JP2020121252A - Photoreaction device, photoreaction method using the same, and method for manufacturing lactam - Google Patents

Photoreaction device, photoreaction method using the same, and method for manufacturing lactam Download PDF

Info

Publication number
JP2020121252A
JP2020121252A JP2019013382A JP2019013382A JP2020121252A JP 2020121252 A JP2020121252 A JP 2020121252A JP 2019013382 A JP2019013382 A JP 2019013382A JP 2019013382 A JP2019013382 A JP 2019013382A JP 2020121252 A JP2020121252 A JP 2020121252A
Authority
JP
Japan
Prior art keywords
light
photoreaction
light transmissive
container
transmissive container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019013382A
Other languages
Japanese (ja)
Inventor
長野 信久
Nobuhisa Nagano
信久 長野
高木 淳一
Junichi Takagi
淳一 高木
慶晃 久留美
Yoshiaki Kurumi
慶晃 久留美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Toray Industries Inc
Original Assignee
Toshiba Lighting and Technology Corp
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp, Toray Industries Inc filed Critical Toshiba Lighting and Technology Corp
Priority to JP2019013382A priority Critical patent/JP2020121252A/en
Publication of JP2020121252A publication Critical patent/JP2020121252A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a photoreaction device achieving more desirable light irradiation with higher light transmittance by further suppressing light reflection in a light irradiation path between a light-emitting diode light source and a target photoreaction substance separated from each other by a light transmissive container: to provide a photoreaction method using the photoreaction device: and to provide a method for manufacturing lactam using the photoreaction method.SOLUTION: A photoreaction device irradiates a photoreaction substance introduced to the periphery of a light irradiation device with light from a light irradiation device having a light source comprising light-emitting diode, a first light transmissive container covering the light source, and a second light transmissive container covering the first light transmissive container. In the photoreaction device, light transmissive insulation liquid is filled in the inside of the first light transmissive container and light transmissive liquid is filled in a space between the first light transmissive container and the second light transmissive container. A photoreaction method uses the photoreaction device. A method for manufacturing lactam uses the photoreaction method.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオードを光源として使用した光照射装置からの光を光反応物質に照射する光反応装置、その光反応装置を用いた光反応方法、その光反応方法を用いたラクタムの製造方法に関する。 The present invention relates to a photoreaction device for irradiating a photoreactive substance with light from a light irradiation device using a light emitting diode as a light source, a photoreaction method using the photoreaction device, and a method for producing a lactam using the photoreaction method. Regarding

光反応は、光化学反応とも言われ、光照射により、すなわちラジカル反応剤に照射光によるエネルギーを吸収させることにより、分子をエネルギー準位の高い状態、いわゆる励起状態とし、励起された分子により反応を起こさせる化学反応全般を指す。光反応には、光による酸化・還元反応、光による置換・付加反応などの種類があり、適用用途としては写真工業、コピー技術、光起電力の誘起の他、有機化合物の合成に利用されることが知られている。また、非意図的な光化学反応としては光化学スモッグなども光化学反応に属する。 The photoreaction is also called a photochemical reaction, and by irradiation with light, that is, by causing the radical reactant to absorb energy from the irradiation light, the molecule is brought into a high energy level state, a so-called excited state, and the reaction is caused by the excited molecule. Refers to all chemical reactions that occur. There are various types of photoreactions, such as oxidation/reduction reaction by light, substitution/addition reaction by light, etc., and they are used in the photo industry, copy technology, induction of photoelectromotive force, and synthesis of organic compounds. It is known. Further, as an unintentional photochemical reaction, photochemical smog belongs to the photochemical reaction.

例えば、シクロヘキサノンオキシムを光化学反応により合成できることが知られており、また、シクロアルカンの光ニトロソ化についても、現在では広く知られた技術である。 For example, it is known that cyclohexanone oxime can be synthesized by a photochemical reaction, and the photonitrosation of cycloalkane is now a widely known technique.

これまでに用いられてきた光反応のための光源としては、いずれも真空または真空に近い環境に水銀やタリウム、ナトリウム、その他金属を封入して電圧を印加し、放出される電子線を封入金属に照射することで、気体または蒸気の中での放電による発光を利用したランプ、例えば放電灯や蛍光灯を光源として使用する場合がほとんどである。 As the light source for the photoreaction that has been used so far, all of them contain mercury, thallium, sodium, and other metals in a vacuum or an environment close to a vacuum to apply a voltage, and the emitted electron beam is sealed in a metal. In most cases, a lamp that utilizes light emission due to discharge in a gas or vapor, for example, a discharge lamp or a fluorescent lamp, is used as a light source by irradiating the light.

例えば、高圧水銀灯を光源として使用する場合、有効波長は365nm〜600nmである。しかし、この種の水銀を用いる放電灯では、365nm未満の紫外線を含む波長領域にも水銀による特有の発光エネルギーが存在している。そのため、例えば350nm未満の紫外線を含む短波長領域に発光エネルギーを有する場合、多くの化学結合の解離エネルギーに匹敵するので、目的以外の反応が進行して、副反応を助長し、かつタール状の褐色被膜が放電灯の光照射面に生成し収率を低下させてしまう。したがって、紫外線をカットするために、水溶性蛍光剤の使用や紫外線カットガラスが使用される。 For example, when a high pressure mercury lamp is used as a light source, the effective wavelength is 365 nm to 600 nm. However, in a discharge lamp using this kind of mercury, peculiar emission energy due to mercury also exists in a wavelength range including ultraviolet rays of less than 365 nm. Therefore, for example, when the emission energy is in a short wavelength region including ultraviolet rays of less than 350 nm, it is comparable to the dissociation energy of many chemical bonds, so that a reaction other than the purpose proceeds and promotes a side reaction, and is tar-like. A brown film is formed on the light-irradiated surface of the discharge lamp, which reduces the yield. Therefore, in order to block the ultraviolet rays, the use of a water-soluble fluorescent agent and the ultraviolet ray cutting glass are used.

このような水銀灯における問題を低減し、かつ発光効率を上げるために、波長535nmに有効な発光エネルギーを示すタリウム灯や波長589nmに有効な発光エネルギーを示すナトリウム灯が有効であることが知られている。ナトリウム灯を光源とすることで、飛躍的に収率を上げ、安定した反応が可能になる。さらに、高圧ナトリウム放電灯を用いることで、工業的な有効波長は400〜700nmとして、波長600nm〜700nmの波長領域で効率アップが可能となる。この範囲での、ピーク波長は約580〜610nm程度と推定できる。しかし、放電灯の電気特性や始動を良好にするためには、水銀の共存は避けられず、水銀による紫外線をカットするフィルターは必要である。とくに、水銀により発生する波長400nm未満の短波長は、エネルギーが強すぎ不要な副反応を引き起こすため、不要な波長とされている。 In order to reduce the above problems in the mercury lamp and to increase the luminous efficiency, it is known that a thallium lamp that exhibits effective emission energy at a wavelength of 535 nm and a sodium lamp that exhibits effective emission energy at a wavelength of 589 nm are effective. There is. By using a sodium lamp as the light source, the yield is dramatically increased and a stable reaction is possible. Further, by using the high-pressure sodium discharge lamp, the industrial effective wavelength is 400 to 700 nm, and the efficiency can be improved in the wavelength range of 600 nm to 700 nm. The peak wavelength in this range can be estimated to be about 580 to 610 nm. However, coexistence of mercury is unavoidable in order to improve the electric characteristics and starting of the discharge lamp, and a filter that blocks ultraviolet rays due to mercury is necessary. In particular, a short wavelength of less than 400 nm generated by mercury is an unnecessary wavelength because the energy is too strong to cause an unnecessary side reaction.

さらに、ナトリウム灯は、波長780〜840nmの赤外線を含む波長領域に、特有の発光エネルギーピークを有し、そのエネルギー強度はナトリウム灯での最大発光エネルギーに匹敵するレベルのものも多い。塩化ニトロシルの解離エネルギーは約156kJ/molであり、Einsteinの法則より、波長760nm付近の発光エネルギーに匹敵するため、それ以上の長波長領域では光エネルギーが小さく、塩化ニトロシルが解離しないので、反応に寄与せず大きなエネルギーロスになる。 Further, the sodium lamp has a peculiar luminescence energy peak in a wavelength range including infrared rays having a wavelength of 780 to 840 nm, and its energy intensity is often at a level comparable to the maximum luminescence energy of the sodium lamp. The dissociation energy of nitrosyl chloride is about 156 kJ/mol, which is comparable to the emission energy near the wavelength of 760 nm according to Einstein's law, so the light energy is small in the longer wavelength region beyond that, and nitrosyl chloride does not dissociate in the reaction. It does not contribute to the energy loss.

発光ダイオードは、LEDとも略称され、半導体を用いて電気エネルギーを直接光に転換できる利点があり、熱の発生の抑制、省エネルギー、長寿命等の点で注目されている。その開発の歴史はまだ浅く、1962年に赤色LEDが商品化され、2000年頃から青色、緑色、白色といったLEDが開発され、表示用、照明用途として商品化された。一方、光反応用に使用されている放電灯は、非常に高出力であり、発光効率も高いが、放電灯と同等の光反応に必要な発光エネルギーをLEDで得ようとすると、LEDの必要個数が膨大となり、回路設計やLEDの熱対策やコスト面の課題が残されており、光反応の光源としてLEDを適用することは困難であると考えられてきた。さらに、光反応には反応物質に均一な光を照射させることが必要であるが、LEDは指向性が強く、反応に必要な波長を高効率で得ることも困難であり、この点からも光反応の光源へのLEDの適用は困難と考えられてきた。しかし、近年では特許文献1や特許文献2に記載の通り、LEDによる光反応を小型の反応装置を用いて実施する例も見られ、さらに特許文献2に記載の通り、発光体を大型化するための課題についても解決の目処が立ちつつある。 The light emitting diode, which is also abbreviated as LED, has an advantage that electric energy can be directly converted into light by using a semiconductor, and has been attracting attention in terms of suppression of heat generation, energy saving, long life, and the like. The history of its development is still short, and red LEDs were commercialized in 1962, and blue, green, and white LEDs were developed around 2000, and were commercialized for display and lighting applications. On the other hand, the discharge lamp used for photoreaction has a very high output and a high luminous efficiency, but if an LED is required to obtain the luminescence energy required for a photoreaction equivalent to that of the discharge lamp, it is necessary to use the LED. It has been thought that it is difficult to apply LEDs as a light source of photoreaction, because the number of them becomes enormous and the problems of circuit design, heat countermeasures for LEDs and cost aspects remain. Further, the photoreaction requires irradiation of the reaction material with uniform light, but the LED has a strong directivity, and it is difficult to obtain the wavelength required for the reaction with high efficiency. The application of LEDs to reaction light sources has been considered difficult. However, in recent years, as described in Patent Document 1 and Patent Document 2, there have been seen examples in which a photoreaction by an LED is carried out using a small reaction device, and as described in Patent Document 2, the illuminant is enlarged. There is also a prospect for a solution to the problem.

しかしこれら特許文献1や2に開示の発明では、発光ダイオードから直線的に放出される光を必ずしも有効利用できる光照射装置や光反応装置の構造を提案できているとはいえない。また、光反応を目的とするならば、目的物質が可燃性液体の場合がほとんどであり、着火源となる光照射装置と目的物質との物理的分離が必須であるが、特許文献1や2に開示の発明では、分離のための光照射経路における障害物、つまり光透過性容器によって、光が反射により遮られ、光透過の割合が低下するという問題があった。 However, in the inventions disclosed in Patent Documents 1 and 2, it cannot be said that a structure of a light irradiation device or a photoreaction device that can effectively use the light linearly emitted from the light emitting diode can be proposed. Further, in the case of aiming at a photoreaction, the target substance is almost always a flammable liquid, and it is essential to physically separate the light irradiation device serving as an ignition source and the target substance. In the invention disclosed in 2, there is a problem that the light is blocked by reflection by the obstacle in the light irradiation path for separation, that is, the light transmissive container, and the ratio of light transmission is reduced.

このような問題を解決するために、特許文献3により、光透過性容器により隔離された発光ダイオード光源と目的物質(目的液)との間での光の反射を抑制することにより、高い光透過率をもってより望ましい光照射を達成することを目的とした光照射装置と、その光照射装置を用いた光反応方法、その光反応方法を用いたラクタムの製造方法が提案されている。より具体的には、光反応に利用可能な、発光ダイオードを光源とする光照射装置であって、前記発光ダイオードを備えた発光体を覆う第1光透過性容器を備え、その外部に、前記第1光透過性容器の内側の気相部を形成する気体よりも前記第1光透過性容器の屈折率に近い液体で形成される液相部と、さらにその液相部を覆う第2光透過性容器とを備えている光照射装置が提案されている。 In order to solve such a problem, according to Patent Document 3, high light transmission is achieved by suppressing reflection of light between a light emitting diode light source isolated by a light transmissive container and a target substance (target liquid). There have been proposed a light irradiation device aiming at achieving a more desirable light irradiation with a ratio, a photoreaction method using the light irradiation device, and a lactam production method using the light reaction method. More specifically, it is a light irradiation device that uses a light emitting diode as a light source, which is usable for photoreaction, and includes a first light transmissive container that covers a light emitting body including the light emitting diode, A liquid phase part formed of a liquid having a refractive index closer to that of the first light transmissive container than a gas forming the gas phase part inside the first light transmissive container, and a second light covering the liquid phase part. A light irradiation device including a transparent container has been proposed.

なお、後述の本発明の実施例で光透過性を有する絶縁性液体として使用したフッ素系不活性液体としての“フロリナート”(登録商標、3M社製)は、例えば特許文献4に記載されているが、特許文献4には、とくに、“フロリナート”を、発光ダイオードからなる光源を二重の光透過性容器で覆った光反応装置の光の照射経路に使用することについては何ら言及されていない。 In addition, "Fluorinert" (registered trademark, manufactured by 3M Company) as a fluorine-based inert liquid used as an insulating liquid having a light-transmitting property in Examples of the present invention described later is described in, for example, Patent Document 4. However, Patent Document 4 does not particularly mention the use of "Fluorinert" in the light irradiation path of a photoreaction device in which a light source composed of a light emitting diode is covered with a double light transmissive container. ..

特開2010−006776号公報JP, 2010-006776, A 特開2013−200944号公報JP, 2013-200944, A 国際公開2016/056370号公報International Publication 2016/056370 特開2008−016545号公報JP, 2008-016545, A

上記特許文献3によって提案された技術により、発光ダイオード光源からの光をそれまでよりも高い透過率をもって目的液に照射でき、それによって光反応においてより高い反応収率、反応収量を得ることが可能になった。しかしながら、本発明者らがさらなる検討を進めた結果、特許文献3に記載の光照射装置では、第1光透過性容器の内側には気相部が形成されているため、第1光透過性容器と気相部を形成する気体との界面での屈折によって、発光ダイオード光源からの光の反射の抑制が十分に行われない可能性があり、したがって、光照射装置全体として、発光ダイオード光源からの光の透過が十分ではない可能性があることが判明し、さらなる改良の余地があることが判明した。 With the technique proposed by the above-mentioned Patent Document 3, it is possible to irradiate the target liquid with the light from the light emitting diode light source with a higher transmittance than before, thereby obtaining a higher reaction yield and a higher reaction yield in the photoreaction. Became. However, as a result of further study by the present inventors, in the light irradiation device described in Patent Document 3, since the gas phase portion is formed inside the first light transmissive container, the first light transmissive property is obtained. Refraction at the interface between the container and the gas that forms the gas phase portion may not sufficiently suppress the reflection of light from the light emitting diode light source, and therefore, the light emitting device as a whole may not emit light from the light emitting diode light source. It was found that the light transmission of the above may not be sufficient, and there is room for further improvement.

そこで本発明の課題は、上記のような検討結果に基づき、特許文献3によって提案されたような技術をさらに格段に改良された技術へと進歩させ、実用的により有用な技術を確立するために、光透過性容器により隔離された発光ダイオード光源と目的光反応物質との間の光の照射経路での光の反射をさらに抑制することにより、より高い光透過率をもってより望ましい光照射を達成することが可能な光照射装置を用いた光反応装置と、その光反応装置を用いた光反応方法、その光反応方法を用いたラクタムの製造方法を提供することにある。 Therefore, an object of the present invention is to advance the technique proposed by Patent Document 3 to a much improved technique based on the above-described examination results and to establish a practically more useful technique. By further suppressing the reflection of light in the light irradiation path between the light emitting diode light source isolated by the light transmissive container and the target photoreactive substance, thereby achieving more desirable light irradiation with higher light transmittance. (EN) Provided are a photoreaction device using a light irradiation device, a photoreaction method using the photoreaction device, and a lactam production method using the photoreaction method.

上記課題を解決するため、本発明では以下の構成を採用する。すなわち、
(1)発光ダイオードからなる光源と、該光源を覆う第1光透過性容器と、該第1光透過性容器を覆う第2光透過性容器とを有する光照射装置からの光を、該光照射装置の周囲に導入される光反応物質に照射する光反応装置であって、前記第1光透過性容器の内部に(第1光透過性容器の内側の前記光源側に)、光透過性を有する絶縁性液体を、前記第1光透過性容器と前記第2光透過性容器の間に光透過性液体をそれぞれ充填したことを特徴とする光反応装置。
(2)前記絶縁性液体の屈折率が1.25以上である、(1)に記載の光反応装置。
(3)前記絶縁性液体の屈折率が前記光透過性流体の屈折率以上である、(1)または(2)に記載の光反応装置。
(4)前記絶縁性液体の屈折率は、前記光透過性流体の屈折率よりもより前記第1光透過性容器を構成する材料の屈折率により近い、(1)〜(3)のいずれかに記載の光反応装置。
(5)前記絶縁性液体が、フッ素系不活性液体、シリコーンオイル、水のいずれかである、(1)〜(4)のいずれかに記載の光反応装置。
(6)前記光透過性流体が、水、シリコーンオイル、フッ素系不活性液体のいずれかである、(1)〜(5)のいずれかに記載の光反応装置。
(7)前記第1光透過性容器および前記第2光透過性容器の少なくとも第1光透過性容器はガラス製である、(1)〜(6)のいずれかに記載の光反応装置。
(8)前記発光ダイオードの封止剤がシリコーンレンズである、(1)〜(7)のいずれかに記載の光反応装置。
(9)前記光反応物質が光反応液体である、(1)〜(8)のいずれかに記載の光反応装置。
(10)(1)〜(9)のいずれかに記載の光反応装置を用いることを特徴とする光反応方法。
(11)光反応物質の組成に少なくとも炭素原子が含まれている、(10)に記載の光反応方法。
(12)光反応物質としての光反応液体にシクロアルカンが含まれている、(11)に記載の光反応方法。
(13)前記シクロアルカンと光ニトロソ化剤に光照射装置からの光を照射することによりシクロアルカノンオキシムを製造する、(12)に記載の光反応方法。
(14)前記シクロアルカノンオキシムがシクロヘキサノンオキシムまたはシクロドデカノンオキシムである、(13)に記載の光反応方法。
(15)前記光ニトロソ化剤が塩化ニトロシルまたはトリクロロニトロソメタンである、(13)または(14)に記載の光反応方法。
(16)(13)〜(15)のいずれかに記載の光反応方法で製造したシクロアルカノンオキシムを用いることを特徴とするラクタムの製造方法。
In order to solve the above problems, the present invention adopts the following configurations. That is,
(1) Light from a light irradiation device having a light source including a light emitting diode, a first light transmissive container that covers the light source, and a second light transmissive container that covers the first light transmissive container A photoreactive device for irradiating a photoreactive substance introduced around the irradiation device, wherein the photoreactive substance is provided inside the first light transmissive container (to the light source side inside the first light transmissive container). A photoreaction device comprising: an insulating liquid having a light-transmitting liquid filled between the first light-transmitting container and the second light-transmitting container.
(2) The photoreaction device according to (1), wherein the insulating liquid has a refractive index of 1.25 or more.
(3) The photoreaction device according to (1) or (2), wherein the refractive index of the insulating liquid is equal to or higher than the refractive index of the light transmissive fluid.
(4) The refractive index of the insulating liquid is closer to the refractive index of the material forming the first light transmissive container than the refractive index of the light transmissive fluid. (1) to (3) The photoreactor according to.
(5) The photoreactor according to any one of (1) to (4), wherein the insulating liquid is one of a fluorine-based inert liquid, silicone oil, and water.
(6) The photoreaction device according to any one of (1) to (5), wherein the light-transmitting fluid is any one of water, silicone oil, and a fluorine-based inert liquid.
(7) The photoreaction device according to any one of (1) to (6), wherein at least the first light transmissive container of the first light transmissive container and the second light transmissive container is made of glass.
(8) The photoreaction device according to any one of (1) to (7), wherein the light emitting diode sealant is a silicone lens.
(9) The photoreaction device according to any one of (1) to (8), wherein the photoreactive substance is a photoreactive liquid.
(10) A photoreaction method using the photoreaction device according to any one of (1) to (9).
(11) The photoreaction method according to (10), wherein the composition of the photoreactant contains at least carbon atoms.
(12) The photoreaction method according to (11), wherein the photoreaction liquid as the photoreaction substance contains cycloalkane.
(13) The photoreaction method according to (12), wherein a cycloalkanone oxime is produced by irradiating the cycloalkane and the photonitrosating agent with light from a light irradiation device.
(14) The photoreaction method according to (13), wherein the cycloalkanone oxime is cyclohexanone oxime or cyclododecanone oxime.
(15) The photoreaction method according to (13) or (14), wherein the photo-nitrosating agent is nitrosyl chloride or trichloronitrosomethane.
(16) A method for producing a lactam, which comprises using the cycloalkanone oxime produced by the photoreaction method according to any one of (13) to (15).

本発明によれば、LEDからなる光源と該光源から目的光反応物質への光の照射経路に設けられた第1、第2の光透過性容器とを備えた光照射装置において、第1光透過性容器の内部に光透過性を有する絶縁性液体を、第1光透過性容器と第2光透過性容器の間に光透過性液体をそれぞれ充填したので、光の照射経路における光の反射を大きく抑制することができ、とくに、光源から第1光透過性容器を構成する物質内に至る光の照射経路における光の反射を大きく抑制することができ、その結果、目的光反応物質に至るまでの光の照射経路全体における光の透過率を大幅に高めて、エネルギー効率の極めて高い光反応を実現することができる。したがって、光反応において極めて高い反応収率、反応収量を得ることが可能になる。とくに、本発明は、シクロアルカノンオキシムを製造するための光反応、そのシクロアルカノンオキシムを用いるラクタムの製造に極めて有用なものである。 According to the present invention, in a light irradiation device including a light source including an LED and first and second light transmissive containers provided in a light irradiation path from the light source to a target photoreactive substance, Since the insulating liquid having a light-transmitting property is filled inside the transparent container and the light-transmitting liquid is filled between the first light-transmitting container and the second light-transmitting container, the reflection of the light in the light irradiation path is reflected. Can be greatly suppressed, and in particular, the reflection of light in the light irradiation path from the light source to the inside of the substance forming the first light transmissive container can be largely suppressed, and as a result, the target photoreactive substance can be obtained. It is possible to significantly increase the light transmittance in the entire light irradiation path up to and to realize a photoreaction with extremely high energy efficiency. Therefore, it becomes possible to obtain an extremely high reaction yield and reaction yield in the photoreaction. In particular, the present invention is extremely useful for photoreaction for producing cycloalkanone oxime, and for producing lactam using the cycloalkanone oxime.

本発明の一実施態様に係る光反応装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a photoreaction device according to an embodiment of the present invention. 媒体間の境界面における光の屈折の一例を示す模式図である。It is a schematic diagram which shows an example of refraction of the light in the boundary surface between media. 媒体間の境界面における光の屈折の別の例を示す模式図である。It is a schematic diagram which shows another example of refraction|bending of the light in the boundary surface between media.

以下に、本発明の実施の形態を、図面を参照して説明する。
本発明において、光反応装置における光照射装置とは光を放つ光源を備え、目的対象物としての光反応物質へ光を照射することのできる装置である。光反応物質とは、例えば、光反応の原料となる光反応液体である。図1は、本発明の一実施態様に係る光反応装置100を示しており、とくに、光反応の目的対象物としての光反応物質、とくに、反応容器11内に導入される光反応物質(とくに、光反応液体)に光照射装置1からの光を照射する場合の一例について示している。光照射装置1は、反応容器11内の光反応物質10に光源3からの光を照射して光反応に供するために、反応容器11内に挿入されている。光照射装置1は、図1に示す装着姿勢において、上部に電源供給部4を備え、その下部には多数の発光ダイオード(以下、LEDと略称することもある。)2を備えた光源3を有しており、電源供給部4の上部側は蓋5によって封止されている。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, the light irradiation device in the photoreaction device is a device that includes a light source that emits light and can irradiate the photoreactive substance as the target object with light. The photoreactive substance is, for example, a photoreactive liquid that is a raw material for the photoreaction. FIG. 1 shows a photoreaction device 100 according to an embodiment of the present invention. In particular, a photoreaction substance as a target object of the photoreaction, particularly a photoreaction substance introduced into a reaction vessel 11 (particularly, , Photo-reactive liquid) is irradiated with light from the light irradiation device 1. The light irradiation device 1 is inserted in the reaction container 11 in order to irradiate the photo-reactive substance 10 in the reaction container 11 with light from the light source 3 and provide the light reaction. In the mounting position shown in FIG. 1, the light irradiation device 1 includes a light source 3 that includes a power supply unit 4 at an upper portion and a large number of light emitting diodes (hereinafter also referred to as LEDs) 2 at a lower portion thereof. The upper side of the power supply unit 4 is sealed by the lid 5.

光源3は、第1光透過性容器6で覆われており、第1光透過性容器6は、間隔をもって第2光透過性容器7で覆われている。第1光透過性容器6の内部、つまり、光源3と第1光透過性容器6との間には、光透過性を有する絶縁性液体8が充填されており、この部分は液相部に形成されている。第1光透過性容器6と第2光透過性容器7の間には、光透過性液体9が充填されており、この部分も液相部に形成されている。 The light source 3 is covered with a first light transmissive container 6, and the first light transmissive container 6 is covered with a second light transmissive container 7 at intervals. The inside of the first light transmissive container 6, that is, the space between the light source 3 and the first light transmissive container 6 is filled with an insulating liquid 8 having light transmissivity, and this part is a liquid phase part. Has been formed. A light-transmitting liquid 9 is filled between the first light-transmitting container 6 and the second light-transmitting container 7, and this portion is also formed in the liquid phase portion.

発光ダイオードとは、紫外線、可視光、赤外光を放射する発光ダイオードで、使用する発光ダイオード2としては、光照射装置1の用途で必要とされる波長を選択した種類が適宜選定できる。発光ダイオード2の形状や寸法には特に制限はなく、目的に合わせた形状・寸法のものを使用できる。一般的な砲弾型や実装型、チップ型等のいずれでもよいが、発光ダイオード2の裏面側から放熱できるものが、除熱が容易であるので望ましい。また、発光ダイオード2の裏面に放熱基板が設けられているものは、伝熱面積を大きく取れ冷却性能が向上するので望ましい。さらに、発光ダイオードには、一般的に何らかの封止剤が用いられるが、封止性能、光透過率の向上の面から、封止剤としてはシリコーンレンズが好ましい。 The light emitting diode is a light emitting diode that emits ultraviolet light, visible light, and infrared light, and as the light emitting diode 2 to be used, a type in which the wavelength required for the application of the light irradiation device 1 is selected can be appropriately selected. The shape and size of the light emitting diode 2 are not particularly limited, and a shape and size suitable for the purpose can be used. It may be a general shell type, a mounting type, a chip type, or the like, but a type that can radiate heat from the back surface side of the light emitting diode 2 is preferable because heat removal is easy. Further, it is desirable that the heat radiation substrate is provided on the back surface of the light emitting diode 2 because the heat transfer area can be increased and the cooling performance can be improved. Further, although some kind of encapsulant is generally used for the light emitting diode, a silicone lens is preferable as the encapsulant from the viewpoint of improving the encapsulation performance and the light transmittance.

本発明において、光源3の形状はとくに限定されないが、光源3からの照射光が大きな反応エネルギーを要する光反応に用いられることから、光源3は極めて多数の発光ダイオード2からなることが好ましい。 In the present invention, the shape of the light source 3 is not particularly limited, but since the irradiation light from the light source 3 is used for a photoreaction requiring a large reaction energy, it is preferable that the light source 3 is composed of an extremely large number of light emitting diodes 2.

第1光透過性容器6は、光源3を覆う容器であり、光源3を外部から保護するために設置される。この第1光透過性容器6は、光を透過する材質を用いて構成されればよい。光透過性容器に透過波長選択性がある素材を用いると、不要波長の光の透過を抑制することが可能である。第1光透過性容器6の全体形状としては、例えば図1に示すように試験管型のものが例示できるが、形状にとくに制限はなく、円筒型や箱型、球型など目的に応じた形状を適宜選択できる。 The first light transmissive container 6 is a container that covers the light source 3 and is installed to protect the light source 3 from the outside. The first light transmissive container 6 may be made of a material that transmits light. When a material having a transmission wavelength selectivity is used for the light transmissive container, it is possible to suppress the transmission of light having an unnecessary wavelength. The overall shape of the first light transmissive container 6 may be, for example, a test tube type as shown in FIG. 1, but the shape is not particularly limited, and may be a cylindrical type, a box type, a spherical type, or the like depending on the purpose. The shape can be appropriately selected.

第2光透過性容器7は、第1光透過性容器6の外側に配置される容器であり、第1光透過性容器6と同様に光を透過する材質を用いて構成されればよい。この第2光透過性容器7の材質は、第1光透過性容器6と同じでも、異なっていてもよい。形状は、例えば図1に示すように試験管型のものが例示できるが、形状にとくに制限はなく、円筒型や箱型、球型など目的に応じた形状が選択でき、また、第1光透過性容器6と相似形状でも、異なる形状でもよい。 The second light transmissive container 7 is a container arranged outside the first light transmissive container 6, and may be made of a material that transmits light as with the first light transmissive container 6. The material of the second light transmissive container 7 may be the same as or different from that of the first light transmissive container 6. The shape may be, for example, a test tube type as shown in FIG. 1, but the shape is not particularly limited, and a shape such as a cylindrical shape, a box shape, or a spherical shape can be selected according to the purpose. The shape may be similar to or different from that of the permeable container 6.

本発明において、光照射装置1による光の照射経路における光の反射を大きく抑制し、目的光反応物質に至るまでの光の照射経路全体における光の透過率を大幅に高めるためには、第1光透過性容器6の内部に充填される光透過性を有する絶縁性液体8の屈折率は、1.25以上であることが好ましい。また、絶縁性液体8の屈折率は、光透過性液体9以上であることが好ましい。さらに、絶縁性液体8の屈折率は、光透過性流体9の屈折率よりもより第1光透過性容器6を構成する材料の屈折率により近いことも好ましい。 In the present invention, in order to largely suppress the reflection of light in the light irradiation path by the light irradiation device 1 and to significantly increase the light transmittance in the entire light irradiation path up to the target photoreactive substance, The refractive index of the light-transmitting insulating liquid 8 filled in the light-transmitting container 6 is preferably 1.25 or more. The refractive index of the insulating liquid 8 is preferably 9 or more as the light transmissive liquid. Further, it is also preferable that the refractive index of the insulating liquid 8 is closer to the refractive index of the material forming the first light transmissive container 6 than the refractive index of the light transmissive fluid 9.

絶縁性液体8としては、例えば、フッ素系不活性液体、シリコーンオイル、水のいずれかを使用できる。光透過性流体9としては、例えば、水、シリコーンオイル、フッ素系不活性液体(フロリナート(登録商標、3M社製)や、ガルデン(登録商標、ソルベー社製)など)のいずれかを使用できる。入手の容易性、取り扱いの容易性等の面から、工業的に好ましい組合せとして、例えば、絶縁性液体8としてフッ素系不活性液体またはシリコーンオイル、光透過性流体9として水またはシリコーンオイルの組合せが挙げられる。 As the insulating liquid 8, for example, any one of fluorine-based inert liquid, silicone oil, and water can be used. As the light transmissive fluid 9, for example, water, silicone oil, or a fluorine-based inert liquid (such as Fluorinert (registered trademark, manufactured by 3M) or Galden (registered trademark, manufactured by Solvay)) can be used. From the viewpoint of easy availability, easy handling, and the like, industrially preferable combinations include, for example, a fluorine-based inert liquid or silicone oil as the insulating liquid 8 and water or silicone oil as the light-transmitting fluid 9. Can be mentioned.

第1光透過性容器6および第2光透過性容器7を構成する材料はとくに限定されないが、光の透過率と強度の面から、少なくとも第1光透過性容器6はガラス製であることが好ましい。 The material forming the first light transmissive container 6 and the second light transmissive container 7 is not particularly limited, but at least the first light transmissive container 6 is made of glass in terms of light transmittance and strength. preferable.

本発明においては、第1光透過性容器6と第2光透過性容器7の間に光透過性液体9が充填されるとともに、とくに第1光透過性容器6の内部に光透過性を有する絶縁性液体8が充填されることにより、光源3からの光の照射経路における反射が抑制され、光の反射によるエネルギーロスが抑制され、光反応物質10への光の透過率が高められるとともに、光反応に使用されるエネルギーが効果的に高められて、光反応における極めて高い反応収率、反応収量が得られる。 In the present invention, the light transmissive liquid 9 is filled between the first light transmissive container 6 and the second light transmissive container 7, and the first light transmissive container 6 has a light transmissive property. By being filled with the insulating liquid 8, the reflection of the light from the light source 3 in the irradiation path is suppressed, the energy loss due to the reflection of the light is suppressed, and the transmittance of the light to the photoreactive substance 10 is increased, and The energy used for the photoreaction is effectively increased, and an extremely high reaction yield and reaction yield in the photoreaction can be obtained.

光の照射経路における反射が抑制されるには、光の照射経路における各境界面での反射率を低下させることが求められる。図2、図3に示す模式図を用いて、互いに異なる屈折率n1、n2の媒体1、媒体2の境界面での光の屈折、反射について説明する。光は、屈折率の異なる媒体の境界面で反射ロスを生じる。入射角θ1が0度以外の場合、光の表面反射率は次式(1)で示され、境界面を形成する媒体の屈折率差が大きいほど反射ロスが大きいことが知られている。なお、ここでは入射角、θ2は屈折角を示す。より具体的には、入射角θ1が0度以外の場合には、入射角θ1、屈折角θ2、屈折率n1、n2は、sinθ1/sinθ2=n2/n1の関係にあるから、入射角θ1、屈折率n1、n2が決まれば、屈折角θ2が決まることになり、θ1、θ2が決まるから次式(1)により表面反射率Rが算出される。
表面反射率R=0.5×{tan(θ1−θ2)/tan(θ1+θ2)}2+{sin(θ1−θ2)/sin(θ1+θ2)}2 ・・・(1)
In order to suppress the reflection in the light irradiation path, it is required to reduce the reflectance at each boundary surface in the light irradiation path. Refraction and reflection of light at the boundary surface between the medium 1 and the medium 2 having different refractive indices n1 and n2 will be described with reference to the schematic diagrams shown in FIGS. Light causes reflection loss at the interface between media having different refractive indices. When the incident angle θ1 is other than 0 degree, the surface reflectance of light is expressed by the following equation (1), and it is known that the larger the difference in refractive index between the media forming the boundary surface, the larger the reflection loss. Here, the incident angle and θ2 indicate the refraction angle. More specifically, when the incident angle θ1 is other than 0 degrees, the incident angle θ1, the refraction angle θ2, and the refractive indices n1 and n2 have a relationship of sin θ1/sin θ2=n2/n1. When the refractive indices n1 and n2 are determined, the refraction angle θ2 is determined. Since θ1 and θ2 are determined, the surface reflectance R is calculated by the following equation (1).
Surface reflectance R=0.5×{tan(θ1−θ2)/tan(θ1+θ2)} 2 +{sin(θ1−θ2)/sin(θ1+θ2)} 2・・・(1)

つまり、光路上に屈折率差の大きい媒体境界面がある場合、光の反射によるロスが大きくなる。本発明では、光源3と第1光透過性容器6の間の空間に光透過性を有する絶縁性液体8が充填され、第1光透過性容器6と第2光透過性容器7の間の空間に光透過性液体9が充填されることで、光源3からの光照射経路における各境界面の反射率が小さく抑えられ、光照射経路全体の透過率が高められている。 That is, when there is a medium boundary surface with a large difference in refractive index on the optical path, the loss due to light reflection increases. In the present invention, the space between the light source 3 and the first light transmissive container 6 is filled with the insulating liquid 8 having light transmissivity, and the space between the first light transmissive container 6 and the second light transmissive container 7 is filled. By filling the space with the light transmissive liquid 9, the reflectance of each boundary surface in the light irradiation path from the light source 3 is suppressed to be small, and the transmittance of the entire light irradiation path is increased.

なお、入射角θ1が0度の場合には、境界面における表面反射率Rは次式(2)で示される。
表面反射率R=(n1-n2)2/(n1+n2)2・・・(2)
When the incident angle θ1 is 0 degree, the surface reflectance R on the boundary surface is expressed by the following equation (2).
Surface reflectance R=(n1-n2) 2 /(n1+n2) 2・・・(2)

但し、各発光ダイオード2からの照射光は光軸に沿った直進性の強いものであるが、各発光ダイオード2からの光は、実際には種々の角度で照射されるため、現実には入射角θ1が0度から種々の入射角θ1における反射や屈折の合成形態となる。したがって、後述の実施例に示すように、各境界面においては、入射角θ1が0度の場合の反射率の評価に加え、例えば、ある代表的な入射角θ1(例えば、入射角60度)の場合の反射率の評価を行い、これら評価結果を相互的に勘案する必要がある。総合的に見て、境界面における反射率が低い方が、全体として光の透過率の高い望ましい形態といえる。 However, the light emitted from each light-emitting diode 2 has a strong straight-line property along the optical axis, but the light emitted from each light-emitting diode 2 is actually emitted at various angles, and thus is actually incident. When the angle θ1 is 0 degree, there is a combined form of reflection and refraction at various incident angles θ1. Therefore, as shown in the examples described later, in addition to the evaluation of the reflectance when the incident angle θ1 is 0 degree, at each boundary surface, for example, a certain typical incident angle θ1 (for example, the incident angle 60 degrees). In the case of, it is necessary to evaluate the reflectance and mutually consider these evaluation results. Overall, it can be said that the lower the reflectance on the boundary surface, the higher the light transmittance as a whole is.

容器面への光の入射角は、発光ダイオード2が配置された発光面と容器面の位置関係、具体的には、発光面と容器面のなす角によって決まる。発光面と容器面のなす角は、発光ダイオード2を配置した構造体の形状と、容器の形状によって決まるため、該構造体と容器の形状を調整することで、入射角を調整することができる。 The incident angle of light on the container surface is determined by the positional relationship between the light emitting surface on which the light emitting diode 2 is arranged and the container surface, specifically, the angle formed by the light emitting surface and the container surface. Since the angle formed by the light emitting surface and the container surface is determined by the shape of the structure in which the light emitting diode 2 is arranged and the shape of the container, the incident angle can be adjusted by adjusting the shapes of the structure and the container. ..

なお、高屈折率の媒体側から低屈折率の媒体側へ光を入射する際、ある入射角以上では、入射光の全てが透過しなくなる全反射を起こすことが知られている。全反射を起こす最小入射角を臨界角と呼び、臨界角は入射側媒体屈折率n1と透過側媒体屈折率n2を用いて次式(3)で示される。臨界角以上の入射角で入射した光は透過することなく、境界面ですべて反射される。そのため、入射角が臨界角を超えないようにすることが反射ロスの抑制に重要である。ここで
臨界角θc = arcsin(n2/n1)・・・(3)
It is known that, when light is incident on the medium side having a high refractive index to the medium side having a low refractive index, at a certain incident angle or more, total reflection occurs in which all of the incident light is not transmitted. The minimum incident angle that causes total internal reflection is called a critical angle, and the critical angle is expressed by the following equation (3) using the incident-side medium refractive index n1 and the transmitting-side medium refractive index n2. Light incident at an incident angle equal to or greater than the critical angle does not pass through, but is entirely reflected at the boundary surface. Therefore, it is important for suppressing the reflection loss that the incident angle does not exceed the critical angle. Where critical angle θc = arcsin(n2/n1)・・・(3)

さらに、各液相部を形成する液体としては、例えば、水に糖などを溶解したものや、グリセリン水溶液など、水に溶解性物質を溶解して屈折率を調整したものでもよい。また、各液相部を形成する液体は、温度によっても屈折率が変化するため、温度を調節することで屈折率を調整してもよい。 Further, the liquid forming each liquid phase portion may be, for example, one in which sugar or the like is dissolved in water, or one in which a soluble substance is dissolved in water to adjust the refractive index, such as an aqueous glycerin solution. Further, the liquid forming each liquid phase portion has a refractive index that varies depending on the temperature, and thus the refractive index may be adjusted by adjusting the temperature.

また、各液相部を形成する液体に、特有波長の光を吸収する物質を添加することで、反応に不要な特定波長の光を除去することも可能である。 It is also possible to remove light of a specific wavelength unnecessary for the reaction by adding a substance that absorbs light of a specific wavelength to the liquid forming each liquid phase portion.

本発明においては、第1、第2光透過性容器は少なくとも一方が(好ましくは、少なくとも、第2光透過性容器が)、屈折率1.4以上の材質で構成されていることが好ましい。このような材質としては、ガラスが挙げられるが、樹脂をはじめとする有機系材料でもよい。より具体的には、ガラスとして、硼珪酸ガラス、ソーダ石灰ガラス、鉛ガラスなどが挙げられ、樹脂としては、アクリル樹脂、メタクリル樹脂、ポリカーボネード、ポリスチレン、ポリ塩化ビニル、ポリエステルなどが挙げられる。 In the present invention, at least one of the first and second light transmissive containers (preferably, at least the second light transmissive container) is preferably made of a material having a refractive index of 1.4 or more. Examples of such a material include glass, but organic materials such as resin may be used. More specifically, examples of the glass include borosilicate glass, soda-lime glass, lead glass, and the like, and examples of the resin include acrylic resin, methacrylic resin, polycarbonate, polystyrene, polyvinyl chloride, polyester, and the like.

第1、第2光透過性容器には、特定波長の光を吸収する材質を用いてもよい。光反応に不要な波長を容器に吸収させることで光反応に必要な波長のみを光反応物質へ透過させることができる。 A material that absorbs light of a specific wavelength may be used for the first and second light transmissive containers. By absorbing wavelengths unnecessary for photoreaction in the container, only wavelengths required for photoreaction can be transmitted to the photoreactive substance.

本発明においては、光反応物質、とくに光反応液体が、炭素原子を含むものとすることができる。このような原料となる液体は、炭素原子を含む液体であればとくに制限はなく、例えばアルカン、シクロアルカンなどの炭化水素類を例示できる。 In the present invention, the photoreactive substance, particularly the photoreactive liquid, may contain carbon atoms. The liquid as the raw material is not particularly limited as long as it is a liquid containing carbon atoms, and examples thereof include hydrocarbons such as alkanes and cycloalkanes.

本発明において、シクロアルカンは、特にその炭素数は限定しないが、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、シクロドデカンが好ましい。特に、ε−カプロラクタムの原料となるシクロヘキサン、ω−ラウリルラクタムの原料となるシクロドデカンが好ましい。 In the present invention, the number of carbon atoms of the cycloalkane is not particularly limited, but for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, and cyclododecane are preferable. In particular, cyclohexane which is a raw material of ε-caprolactam and cyclododecane which is a raw material of ω-lauryllactam are preferable.

上記のシクロアルカンおよび光ニトロソ化剤を用いて、発光ダイオードの光照射による光化学反応にてシクロアルカノンオキシムが得られる。光ニトロソ化剤には、例えば、塩化ニトロシル、塩化ニトロシルと塩化水素との混合ガスが好ましい。その他、一酸化窒素と塩素との混合ガス、一酸化窒素と塩素と塩化水素との混合ガス、ニトローゼガスと塩素との混合ガス等のいずれも光反応系にて、塩化ニトロシルとして作用するので、これらニトロソ化剤の供給形態に限定されるものではない。また、塩化ニトロシルとクロロホルムを光化学反応させて得られるようなトリクロロニトロソメタンをニトロソ化剤として用いてもよい。光化学反応を塩化水素の存在下で行う場合、シクロアルカノンオキシムはその塩酸塩となるが、そのまま塩酸塩の形態でもよい。 Using the above cycloalkane and photonitrosating agent, cycloalkanone oxime can be obtained by a photochemical reaction by light irradiation of a light emitting diode. The photonitrosating agent is preferably, for example, nitrosyl chloride or a mixed gas of nitrosyl chloride and hydrogen chloride. In addition, since a mixed gas of nitric oxide and chlorine, a mixed gas of nitric oxide, chlorine and hydrogen chloride, a mixed gas of nitrogen gas and chlorine, etc. all act as nitrosyl chloride in the photoreaction system, The supply form of the nitrosating agent is not limited. Also, trichloronitrosomethane obtained by photochemically reacting nitrosyl chloride and chloroform may be used as a nitrosating agent. When the photochemical reaction is carried out in the presence of hydrogen chloride, the cycloalkanone oxime becomes its hydrochloride, but it may be in the form of its hydrochloride as it is.

上記の光反応によって、シクロアルカンの炭素数に応じたシクロアルカノンオキシムを得ることができる。例えば、シクロヘキサンを用いた塩化ニトロシルによる光ニトロソ化反応ではシクロヘキサノンオキシムが得られる。また、シクロドデカンを用いた塩化ニトロシルによる光ニトロソ化反応ではシクロドデカノンンオキシムが得られる。 By the above photoreaction, a cycloalkanone oxime corresponding to the carbon number of the cycloalkane can be obtained. For example, cyclohexanone oxime can be obtained by a photonitrosation reaction with nitrosyl chloride using cyclohexane. In addition, cyclododecanone oxime can be obtained by the photonitrosation reaction with nitrosyl chloride using cyclododecan.

<ラクタムの製造方法>
本発明に係る光照射装置を用いて、光化学反応を行い、得られたシクロアルカノンオキシムをベックマン転位することによってラクタムが得られる。例えば、シクロヘキサノンオキシムをベックマン転位する反応では以下の反応式[化1]で示すようにε−カプロラクタムが得られる。また、シクロドデカノンオキシムをベックマン転位する反応ではω−ラウロラクタムが得られる。
<Lactam production method>
A lactam can be obtained by carrying out a photochemical reaction using the light irradiation device according to the present invention and subjecting the obtained cycloalkanone oxime to Beckmann rearrangement. For example, in the reaction of Beckmann rearrangement of cyclohexanone oxime, ε-caprolactam is obtained as shown in the following reaction formula [Formula 1]. In addition, ω-laurolactam is obtained by the Beckmann rearrangement reaction of cyclododecanone oxime.

Figure 2020121252
Figure 2020121252

以下、実施例により本発明をより具体的に説明する。
実施例1
表1に示すように、封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側、外側両方の液相部(表では絶縁性液体8による液相部を液相部8と、光透過性液体9による液相部を液相部9と表記)に屈折率1.425のシリコーンオイル(KF−50−100cs(信越化学工業社):比重1.00)を充填し、液相部と光透過性固体との界面の入射角がすべて0度になる場合の光の透過率を計算した。表より発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が低い値を示している。
Hereinafter, the present invention will be described more specifically with reference to Examples.
Example 1
As shown in Table 1, a light source using a large number of light emitting diodes having a silicone lens as a sealant, borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container, Refraction to both the liquid phase portion inside and outside the transparent container (in the table, the liquid phase portion due to the insulating liquid 8 is referred to as the liquid phase portion 8 and the liquid phase portion due to the light transmissive liquid 9 is referred to as the liquid phase portion 9) When a silicone oil with a rate of 1.425 (KF-50-100cs (Shin-Etsu Chemical Co., Ltd.): specific gravity 1.00) is filled and the incident angle at the interface between the liquid phase part and the light-transmissive solid is all 0 degrees. The light transmittance of was calculated. The table shows that the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container is low.

実施例2
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.425のシリコーンオイル(KF−50−100cs(信越化学工業社):比重1.00)を、外側に屈折率1.33の水を充填し、液相部と光透過性固体との界面の入射角がすべて0度になる場合の光の透過率を計算した。表1より発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が低い値を示している。
Example 2
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. Silicone oil having a refractive index of 1.425 (KF-50-100cs (Shin-Etsu Chemical Co., Ltd.): specific gravity of 1.00) was filled on the outside with water having a refractive index of 1.33 to form a liquid phase portion and a light-transmissive solid. The light transmittance was calculated when all the incident angles on the interface were 0 degree. Table 1 shows that the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container is low.

実施例3
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側、外側両方の液相部に屈折率1.33の水を配置し、液相部と光透過性固体との界面の入射角がすべて0度になる場合の光の透過率を計算した。表より発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が低い値を示している。
Example 3
A light source using a large number of light emitting diodes having a silicone lens as a sealant, borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container, and the inside of the first transmissive container, Water having a refractive index of 1.33 was placed in both outer liquid phase portions, and the light transmittance was calculated when all incident angles at the interface between the liquid phase portion and the light transmissive solid were 0 degrees. The table shows that the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container is low.

実施例4
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.28の“フロリナート” (登録商標、3M社製)6−308−06、外側に屈折率1.33の水を充填し、液相部と光透過性固体との界面の入射角がすべて0度になる場合の光の透過率を計算した。表より発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が低い値を示している。
Example 4
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. "Fluorinert" (registered trademark, manufactured by 3M Co.) 6-308-06 having a refractive index of 1.28, water having a refractive index of 1.33 is filled on the outside, and the incident angle at the interface between the liquid phase portion and the light-transmissive solid. The light transmittance was calculated in the case where all were 0 degrees. The table shows that the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container is low.

比較例1
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.00の気相の窒素(N)を、外側に屈折率1.33の水を充填し、液相部または気相部と光透過性固体との界面の入射角がすべて0度になる場合の光の透過率を計算した。表より発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が実施例1〜4よりも高い値となった。
Comparative Example 1
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. Gas phase nitrogen (N 2 ) having a refractive index of 1.00 was filled outside with water having a refractive index of 1.33, and the incident angle at the interface between the liquid phase part or the gas phase part and the light transmissive solid was all 0. The transmittance of light was calculated for each degree. From the table, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was higher than those of Examples 1 to 4.

実施例5
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側、外側両方の液相部に屈折率1.425のシリコーンオイル(KF−50−100cs(信越化学工業社):比重1.00)を配置し、液相部と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が0.0079となった。
Example 5
A light source using a large number of light emitting diodes having a silicone lens as a sealant, borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container, and the inside of the first transmissive container, Silicone oil (KF-50-100cs (Shin-Etsu Chemical Co., Ltd.): specific gravity 1.00) having a refractive index of 1.425 is arranged on both outer liquid phase parts, and the liquid phase part and the light transmissive solid are incident on the interface. The light transmittance was calculated when all the angles were 60 degrees. As shown in Table 2, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was 0.0079.

実施例6
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.425のシリコーンオイル(KF−50−100cs(信越化学工業社):比重1.00)を、外側に屈折率1.33の水を配置し、液相部と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が0.0886となった。
Example 6
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. A silicone oil having a refractive index of 1.425 (KF-50-100cs (Shin-Etsu Chemical Co., Ltd.): specific gravity of 1.00) was placed on the outside with water having a refractive index of 1.33 to form a liquid phase portion and a light-transmissive solid. The light transmittance was calculated when the incident angles at the interfaces of all were 60 degrees. As shown in Table 2, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was 0.0886.

実施例7
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側、外側両方の液相部に屈折率1.33の水を配置し、液相部と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が0.1325となった。
Example 7
A light source using a large number of light emitting diodes having a silicone lens as a sealant, borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container, and the inside of the first transmissive container, Water having a refractive index of 1.33 was placed in both outer liquid phase portions, and the light transmittance was calculated when the incident angle at the interface between the liquid phase portion and the light transmissive solid was all 60 degrees. As shown in Table 2, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was 0.1325.

実施例8
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.28の“フロリナート” (登録商標、3M社製)6−308−06を、外側に屈折率1.425のシリコーンオイル(KF−50−100cs(信越化学工業社):比重1.00)を配置し、液相部と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が0.2184となった。
Example 8
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. "Fluorinert" (registered trademark, manufactured by 3M) 6-308-06 having a refractive index of 1.28 and silicone oil having a refractive index of 1.425 on the outside (KF-50-100cs (Shin-Etsu Chemical Co., Ltd.): specific gravity 1. 00) was placed, and the light transmittance was calculated when the incident angles at the interface between the liquid phase portion and the light-transmissive solid were all 60 degrees. As shown in Table 2, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was 0.2184.

実施例9
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.28の“フロリナート”(登録商標、3M社製)6−308−06を、外側に屈折率1.33の水を配置し、液相武と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率が0.2771となった。
Example 9
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. "Fluorinert" (registered trademark, manufactured by 3M Co.) 6-308-06 having a refractive index of 1.28 and water having a refractive index of 1.33 are arranged on the outside, and the light enters the interface between the liquid phase and the light transmissive solid. The light transmittance was calculated when all the angles were 60 degrees. As shown in Table 2, the total reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container was 0.2771.

比較例2
封止剤がシリコーンレンズの発光ダイオードを多数用いた光源と、第1光透過性容器、第2光透過性容器共に屈折率1.47の硼珪酸ガラスを用い、第1透過性容器の内側に屈折率1.00の気相の窒素を、外側に屈折率1.33の水を配置し、液相部または気相部と光透過性固体との界面の入射角がすべて60度になる場合の光の透過率を計算した。表2に示すように、発光ダイオードのシリコーンレンズから第2光透過性容器入射までの全体の反射率は実施例5〜9よりも高くなっている。なお、反射率1.0000は全反射を表している。
Comparative example 2
A light source using a large number of light emitting diodes having a silicone lens as a sealant, and borosilicate glass having a refractive index of 1.47 for both the first light transmissive container and the second light transmissive container are used inside the first light transmissive container. When gas phase nitrogen with a refractive index of 1.00 and water with a refractive index of 1.33 are placed outside and the incident angles at the interface between the liquid phase part or the gas phase part and the light-transmissive solid are all 60 degrees. The light transmittance of was calculated. As shown in Table 2, the overall reflectance from the silicone lens of the light emitting diode to the incidence of the second light transmissive container is higher than that of Examples 5 to 9. The reflectance of 1.0000 represents total reflection.

Figure 2020121252
Figure 2020121252

Figure 2020121252
Figure 2020121252

本発明に係る光反応装置は光反応物質に効率の良い光照射が望まれるあらゆる分野に適用可能であり、とくに、その光反応装置を用いる光反応方法、その光反応方法を用いたラクタムの製造方法に好適なものである。 INDUSTRIAL APPLICABILITY The photoreactor according to the present invention is applicable to all fields in which efficient photoirradiation of a photoreactant is desired, and in particular, a photoreaction method using the photoreactor and a lactam production using the photoreaction method. It is suitable for the method.

1 光照射装置
2 発光ダイオード
3 光源
4 電源供給部
5 蓋
6 第1光透過性容器
7 第2光透過性容器
8 絶縁性液体
9 光透過性液体
10 光反応物質
11 反応容器
100 光反応装置
DESCRIPTION OF SYMBOLS 1 Light irradiation device 2 Light emitting diode 3 Light source 4 Power supply unit 5 Lid 6 First light transmissive container 7 Second light transmissive container 8 Insulating liquid 9 Light transmissive liquid 10 Photoreactive substance 11 Reaction container 100 Photoreactive device

Claims (16)

発光ダイオードからなる光源と、該光源を覆う第1光透過性容器と、該第1光透過性容器を覆う第2光透過性容器とを有する光照射装置からの光を、該光照射装置の周囲に導入される光反応物質に照射する光反応装置であって、前記第1光透過性容器の内部に、光透過性を有する絶縁性液体を、前記第1光透過性容器と前記第2光透過性容器の間に光透過性液体をそれぞれ充填したことを特徴とする光反応装置。 Light from a light irradiation device having a light source including a light emitting diode, a first light transmissive container that covers the light source, and a second light transmissive container that covers the first light transmissive container is supplied to the light irradiation device. A photoreactor for irradiating a photoreactive substance introduced into the surroundings, wherein an insulating liquid having a light transmissive property is provided inside the first light transmissive container and the first light transmissive container and the second light transmissive container. A photoreaction device, characterized in that a light-transmitting liquid is filled between the light-transmitting containers. 前記絶縁性液体の屈折率が1.25以上である、請求項1に記載の光反応装置。 The photoreaction device according to claim 1, wherein the refractive index of the insulating liquid is 1.25 or more. 前記絶縁性液体の屈折率が前記光透過性流体の屈折率以上である、請求項1または2に記載の光反応装置。 The photoreaction device according to claim 1, wherein the refractive index of the insulating liquid is equal to or higher than the refractive index of the light transmissive fluid. 前記絶縁性液体の屈折率は、前記光透過性流体の屈折率よりもより前記第1光透過性容器を構成する材料の屈折率により近い、請求項1〜3のいずれかに記載の光反応装置。 The photoreaction according to claim 1, wherein the refractive index of the insulating liquid is closer to the refractive index of the material forming the first light transmissive container than the refractive index of the light transmissive fluid. apparatus. 前記絶縁性液体が、フッ素系不活性液体、シリコーンオイル、水のいずれかである、請求項1〜4のいずれかに記載の光反応装置。 The photoreactor according to claim 1, wherein the insulating liquid is one of a fluorine-based inert liquid, silicone oil, and water. 前記光透過性流体が、水、シリコーンオイル、フッ素系不活性液体のいずれかである、請求項1〜5のいずれかに記載の光反応装置。 The photoreactor according to claim 1, wherein the light-transmitting fluid is water, silicone oil, or a fluorine-based inert liquid. 前記第1光透過性容器および前記第2光透過性容器の少なくとも第1光透過性容器はガラス製である、請求項1〜6のいずれかに記載の光反応装置。 7. The photoreaction device according to claim 1, wherein at least the first light transmissive container of the first light transmissive container and the second light transmissive container is made of glass. 前記発光ダイオードの封止剤がシリコーンレンズである、請求項1〜7のいずれかに記載の光反応装置。 The photoreaction device according to claim 1, wherein the encapsulant for the light emitting diode is a silicone lens. 前記光反応物質が光反応液体である、請求項1〜8のいずれかに記載の光反応装置。 The photoreaction device according to claim 1, wherein the photoreactive substance is a photoreactive liquid. 請求項1〜9のいずれかに記載の光反応装置を用いることを特徴とする光反応方法。 A photoreaction method comprising using the photoreaction device according to claim 1. 光反応物質の組成に少なくとも炭素原子が含まれている、請求項10に記載の光反応方法。 The photoreaction method according to claim 10, wherein the composition of the photoreactant contains at least carbon atoms. 光反応物質としての光反応液体にシクロアルカンが含まれている、請求項11に記載の光反応方法。 The photoreaction method according to claim 11, wherein the photoreaction liquid as the photoreaction substance contains cycloalkane. 前記シクロアルカンと光ニトロソ化剤に光照射装置からの光を照射することによりシクロアルカノンオキシムを製造する、請求項12に記載の光反応方法。 The photoreaction method according to claim 12, wherein a cycloalkanone oxime is produced by irradiating the cycloalkane and the photonitrosating agent with light from a light irradiation device. 前記シクロアルカノンオキシムがシクロヘキサノンオキシムまたはシクロドデカノンオキシムである、請求項13に記載の光反応方法。 The photoreaction method according to claim 13, wherein the cycloalkanone oxime is cyclohexanone oxime or cyclododecanone oxime. 前記光ニトロソ化剤が塩化ニトロシルまたはトリクロロニトロソメタンである、請求項13または14に記載の光反応方法。 The photoreaction method according to claim 13 or 14, wherein the photo-nitrosating agent is nitrosyl chloride or trichloronitrosomethane. 請求項13〜15のいずれかに記載の光反応方法で製造したシクロアルカノンオキシムを用いることを特徴とするラクタムの製造方法。 A method for producing a lactam, which comprises using the cycloalkanone oxime produced by the photoreaction method according to any one of claims 13 to 15.
JP2019013382A 2019-01-29 2019-01-29 Photoreaction device, photoreaction method using the same, and method for manufacturing lactam Pending JP2020121252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013382A JP2020121252A (en) 2019-01-29 2019-01-29 Photoreaction device, photoreaction method using the same, and method for manufacturing lactam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013382A JP2020121252A (en) 2019-01-29 2019-01-29 Photoreaction device, photoreaction method using the same, and method for manufacturing lactam

Publications (1)

Publication Number Publication Date
JP2020121252A true JP2020121252A (en) 2020-08-13

Family

ID=71993285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013382A Pending JP2020121252A (en) 2019-01-29 2019-01-29 Photoreaction device, photoreaction method using the same, and method for manufacturing lactam

Country Status (1)

Country Link
JP (1) JP2020121252A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036149A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source device
JP2008016545A (en) * 2006-07-04 2008-01-24 Tokyo Electron Ltd Device and method of annealing
JP2015083283A (en) * 2013-10-25 2015-04-30 京セラ株式会社 Light irradiation module, and printer
WO2016056370A1 (en) * 2014-10-09 2016-04-14 東レ株式会社 Photoirradiation device, photoreaction method using same, and method for producing lactam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036149A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source device
JP2008016545A (en) * 2006-07-04 2008-01-24 Tokyo Electron Ltd Device and method of annealing
JP2015083283A (en) * 2013-10-25 2015-04-30 京セラ株式会社 Light irradiation module, and printer
WO2016056370A1 (en) * 2014-10-09 2016-04-14 東レ株式会社 Photoirradiation device, photoreaction method using same, and method for producing lactam

Similar Documents

Publication Publication Date Title
JP6137333B2 (en) Light irradiation apparatus, photoreaction method using the same, and lactam production method
JP5359063B2 (en) Method for producing cycloalkanone oxime
EP2417219B1 (en) Luminescent converter for a phosphor- enhanced light source comprising organic and inorganic phosphors
JP2013042079A (en) Semiconductor light emitting device
JP2017027019A (en) Light source device
EP2958974B1 (en) A coated luminescent particle, a luminescent converter element, a light source, a luminaire and a method of manufacturing a coated luminescent particle
JP5359064B2 (en) Method for producing cycloalkanone oxime and photochemical reaction apparatus
JP2010251621A (en) Semiconductor light-emitting device
CN102983245A (en) Packaging structure for ultraviolet luminous diode
KR101684223B1 (en) Central concentrating light type disinfecting system
JP2014503981A (en) Light emitting device with organic phosphor
WO2014002134A1 (en) Cycloalkanone oxime production method
JP2020121252A (en) Photoreaction device, photoreaction method using the same, and method for manufacturing lactam
WO2014002340A1 (en) Method for producing cycloalkanone oxime
WO2016027657A1 (en) Fluorescent light source device
CN107073433B (en) Photochemical reaction device and photochemical reaction method using same
JP2012149055A (en) Method for producing cycloalkanone oxime
JP2019126768A (en) Light reaction device
JP2019176055A (en) Quantum dot thin film, method of forming the same, led element using quantum dot thin film, el element using quantum dot thin film, discharge lamp using quantum dot thin film, and electrodeless discharge lamp using quantum dot thin film
CN1497286A (en) Laser device
KR101599760B1 (en) White Light-emitting diode for using carbon quantum dot
KR20140118780A (en) Uv lamp
JP2021132174A (en) Method for operating light irradiation device, photoreaction method using the same, and method for manufacturing lactam
JP2010075916A (en) Ozone decomposing device and process system
JP2021139974A (en) Quantum dot, processing method of quantum dot, and application method of quantum dot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018