to Comparative Examples 10 and 11. The analysis sample of the inorganic component according to Comparative Example 13 was subjected to the ICP emission spectroscopic analysis according to Example 3 of the present invention to measure the inorganic component.

比較例13に係る無機成分の分析結果の平均値は、可食部100g(湿重量)当たり、亜鉛が9.6mg、ナトリウムが594.1mg、カリウムが52.3mg、カルシウムが413.1mg、マグネシウムが188.8mgであった。各データの標準偏差は、亜鉛が0.305、ナトリウムが213、カリウムが3.91、カルシウムが111、マグネシウムが56.3であった。 The average value of the analysis results of the inorganic components according to Comparative Example 13 is 9.6 mg of zinc, 594.1 mg of sodium, 52.3 mg of potassium, 413.1 mg of calcium, and magnesium per 100 g (wet weight) of the edible portion. Was 188.8 mg. The standard deviation of each data was 0.305 for zinc, 213 for sodium, 3.91 for potassium, 111 for calcium, and 56.3 for magnesium.

図23〜27においては、縦軸は各無機成分の含有量(成分濃度、mg/可食部100g当たり)を示し、横軸はマイクロ波照射時のプログラム温度の最高温度(℃)を示す。図23〜27の白抜きの3つの丸は、各図の左から順に、比較例11,比較例13,比較例9の成分濃度及び最高温度を示し、黒塗りの3つの丸は、各図の左から順に、比較例10,比較例12,実施例3の成分濃度及び最高温度を示す。図23の実施例3及び比較例9、図24の実施例3及び比較例9、図25の比較例12及び比較例13、図27の実施例3及び比較例9については成分濃度の数値が近接し、白抜きの丸と黒塗りの丸とが重なっているため、黒塗りの丸のみ表記されているように見えている。 23 to 27, the vertical axis represents the content of each inorganic component (component concentration, mg/100 g of edible portion), and the horizontal axis represents the maximum program temperature (° C.) during microwave irradiation. The three white circles in FIGS. 23 to 27 indicate the component concentrations and the maximum temperatures of Comparative Example 11, Comparative Example 13, and Comparative Example 9 in order from the left of each figure, and the three black circles are the respective figures. The component concentrations and maximum temperatures of Comparative Example 10, Comparative Example 12, and Example 3 are shown in order from the left. Regarding Example 3 and Comparative Example 9 in FIG. 23, Example 3 and Comparative Example 9 in FIG. 24, Comparative Example 12 and Comparative Example 13 in FIG. 25, and Example 3 and Comparative Example 9 in FIG. Since the white circles and the black circles overlap in close proximity, only the black circles appear to be shown.

実施例3及び比較例9〜13に係る無機成分の分析用試料の各無機成分濃度の平均値及び標準偏差は、次の表3の通りである。

Figure 2020122715
The average values and standard deviations of the concentrations of the respective inorganic components of the samples for analyzing the inorganic components according to Example 3 and Comparative Examples 9 to 13 are shown in Table 3 below.
Figure 2020122715

表3より、分解液として過酸化水素を加えた実施例3,比較例10,比較例12については、マイクロ波照射時のプログラム温度の最高温度が高いものほど、各無機成分において標準偏差が小さくなる傾向にあることが分かる。表3において、最高温度が最も高い230℃の実施例3及び比較例9を比較すると、ナトリウムとカルシウム以外では、実施例3の方が標準偏差が小さい。ナトリウムとカルシウムについても、実施例3の標準偏差は比較例9と比較してそれぞれ2倍以内の数値の範囲内に収まっている。 From Table 3, for Example 3, Comparative Example 10 and Comparative Example 12 in which hydrogen peroxide was added as a decomposition liquid, the higher the maximum program temperature during microwave irradiation, the smaller the standard deviation of each inorganic component. It turns out that there is a tendency to become. In Table 3, comparing Example 3 and Comparative Example 9 in which the highest temperature is 230° C., the standard deviation is smaller in Example 3 except for sodium and calcium. Regarding sodium and calcium as well, the standard deviations of Example 3 are within the range of numerical values within twice as compared with Comparative Example 9.

マイクロ波照射時のプログラム温度の最高温度が190℃の比較例12では、同温度が150℃の比較例10よりも、マグネシウム濃度についての標準偏差が大きい。比較例12においては、マイクロ波照射時における酸分解が不十分である。 In Comparative Example 12 in which the maximum program temperature during microwave irradiation is 190° C., the standard deviation of the magnesium concentration is larger than in Comparative Example 10 in which the maximum temperature is 150° C. In Comparative Example 12, acid decomposition during microwave irradiation is insufficient.

日本の市場に出回り、主に食用とされている牡蠣の種類は、マガキ及びイワガキ等のマガキ属(Crassostrea)である。本発明の分析方法によれば、マガキ及びイワガキ等の牡蠣の無機成分、特にアルカリ金属及びアルカリ土類金属の含有量を高精度で短時間で同時分析できる。又、本発明の分析用試料の調製方法によれば、マガキ及びイワガキの牡蠣の無機成分、特にアルカリ金属及びアルカリ土類金属の含有量を高精度で短時間で同時分析するためのサンプルを調製することができる。 The types of oysters that are found in the Japanese market and are mainly edible are oysters (Crassostrea) such as oysters and oysters. According to the analysis method of the present invention, the content of inorganic components of oysters such as oysters and oysters, particularly alkali metals and alkaline earth metals, can be simultaneously analyzed with high accuracy and in a short time. Further, according to the method for preparing an analytical sample of the present invention, a sample for simultaneous analysis of the inorganic components of oysters of oysters and oysters, especially the contents of alkali metals and alkaline earth metals with high accuracy in a short time is prepared. can do.

(その他の実施形態)
上記のように、本発明は上記の単一の実施形態、複数の実施例等によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described by the above-mentioned single embodiment, a plurality of examples, etc., but it should be understood that the discussion and drawings forming a part of this disclosure limit the present invention. Absent. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当と解釈しうる、特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments and the like not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention according to the claims, which can be construed as appropriate from the above description.

S101……均一化ステップ、S103……分解液注入ステップ、S105……マイクロ波照射ステップ、S107……誘導結合プラズマ発光分光分析 S101: homogenization step, S103: decomposition solution injection step, S105: microwave irradiation step, S107: inductively coupled plasma emission spectroscopy

Claims (6)

牡蠣の可食部を粉砕するステップと、
前記可食部に硝酸と過酸化水素をそれぞれ別個に加えて混合溶液を調製するステップと、
前記混合溶液を密閉可能容器に収納し、密閉状態を実現するステップと、
前記密閉状態で前記混合溶液を200℃以上にマイクロ波加熱し、前記密閉状態の内部圧力を大気圧より高くし、前記密閉状態で少なくとも15分間200℃以上の昇温状態を維持し、前記可食部を酸分解し、分析用試料を調製するステップと
を含むことを特徴とする分析用試料の調製方法。
Crushing the edible portion of oysters,
A step of preparing a mixed solution by separately adding nitric acid and hydrogen peroxide to the edible portion,
Storing the mixed solution in a sealable container to realize a sealed state,
The mixed solution is microwave-heated to 200° C. or higher in the closed state, the internal pressure of the closed state is made higher than the atmospheric pressure, and the temperature rising state of 200° C. or higher is maintained in the closed state for at least 15 minutes. And a step of preparing a sample for analysis by decomposing the edible portion with an acid, the method for preparing a sample for analysis.
前記昇温状態の温度が200℃〜240℃であり、かつ、前記昇温状態の時間が30分間以上であることを特徴とする、請求項1に記載の分析用試料の調製方法。 The method for preparing an analytical sample according to claim 1, wherein the temperature of the temperature rising state is 200° C. to 240° C., and the time of the temperature rising state is 30 minutes or more. 前記硝酸と前記過酸化水素の容量比が6:1であることを特徴とする請求項1又は2に記載の分析用試料の調製方法。 The method for preparing an analytical sample according to claim 1 or 2, wherein the volume ratio of the nitric acid to the hydrogen peroxide is 6:1. 牡蠣の可食部を粉砕するステップと、
前記可食部に硝酸と過酸化水素をそれぞれ別個に加えて混合溶液を調製するステップと、
前記混合溶液を密閉可能容器に収納し、密閉状態を実現するステップと、
前記密閉状態において、前記混合溶液を200℃以上にマイクロ波加熱し、前記密閉状態の内部圧力を大気圧より高くし、前記密閉状態で少なくとも15分間200℃以上の昇温状態を維持し、前記可食部を酸分解し、分析用試料を調製するステップと
前記分析用試料に含まれる複数の無機成分を誘導結合プラズマ発光分光分析法で分析するステップと
を含むことを特徴とする分析方法。
Crushing the edible portion of oysters,
A step of preparing a mixed solution by separately adding nitric acid and hydrogen peroxide to the edible portion,
Storing the mixed solution in a sealable container to realize a sealed state,
In the hermetically sealed state, the mixed solution is microwave heated to 200° C. or higher, the internal pressure of the hermetically sealed state is made higher than atmospheric pressure, and the temperature rising state of 200° C. or higher is maintained in the hermetically sealed state for at least 15 minutes. An analysis method comprising: a step of acid-decomposing an edible portion to prepare a sample for analysis; and a step of analyzing a plurality of inorganic components contained in the sample for analysis by inductively coupled plasma optical emission spectroscopy.
前記昇温状態の温度が200℃〜240℃であり、かつ、前記昇温状態の時間が30分間以上であることを特徴とする、請求項4に記載の分析方法。 The analysis method according to claim 4, wherein the temperature of the temperature rising state is 200°C to 240°C, and the time of the temperature rising state is 30 minutes or more. 前記硝酸と前記過酸化水素の容量比が6:1であることを特徴とする請求項4又は5に記載の分析方法。 The analytical method according to claim 4 or 5, wherein the volume ratio of the nitric acid to the hydrogen peroxide is 6:1.
JP2019014929A 2019-01-31 2019-01-31 Analysis method and sample preparation method Active JP7106789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014929A JP7106789B2 (en) 2019-01-31 2019-01-31 Analysis method and sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014929A JP7106789B2 (en) 2019-01-31 2019-01-31 Analysis method and sample preparation method

Publications (2)

Publication Number Publication Date
JP2020122715A true JP2020122715A (en) 2020-08-13
JP7106789B2 JP7106789B2 (en) 2022-07-27

Family

ID=71992535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014929A Active JP7106789B2 (en) 2019-01-31 2019-01-31 Analysis method and sample preparation method

Country Status (1)

Country Link
JP (1) JP7106789B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198324A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Analytical method for heavy metal contained in soil
JP2014209096A (en) * 2013-03-22 2014-11-06 不二製油株式会社 Place of production determination method for soybean raw material and soybean processed product
US20160146753A1 (en) * 2014-11-20 2016-05-26 King Fahd University Of Petroleum And Minerals Method of detecting and quantifying perchlorate contamination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198324A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Analytical method for heavy metal contained in soil
JP2014209096A (en) * 2013-03-22 2014-11-06 不二製油株式会社 Place of production determination method for soybean raw material and soybean processed product
US20160146753A1 (en) * 2014-11-20 2016-05-26 King Fahd University Of Petroleum And Minerals Method of detecting and quantifying perchlorate contamination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NANO R.M.W. ET AL.: "Statistical mixture design development of digestion methods for Oyster tissue using inductively coup", TALANTA, vol. 80, no. 2, JPN6022022642, 15 December 2019 (2019-12-15), pages 559 - 564, XP026693035, ISSN: 0004792417, DOI: 10.1016/j.talanta.2009.07.025 *

Also Published As

Publication number Publication date
JP7106789B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
Khan et al. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS
Paniz et al. Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs
Costa et al. Direct determination of Ca, K, Mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS)
Velásquez-Ferrín et al. Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis
Matusiewicz Sample preparation for inorganic trace element analysis
Low et al. Evaluation of microwave-assisted digestion condition for the determination of metals in fish samples by inductively coupled plasma mass spectrometry using experimental designs
Elg et al. Production of TEMPO by O atoms in atmospheric pressure non-thermal plasma–liquid interactions
JP2020122715A (en) Analysis method and method for preparing sample for the same
Markiewicz-Keszycka et al. Rapid analysis of magnesium in infant formula powder using laser-induced breakdown spectroscopy
Bocca et al. Simple, fast, and low-contamination microwave-assisted digestion procedures for the determination of chemical elements in biological and environmental matrices by sector field ICP-MS
Ponce et al. Laser-induced breakdown spectroscopy determination of toxic metals in fresh fish
Vieira et al. Evaluation of an improved closed-vessel conductively heated digestion system for the analysis of raw meat samples by ICP techniques
Schmutzler et al. Modern safety control for meat products: near infrared spectroscopy utilised for detection of contaminations and adulterations of premium veal products
Silva et al. Evaluation of sample preparation methods based on alkaline and acid solubilization for the determination of Na and K in meat samples by atomic spectrometric techniques
Miranda et al. A new closed-vessel conductively heated digestion system: fostering plant analysis by inductively coupled plasma optical emission spectroscopy
Sharif et al. Titanium dioxide content in foodstuffs from the Jordanian market: spectrophotometric evaluation of TiO2 nanoparticles.
Rantaša et al. Author Spotlight: Technologies and Challenges in Elemental Analysis of Food Samples
JP2003279559A (en) Method for analyzing rhodium and/or indium-containing material for impurity element
Gómez-López et al. Electromagnetic Technologies in Food Science
Rajib et al. Detection of chromium (Cr) using X-ray fluorescence technique and investigation of Cr propagation from poultry feeds to egg and chicken flesh
Sheehan et al. Advanced review of the contributing factors for the Microwave Digestion of food matrices for trace elemental analysis
Khan et al. Elemental analysis of stone fruits by inductively coupled plasma mass spectrometry and direct mercury analysis
CN108844907A (en) A kind of many greases of sauce food lead content detection method
Persid et al. Photochemical studies of Solanum melangena (eggplant) fruit by flame atomic absorption spectrometry
Zhang et al. Quantitative analysis of Pb in kelp samples and offshore seawater by laser-induced breakdown spectroscopy

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7106789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150