JP2020122671A - Lightning arrester failure determination method and lightning arrester failure determination apparatus - Google Patents

Lightning arrester failure determination method and lightning arrester failure determination apparatus Download PDF

Info

Publication number
JP2020122671A
JP2020122671A JP2019013375A JP2019013375A JP2020122671A JP 2020122671 A JP2020122671 A JP 2020122671A JP 2019013375 A JP2019013375 A JP 2019013375A JP 2019013375 A JP2019013375 A JP 2019013375A JP 2020122671 A JP2020122671 A JP 2020122671A
Authority
JP
Japan
Prior art keywords
lightning arrester
target
value
reference value
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013375A
Other languages
Japanese (ja)
Other versions
JP7227017B2 (en
Inventor
裕直 川村
Hironao Kawamura
裕直 川村
直樹 板本
Naoki Itamoto
直樹 板本
一雄 新庄
Kazuo Shinjo
一雄 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2019013375A priority Critical patent/JP7227017B2/en
Publication of JP2020122671A publication Critical patent/JP2020122671A/en
Application granted granted Critical
Publication of JP7227017B2 publication Critical patent/JP7227017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

To provide a lightning arrester failure determination method and a lightning arrester failure determination apparatus that are highly accurate based on a stable determination criterion.SOLUTION: A failure determination method for determining whether a lightning arrester in which lightning arrester elements are connected in series is a normal product or a defective product, includes: a reference value calculation process for seeking a frequency characteristic of equivalent series resistance of the lightning arrester from a theoretical formula expressing an equivalent circuit of the lighting arrester apparatus and for using it as a reference value; a target value measurement process for measuring the frequency characteristic of the equivalent series resistance of the lightning arrester that is a determination target and for using it as a target value; a comparison process for comparing the reference value with the target value; and a determination process for determining, as a result of the comparison, that the target lightning arrester is a defective product when a difference between the reference value and the target value exceeds a threshold.SELECTED DRAWING: Figure 7

Description

本発明は、主に架空送電設備において用いられる避雷装置の故障判定方法および故障判定装置に関する。 The present invention relates to a failure determination method and a failure determination device for a lightning arrester mainly used in overhead power transmission equipment.

架空送電設備の故障原因として最も多いのが雷によるものであり、そのために、多くの送電線に避雷装置が導入されている。一般的な避雷装置は、酸化亜鉛(ZnO)からなる避雷素子を直列に接続して外管に納めた構造のものであり、これが送電線の碍子装置に設置されている。鉄塔や電線に落雷があると、避雷装置が雷電流だけを通過させてAC続流を遮断することで、碍子装置のフラッシオーバーを防いで、停電を防止する。 Lightning is the most frequent cause of failure in overhead power transmission equipment, and for that reason, lightning arresters have been introduced in many transmission lines. A general lightning protection device has a structure in which lightning protection elements made of zinc oxide (ZnO) are connected in series and housed in an outer tube, and this is installed in an insulator device of a power transmission line. When there is a lightning strike on a tower or an electric wire, the lightning protection device allows only the lightning current to pass and interrupts the AC follow-up current, thereby preventing flashover of the insulator device and preventing power failure.

ところで、このような避雷装置は、落雷の大電流により故障する場合がある。故障した避雷装置は当初の性能を有しておらず、そのままでは停電のリスクが増大することになるので、点検により故障品を発見して交換する必要がある。しかし、故障品の避雷装置であっても、外管には異常がなく、内部の避雷素子だけが損傷していることもあり、その場合、外観上では故障しているか否か判断できない。そこで、特許文献1および2に示すように、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定し、その測定値を正常品の避雷装置の同測定値と比較することで、対象避雷装置が正常品であるか故障品(全部の避雷素子が故障した完全故障品と、一部の避雷素子が故障した部分故障品がある)であるかを判定する故障判定方法が提案されている。 By the way, such a lightning arrester may fail due to a large current of lightning strike. The faulty lightning arrester does not have the original performance, and the risk of power failure increases if it is left as it is, so it is necessary to find and replace the faulty product by inspection. However, even in the case of a lightning arrester that is a defective product, there is no abnormality in the outer tube and only the internal lightning arrester element may be damaged. In that case, it is impossible to visually determine whether or not there is a failure. Therefore, as shown in Patent Documents 1 and 2, by measuring the frequency characteristic of the equivalent series resistance of the target lightning arrester that is the determination target, and comparing the measured value with the same measured value of the normal lightning arrester, the target A failure determination method for determining whether the lightning arrester is a normal product or a malfunctioning product (a complete failure product in which all lightning protection devices have failed and a partial failure product in which some lightning protection devices have failed) has been proposed. There is.

より詳しくは、特許文献1の方法は、対象の測定値と正常品の測定値を比較した結果、1kHz以下で所定の閾値以上の差が確認された場合には対象を完全故障品と判定し、1kHz以下では差が確認されずかつ100kHz以上で差が確認された場合には部分故障品と判定するものである。また、特許文献2の方法は、予め完全故障品の等価直列抵抗の周波数特性と正常品の等価直列抵抗の周波数特性の交点を求めておき、対象の測定値と正常品の測定値を比較した結果、交点を超える周波数帯域で所定の閾値以上の差が確認された場合には故障品と判定し、さらにその中で交点を下回る周波数帯域で差が確認された場合には完全故障品と判定し、それ以外は部分故障品と判定するものである。 More specifically, the method of Patent Document 1 judges that the target is a completely defective product when a difference of 1 kHz or less and a predetermined threshold value or more is confirmed as a result of comparing the measured value of the target and the measured value of the normal product. If the difference is not confirmed at 1 kHz or less and the difference is confirmed at 100 kHz or more, it is determined as a partially defective product. Further, in the method of Patent Document 2, the intersection of the frequency characteristic of the equivalent series resistance of the completely failed product and the frequency characteristic of the equivalent series resistance of the normal product is obtained in advance, and the measured value of the target is compared with the measured value of the normal product. As a result, if a difference of more than a predetermined threshold is confirmed in the frequency band that exceeds the intersection, it is determined as a defective product, and if a difference is confirmed in the frequency band below the intersection, it is determined as a completely defective product. However, other than that, it is determined as a partially defective product.

特開2011−202956号公報JP, 2011-202956, A 特開2014−13164号公報JP, 2014-13164, A

これらの従来の方法では、判定の基準として、正常品の避雷装置の等価直列抵抗の周波数特性の測定値を用いていた。しかしながら、測定値はバラツキが大きく、判定の基準が安定しないことから、故障判定の精度が低下するおそれがあった。 In these conventional methods, the measured value of the frequency characteristic of the equivalent series resistance of a normal lightning arrester is used as a criterion for determination. However, there is a possibility that the accuracy of the failure determination may decrease because the measured values have large variations and the determination criteria are not stable.

本発明は、このような事情を鑑みたものであり、安定した判定基準に基づく精度の高い避雷装置の故障判定方法および避雷装置の故障判定装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly accurate lightning arrester failure determination method and a lightning arrester failure determination apparatus based on stable determination criteria.

本発明のうち請求項1の発明は、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定方法であって、避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めて基準値とする基準値算出過程と、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定過程と、基準値と対象値とを比較する比較過程と、比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定過程を備えることを特徴とする。なお、避雷装置の等価回路は、避雷装置の各構成要素を回路素子に置き換えたものであり、さらに等価回路が、等価直列抵抗と等価直列リアクタンスからなる等価直列回路に置き換えられ、理論式が得られるものである。 The invention according to claim 1 of the present invention is a failure determination method for determining whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product, and is based on a theoretical formula representing an equivalent circuit of the lightning arrester. A reference value calculation process that obtains the frequency characteristic of the equivalent series resistance of the lightning arrester and sets it as a reference value, and a target value measurement process that measures the frequency characteristic of the equivalent series resistance of the target lightning arrester that is the determination target and sets it as the target value. It is characterized by comprising a comparison process of comparing the reference value and the target value, and a determination process of determining the target lightning arrester as a defective product when the difference between the reference value and the target value exceeds a threshold as a result of the comparison. The equivalent circuit of the lightning arrester is obtained by replacing each component of the lightning arrester with a circuit element, and the equivalent circuit is replaced with an equivalent series circuit consisting of an equivalent series resistance and an equivalent series reactance to obtain a theoretical formula. It is what is done.

本発明のうち請求項2の発明は、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定方法であって、正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めて基準値とする基準値測定過程と、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定過程と、基準値と対象値とを比較する比較過程と、比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定過程を備えることを特徴とする。なお、測定値の近似曲線を求める手法としては、既知の種々の手法を用いることができる。 A second aspect of the present invention is a failure determination method for determining whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product, and is a normal lightning arrester having an equivalent series resistance of A reference value measurement process in which the frequency characteristics are measured and an approximated curve of the measured values is obtained as a reference value, and a target value measurement process in which the frequency characteristics of the equivalent series resistance of the target lightning arrester that is the determination target is measured and set as the target value And a comparison step of comparing the reference value and the target value, and a comparison step, when the difference between the reference value and the target value exceeds a threshold value, a determination step of determining the target lightning arrester as a defective product, To do. Various known methods can be used as a method for obtaining the approximated curve of the measured value.

本発明のうち請求項3の発明は、対象値を平滑化する平滑化過程を含むことを特徴とする。平滑化とは、周波数ごとの値の中で、他の値よりも大きく乖離している値を、平均化したり除去したりすることで、全体的に突出した値がない状態にすることである。対象値を平滑化する手法としては、ローパスフィルタを通す方法のほか、既知の種々の手法を用いることができる。 The invention according to claim 3 of the present invention is characterized by including a smoothing process for smoothing a target value. Smoothing is a process of averaging or removing values that are largely different from other values among the values for each frequency, so that there is no overall protruding value. .. As a method of smoothing the target value, various known methods can be used in addition to the method of passing a low-pass filter.

本発明のうち請求項4の発明は、請求項1、2または3記載の避雷装置の故障判定方法に基づき、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定装置であって、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定手段と、予め記憶された基準値と測定された対象値とを比較する比較手段と、比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定手段を備えることを特徴とする。なお、対象値を平滑化する平滑化手段を含むものであってもよい。 According to a fourth aspect of the present invention, it is determined whether the lightning arrester in which lightning arresters are connected in series is a normal product or a defective product, based on the method for determining a failure of the lightning arrester according to the first, second or third aspect. A failure determination device, which is a target value measuring means for measuring the frequency characteristic of the equivalent series resistance of the target lightning arrester to be determined as a target value, and a prestored reference value and the measured target value. It is characterized by comprising a comparing means for comparing and a determining means for determining the target lightning arrester as a defective product when the difference between the reference value and the target value exceeds a threshold as a result of the comparison. It should be noted that it may include a smoothing means for smoothing the target value.

本発明のうち請求項1の発明によれば、避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めたものを故障判定の基準値としており、従来基準値としていた正常品の避雷装置の等価直列抵抗の周波数特性の測定値と比較して値にバラツキがないので、故障判定の精度が向上する。 According to the first aspect of the present invention, the reference value for failure determination is the reference value for the failure determination, which is obtained by obtaining the frequency characteristic of the equivalent series resistance of the lightning protection device from the theoretical expression representing the equivalent circuit of the lightning protection device. Since there is no variation in the value of the frequency characteristics of the equivalent series resistance of the normal lightning arrester, the accuracy of failure determination is improved.

本発明のうち請求項2の発明によれば、正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めたものを故障判定の基準値としており、従来基準値としていた正常品の避雷装置の等価直列抵抗の周波数特性の測定値と比較して値にバラツキがないので、故障判定の精度が向上する。 According to the second aspect of the present invention, the frequency characteristic of the equivalent series resistance of the normal lightning arrester is measured, and the approximate curve of the measured value is obtained as the reference value for failure determination. Since there is no variation in the measured value of the frequency characteristic of the equivalent series resistance of the normal lightning arrester, the accuracy of failure determination is improved.

本発明のうち請求項3の発明によれば、これまでの測定結果から、対象避雷装置が正常品に近いほど(避雷素子の故障比率が小さいほど)、対象値のバラツキが大きいことが得られており、バラツキにより正常品を故障品と判定するおそれがあるところ、測定値を平滑化することで、より故障判定の精度が向上する。 According to the invention of claim 3 of the present invention, it can be obtained from the measurement results so far that the closer the target lightning arrester is to a normal product (the smaller the failure ratio of the lightning arrester), the greater the variation of the target value. Therefore, there is a possibility that a normal product may be determined to be a defective product due to variations. However, by smoothing the measured values, the accuracy of failure determination is further improved.

本発明のうち請求項4の発明によれば、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定するだけで、請求項1、2または3の方法により、対象が正常品であるか故障品であるかを容易かつ高い精度で判定できる。 According to the invention of claim 4 of the present invention, the target is a normal product by the method of claim 1, 2 or 3 only by measuring the frequency characteristic of the equivalent series resistance of the target lightning arrester to be judged. It can be easily and highly accurately determined whether the product is defective or defective.

避雷装置の構造を示す模式図である。It is a schematic diagram which shows the structure of a lightning arrester. 避雷装置の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of a lightning arrester. 避雷装置の等価回路を表す理論式から求めた基準値を示すグラフである。It is a graph which shows the standard value calculated from the theoretical formula showing the equivalent circuit of a lightning arrester. 基準値と3つの対象避雷装置の対象値を併せて示すグラフである。It is a graph which shows the standard value and the target value of three target lightning arresters collectively. 平滑化前後の対象値を示すグラフである。6 is a graph showing target values before and after smoothing. 基準値と対象値の差異(対象値/基準値)を示すグラフである。6 is a graph showing a difference between a reference value and a target value (target value/reference value). 避雷装置の故障判定装置の構成を示すブロック図である。It is a block diagram showing composition of a failure judging device of a lightning arrester. 正常品の避雷装置の等価直列抵抗の測定値とその近似曲線を示すグラフである。It is a graph which shows the measured value of an equivalent series resistance of a normal lightning arrester, and its approximate curve.

以下、本発明の具体的な内容について説明する。本発明の故障判定方法は、避雷素子を直列接続した避雷装置について、正常品であるか故障品であるかを判定するものである。そして、本発明の第一実施形態は、避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めて基準値とする基準値算出過程と、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定過程と、対象値を平滑化する平滑化過程と、基準値と対象値とを比較する比較過程と、比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定過程を備えるものである。 The specific contents of the present invention will be described below. The failure determination method of the present invention determines whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product. Then, the first embodiment of the present invention is a reference value calculation process of determining a frequency characteristic of an equivalent series resistance of a lightning arrester as a reference value from a theoretical expression representing an equivalent circuit of the lightning arrester, and a target lightning arrester that is a determination target. The target value measurement process of measuring the frequency characteristics of the equivalent series resistance of to be the target value, the smoothing process of smoothing the target value, the comparison process of comparing the reference value and the target value, the result of the comparison, the reference When the difference between the target value and the target value exceeds the threshold value, the target lightning arrester is determined to be a defective product.

まず、対象となる避雷装置の構造について説明する。図1に示すように、この避雷装置1は、酸化亜鉛(ZnO)からなる略円柱形状の避雷素子11を複数個(本例では10個)直列に接続してある。隣り合う避雷素子11の間には、アルミ製で円板形状の仕切板12を挟んであり、さらに並んだ避雷素子11の中央部(端から5番目の避雷素子11と6番目の避雷素子11の間)には、仕切板12に替えてアルミ製で円柱形状のスペーサ13を設けてある。また、並んだ避雷素子11の一方の端部には、コイルバネからなる押圧部材14を設けてある。そして、並んだ避雷素子11(および押圧部材14)の両端に、端子15を設けてある。端子15は、円柱形状の基部151と、基部151の端面から基部151の中心軸方向に延びる接続部152を有しており、並んだ避雷素子11の一方の端部においては、端子15の基部151が押圧部材14と接続しており、他方の端部においては、端子15の基部151が避雷素子11と接続している。なお、コイルバネからなる押圧部材14は、圧縮された状態で避雷素子11と端子15の基部151とに挟まれており、直列に接続された避雷素子11を押圧している。また、避雷素子11、仕切板12、スペーサ13および端子15の基部151は、直径が略同一であって、同一軸上に位置している。そして、このように並んで設けられた避雷素子11、仕切板12、スペーサ13、押圧部材14および端子15が、外管16に納められている。ただし、端子15は基部151のみが外管16に納まっており、接続部152は外管16から外側に突出している。外管16は、繊維強化プラスチック製で円筒形状である。外管16の内径は、避雷素子11、仕切板12、スペーサ13、押圧部材14および端子15の基部151が丁度納まる大きさである。また、外管16の外周面には、全面にわたって、耐汚損性能を高めるための突起161が形成されている。 First, the structure of the target lightning arrester will be described. As shown in FIG. 1, this lightning arrester 1 has a plurality of substantially cylindrical lightning arresters 11 (10 in this example) made of zinc oxide (ZnO) connected in series. A disc-shaped partition plate 12 made of aluminum is sandwiched between adjacent lightning protection elements 11, and the center portion of the lightning protection elements 11 arranged further (the fifth lightning protection element 11 and the sixth lightning protection element 11 from the end). In the space), a columnar spacer 13 made of aluminum is provided in place of the partition plate 12. A pressing member 14 made of a coil spring is provided at one end of the lightning arresting elements 11 arranged side by side. Then, terminals 15 are provided at both ends of the lightning arresting elements 11 (and the pressing member 14) arranged side by side. The terminal 15 has a cylindrical base portion 151 and a connecting portion 152 extending from the end surface of the base portion 151 in the direction of the central axis of the base portion 151. 151 is connected to the pressing member 14, and at the other end, the base 151 of the terminal 15 is connected to the lightning protection element 11. The pressing member 14 formed of a coil spring is sandwiched between the lightning protection element 11 and the base 151 of the terminal 15 in a compressed state, and presses the lightning protection element 11 connected in series. The lightning arrester 11, the partition plate 12, the spacer 13 and the base 151 of the terminal 15 have substantially the same diameter and are located on the same axis. The lightning protection element 11, the partition plate 12, the spacer 13, the pressing member 14, and the terminal 15 arranged side by side in this manner are housed in the outer tube 16. However, only the base 151 of the terminal 15 is housed in the outer pipe 16, and the connecting portion 152 projects outward from the outer pipe 16. The outer tube 16 is made of fiber reinforced plastic and has a cylindrical shape. The inner diameter of the outer tube 16 is such that the lightning arrester element 11, the partition plate 12, the spacer 13, the pressing member 14 and the base portion 151 of the terminal 15 can be accommodated. Further, on the outer peripheral surface of the outer tube 16, a projection 161 for enhancing the stain resistance performance is formed over the entire surface.

次に、このような構造の避雷装置1の等価回路について説明する。図2に示すように、等価回路は、避雷装置1の各構成要素を回路素子に置き換えたものである。より詳しくは、避雷素子11は、その個数をn個として、抵抗(抵抗値r,・・・,r)とコンデンサ(静電容量値c,・・・,c)を並列接続したものとして表される。仕切板12は、その個数を避雷素子11と同じn個として、抵抗(抵抗値rb1,・・・,rbn)として表される。スペーサ13は、抵抗(抵抗値r)として表される。押圧部材14は、抵抗(抵抗値r)と誘導子(インダクタンス値L)を直列接続したものとして表される。端子15は、抵抗(抵抗値r)として表される。外管16は、コンデンサ(静電容量値c)として表される。そして、避雷素子11、仕切板12、スペーサ13および押圧部材14が直列接続され、それらと外管16が並列接続されており、さらにその両端にそれぞれ端子15が直列接続されている。 Next, an equivalent circuit of the lightning arrester 1 having such a structure will be described. As shown in FIG. 2, the equivalent circuit is obtained by replacing each component of the lightning arrester 1 with a circuit element. More specifically, the lightning arrester element 11 has resistors n (resistance values r 1 ,..., R n ) and capacitors (capacitance values c 1 ,..., cn) connected in parallel with the number n. Represented as The number of partition plates 12 is n, which is the same as that of the lightning protection element 11, and is expressed as resistance (resistance values r b1 ,..., R bn ). The spacer 13 is represented as a resistance (resistance value ra). The pressing member 14 is represented as a resistor (resistance value r s ) and an inductor (inductance value L s ) connected in series. The terminal 15 is represented as a resistance (resistance value r t ). The outer tube 16 is represented as a capacitor (capacitance value c g ). The lightning protection element 11, the partition plate 12, the spacer 13, and the pressing member 14 are connected in series, and the outer tube 16 is connected in parallel, and terminals 15 are connected in series at both ends thereof.

さらに、この避雷装置1の等価回路は、等価直列抵抗と等価直列リアクタンスからなる等価直列回路に置き換えられるものであって、以下のような理論式により表される。まず、避雷素子11、仕切板12、スペーサ13および押圧部材14が直列接続された回路(図2の一点鎖線で囲まれた部分)について、等価直列抵抗Rと等価直列リアクタンスXからなる等価直列回路R+jXに置き換えられ、RとXは次の式(1)で表される。ただし、避雷素子11の抵抗値と静電容量値はすべて同一の値とし、それぞれr(=r=・・・=r),c(=c=・・・=c)とした。また、仕切板12の抵抗値もすべて同一の値とし、r(=rb1=・・・=rbn)とした。

Figure 2020122671
次に、式(1)で表される回路と外管16が並列接続された回路(図2の二点鎖線で囲まれた部分)について、等価直列抵抗Rと等価直列リアクタンスXからなる等価直列回路R+jXに置き換えられ、RとXは次の式(2)で表される。
Figure 2020122671
次に、式(2)で表される回路と端子15が直列接続された回路(図2の全体)、すなわち避雷装置1の等価回路について、等価直列抵抗Rと等価直列リアクタンスXからなる等価直列回路R+jXに置き換えられ、RとXは次の式(3)で表される。
Figure 2020122671
Further, the equivalent circuit of the lightning arrester 1 is replaced with an equivalent series circuit including an equivalent series resistance and an equivalent series reactance, and is represented by the following theoretical formula. First, regarding the circuit in which the lightning arrester 11, the partition plate 12, the spacer 13 and the pressing member 14 are connected in series (the portion surrounded by the alternate long and short dash line in FIG. 2), the equivalent series resistance R 1 and the equivalent series reactance X 1 It is replaced by the series circuit R 1 +jX 1 , and R 1 and X 1 are represented by the following formula (1). However, the resistance value and the electrostatic capacitance value of the lightning protection element 11 are all set to the same value, and are set to r (=r 1 =...=r n ) and c (=c 1 =...=c n ), respectively. .. Further, the resistance values of the partition plates 12 are all set to the same value and set to r b (=r b1 =...=r bn ).
Figure 2020122671
Next, regarding the circuit represented by the formula (1) and the circuit in which the outer tube 16 is connected in parallel (the portion surrounded by the chain double-dashed line in FIG. 2), the equivalent series resistance R 2 and the equivalent series reactance X 2 are used. The equivalent series circuit R 2 +jX 2 is replaced, and R 2 and X 2 are represented by the following equation (2).
Figure 2020122671
Next, the circuit represented by the equation (2) and the circuit in which the terminal 15 is connected in series (the whole of FIG. 2), that is, the equivalent circuit of the lightning arrester 1, is composed of an equivalent series resistance R 3 and an equivalent series reactance X 3. The equivalent series circuit R 3 +jX 3 is replaced, and R 3 and X 3 are represented by the following equation (3).
Figure 2020122671

このようにして求められる避雷装置の等価回路の等価直列抵抗Rの理論式に基づき、基準値算出過程が実行される。基準値算出過程では、正常品の避雷装置の各構成要素について、抵抗値、静電容量値、インダクタンス値といったパラメータ(周波数特性)を広帯域(たとえば、1kHz〜1MHz)にわたって実測し、その値を上記の各式に代入して、避雷装置の等価回路の等価直列抵抗の周波数特性を求め、これを基準値とする。図3に示すのは、こうして求めた基準値を表すグラフであり、横軸を周波数[Hz]、縦軸を等価直列抵抗[Ω]とした両対数グラフとなっている。このように、避雷装置の等価回路を表す理論式から求めた基準値は、両対数グラフ上において、右下がりの直線に近い線で表される。なお、このグラフには、参考として正常品の避雷装置を実測して得られた等価直列抵抗の測定値も示してある。ただし、この測定値は、複数(サンプル数12)の避雷装置についての測定値の平均値である。このように、測定値は、複数の値を平均したものであっても、なおバラツキが大きいものであることがわかる。 The reference value calculation process is executed based on the theoretical formula of the equivalent series resistance R 3 of the equivalent circuit of the lightning arrester thus obtained. In the reference value calculation process, parameters (frequency characteristics) such as a resistance value, an electrostatic capacitance value, and an inductance value are measured over a wide band (for example, 1 kHz to 1 MHz) for each component of a normal lightning arrester, and the value is measured as described above. Substituting into each equation of, the frequency characteristic of the equivalent series resistance of the equivalent circuit of the lightning arrester is obtained, and this is used as the reference value. FIG. 3 is a graph showing the reference value thus obtained, and is a logarithmic graph in which the horizontal axis represents frequency [Hz] and the vertical axis represents equivalent series resistance [Ω]. As described above, the reference value obtained from the theoretical formula that represents the equivalent circuit of the lightning arrester is represented by a line that is close to a straight line descending to the right on the log-log graph. For reference, the graph also shows the measured value of the equivalent series resistance obtained by actually measuring a normal lightning arrester. However, this measured value is an average value of the measured values of a plurality of (12 samples) lightning arresters. As described above, it can be seen that the measured values have large variations even if they are averages of a plurality of values.

続いて、対象値測定過程が実行される。対象値測定過程では、判定対象である対象避雷装置について、等価直列抵抗の周波数特性を実測して、これを対象値とする。測定は、インピーダンスアナライザにより、広帯域(たとえば、1kHz〜1MHz)にわたって行われるものである。図4に示すのは、基準値と対象値を併せて示したグラフである。対象値として3つの値が表示されているが、それぞれ10%の避雷素子が故障した対象避雷装置、50%の避雷素子が故障した対象避雷装置、100%の避雷素子が故障した対象避雷装置を示している。 Subsequently, the target value measurement process is executed. In the process of measuring the target value, the frequency characteristic of the equivalent series resistance is actually measured for the target lightning arrester to be determined, and this is set as the target value. The measurement is performed by an impedance analyzer over a wide band (for example, 1 kHz to 1 MHz). FIG. 4 is a graph showing the reference value and the target value together. Although three values are displayed as target values, a target lightning arrester with 10% lightning arrestor failure, a target lightning arrester with 50% lightning arrestor failure, and a target lightning arrester with 100% lightning arrester failure Showing.

続いて、平滑化過程が実行される。平滑化過程では、対象値測定過程において得られた対象値を平滑化する。これまでの測定結果から、等価直列抵抗の周波数特性の測定値(対象値)は、図4に示すように、対象避雷装置が正常品に近いほど(避雷素子の故障比率が小さいほど)、バラツキが大きいことが得られている。これは、正常な避雷素子の特性によるものである。そして、このバラツキにより、正常品を故障品と判定するおそれがある。そこで、対象値を、ローパスフィルタを通して平滑化する。図5に示すのは、このような平滑化の効果を示すグラフである。このグラフは2つの正常品の避雷装置についての対象値(平滑化前と平滑化後)を示すものであるが、平滑化により、極端なバラツキが低減されていることがわかる。 Then, the smoothing process is performed. In the smoothing process, the target value obtained in the target value measuring process is smoothed. From the measurement results obtained so far, the measured value (target value) of the equivalent series resistance varies as the target lightning arrester is closer to a normal product (the smaller the failure ratio of the lightning arrester), as shown in FIG. Is obtained. This is due to the normal characteristics of the lightning protection device. Then, due to this variation, a normal product may be determined to be a defective product. Therefore, the target value is smoothed through a low pass filter. FIG. 5 is a graph showing the effect of such smoothing. This graph shows target values (before smoothing and after smoothing) for two normal lightning arresters, but it can be seen that smoothing reduces extreme variations.

続いて、比較過程が実行される。比較過程では、上記のようにして得られた基準値と対象値とを、広帯域にわたって比較する。比較の方法として、ここでは、対象値を基準値で割った値(対象値/基準値)を算出し、これを基準値と対象値の差異とする。 Subsequently, the comparison process is performed. In the comparison process, the reference value and the target value obtained as described above are compared over a wide band. As a comparison method, here, a value (target value/reference value) obtained by dividing the target value by the reference value is calculated, and this is used as the difference between the reference value and the target value.

続いて、判定過程が実行される。判定過程では、比較の結果を受けて、基準値と対象値の差異が閾値を超えた場合に、対象避雷装置を故障品と判定する。ここでは、閾値の値を3とし、広帯域(1kHz〜1MHzとする)において、基準値と対象値の差異が閾値を超える点が1点でもあれば、その対象避雷装置を故障品と判定し、基準値と対象値の差異が閾値を超える点がなければ、その対象避雷装置を正常品と判定するものとする。図6に示すのは、複数の対象避雷装置(図4に示したものとは異なる)についての基準値と対象値の差異(対象値/基準値)の値を、閾値とともに表したグラフであり、この判定を視覚的に表している。三角印で表されるのは、閾値のラインを超える点があるので故障品と判定された対象避雷装置であり、丸印で表されるのは、閾値のラインを超える点がないので正常品と判定された対象避雷装置である。 Then, the determination process is executed. In the determination process, when the difference between the reference value and the target value exceeds the threshold value in response to the result of the comparison, the target lightning arrester is determined to be a defective product. Here, the threshold value is set to 3, and if there is even one point where the difference between the reference value and the target value exceeds the threshold value in a wide band (1 kHz to 1 MHz), the target lightning arrester is determined to be a defective product, If there is no point where the difference between the reference value and the target value exceeds the threshold value, the target lightning arrester is determined to be a normal product. FIG. 6 is a graph showing reference values for a plurality of target lightning arresters (different from those shown in FIG. 4) and values of differences between the target values (target value/reference value) together with threshold values. , This judgment is visually represented. The triangle mark indicates the target lightning arrester that has been determined to be a defective product because it has a point that exceeds the threshold line, and the circle mark indicates a normal lightning arrestor because there is no point that exceeds the threshold line. It is a target lightning arrester that is determined to be.

なお、理論上は、対象避雷装置が正常品であれば、基準値と対象値は同じ値、すなわち、基準値と対象値の差異(対象値/基準値)の値は1になるはずである。しかしながら、等価直列抵抗の周波数特性の測定値(対象値)は、ローパスフィルタを通して平滑化してもバラツキが残っているため、差異の値は周波数によって1より大きい値となるところもある。このように、バラツキが原因で差異の値が1より大きい値となる場合に、その対象避雷装置を故障品と判定しないように、閾値を用いるものであり、この閾値は、正常品の等価直列抵抗の周波数特性の測定値(対象値)のバラツキが吸収されるような最小限の値として、種々の実験・実証に基づき経験的に定められるものである。 In theory, if the target lightning arrester is a normal product, the reference value and the target value should be the same value, that is, the difference between the reference value and the target value (target value/reference value) should be 1. .. However, the measured value (target value) of the frequency characteristic of the equivalent series resistance still has a variation even after being smoothed through a low-pass filter, so that the difference value may be greater than 1 depending on the frequency. As described above, when the difference value is larger than 1 due to the variation, a threshold value is used so that the target lightning arrester is not determined to be a defective product. It is empirically determined based on various experiments and demonstrations as the minimum value that absorbs the variation in the measured value (target value) of the frequency characteristic of the resistance.

このような本発明の避雷装置の故障判定方法の第一実施形態によれば、避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めたものを故障判定の基準値としており、従来基準値としていた正常品の避雷装置の等価直列抵抗の周波数特性の測定値と比較して、値にバラツキがない。これは、図3に示すグラフからも明らかである。そして、このように値にバラツキがない基準値を用いることにより、故障判定の精度が向上するものである。 According to the first embodiment of the method for determining the failure of the lightning arrester of the present invention, the reference value for the failure determination is obtained by obtaining the frequency characteristic of the equivalent series resistance of the lightning arrester from the theoretical formula representing the equivalent circuit of the lightning arrester. Therefore, there is no variation in the value compared with the measured value of the frequency characteristic of the equivalent series resistance of the normal lightning arrester, which was used as the reference value in the past. This is also clear from the graph shown in FIG. Then, by using the reference value having no variation in the value, the accuracy of the failure determination is improved.

ここで、実際に従来の故障判定方法と本発明の故障判定方法を実行して、その精度を比較した結果を示す。試験的に故障させた対象避雷装置(サンプル数17)について、両方の方法で判定を行った。その結果、従来の故障判定方法では、故障判定率は76%(13/17)であったのに対し、本発明の故障判定方法では、故障判定率は100%(17/17)であった。このように、本発明の故障判定方法により、故障判定の精度が向上することが確認された。 Here, the results of actually executing the conventional failure determination method and the failure determination method of the present invention and comparing their accuracies are shown. The target lightning arrester (17 samples) that failed on a trial basis was judged by both methods. As a result, in the conventional failure determination method, the failure determination rate was 76% (13/17), whereas in the failure determination method of the present invention, the failure determination rate was 100% (17/17). .. Thus, it was confirmed that the failure determination method of the present invention improves the accuracy of failure determination.

なお、本発明の故障判定方法は、対象避雷装置が正常品であるか故障品であるかを判定するものであって、故障品が、全部の避雷素子が故障した完全故障品であるか、一部の避雷素子が故障した部分故障品があるかについては判定しないものであるが、実用上はそれで差し支えない。なぜなら、完全故障品であれば、ほとんどの場合、避雷素子だけでなく外管も損傷しているので、本発明の故障判定方法を用いるまでもないのであり、外管には損傷がない場合において、内部の避雷素子が損傷しているもの(=部分故障品)であるか損傷していないもの(=正常品)であるかを判定できれば十分だからである。 The failure determination method of the present invention is for determining whether the target lightning arrester is a normal product or a defective product, and whether the defective product is a completely defective product in which all the lightning protection devices have failed, Although it is not judged whether or not there is a partially defective product in which some lightning protection elements have failed, it is acceptable in practical use. In most cases, if the product is a completely defective product, not only the lightning protection device but also the outer pipe is damaged, so it is not necessary to use the failure determination method of the present invention. The reason is that it is sufficient to determine whether the internal lightning protection element is damaged (=partially failed product) or undamaged (=normal product).

次に、本発明の避雷装置の故障判定装置について説明する。本発明の故障判定装置は、上記のような避雷装置の故障判定方法に基づき、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定するものである。図7に示すように、この故障判定装置2は、基準値算出手段21と、対象値測定手段22と、平滑化手段23と、プロット手段24と、比較手段25と、判定手段26を備える。ただし、基準値算出手段21、プロット手段24、比較手段25および判定手段26については、1台のコンピュータCがそれぞれの手段として機能するものである。 Next, the failure determination device of the lightning arrester of the present invention will be described. The failure determination device of the present invention determines whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product based on the above-described failure determination method for a lightning arrester. As shown in FIG. 7, the failure determination device 2 includes a reference value calculation unit 21, a target value measurement unit 22, a smoothing unit 23, a plotting unit 24, a comparison unit 25, and a determination unit 26. However, with respect to the reference value calculating means 21, the plotting means 24, the comparing means 25 and the judging means 26, one computer C functions as each means.

コンピュータCは、キーボードやマウス等からなる入力装置、ディスプレイ等からなる出力装置、プログラムの命令を順番に実行するCPU、プログラムやプログラムの実行に必要なデータおよび計算結果等を保存しておく記憶装置Mを構成要素とする標準的なものである(記憶装置M以外の構成要素は図示省略する)。 The computer C is an input device including a keyboard and a mouse, an output device including a display, a CPU that sequentially executes program instructions, and a storage device that stores the program, data necessary for executing the program, calculation results, and the like. It is a standard one having M as a component (components other than the storage device M are not shown).

対象値測定手段22は、インピーダンスアナライザにより構成されるものであって、対象避雷装置1aの端子に接続するプローブを有しており、出力端が、平滑化手段23に接続されている。そして、対象値測定手段22は、対象避雷装置1aの等価直列抵抗の周波数特性を測定して対象値とし、対象値のデータを平滑化手段23へと出力するものである。 The target value measuring means 22 is composed of an impedance analyzer, has a probe connected to a terminal of the target lightning arrester 1a, and has an output end connected to the smoothing means 23. Then, the target value measuring means 22 measures the frequency characteristic of the equivalent series resistance of the target lightning arrester 1a to obtain the target value, and outputs the data of the target value to the smoothing means 23.

平滑化手段23は、ローパスフィルタにより構成されるものであって、入力端が、対象値測定手段22に接続されており、出力端が、コンピュータCに接続されている。そして、平滑化手段23は、入力された対象値のデータについて、高周波成分をカットして平滑化し、コンピュータCへと出力するものである。 The smoothing means 23 is composed of a low-pass filter, and has an input end connected to the target value measurement means 22 and an output end connected to the computer C. Then, the smoothing means 23 cuts high-frequency components from the input data of the target value, smoothes it, and outputs it to the computer C.

以上が、本発明の避雷装置の故障判定装置の構成である。そして、コンピュータCにおいて、避雷装置の故障判定プログラムを実行させることにより、装置が動作して、本発明の避雷装置の故障判定方法に基づき、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定するものである。 The above is the configuration of the failure determination device for the lightning arrester of the present invention. Then, in the computer C, the lightning arrester failure determination program is executed to operate the apparatus. Based on the lightning arrester failure determination method of the present invention, is a lightning arrester in which lightning arresters are connected in series is a normal product? It is to determine whether or not the product is defective.

より詳しくは、このプログラムをコンピュータCに実行させた場合、各ステップ(基準値算出ステップ、対象値測定ステップ、平滑化ステップ、プロットステップ、比較ステップ、判定ステップ)が実行されることで、コンピュータCが各種の手段(基準値算出手段21、プロット手段24、比較手段25、判定手段26)として機能し、その他の手段(対象値測定手段22、平滑化手段23)とともに故障判定を行う。 More specifically, when this program is executed by the computer C, the computer C executes each step (reference value calculation step, target value measurement step, smoothing step, plotting step, comparison step, determination step). Functions as various means (reference value calculating means 21, plotting means 24, comparing means 25, determining means 26), and performs failure determination together with other means (target value measuring means 22, smoothing means 23).

このプログラムを実行すると、まず基準値算出ステップが実行され、コンピュータCが、基準値算出手段21として機能する。基準値算出手段21は、正常品の避雷装置の各構成要素のパラメータ(周波数特性)の測定値の入力を受け付ける。入力は、コンピュータCに接続された測定器(インピーダンスアナライザなど)により測定されたデータが取り込まれるものであってもよいし、別途測定され記憶媒体に保存されたデータが読み込まれるものであってもよいし、別途測定されたデータが入力装置により手入力されるものであってもよい。入力された測定値は、記憶装置Mに保存される。そして、基準値算出手段21は、記憶装置Mから、測定値および予め保存された式(1)〜(3)を読み込み、測定値を各式に代入して、避雷装置の等価回路の等価直列抵抗の周波数特性を求め、これを基準値とする。基準値は、記憶装置Mに保存される。 When this program is executed, the reference value calculation step is first executed, and the computer C functions as the reference value calculation means 21. The reference value calculation means 21 receives input of measured values of parameters (frequency characteristics) of each component of the normal lightning arrester. The input may be one in which data measured by a measuring device (impedance analyzer or the like) connected to the computer C is captured, or one in which data separately measured and stored in a storage medium is read. Alternatively, the separately measured data may be manually input by the input device. The input measured value is stored in the storage device M. Then, the reference value calculation means 21 reads the measured value and the expressions (1) to (3) stored in advance from the storage device M, substitutes the measured value into each expression, and equivalent series of the equivalent circuit of the lightning arrester. Obtain the frequency characteristic of the resistor and use this as the reference value. The reference value is stored in the storage device M.

次に、対象値測定ステップおよび平滑化ステップが実行され、コンピュータCが、対象値測定手段22により測定される対象値のデータの入力を受け付ける。ただし、対象値のデータは、平滑化手段23により平滑化されたものが入力される。入力された対象値は、記憶装置Mに保存される。なお、平滑化手段23としてのローパスフィルタは、コンピュータC上にソフトウェアとして実装されたものであってもよく、その場合、対象値のデータがコンピュータCに入力された後、平滑化ステップが実行されて対象値のデータが平滑化される。 Next, the target value measuring step and the smoothing step are executed, and the computer C receives the input of the target value data measured by the target value measuring means 22. However, the data of the target value that is smoothed by the smoothing means 23 is input. The input target value is stored in the storage device M. The low-pass filter as the smoothing means 23 may be implemented as software on the computer C. In that case, after the data of the target value is input to the computer C, the smoothing step is executed. Then, the data of the target value is smoothed.

次に、プロットステップが実行され、コンピュータCが、プロット手段24として機能する。プロット手段24は、記憶装置Mから、基準値および対象値を読み込み、コンピュータCの出力装置(ディスプレイ)にグラフとして表示する。 Next, the plotting step is executed, and the computer C functions as the plotting means 24. The plotting means 24 reads the reference value and the target value from the storage device M and displays them as a graph on the output device (display) of the computer C.

次に、比較ステップが実行され、コンピュータCが、比較手段25として機能する。比較手段25は、記憶装置Mから、基準値および対象値を読み込み、データがある周波数ごとに、対象値を基準値で割った値(対象値/基準値)を算出し、これを基準値と対象値の差異として、記憶装置Mに保存する。 Next, the comparison step is executed, and the computer C functions as the comparison means 25. The comparison unit 25 reads the reference value and the target value from the storage device M, calculates a value (target value/reference value) obtained by dividing the target value by the reference value for each frequency having data, and uses this as the reference value. The difference in the target value is stored in the storage device M.

次に、判定ステップが実行され、コンピュータCが、判定手段26として機能する。判定手段26は、記憶装置Mから、基準値と対象値の差異を読み込み、広帯域において、基準値と対象値の差異が予め定められた閾値を超える点が1点でもあれば、その対象避雷装置を故障品と判定し、基準値と対象値の差異が閾値を超える点がなければ、その対象避雷装置を正常品と判定する。判定結果は、記憶装置Mに保存されるとともに、コンピュータCの出力装置に表示される。以上で、プログラムが終了し、故障判定装置による故障判定が完了する。 Next, the determination step is executed, and the computer C functions as the determination means 26. The determination means 26 reads the difference between the reference value and the target value from the storage device M, and if there is at least one point where the difference between the reference value and the target value exceeds a predetermined threshold value in the wide band, the target lightning arrester. Is determined to be a defective product, and if the difference between the reference value and the target value does not exceed the threshold value, the target lightning arrester is determined to be a normal product. The determination result is stored in the storage device M and displayed on the output device of the computer C. With the above, the program ends, and the failure determination by the failure determination device is completed.

なお、算出された基準値は、同じ型式の避雷装置については共通して用いることができるものであるから、過去に基準値を算出済みの型式の避雷装置について故障判定を行う場合には、基準値算出ステップを省略して、対象値測定ステップ以降を実行すればよい。 Note that the calculated reference value can be used in common for lightning arresters of the same type.Therefore, when performing a failure determination for a type of lightning arrester whose reference value has been calculated in the past, It suffices to omit the value calculation step and execute the target value measurement step and subsequent steps.

また、この避雷装置の故障判定プログラムは、専用のソフトウェアとして実行されるものであっても、汎用の表計算ソフトウェアなどの上で実行されるものであってもよいし、別のプログラムやシステムに組み込まれたものであってもよい。 The lightning arrester failure determination program may be executed as dedicated software or may be executed on general-purpose spreadsheet software, or may be executed by another program or system. It may be incorporated.

このように、本発明の避雷装置の故障判定装置によれば、判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定するだけで、上記の避雷装置の故障判定方法により、対象が正常品であるか故障品であるかを容易かつ高い精度で判定できる。 As described above, according to the failure determination device for a lightning arrester of the present invention, by simply measuring the frequency characteristic of the equivalent series resistance of the target lightning arrester that is the determination target, the failure determination method for the lightning arrester described above allows the target to be normal. It is possible to easily and highly accurately determine whether the product is a defective product or a defective product.

次に、本発明の避雷装置の故障判定方法の第二実施形態について説明する。第二実施形態も、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定するものであるが、第一実施形態と比較して、基準値の求め方が異なる。すなわち、第一実施形態は、避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めて基準値とする基準値算出過程を有するものであるが、第二実施形態は、この基準値算出過程に替えて、正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めて基準値とする基準値測定過程を有するものである。第二実施形態において、基準値測定過程以降の、対象値測定過程、比較過程および判定過程については、第一実施形態と同じである。よって、以下においては、第一実施形態と異なる基準値測定過程についてのみ説明する。 Next, a second embodiment of the lightning arrester failure determination method of the present invention will be described. The second embodiment also determines whether the lightning arrester in which the lightning arrester is connected in series is a normal product or a defective product, but the method of obtaining the reference value is different from that in the first embodiment. That is, the first embodiment has a reference value calculation process of determining the frequency characteristic of the equivalent series resistance of the lightning arrester as a reference value from the theoretical formula representing the equivalent circuit of the lightning arrester, but the second embodiment is Instead of this reference value calculation process, there is a reference value measurement process in which the frequency characteristic of the equivalent series resistance of a normal lightning arrester is measured and an approximated curve of the measured value is obtained and used as the reference value. In the second embodiment, the target value measurement process, the comparison process, and the determination process after the reference value measurement process are the same as those in the first embodiment. Therefore, in the following, only the reference value measuring process different from the first embodiment will be described.

第二実施形態において実行される基準値測定過程では、正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めて基準値とする。測定は、インピーダンスアナライザにより、広帯域(たとえば、1kHz〜1MHz)にわたって行われるものである。また、近似曲線は、最小二乗法により求める。図3に示すように、等価直列抵抗の周波数特性は、両対数グラフ上において右下がりの直線に近いものとなっており、すなわち、累乗近似が最も相関が高く、近似曲線はy=axの形となる。係数a,bは、各測定点と近似曲線の差の二乗和が最小になるように定められる。ただし、測定値(y)に精度の悪い測定結果であるマイナス値が含まれていると、y=axの形で表せないので、その場合は、マイナスの測定値yと対応する周波数xを除外して、近似曲線を求める。図8に示すのは、正常品の避雷装置の等価直列抵抗の周波数特性の測定値と、その測定値について上記方法により求めた近似曲線(基準値)を示すグラフである。 In the reference value measuring process executed in the second embodiment, the frequency characteristic of the equivalent series resistance of the normal lightning arrester is measured, and the approximate curve of the measured value is obtained and used as the reference value. The measurement is performed by an impedance analyzer over a wide band (for example, 1 kHz to 1 MHz). The approximate curve is obtained by the least square method. As shown in FIG. 3, the frequency characteristic of the equivalent series resistance is close to a straight line descending to the right on the log-log graph, that is, the power approximation has the highest correlation, and the approximation curve is y=ax b . Be in shape. The coefficients a and b are determined so that the sum of squares of the difference between each measurement point and the approximate curve is minimized. However, if the measured value (y) includes a negative value that is a measurement result with poor accuracy, it cannot be expressed in the form of y=ax b . In that case, the frequency x corresponding to the negative measured value y is Exclude and find the approximate curve. FIG. 8 is a graph showing the measured value of the frequency characteristic of the equivalent series resistance of the normal lightning arrester and the approximate curve (reference value) obtained by the above method for the measured value.

このようにして求めた基準値により、後は第一実施形態と同様に故障判定が行われる。そして、このような本発明の避雷装置の故障判定方法の第二実施形態によれば、正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めたものを故障判定の基準値としており、従来基準値としていた正常品の避雷装置の等価直列抵抗の周波数特性の測定値と比較して、値にバラツキがないので、故障判定の精度が向上する。 Based on the reference value obtained in this way, the failure determination is subsequently performed as in the first embodiment. Then, according to the second embodiment of the method for determining the failure of the lightning arrester of the present invention, the frequency characteristic of the equivalent series resistance of the normal lightning arrester is measured, and the approximation curve of the measured value is obtained. It is used as a reference value for determination, and compared with the measured value of the frequency characteristic of the equivalent series resistance of the normal lightning arrester, which is the reference value in the past, there is no variation in the value, so the accuracy of failure determination is improved.

また、このような故障判定方法の第二実施形態についても、第一実施形態と同様に、故障判定装置により、その方法が実行されるものであって、さらにその際には、コンピュータにおいて故障判定プログラムが実行される。装置およびプログラムにおいても、第一実施形態における場合と異なるのは、基準値の求め方の部分のみであり、その差異は、方法における差異と同様のものであるから、説明は省略する。 Further, also in the second embodiment of such a failure determination method, as in the first embodiment, the method is executed by the failure determination device, and at that time, the failure determination is performed in the computer. The program runs. Also in the apparatus and the program, the difference from the case of the first embodiment is only the method of obtaining the reference value, and the difference is the same as the difference in the method, so description will be omitted.

本発明は、上記の実施形態に限定されるものではなく、発明の趣旨の範囲内で適宜変更できる。たとえば、故障判定の対象となる避雷装置は、上記の構造のものに限られず、一部の構成要素がないものであってもよい。その場合、第一実施形態では、式(1)〜(3)において、対応するパラメータの値を0にすればよい。また、上記実施形態では、判定過程において、広帯域で基準値と対象値の差異が閾値を超える点があるか否かで判定しているが、それに替えて、特定の周波数または周波数帯域で差異が閾値を超える点があるか否かで判定してもよいし、数点または全点の差異の合計値が閾値を超えるか否かで判定してもよい。さらに、第二実施形態において、測定値の近似曲線を求める手法としては、既知の種々の手法を用いることができる。 The present invention is not limited to the above-described embodiment, but can be modified as appropriate within the scope of the spirit of the invention. For example, the lightning arrester targeted for failure determination is not limited to the above-described structure, and may be a device without some components. In that case, in the first embodiment, the values of the corresponding parameters in Expressions (1) to (3) may be set to zero. Further, in the above embodiment, in the determination process, it is determined whether or not there is a point where the difference between the reference value and the target value exceeds the threshold value in a wide band, but instead, there is a difference in a specific frequency or frequency band. It may be determined whether or not there is a point exceeding the threshold value, or whether or not the total value of the differences of several points or all points exceeds the threshold value. Furthermore, in the second embodiment, various known methods can be used as a method for obtaining an approximated curve of measured values.

1 避雷装置
11 避雷素子
12 仕切板
13 スペーサ
14 押圧部材
15 端子
151 基部
152 接続部
16 外管
161 突起
2 故障判定装置
21 基準値算出手段
22 対象値測定手段
23 平滑化手段
24 プロット手段
25 比較手段
26 判定手段

DESCRIPTION OF SYMBOLS 1 Lightning arrester 11 Lightning arrester 12 Partition plate 13 Spacer 14 Pressing member 15 Terminal 151 Base 152 Connection part 16 Outer tube 161 Protrusion 2 Failure determination device 21 Reference value calculation means 22 Target value measurement means 23 Smoothing means 24 Plotting means 25 Comparison means 26 Judgment means

Claims (4)

避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定方法であって、
避雷装置の等価回路を表す理論式から避雷装置の等価直列抵抗の周波数特性を求めて基準値とする基準値算出過程と、
判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定過程と、
基準値と対象値とを比較する比較過程と、
比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定過程を備えることを特徴とする避雷装置の故障判定方法。
A method for determining whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product,
A reference value calculation process of obtaining a frequency characteristic of the equivalent series resistance of the lightning arrester as a reference value from a theoretical formula representing an equivalent circuit of the lightning arrester, and
A target value measurement process of measuring the frequency characteristics of the equivalent series resistance of the target lightning arrester that is the determination target and setting the target value,
A comparison process of comparing the reference value and the target value,
A failure determination method for a lightning arrester, comprising: a determination step of determining a target lightning arrester as a defective product when a difference between a reference value and a target value exceeds a threshold value as a result of comparison.
避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定方法であって、
正常品の避雷装置の等価直列抵抗の周波数特性を測定し、測定値の近似曲線を求めて基準値とする基準値測定過程と、
判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定過程と、
基準値と対象値とを比較する比較過程と、
比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定過程を備えることを特徴とする避雷装置の故障判定方法。
A method for determining whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product,
A reference value measurement process in which the frequency characteristics of the equivalent series resistance of a normal lightning arrester are measured, and an approximated curve of the measured values is obtained as a reference value.
A target value measurement process of measuring the frequency characteristics of the equivalent series resistance of the target lightning arrester that is the determination target and setting the target value,
A comparison process of comparing the reference value and the target value,
A failure determination method for a lightning arrester, comprising: a determination step of determining a target lightning arrester as a defective product when a difference between a reference value and a target value exceeds a threshold value as a result of comparison.
対象値を平滑化する平滑化過程を含むことを特徴とする請求項1または2記載の避雷装置の故障判定方法。 The method of determining a failure of a lightning arrester according to claim 1, further comprising a smoothing process of smoothing the target value. 請求項1、2または3記載の避雷装置の故障判定方法に基づき、避雷素子を直列接続した避雷装置について正常品であるか故障品であるかを判定する故障判定装置であって、
判定対象である対象避雷装置の等価直列抵抗の周波数特性を測定して対象値とする対象値測定手段と、
予め記憶された基準値と測定された対象値とを比較する比較手段と、
比較の結果、基準値と対象値の差異が閾値を超えた場合に対象避雷装置を故障品と判定する判定手段を備えることを特徴とする避雷装置の故障判定装置。

A failure determination device for determining whether a lightning arrester in which lightning arresters are connected in series is a normal product or a defective product, based on the method for determining a failure of a lightning arrester according to claim 1, 2, or 3.
Target value measuring means for measuring the frequency characteristic of the equivalent series resistance of the target lightning arrester that is the determination target and the target value,
Comparing means for comparing the reference value stored in advance with the measured target value,
A failure determination device for a lightning arrester, comprising: a determination unit that determines the target lightning arrester as a defective product when the difference between the reference value and the target value exceeds a threshold value as a result of comparison.

JP2019013375A 2019-01-29 2019-01-29 Failure determination method for lightning arrester and failure determination device for lightning arrester Active JP7227017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013375A JP7227017B2 (en) 2019-01-29 2019-01-29 Failure determination method for lightning arrester and failure determination device for lightning arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013375A JP7227017B2 (en) 2019-01-29 2019-01-29 Failure determination method for lightning arrester and failure determination device for lightning arrester

Publications (2)

Publication Number Publication Date
JP2020122671A true JP2020122671A (en) 2020-08-13
JP7227017B2 JP7227017B2 (en) 2023-02-21

Family

ID=71993533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013375A Active JP7227017B2 (en) 2019-01-29 2019-01-29 Failure determination method for lightning arrester and failure determination device for lightning arrester

Country Status (1)

Country Link
JP (1) JP7227017B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065407A (en) * 1992-06-16 1994-01-14 Mitsubishi Electric Corp Deterioration monitor of arrester
JPH08330905A (en) * 1995-05-29 1996-12-13 Meidensha Corp Spike noise elimination method
JPH09178798A (en) * 1995-11-06 1997-07-11 Atg Test Syst Gmbh Method and device for testing electrical conductor assembly body
JPH1144715A (en) * 1997-07-29 1999-02-16 Murata Mfg Co Ltd Measurement of insulating resistance of electronic part
JP2012004265A (en) * 2010-06-16 2012-01-05 Hokuriku Electric Power Co Inc:The Fault diagnostic method and fault diagnostic device for lightning arrestor
JP2014013164A (en) * 2012-07-04 2014-01-23 Hokuriku Electric Power Co Inc:The Failure detection method of lightning protection device
JP2017005803A (en) * 2015-06-05 2017-01-05 三菱電機株式会社 Inspection device for solar cell module, and inspection method for solar cell module
JP2017129402A (en) * 2016-01-19 2017-07-27 日立化成株式会社 Battery state estimation method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065407A (en) * 1992-06-16 1994-01-14 Mitsubishi Electric Corp Deterioration monitor of arrester
JPH08330905A (en) * 1995-05-29 1996-12-13 Meidensha Corp Spike noise elimination method
JPH09178798A (en) * 1995-11-06 1997-07-11 Atg Test Syst Gmbh Method and device for testing electrical conductor assembly body
JPH1144715A (en) * 1997-07-29 1999-02-16 Murata Mfg Co Ltd Measurement of insulating resistance of electronic part
JP2012004265A (en) * 2010-06-16 2012-01-05 Hokuriku Electric Power Co Inc:The Fault diagnostic method and fault diagnostic device for lightning arrestor
JP2014013164A (en) * 2012-07-04 2014-01-23 Hokuriku Electric Power Co Inc:The Failure detection method of lightning protection device
JP2017005803A (en) * 2015-06-05 2017-01-05 三菱電機株式会社 Inspection device for solar cell module, and inspection method for solar cell module
JP2017129402A (en) * 2016-01-19 2017-07-27 日立化成株式会社 Battery state estimation method and device

Also Published As

Publication number Publication date
JP7227017B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
US20160187406A1 (en) Method and system for identifying lightning fault and the type thereof in the overhead transmission line
JP6336164B2 (en) Power cable diagnostic apparatus and method
JP2016042046A (en) Dielectric loss tangent measurement device and method thereof, and power cable diagnosis device and method thereof
Mukherjee et al. Localization of radial displacement in an actual isolated transformer winding—an analytical approach
CN110543730B (en) Transformer winding deformation fault determination method
CN106597148A (en) Residual voltage monitoring based state monitoring system and method for lightning arrester without serial gap
JP5539762B2 (en) Lightning arrester failure determination method
CN111007435A (en) Monitoring method, device and equipment for analyzing transformer fault based on resistance-capacitance component
CN110988444A (en) Zinc oxide lightning arrester voltage divider, overvoltage detection lightning arrester and detection method
JP5454928B2 (en) Battery inspection method and battery inspection apparatus
JP2020122671A (en) Lightning arrester failure determination method and lightning arrester failure determination apparatus
CN108919026B (en) Live detection method for leakage current of lightning arrester
CN109933883A (en) A kind of current in resistance property Growth Rate Calculation method based on multiple linear regression
CN111413564B (en) Supercapacitor failure early warning method, system and equipment
JP2014013164A (en) Failure detection method of lightning protection device
CN108875262A (en) The detection method and device of transformer oil ageing state, storage medium, processor
CN204832314U (en) Measurement device for electric wire netting primary current
CN117077370A (en) Multi-frequency component weighted iteration-based full-range tracing method for impulse voltage peak value
CN116184060A (en) Abnormal monitoring method and system suitable for porcelain insulator live working
CN115327271A (en) Zinc oxide valve plate degradation degree evaluation method considering humid environment
Ghosh et al. Simulation and Real-Time Generation of Non-Standard Lightning Impulse Voltage Waveforms
CN115308644A (en) Transformer winding fault detection method and system based on current offset ratio difference analysis
CN110954818B (en) Intermediate relay coil soft fault detection method
US20170248638A1 (en) Test measurement system and method for using same in low voltage systems
CN104991106A (en) Measurement method of power grid primary current and device thereof

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7227017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150