JP2020122174A - Method for selectively leaching cobalt - Google Patents

Method for selectively leaching cobalt Download PDF

Info

Publication number
JP2020122174A
JP2020122174A JP2019013533A JP2019013533A JP2020122174A JP 2020122174 A JP2020122174 A JP 2020122174A JP 2019013533 A JP2019013533 A JP 2019013533A JP 2019013533 A JP2019013533 A JP 2019013533A JP 2020122174 A JP2020122174 A JP 2020122174A
Authority
JP
Japan
Prior art keywords
cobalt
leaching
copper
slurry
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013533A
Other languages
Japanese (ja)
Other versions
JP7112677B2 (en
Inventor
伸一 平郡
Shinichi Hiragori
伸一 平郡
寛人 渡邉
Hiroto Watanabe
寛人 渡邉
翔太 三條
Shota Sanjo
翔太 三條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019013533A priority Critical patent/JP7112677B2/en
Publication of JP2020122174A publication Critical patent/JP2020122174A/en
Application granted granted Critical
Publication of JP7112677B2 publication Critical patent/JP7112677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a cobalt leaching method for selectively leaching cobalt by suppressing leaching of copper and iron when leaching cobalt refining intermediates containing copper and iron, especially copper so as to reduce the consumption of an agent used in a refining process, and enhance manufacturing efficiency.SOLUTION: A method for selectively leaching cobalt includes leaching the cobalt from refining intermediates containing cobalt and copper, or cobalt, nickel and copper. The method for selectively leaching the cobalt includes separating cobalt or cobalt, nickel and copper in the refining intermediates by sequentially applying: (1) a repulping step of obtaining a slurry from the cobalt refining intermediates; (2) a leaching step of charging a raw material slurry made by adding sulphur and a sulphuric acid solution to the slurry obtained in the repulping step into a pressurized container, and leaching cobalt by heating the product while compressing by oxygen-containing gas followed by obtaining a slurry after leaching; and (3) a solid-liquid separation step for the obtained slurry after leaching.SELECTED DRAWING: None

Description

本発明は、銅や鉄を含んだコバルト含有物を用いたコバルト製錬において生成するコバルト製錬中間物から、コバルトを選択的に浸出する方法に関する。
特に、銅とコバルトを含んだ鉱石やスクラップを製錬処理して得た中間物からのコバルトの浸出に適用できる。
The present invention relates to a method for selectively leaching cobalt from a cobalt smelting intermediate produced in cobalt smelting using a cobalt-containing material containing copper or iron.
In particular, it can be applied to the leaching of cobalt from an intermediate obtained by smelting an ore or scrap containing copper and cobalt.

世界に存在するコバルトの天然原料は、コンゴやザンビアに局在化している堆積性層状銅鉱床、赤道下に多いニッケルラテライト鉱床およびカナダ、ロシア、オーストラリアなどの銅、ニッケル鉱床が主流であり、中でも堆積性層状銅鉱床の埋蔵量が最も多いことが知られている。 The main natural sources of cobalt in the world are sedimentary layered copper deposits localized in Congo and Zambia, nickel laterite deposits under the equator, and copper and nickel deposits in Canada, Russia, and Australia. It is known that the sedimentary layered copper deposits have the largest reserves.

堆積性層状銅鉱床の処理プロセスは、大きく分けて湿式法と乾式法の2種類がある。いずれの方法でも、それぞれ銅とコバルトを分離して精製し、銅は電気銅とし、コバルトは製錬中間物を経てさらに精製され、最終的にはコバルトやニッケル製品が生産される。 The treatment process of the sedimentary layered copper deposit is roughly classified into two types: a wet method and a dry method. In either method, copper and cobalt are separated and purified, copper is electrolytic copper, and cobalt is further refined through a smelting intermediate, and finally cobalt or nickel products are produced.

乾式法の代表的なプロセスとして、特許文献1に開示されているように、還元溶融して銅とその他の元素とを粗分離し、その他の元素を含んだスラグを精製してコバルト製錬中間物を回収する方法がある。
上記方法で回収したコバルト製錬中間物は、さらに水酸化物や合金形態などの形態に応じて様々な方法で処理される。
これらの処理に際しては、いずれの処理であっても原料に由来する銅や鉄を含んでいる。
As a typical dry process, as disclosed in Patent Document 1, reduction melting is performed to roughly separate copper and other elements, and slag containing the other elements is refined to form a cobalt smelting intermediate. There is a method of collecting things.
The cobalt smelting intermediate recovered by the above method is further treated by various methods depending on the form such as hydroxide or alloy form.
In any of these treatments, copper and iron derived from the raw materials are contained in any treatment.

このようなコバルト製錬中間物を処理するプロセスとして、例えば硫酸を用いてコバルト製錬中間物を溶解し、中和や溶媒抽出法により不純物を除去してコバルトやニッケル製品を回収する方法がある。
しかしこのような方法では、硫酸を用いてコバルト製錬中間物を浸出する際に、銅や鉄などの不純物元素も同時に浸出してしまうため、後工程において不純物を除去するために薬剤を消費し、工程が長くなるなどの課題がある。
As a process for treating such a cobalt smelting intermediate, there is a method of dissolving the cobalt smelting intermediate with sulfuric acid and removing impurities by neutralization or solvent extraction to recover cobalt or nickel products. ..
However, in such a method, when the cobalt smelting intermediate is leached with sulfuric acid, impurity elements such as copper and iron are also leached at the same time, so the chemical is consumed to remove the impurities in the subsequent process. However, there are problems such as lengthening the process.

このように、銅とコバルトを含む中間品などからコバルトを効率よく分離することは難しかった。
また、ニッケルと銅を含有する中間原料を処理する場合も、コバルトと化学的性質の似たニッケルを銅と効率よく分離することは容易でなく、同様な課題があった。
Thus, it was difficult to efficiently separate cobalt from an intermediate product containing copper and cobalt.
Further, when treating an intermediate raw material containing nickel and copper, it is not easy to efficiently separate nickel having similar chemical properties to cobalt from copper, and there is a similar problem.

国際特許公開 WO/2008/155451号公報International Patent Publication WO/2008/155451

このような状況の中で、本発明は製錬工程内において使用する薬剤の消費量を減少させると共に、生産効率を高めることが可能なように、銅や鉄、特に銅を含むコバルト製錬中間物を浸出するとき、銅や鉄の浸出を抑え、コバルトを選択的に浸出するコバルト浸出方法の提供を目的とするものである。 Under such circumstances, the present invention reduces the consumption of chemicals used in the smelting process and increases the production efficiency so that copper or iron, especially a cobalt smelting intermediate containing copper can be obtained. It is an object of the present invention to provide a cobalt leaching method that suppresses leaching of copper or iron when leaching an object and selectively leaches cobalt.

上記の課題を解決するための本発明の第1の発明は、コバルトと銅を含む製錬中間物、或いはコバルトとニッケルと銅を含む製錬中間物から前記コバルトを浸出するコバルトの選択浸出方法において、下記(1)から(3)に示す処理工程を順に付すことで、前記製錬中間物に含まれる前記コバルト、または前記ニッケルとコバルトから銅を分離することを特徴とするコバルトの選択浸出方法。

(記)
(1)前記製錬中間物に、スラリー化溶液を加えてスラリーを得るレパルプ工程。
(2)前記(1)のレパルプ工程で得られたスラリーに、硫黄と硫酸溶液を添加して作成した原料スラリーを圧力容器内に装入し、次いで酸素を含んだ気体によって加圧しながら加圧容器内を加熱して前記製錬中間物を浸出して浸出後スラリーを得る浸出工程。
(3)前記(2)の浸出工程で得られた浸出後スラリーを、固液分離して液相となるコバルトを含む浸出液と、固相となる銅を含む浸出残渣とに分離する固液分離工程。
1st invention of this invention for solving the said subject WHEREIN: The selective leaching method of the cobalt which leaches the said cobalt from the smelting intermediate containing cobalt and copper, or the smelting intermediate containing cobalt, nickel, and copper. In, the selective leaching of cobalt characterized by separating copper from the cobalt contained in the smelting intermediate or the nickel and cobalt by sequentially performing the treatment steps shown in (1) to (3) below. Method.

(Record)
(1) A repulping step of adding a slurrying solution to the smelting intermediate to obtain a slurry.
(2) A raw material slurry prepared by adding sulfur and a sulfuric acid solution to the slurry obtained in the repulping step of (1) is charged into a pressure vessel, and then pressurized while being pressurized with a gas containing oxygen. A leaching step in which the inside of the vessel is heated to leaching the smelting intermediate to obtain a slurry after leaching.
(3) Solid-liquid separation in which the slurry after leaching obtained in the leaching step of (2) is separated into a leaching liquid containing cobalt that becomes a liquid phase by solid-liquid separation and a leaching residue that contains copper that becomes a solid phase. Process.

本発明の第2の発明は、第1の発明における製錬中間物の平均粒径が、1〜300μmの範囲の大きさであることを特徴とするコバルトの選択浸出方法である。 A second invention of the present invention is the selective leaching method of cobalt, characterized in that the average particle size of the smelting intermediate in the first invention is in the range of 1 to 300 µm.

本発明の第3の発明は、第1の発明における浸出工程での浸出温度が、60〜130℃の範囲であることを特徴とするコバルトの選択浸出方法である。 A third invention of the present invention is the selective leaching method of cobalt, wherein the leaching temperature in the leaching step in the first invention is in the range of 60 to 130°C.

本発明の第4の発明は、第1の発明における浸出工程における前記気体による加圧の圧力が、0.01〜1.0MPaの範囲であることを特徴とするコバルトの選択浸出方法である。 A fourth invention of the present invention is the selective leaching method of cobalt, wherein the pressure applied by the gas in the leaching step of the first invention is in the range of 0.01 to 1.0 MPa.

本発明の第5の発明は、第1の発明における製錬中間物が、コバルトやニッケルを含有する硫化鉱石を還元熔融処理して回収したコバルトとニッケルの混合メタル、コバルトとニッケルの混合硫化物、コバルトの金属粉末、の少なくとも1つであることを特徴とするコバルトの選択浸出方法。 5th invention of this invention WHEREIN: The smelting intermediate in 1st invention WHEREIN: The mixed metal of cobalt and nickel, the mixed sulfide of cobalt and nickel which were collect|recovered by carrying out the reduction fusion processing of the sulfide ore containing cobalt and nickel. And a metal powder of cobalt, at least one of which is a selective leaching method of cobalt.

本発明の第6の発明は、第1から第5の発明におけるスラリー化溶液が、水または水と前記製錬中間物を形成する際に発生した溶液との混合溶液であることを特徴とするコバルトの選択浸出方法である。 A sixth invention of the present invention is characterized in that the slurrying solution in the first to fifth inventions is water or a mixed solution of water and a solution generated when the smelting intermediate is formed. This is a selective leaching method for cobalt.

本発明によれば、特に銅を含む製錬中間物を浸出するとき、銅の浸出を抑えながら、コバルトを選択的に浸出することができ、銅を分離するための後工程を効率化することができる。 According to the present invention, particularly when leaching a smelting intermediate containing copper, cobalt can be selectively leached while suppressing leaching of copper, and the post-process for separating copper can be made more efficient. You can

本発明は、コバルトと銅や鉄を含む製錬中間物からコバルトを選択的に浸出する際に、銅の浸出を抑え、コバルトを選択的に浸出するもので、特に銅の浸出抑制に効果を示すものである。 The present invention, when selectively leaching cobalt from a smelting intermediate containing cobalt and copper or iron, suppresses the leaching of copper, selectively leaches cobalt, and is particularly effective in suppressing the leaching of copper. It is shown.

以下、本発明のニッケルとコバルトの浸出方法について詳細を説明する。
本発明における製錬中間物からのコバルトの選択浸出方法の特徴は、下記(1)から(3)に示す工程を順に経ることで銅を分離し、コバルトの浸出が成されるものである。
Hereinafter, the leaching method of nickel and cobalt of the present invention will be described in detail.
A feature of the method for selectively leaching cobalt from a smelting intermediate in the present invention is that cobalt is leached by separating copper by sequentially performing the steps shown in (1) to (3) below.

(1)前記製錬中間物に、水または水と製錬中間物を形成する際に発生した溶液との混合溶液であるスラリー化溶液を加えてスラリーを得るレパルプ工程。
(2)前記(1)のレパルプ工程で得られたスラリーに、硫黄と硫酸溶液を添加して作成した原料スラリーを圧力容器内に装入し、次いで酸素を含んだ気体によって加圧しながら加圧容器内を加熱して前記製錬中間物を浸出して浸出後スラリーを得る浸出工程。
(3)前記(2)の浸出工程で得られた浸出後スラリーを、固液分離して液相となるコバルトを含む浸出液と、固相となる銅を含む浸出残渣とに分離する固液分離工程。
(1) A repulping step in which a slurry-forming solution, which is a mixed solution of water or a solution generated when forming a smelting intermediate, is added to the smelting intermediate to obtain a slurry.
(2) A raw material slurry prepared by adding sulfur and a sulfuric acid solution to the slurry obtained in the repulping step of (1) is charged into a pressure vessel, and then pressurized while being pressurized with a gas containing oxygen. A leaching step in which the inside of the vessel is heated to leaching the smelting intermediate to obtain a slurry after leaching.
(3) Solid-liquid separation in which the slurry after leaching obtained in the leaching step of (2) is separated into a leaching liquid containing cobalt that becomes a liquid phase by solid-liquid separation and a leaching residue that contains copper that becomes a solid phase. Process.

[粉砕工程]
この粉砕工程では、原料となるコバルトと銅や鉄、特に銅を含む製錬中間物や、コバルトとニッケルと、銅や鉄、特に銅を含む製錬中間物を粉砕し微細化する。その粉砕は、一般的なボールミルや振動ミルなどを用いて粉砕することができる。
このとき、粉砕後の平均粒径が、1〜300μmの大きさにすることが望ましい。1μm未満にまで粉砕するには、莫大なエネルギーと多くの設備が必要となり、工業的には不向きで、望ましくないが、粉砕による欠片として形成される微細物は篩などによる分離が難しいこともあって粉砕後の原料に含まれていても良い。また、300μmを超える粗大な径では浸出反応が悪化し、目的の浸出速度が得られないなど好ましくない。
[Crushing process]
In this pulverization step, the smelting intermediate containing cobalt and copper or iron, especially copper, which is a raw material, or the smelting intermediate containing cobalt and nickel, and copper or iron, especially copper, is pulverized and finely divided. The crushing can be performed using a general ball mill, a vibration mill, or the like.
At this time, it is desirable that the average particle size after pulverization is 1 to 300 μm. Grinding to less than 1 μm requires enormous energy and a lot of equipment, which is industrially unsuitable and undesirable, but fine particles formed as crushed pieces may be difficult to separate by a sieve or the like. It may be contained in the raw material after crushing. In addition, if the diameter is coarser than 300 μm, the leaching reaction is deteriorated and the desired leaching rate cannot be obtained, which is not preferable.

[レパルプ工程]
次に、粉砕後の原料に、水もしくは水と製錬中間物を形成する製錬プロセスの工程内で発生した繰返し利用可能な溶液の混合液をスラリー化溶液として加えてスラリー化する。この際に、原料中の銅モル量に対して0.5〜2.0倍モル量となる硫黄を添加する。0.5倍モル量未満であると銅の溶出量が増加し、一方2.0倍モル量を超えて添加しても効果がない。
[Repulp process]
Next, water or a mixed solution of water and a solution that can be used repeatedly in the step of the smelting process for forming a smelting intermediate is added to the raw material after pulverization as a slurrying solution to form a slurry. At this time, sulfur is added in an amount of 0.5 to 2.0 times the molar amount of copper in the raw material. If it is less than 0.5 times the molar amount, the elution amount of copper will increase, while if it is added over the 2.0 times molar amount, there will be no effect.

併せて、原料中のコバルトとニッケルおよび鉄を合計したモル量に対し0.1〜2.0倍モル量の硫酸を添加して原料スラリーを作製する。
0.1倍モル量未満であるとコバルトやニッケルの溶出量が低下して浸出が不調となるが、2.0倍モル量を超えて添加しても浸出に対する更なる効果が見られず無駄である。
In addition, 0.1 to 2.0 times the molar amount of sulfuric acid is added to the total molar amount of cobalt, nickel and iron in the raw material to prepare a raw material slurry.
If the amount is less than 0.1 times the molar amount, the leaching amount of cobalt and nickel will decrease and the leaching will be unsuccessful. Is.

[浸出工程]
次に、上記原料スラリーを浸出工程に供し、浸出後スラリーを得る。
この浸出工程では、圧力容器に原料スラリーを充填し、加圧条件下で混合、撹拌しながら加温し、ニッケルやコバルトを溶出させる。このとき加圧するために圧力容器内に注入する気体としては酸素を含む気体であればよく、純酸素や空気を使用することができる。
[Leaching process]
Next, the raw material slurry is subjected to a leaching step to obtain a leached slurry.
In this leaching step, the pressure vessel is filled with the raw material slurry, and the mixture is heated under pressure under stirring and stirring to elute nickel and cobalt. At this time, the gas to be injected into the pressure container for pressurization may be a gas containing oxygen, and pure oxygen or air can be used.

このときの圧力容器内の圧力は、0.01〜1.0MPaの範囲とする。
また、温度は60〜130℃の範囲とする。60℃未満では反応が進まず、130℃を超えると反応速度が上昇し、不純物を余分に溶出させてしまう。
保持時間は特に制限されないが、1〜5時間が望ましい。
なお、本発明では、反応容器内の酸素を上記の圧力範囲に維持することで酸素がスラリーに効率よく供給されることが重要であり、温度は必ずしも大気圧下での限界である100℃を超えるまで上昇させる必要はない。
The pressure in the pressure vessel at this time is in the range of 0.01 to 1.0 MPa.
Further, the temperature is in the range of 60 to 130°C. If the temperature is lower than 60° C., the reaction does not proceed, and if the temperature exceeds 130° C., the reaction rate increases and impurities are additionally eluted.
The holding time is not particularly limited, but 1 to 5 hours is desirable.
In the present invention, it is important that oxygen is efficiently supplied to the slurry by maintaining the oxygen in the reaction vessel within the above pressure range, and the temperature is not necessarily 100° C. which is the limit under atmospheric pressure. There is no need to raise it until it is exceeded.

[固液分離工程]
前工程の浸出工程で得られた浸出後のスラリーは、フィルタープレスや遠心分離機など工業的に広く用いられる機器などを使用して固形と溶液を分離し、コバルトを含む浸出液と、銅を含む浸出残渣に分離できる。なお、製錬中間物に含まれていたニッケルはコバルトと共に浸出液に移り、鉄は銅と同様に浸出残渣に濃縮される。
[Solid-liquid separation process]
The slurry after leaching obtained in the leaching step in the previous step contains a leaching solution containing cobalt and copper by separating the solid and the solution using a device widely used in industry such as a filter press or a centrifuge. Can be separated into leach residue. The nickel contained in the smelting intermediate moves to the leaching solution together with cobalt, and the iron is concentrated in the leaching residue like copper.

このようにして回収された浸出液は、別途溶媒抽出法など公知の方法を用いて精製することによりコバルトを分離し、コバルト製品を得ることができる。
また、浸出残渣は、銅製錬の原料として公知の方法を用いて処理させることにより銅製品を得ることができる。
The leachate thus recovered can be separated into cobalt by refining it separately using a known method such as a solvent extraction method to obtain a cobalt product.
Further, the leaching residue can be treated as a raw material for copper smelting using a known method to obtain a copper product.

以下、実施例を用いて本発明を、より詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

銅61%、鉄35%、コバルト3%を含む製錬中間物を、ディスクミルを用いて粉砕した後、目開き150μmの篩で選別し、篩下を回収した。
次に、回収した粉砕後の製錬中間物100gに濃度64重量%の硫酸溶液28ml(コバルトと鉄を合計したモル量に対し0.4倍モル量)と粉砕した硫黄15g(銅モル量に対し0.5倍モル量)を加え、イオン交換水を全体が1000mlとなるように加えて撹拌して原料スラリーとした。
A smelting intermediate containing 61% of copper, 35% of iron and 3% of cobalt was crushed using a disc mill, and then screened with a sieve having an opening of 150 μm, and the under-sieve was recovered.
Next, 28 ml of a sulfuric acid solution having a concentration of 64% by weight (0.4 times the molar amount of the total amount of cobalt and iron) and 15 g of the pulverized sulfur (to the molar amount of copper) were added to 100 g of the recovered smelting intermediate. (0.5 times the molar amount), ion-exchanged water was added so that the total amount became 1000 ml, and the mixture was stirred to obtain a raw material slurry.

その原料スラリーを圧力容器に充填し、密閉した後に容器内部の圧力が1.0MPaを維持するように純酸素を供給しながら混合、撹拌しながら、加熱して容器内のスラリーの温度が90℃になるまで昇温し、2時間維持して浸出後スラリーを生成させた後、自然冷却した。
このときの酸素供給量は合計89Lであった。
The raw material slurry is filled in a pressure container, and after sealing, the temperature of the slurry in the container is 90° C. by heating while mixing and stirring while supplying pure oxygen so that the pressure inside the container is maintained at 1.0 MPa. The temperature was raised to 0° C. and maintained for 2 hours to form a slurry after leaching, followed by natural cooling.
The oxygen supply amount at this time was 89 L in total.

常温まで冷却した後、圧力容器から取り出した浸出後スラリーを濾瓶とヌッチェを用いて浸出液(濾液)と浸出残渣(固形分)とに固液分離した。
浸出液と浸出残渣中の銅、鉄、コバルトの濃度をそれぞれ分析し、供給したコバルト製錬中間物が浸出液に溶出した割合(浸出率)を算出した。浸出率はコバルトが98%となり、一方銅は14%、鉄は<1%に抑制され、銅を分離し、コバルトを選択的に浸出できていた。
After cooling to room temperature, the leached slurry taken out from the pressure vessel was subjected to solid-liquid separation into a leaching solution (filtrate) and a leaching residue (solid content) using a filter bottle and a Nutsche.
The concentrations of copper, iron, and cobalt in the leachate and the leach residue were analyzed, and the ratio of the supplied cobalt smelting intermediate to the leachate (leaching rate) was calculated. The leaching rate was 98% for cobalt, 14% for copper and <1% for iron, and copper was separated and cobalt could be selectively leached.

(比較例1)
実施例1と同じ製錬中間物30gに、硫黄を添加せずに64%硫酸74ml(コバルトと鉄を合計したモル量に対し2.2倍モル量)、を加え、イオン交換水を全体が300mlとなるように加えて比較例1に係る原料スラリーを作製した。
(Comparative Example 1)
To 30 g of the same smelting intermediate as in Example 1, 74 ml of 64% sulfuric acid (2.2 times the molar amount with respect to the total molar amount of cobalt and iron) was added without adding sulfur, and the whole ion-exchanged water was added. A raw material slurry according to Comparative Example 1 was prepared in addition to 300 ml.

大気中で撹拌しながら空気を2L/min吹込み、60℃で6時間保持し、浸出後スラリーを生成した。
得られた浸出後スラリーを、実施例1と同様の方法で算出した浸出率は、コバルトが99%以上であったものの銅も99%以上、鉄も94%浸出され、コバルトを選択的に浸出することはできなかった。
Air was blown in at 2 L/min while stirring in the air, and the mixture was maintained at 60° C. for 6 hours to form a slurry after leaching.
The leaching rate of the obtained post-leaching slurry was calculated in the same manner as in Example 1. The cobalt was 99% or more, but copper was 99% or more, iron was 94%, and cobalt was selectively leached. I couldn't.

Claims (6)

コバルトと銅を含む製錬中間物、或いはコバルトとニッケルと銅を含む製錬中間物から前記コバルトを浸出するコバルトの選択浸出方法において、
下記(1)から(3)に示す処理工程を順に付すことで、前記製錬中間物に含まれる前記コバルト、または前記ニッケルとコバルトから銅を分離することを特徴とするコバルトの選択浸出方法。

(記)
(1)前記製錬中間物に、スラリー化溶液を加えてスラリーを得るレパルプ工程。
(2)前記(1)のレパルプ工程で得られたスラリーに、硫黄と硫酸溶液を添加して作成した原料スラリーを圧力容器内に装入し、次いで酸素を含んだ気体によって加圧しながら加圧容器内を加熱して前記製錬中間物を浸出して浸出後スラリーを得る浸出工程。
(3)前記(2)の浸出工程で得られた浸出後スラリーを、固液分離して液相となるコバルトを含む浸出液と、固相となる銅を含む浸出残渣とに分離する固液分離工程。
In a smelting intermediate containing cobalt and copper, or in a selective leaching method of cobalt for leaching the cobalt from a smelting intermediate containing cobalt, nickel and copper,
A selective leaching method of cobalt, characterized in that the cobalt contained in the smelting intermediate or the nickel and the copper are separated from the cobalt by sequentially performing the treatment steps shown in the following (1) to (3).

(Record)
(1) A repulping step of adding a slurrying solution to the smelting intermediate to obtain a slurry.
(2) A raw material slurry prepared by adding sulfur and a sulfuric acid solution to the slurry obtained in the repulping step of (1) is charged into a pressure vessel, and then pressurized while being pressurized with a gas containing oxygen. A leaching step in which the inside of the vessel is heated to leaching the smelting intermediate to obtain a slurry after leaching.
(3) Solid-liquid separation in which the slurry after leaching obtained in the leaching step of (2) is separated into a leaching liquid containing cobalt that becomes a liquid phase by solid-liquid separation and a leaching residue that contains copper that becomes a solid phase. Process.
前記製錬中間物の平均粒径が、1〜300μmの範囲の大きさであることを特徴とする請求項1に記載のコバルトの選択浸出方法。 The selective leaching method of cobalt according to claim 1, wherein the smelting intermediate has an average particle size in the range of 1 to 300 µm. 前記浸出工程での浸出温度が、60〜130℃の範囲であることを特徴とする請求項1に記載のコバルトの選択浸出方法。 The leaching temperature in the leaching step is in the range of 60 to 130° C. The selective leaching method of cobalt according to claim 1, wherein the leaching temperature is 60 to 130° C. 前記浸出工程における前記気体による加圧の圧力が、0.01〜1.0MPaの範囲であることを特徴とする請求項1に記載のコバルトの選択浸出方法。 The selective leaching method of cobalt according to claim 1, wherein the pressure applied by the gas in the leaching step is in the range of 0.01 to 1.0 MPa. 前記製錬中間物が、コバルトやニッケルを含有する硫化鉱石を還元熔融処理して回収したコバルトとニッケルの混合メタル、コバルトとニッケルの混合硫化物、コバルトの金属粉末、の少なくとも1つであることを特徴とする請求項1に記載のコバルトの選択浸出方法。 The smelting intermediate is at least one of a mixed metal of cobalt and nickel, a mixed sulfide of cobalt and nickel, and a metal powder of cobalt, which are recovered by reducing and melting sulfide ore containing cobalt and nickel. The selective leaching method of cobalt according to claim 1, wherein 前記スラリー化溶液が、水または水と前記製錬中間物を形成する際に発生した溶液との混合溶液であることを特徴とする請求項1〜5のいずれか1項に記載のコバルトの選択浸出方法。
The selection of cobalt according to any one of claims 1 to 5, wherein the slurry solution is water or a mixed solution of water and a solution generated when the smelting intermediate is formed. Leaching method.
JP2019013533A 2019-01-29 2019-01-29 Selective Cobalt Leaching Method Active JP7112677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013533A JP7112677B2 (en) 2019-01-29 2019-01-29 Selective Cobalt Leaching Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013533A JP7112677B2 (en) 2019-01-29 2019-01-29 Selective Cobalt Leaching Method

Publications (2)

Publication Number Publication Date
JP2020122174A true JP2020122174A (en) 2020-08-13
JP7112677B2 JP7112677B2 (en) 2022-08-04

Family

ID=71993451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013533A Active JP7112677B2 (en) 2019-01-29 2019-01-29 Selective Cobalt Leaching Method

Country Status (1)

Country Link
JP (1) JP7112677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897498A (en) * 2021-10-11 2022-01-07 金川集团股份有限公司 Co-high pressure leaching method for cobalt sulfide ore and cobalt alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155116A (en) * 1978-04-12 1979-12-06 Inco Ltd Nickel recovery form sulfur deficient mat
JPS5562134A (en) * 1978-10-30 1980-05-10 Inco Ltd Autoclave oxidating lixiviation for sulfide matter containing copper*nickel and*or cobalt
JPS56134505A (en) * 1980-02-18 1981-10-21 Anglo Amer Corp South Africa Method of treating sulfide mat
JP2005281733A (en) * 2004-03-29 2005-10-13 Sumitomo Metal Mining Co Ltd Nickel smelting process
JP2018070918A (en) * 2016-10-26 2018-05-10 住友金属鉱山株式会社 Wet refining method for nickel oxide ore

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562134B2 (en) 2010-06-17 2014-07-30 キヤノン株式会社 Radiation detection apparatus, manufacturing method thereof, and radiation imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155116A (en) * 1978-04-12 1979-12-06 Inco Ltd Nickel recovery form sulfur deficient mat
JPS5562134A (en) * 1978-10-30 1980-05-10 Inco Ltd Autoclave oxidating lixiviation for sulfide matter containing copper*nickel and*or cobalt
JPS56134505A (en) * 1980-02-18 1981-10-21 Anglo Amer Corp South Africa Method of treating sulfide mat
JP2005281733A (en) * 2004-03-29 2005-10-13 Sumitomo Metal Mining Co Ltd Nickel smelting process
JP2018070918A (en) * 2016-10-26 2018-05-10 住友金属鉱山株式会社 Wet refining method for nickel oxide ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897498A (en) * 2021-10-11 2022-01-07 金川集团股份有限公司 Co-high pressure leaching method for cobalt sulfide ore and cobalt alloy

Also Published As

Publication number Publication date
JP7112677B2 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
AU2019308625B2 (en) Method for recycling iron, scandium, and aluminum from limonite type lateritic nickel ores
CN107630146B (en) Nickel recovery process
JP5776913B2 (en) Method for producing hematite for iron making
CN109097562A (en) A kind of method of lateritic nickel ore selectivity sulfidation roasting
JP5556608B2 (en) Chromite recovery method and nickel oxide ore hydrometallurgical method
WO2013150642A1 (en) Method for recovering chromite, and method for wet smelting of nickel oxide ore
CN113528810A (en) Method for treating mixture of laterite nickel ore leaching slag and jarosite slag and application
CN112646983A (en) Method for directly leaching gallium-germanium slag replaced by zinc powder
JP6969262B2 (en) Hydrometallurgical method for nickel oxide ore
JP5790839B2 (en) Chromite recovery method
CA2984885A1 (en) Mineral ore slurry pretreatment method, and method for manufacturing mineral ore slurry
JP7112677B2 (en) Selective Cobalt Leaching Method
EP1733063A1 (en) Production of titania
EP3252176B1 (en) Ore slurry pre-treatment method and ore slurry manufacturing method
AU2018256247B2 (en) Method for smelting ilmenite using red mud
EP2980024B1 (en) Method for manufacturing hematite for iron manufacture
CA3004329C (en) Process for recovering metals
CA2867239C (en) Method for producing hematite for ironmaking
JP5858189B2 (en) Method for producing hematite for iron making
Stopić et al. Recovery of cobalt from primary and secondary materials-an overiew
JP6977458B2 (en) Hydrometallurgical method for nickel oxide ore
CA1086075A (en) Reductive leach of oxidic mixtures
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
WO2022138239A1 (en) Method for manufacturing ore slurry, and hydrometallurgical method for nickel oxide ore
CN100420760C (en) Recovery of nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220707

R150 Certificate of patent or registration of utility model

Ref document number: 7112677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150