JP2020121898A - Method for predicting behavior of compound in liquid phase - Google Patents

Method for predicting behavior of compound in liquid phase Download PDF

Info

Publication number
JP2020121898A
JP2020121898A JP2019013510A JP2019013510A JP2020121898A JP 2020121898 A JP2020121898 A JP 2020121898A JP 2019013510 A JP2019013510 A JP 2019013510A JP 2019013510 A JP2019013510 A JP 2019013510A JP 2020121898 A JP2020121898 A JP 2020121898A
Authority
JP
Japan
Prior art keywords
compound
liquid phase
behavior
calculation
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013510A
Other languages
Japanese (ja)
Other versions
JP7218864B2 (en
Inventor
里司 吉尾
Satoshi Yoshio
里司 吉尾
百司 久保
Momoji Kubo
百司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2019013510A priority Critical patent/JP7218864B2/en
Publication of JP2020121898A publication Critical patent/JP2020121898A/en
Application granted granted Critical
Publication of JP7218864B2 publication Critical patent/JP7218864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for predicting the behavior of a compound in a liquid phase using computational science.SOLUTION: A method for predicting the behavior of a compound in a liquid phase comprises an initial setting step of setting a structure including a monomer of a compound and a liquid phase molecule and a calculation step of performing molecular dynamics calculation on the structure by using a reactive force field and tracking the behavior of the monomer of the compound in the structure.SELECTED DRAWING: Figure 1

Description

本発明は、液相中での化合物の挙動の予測方法に関する。 The present invention relates to a method for predicting the behavior of compounds in the liquid phase.

従来から、水酸化物、酸化物等の各種化合物が工業的に用いられている。化合物は、その用途等により特定の粒度分布や、モフォロジーにすることが要求される場合がある。 Conventionally, various compounds such as hydroxides and oxides have been industrially used. A compound may be required to have a specific particle size distribution or morphology depending on its application.

モフォロジーの制御や粒径の制御は、CVD法などでは比較的容易であり、例えば特許文献1、2には、マイクロ波プラズマCVD法によりダイヤモンド単結晶を成長させる際に、モフォロジーを制御する方法が開示されている。 Control of morphology and control of grain size are relatively easy by a CVD method or the like. For example, Patent Documents 1 and 2 describe a method of controlling morphology when growing a diamond single crystal by a microwave plasma CVD method. It is disclosed.

工業的に用いられる化合物は、安価でかつ大量に製造できることが求められる。このため、化合物の合成方法としては、化合物を工業的に安価で、かつ大量に製造できる例えば水溶液を用いた液相中での反応を用いることが好ましい。 Compounds used industrially are required to be inexpensive and can be produced in large quantities. Therefore, as the method for synthesizing the compound, it is preferable to use the reaction in a liquid phase using, for example, an aqueous solution, which is industrially inexpensive and can be produced in a large amount.

液相中での反応により化合物を製造する場合においても、上述のように特定の粒度分布や、モフォロジーとすることを求められることがある。液相中での反応により化合物を製造し、その粒度分布等を制御するためには、例えば結晶の成長過程等の液相中での化合物の挙動を詳細に把握することが必要となる。 Even when a compound is produced by a reaction in a liquid phase, it may be required to have a specific particle size distribution or morphology as described above. In order to produce a compound by a reaction in a liquid phase and control its particle size distribution and the like, it is necessary to understand in detail the behavior of the compound in the liquid phase, such as the crystal growth process.

特開2007−191362号公報JP, 2007-191362, A 特開2007−331955号公報JP, 2007-331955, A

しかしながら、液相中での化合物の挙動を分析等の実験的手段により追跡することは困難であり、計算科学により、液相中での化合物の挙動を直接可視化することが求められていた。 However, it is difficult to trace the behavior of a compound in the liquid phase by an experimental means such as analysis, and it has been required by computational science to directly visualize the behavior of the compound in the liquid phase.

ところが、液相中での化合物の挙動を計算科学により可視化するためには、少なくとも以下の2つの課題があった。 However, in order to visualize the behavior of the compound in the liquid phase by computational science, there are at least the following two problems.

1点目の課題としては、液相中での化合物の挙動を検討する際の系は、液相、すなわち水分子等の液体が多くを占めており、液体である水分子等は固体とは異なり、絶えず動いているため、従来の計算科学の手法を適用することが困難である点が挙げられる。第一原理計算のような静止系や固体を対象とした計算手法や理論では、このような液相中での化合物の挙動を把握することは困難であり、また希薄系に対する気体の状態方程式も適用できない。 The first problem is that the system used when investigating the behavior of a compound in the liquid phase occupies most of the liquid phase, that is, liquids such as water molecules. In contrast, it is in constant motion, which makes it difficult to apply conventional computational science methods. It is difficult to understand the behavior of such compounds in the liquid phase by calculation methods and theories for stationary systems and solids such as the first-principles calculation. Not applicable.

2点目の課題としては、例えば結晶成長挙動等の液相中での化合物の挙動を把握するためには、化合物を構成する元素間や、化合物を構成する元素と液相を構成する元素との間の結合力を再現し、化合物を構成する元素や液相を構成する元素の化学的性質を再現する必要があるが、簡略化したパラメータで原子の動きを追跡する古典分子動力学計算による方法ではこれらを再現することが困難である点が挙げられる。 The second problem is that in order to understand the behavior of the compound in the liquid phase such as the crystal growth behavior, it is necessary to distinguish between the elements forming the compound and the elements forming the compound and the elements forming the liquid phase. It is necessary to reproduce the bonding force between the two and to reproduce the chemical properties of the elements that make up the compound and the elements that make up the liquid phase. It is difficult to reproduce these by the method.

以上の様に液相中での化合物の挙動を計算で可視化することはいまだ実現できていなかった。 As described above, visualization of the behavior of a compound in the liquid phase by calculation has not been realized yet.

そこで上記従来技術が有する問題に鑑み本発明の一側面では、計算科学を用いた液相中での化合物の挙動の予測方法を提供することを目的とする。 Therefore, in view of the problems of the above-mentioned conventional techniques, it is an object of one aspect of the present invention to provide a method for predicting the behavior of a compound in a liquid phase using computational science.

上記課題を解決するため本発明の一態様によれば、
化合物のモノマーと、液相分子とを含む構造を設定する初期設定工程と、
前記構造について、反応性力場を用いて分子動力学計算を行い、前記構造内での前記化合物のモノマーの挙動を追跡する計算工程と、を有する液相中での化合物の挙動の予測方法を提供する。
According to an aspect of the present invention for solving the above problems,
An initial setting step of setting a structure containing a compound monomer and a liquid phase molecule;
A method for predicting the behavior of a compound in a liquid phase, which comprises a molecular dynamics calculation for the structure using a reactive force field, and a calculation step of tracking the behavior of the monomer of the compound within the structure. provide.

本発明の一態様によれば、計算科学を用いた液相中での化合物の挙動の予測方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for predicting the behavior of a compound in a liquid phase using computational science.

実施例1における初期設定工程で設定した構造の説明図。5A and 5B are explanatory views of a structure set in an initial setting process in the first embodiment. 実施例1における計算工程後の構造の説明図。FIG. 5 is an explanatory diagram of a structure after a calculation process in the first embodiment.

以下、本発明を実施するための形態について説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。 Hereinafter, modes for carrying out the present invention will be described, but the present invention is not limited to the following embodiments, and various modifications and changes to the following embodiments without departing from the scope of the present invention. Substitutions can be added.

本実施形態の液相中での化合物の挙動の予測方法は以下の工程を有することができる。 The method for predicting the behavior of a compound in the liquid phase according to this embodiment can include the following steps.

化合物のモノマーと、液相分子とを含む構造を設定する初期設定工程。
設定した構造について、反応性力場を用いて分子動力学計算を行い、構造内での化合物のモノマーの挙動を追跡する計算工程。
An initial setting step of setting a structure including a monomer of a compound and a liquid phase molecule.
A calculation process that traces the behavior of the compound monomer in the structure by performing molecular dynamics calculation using the reactive force field for the set structure.

本発明の発明者らは計算機上で液相中での化合物の挙動を可視化、追跡する方法について鋭意検討を行った。その結果、化合物のモノマーと液相分子を含む構造を設定し、係る構造について、反応性力場を用いて分子動力学計算を行うことで、構造内での化合物のモノマーの挙動を追跡し、可視化できることを見出し本発明を完成させた。 The inventors of the present invention have earnestly studied a method for visualizing and tracking the behavior of a compound in a liquid phase on a computer. As a result, by setting the structure including the monomer of the compound and the liquid phase molecule, and performing the molecular dynamics calculation for the structure using the reactive force field, the behavior of the monomer of the compound in the structure is tracked, The present invention has been completed by finding that it can be visualized.

以下、本実施形態の液相中での化合物の挙動の予測方法について工程ごとに説明を行う。
(初期設定工程)
初期設定工程では、計算に供する構造(初期構造)の設定を行うことができる。
Hereinafter, the method of predicting the behavior of the compound in the liquid phase of the present embodiment will be described for each step.
(Initial setting process)
In the initial setting step, the structure (initial structure) used for calculation can be set.

具体的には例えば、化合物のモノマーと、液相分子とを含む構造を設定することができる。 Specifically, for example, a structure including a compound monomer and a liquid phase molecule can be set.

ここでいう化合物のモノマーとは、液相中での挙動を観察する対象となる化合物の単分子を意味している。化合物の種類は特に限定されず、例えば水酸化物や、酸化物等が挙げられる。なお、初期設定工程で1つの構造内に配置する化合物の種類は1種類のみでもよく、2種類以上であっても良い。 The compound monomer as used herein means a single molecule of the compound whose behavior in the liquid phase is to be observed. The type of compound is not particularly limited, and examples thereof include hydroxide and oxide. It should be noted that the kind of the compound arranged in one structure in the initial setting step may be only one kind, or may be two or more kinds.

また、液相は、挙動を観察する化合物のモノマーの周囲に配置される物質を意味し、例えば化合物が溶解、分散、析出等する溶液、分散媒等が挙げられ、例えば水、各種有機溶媒等が挙げられる。 Further, the liquid phase means a substance disposed around the monomer of the compound whose behavior is to be observed, and examples thereof include a solution in which the compound dissolves, disperses, precipitates, a dispersion medium, and the like, such as water and various organic solvents. Is mentioned.

構造内に設定する化合物のモノマーの数は特に限定されず、追跡を行いたい任意の数の化合物のモノマーを配置、設定することができる。また、液相の分子の数についても同様に配置する数を任意に選択することができる。 The number of compound monomers set in the structure is not particularly limited, and an arbitrary number of compound monomers to be traced can be arranged and set. Also, regarding the number of molecules in the liquid phase, the number to be arranged can be arbitrarily selected.

複数の化合物のモノマーを構造内に設定する場合には、その配置は特に限定されず、例えば複数の化合物のモノマーが一定の距離以上離れて配置することもできる。また、複数の化合物のモノマーがクラスターを形成するように配置することもできる。すなわち、初期設定工程において、複数の化合物のモノマーにより形成されたクラスターを含む構造を設定することもできる。
(計算工程)
計算工程では、構造について、反応性力場を用いて分子動力学計算を行い、構造内での化合物のモノマーの挙動を追跡することができる。
When the monomers of a plurality of compounds are set in the structure, the arrangement is not particularly limited, and for example, the monomers of a plurality of compounds can be arranged at a certain distance or more. It is also possible to arrange the monomers of a plurality of compounds so as to form a cluster. That is, in the initial setting step, it is possible to set a structure including clusters formed by monomers of a plurality of compounds.
(Calculation process)
In the calculation step, the molecular dynamics calculation can be performed on the structure using the reactive force field, and the behavior of the compound monomer in the structure can be traced.

既述の様に、第一原理計算のような静止系や固体を対象とした計算手法や理論では、液相中での化合物の挙動を把握することは困難であり、また希薄系に対する気体の状態方程式も適用することはできなかった。そこで、本発明の発明者らが検討を行ったところ、計算を行う際に、従来は液相での反応に適用することが検討されていなかった反応性力場を用いることで、化合物の結合、乖離を自然に表現できること、すなわち構造内に含まれる元素について元素間の結合力等の化学的性質を適切に再現できることを見出した。このため、本発明の発明者らの検討によれば、反応性力場を用いることで液相中での化合物の挙動を計算で可視化することが可能になる。また、反応性力場を用いることで、第一原理分子動力学計算のような、計算ステップごとに電子状態を計算する方法よりも圧倒的に低負荷で分子動力学計算を行い、水溶液中での粒子挙動を追跡することが可能になる。 As described above, it is difficult to understand the behavior of compounds in the liquid phase by the calculation methods and theories for stationary systems and solids such as the first-principles calculation. The equation of state could not be applied either. Therefore, the inventors of the present invention conducted a study and found that when performing the calculation, by using a reactive force field, which had not been previously considered to be applied to the reaction in the liquid phase, , It was found that the dissociation can be naturally expressed, that is, the chemical properties such as the bonding force between the elements contained in the structure can be appropriately reproduced. Therefore, according to the study by the inventors of the present invention, it becomes possible to visualize the behavior of the compound in the liquid phase by calculation by using the reactive force field. In addition, by using the reactive force field, the molecular dynamics calculation is performed at an overwhelmingly lower load than the method of calculating the electronic state at each calculation step like the first principle molecular dynamics calculation, and the It is possible to trace the particle behavior of the.

反応性力場としては特に限定されないが、例えばReaxFFを力場として用いることができる。 The reactive force field is not particularly limited, but for example, ReaxFF can be used as the force field.

ReaxFFの力場パラメータは、既知のパラメータを用いる他、計算に供する化合物の格子定数、体積弾性率、結合距離、および液相の分子の構造を再現するように最小二乗法もしくは機械学習によりパラメータを決めることができる。この際、再現する化合物の格子定数、体積弾性率、結合距離および液相の分子の構造は実験値を用いても良いし、第一原理計算によって求めた値を用いることもできる。最小二乗法や機械学習によりフィットする対象はこれらの物性値に限られるものではなく、2体の相関距離、動径分布関数等もフィッティング対象に加えることができる。 As the force field parameter of ReaxFF, in addition to using known parameters, parameters are calculated by the method of least squares or machine learning so as to reproduce the lattice constant, bulk modulus, bond length, and liquid-phase molecular structure of the compound used for calculation. I can decide. At this time, experimental values may be used for the lattice constant, bulk modulus, bond length, and liquid phase molecular structure of the compound to be reproduced, or values obtained by first-principles calculation may be used. The object fitted by the least square method or machine learning is not limited to these physical property values, and the correlation distance of two bodies, the radial distribution function, etc. can be added to the fitting object.

ReaxFFの力場パラメータのフィッティング手順を具体的に示すと以下の様になる。(1)フィッティングの対象とする物性値を決める。
(2)対象とする物性値の参照値を実測値もしくは高精度な第一原理計算により決める。
(3)ReaxFFの力場パラメータを変えながら、ReaxFFを用いて分子動力学計算もしくは静的計算により物性値を計算する。
(4)ReaxFFで求めた物性値と参照値とを比較し、別のパラメータで(3)の手順を繰り返す、もしくはパラメータを確定する。
The procedure for fitting the force field parameters of the ReaxFF is specifically shown as follows. (1) Determine the physical properties to be fitted.
(2) The reference value of the target physical property value is determined by an actual measurement value or a highly accurate first principle calculation.
(3) Physical property values are calculated by molecular dynamics calculation or static calculation using ReaxFF while changing the force field parameter of ReaxFF.
(4) The physical property value obtained by ReaxFF is compared with the reference value, and the procedure of (3) is repeated with another parameter or the parameter is determined.

計算工程で、分子動力学計算を用いて計算を行う際には、NVE(粒子数、体積、エネルギー一定)、NVT(粒子数、体積、温度一定)、NPT(粒子数、体積、圧力一定)等の条件で計算を行うことができる。 When performing calculation using molecular dynamics calculation in the calculation process, NVE (particle number, volume, constant energy), NVT (particle number, volume, constant temperature), NPT (particle number, volume, constant pressure) Calculation can be performed under the conditions such as.

なお、既述の様に、初期設定工程において構造内に複数の化合物のモノマーが結合したクラスターを配置し、計算を行うこともできる。ただし、クラスターの具体的形状が不明な場合は、初期設定工程において、構造内に複数のモノマーをランダムに配置した系を初期構造として設定して計算を行い、時間発展させることで、クラスターの形状を計算で求めることもできる。また、でき上がったクラスターを次の計算の初期構造とすることで、計算規模を抑えながらクラスターの成長過程を追跡することができる。このように、本実施形態の液相中での化合物の挙動の予測方法は、例えばクラスター構造を決定し、係るクラスター構造を計算工程に供する等のために、計算工程を繰り返し実施することもできる。すなわち、本実施形態の液相中での化合物の挙動の予測方法は、計算工程を繰り返し実施する繰り返し工程をさらに有することもできる。この場合、直前の計算工程で求めた構造を、次の計算工程の初期構造として用いることができる。 Note that, as described above, it is also possible to arrange the clusters in which the monomers of a plurality of compounds are bound in the structure in the initial setting step and perform the calculation. However, if the specific shape of the cluster is unknown, a system in which multiple monomers are randomly arranged in the structure is set as the initial structure in the initial setting process, calculations are performed, and the shape of the cluster is expanded by time evolution. Can also be calculated. In addition, by using the completed cluster as the initial structure for the next calculation, it is possible to trace the growth process of the cluster while suppressing the calculation scale. As described above, the method of predicting the behavior of a compound in a liquid phase according to the present embodiment can be performed repeatedly in order to determine a cluster structure and use the cluster structure in the calculation step, for example. .. That is, the method for predicting the behavior of a compound in the liquid phase of the present embodiment can further include a repeating step of repeating the calculation step. In this case, the structure obtained in the immediately preceding calculation step can be used as the initial structure in the next calculation step.

以上に説明した本実施形態の液相中での化合物の挙動の予測方法によれば、従来は困難であった、計算科学を用いた液相中での化合物の挙動、例えば結晶析出現象や、溶解現象、拡散現象等を予測することが可能になる。このため、本実施形態の液相中での化合物の挙動の予測方法を用いることで、液相中での反応により化合物を製造する場合において、特定の粒度分布や、モフォロジーとするための反応条件等を容易にかつ適切に選択できるようになる。 According to the method for predicting the behavior of a compound in the liquid phase of the present embodiment described above, conventionally difficult, the behavior of the compound in the liquid phase using computational science, for example, crystal precipitation phenomenon, It becomes possible to predict dissolution phenomenon, diffusion phenomenon, and the like. Therefore, by using the method for predicting the behavior of a compound in the liquid phase of the present embodiment, in the case of producing a compound by a reaction in the liquid phase, a specific particle size distribution and reaction conditions for obtaining a morphology And the like can be easily and appropriately selected.

以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
[実施例1]
以下の手順により、ニッケル水酸化物水溶液内におけるニッケル水酸化物の挙動の予測を行った。
(初期設定工程)
図1に示すように、ニッケル原子111と、酸素原子112と、水素原子113とから構成される水酸化ニッケル(Ni(OH))のモノマー11を20個と、酸素原子121と、水素原子122とから構成される水分子12を800個とからなる構造10を初期構造として設定した。図1は規定した構造の任意の一方向から見た側面図を示している。
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following examples.
[Example 1]
The behavior of nickel hydroxide in the nickel hydroxide aqueous solution was predicted by the following procedure.
(Initial setting process)
As shown in FIG. 1, 20 nickel hydroxide (Ni(OH) 2 ) monomers 11 each composed of a nickel atom 111, an oxygen atom 112, and a hydrogen atom 113, an oxygen atom 121, and a hydrogen atom. Structure 10 consisting of 800 water molecules 12 composed of 122 and 122 was set as the initial structure. FIG. 1 shows a side view of the defined structure viewed from an arbitrary direction.

なお、化合物である水酸化ニッケルのモノマー11、及び液相分子である水分子12は構造10内にランダムに配置した。
(計算工程)
初期設定工程で設定した構造について、700Kで500ps間分子動力学計算を行い、液相分子である水分子12内の水酸化ニッケルのモノマー11の挙動を追跡した。
In addition, the monomer 11 of nickel hydroxide as a compound and the water molecule 12 as a liquid phase molecule were randomly arranged in the structure 10.
(Calculation process)
With respect to the structure set in the initial setting step, molecular dynamics calculation was performed at 700 K for 500 ps to trace the behavior of the nickel hydroxide monomer 11 in the water molecule 12 which is a liquid phase molecule.

なお、計算は粒子数、体積、温度一定の条件下で行い、反応性力場であるReaxFFを力場として用いた。 The calculation was performed under the conditions of the number of particles, volume, and temperature, and ReaxFF, which is a reactive force field, was used as the force field.

500ps間の計算後の各分子の配置を図2に示す。 The arrangement of each molecule after calculation for 500 ps is shown in FIG.

図2に示すように、水酸化ニッケルのモノマー11は水相である水分子12内で移動し、互いに近接し、クラスターを形成することが確認できた。 As shown in FIG. 2, it was confirmed that the nickel hydroxide monomer 11 migrated in the water molecule 12, which is the water phase, and moved close to each other to form a cluster.

Claims (3)

化合物のモノマーと、液相分子とを含む構造を設定する初期設定工程と、
前記構造について、反応性力場を用いて分子動力学計算を行い、前記構造内での前記化合物のモノマーの挙動を追跡する計算工程と、を有する液相中での化合物の挙動の予測方法。
An initial setting step of setting a structure containing a compound monomer and a liquid phase molecule;
A method of predicting the behavior of a compound in a liquid phase, which comprises a molecular dynamics calculation for the above structure using a reactive force field, and a tracking step of tracking the behavior of the monomer of the compound within the structure.
前記初期設定工程において、複数の前記化合物のモノマーにより形成されたクラスターを含む前記構造を設定する、請求項1に記載の液相中での化合物の挙動の予測方法。 The method for predicting the behavior of a compound in a liquid phase according to claim 1, wherein in the initial setting step, the structure including clusters formed by a plurality of monomers of the compound is set. 前記計算工程を繰り返し実施する繰り返し工程をさらに有する請求項1または請求項2に記載の液相中での化合物の挙動の予測方法。 The method for predicting the behavior of a compound in a liquid phase according to claim 1 or 2, further comprising a repeating step of repeatedly performing the calculation step.
JP2019013510A 2019-01-29 2019-01-29 Method for predicting behavior of compounds in liquid phase Active JP7218864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013510A JP7218864B2 (en) 2019-01-29 2019-01-29 Method for predicting behavior of compounds in liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013510A JP7218864B2 (en) 2019-01-29 2019-01-29 Method for predicting behavior of compounds in liquid phase

Publications (2)

Publication Number Publication Date
JP2020121898A true JP2020121898A (en) 2020-08-13
JP7218864B2 JP7218864B2 (en) 2023-02-07

Family

ID=71992134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013510A Active JP7218864B2 (en) 2019-01-29 2019-01-29 Method for predicting behavior of compounds in liquid phase

Country Status (1)

Country Link
JP (1) JP7218864B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078970A (en) * 2010-09-30 2012-04-19 Sumitomo Chemical Co Ltd Calculation method for interaction parameter between two components and evaluation method for miscibility of two components
JP2014215785A (en) * 2013-04-25 2014-11-17 富士通株式会社 Coordinate data conversion method, interaction calculation method, program, recording medium, and apparatus
JP2016118829A (en) * 2014-12-18 2016-06-30 東洋ゴム工業株式会社 Calculation device of intermolecular potential, calculation method of intermolecular potential, and computer program
WO2016133002A1 (en) * 2015-02-19 2016-08-25 株式会社豊田中央研究所 Reaction mechanism generation method and reaction mechanism generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078970A (en) * 2010-09-30 2012-04-19 Sumitomo Chemical Co Ltd Calculation method for interaction parameter between two components and evaluation method for miscibility of two components
JP2014215785A (en) * 2013-04-25 2014-11-17 富士通株式会社 Coordinate data conversion method, interaction calculation method, program, recording medium, and apparatus
JP2016118829A (en) * 2014-12-18 2016-06-30 東洋ゴム工業株式会社 Calculation device of intermolecular potential, calculation method of intermolecular potential, and computer program
WO2016133002A1 (en) * 2015-02-19 2016-08-25 株式会社豊田中央研究所 Reaction mechanism generation method and reaction mechanism generation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Also Published As

Publication number Publication date
JP7218864B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
JP2020121898A (en) Method for predicting behavior of compound in liquid phase
Nguyen et al. Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm
Wang et al. Discovering chemistry with an ab initio nanoreactor
Perkyns et al. Protein solvation from theory and simulation: Exact treatment of Coulomb interactions in three-dimensional theories
Leyssens et al. Optimization of a crystallization by online FBRM analysis of needle-shaped crystals
Testard et al. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid
Qi et al. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis
Kempfer et al. Development of coarse-grained models for polymers by trajectory matching
Zagorac et al. Energy landscape investigations using the prescribed path method in the ZnO system
Ahmad et al. On efficient monitoring of process dispersion using interquartile range
Sujith et al. Natural gas evolution in a gas hydrate melt: effect of thermodynamic hydrate inhibitors
Shi et al. Effect of water film on the plastic deformation of monocrystalline copper
WO2021068901A1 (en) Material microstructure evolution simulation solved on the basis of exponential time difference format
Porru et al. Monitoring of batch industrial crystallization with growth, nucleation, and agglomeration. Part 1: Modeling with method of characteristics
Chandra et al. Atomistic simulations of interaction of edge dislocation with twist grain boundaries in Al-effect of temperature and boundary misorientation
Vickers et al. Molecular methods for assessing the morphology, topology, and performance of polyamide membranes
Tang et al. Crystallization kinetics and mechanisms of calcium sulfate dihydrate: experimental investigation and theoretical analysis
Jones et al. Understanding the kinetics of barium sulfate precipitation from water and water–methanol solutions
Curtin et al. Progress and challenges in the theory and modeling of complex concentrated alloys
van Westen et al. Accurate first-order perturbation theory for fluids: uf-theory
Dong et al. DeepXRD, a deep learning model for predicting XRD spectrum from material composition
Suzudo et al. Hardening in thermally-aged Fe–Cr binary alloys: Statistical parameters of atomistic configuration
Safari et al. High-pressure polymorphs nucleated and stabilized by rational doping under ambient conditions
Clark et al. Correlation of solubility with the metastable limit of nucleation using gauge-cell monte carlo simulations
Katsoulakis et al. Intermittency, metastability and coarse graining for coupled deterministic–stochastic lattice systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R150 Certificate of patent or registration of utility model

Ref document number: 7218864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150