JP2020121120A - Biological information acquisition device - Google Patents

Biological information acquisition device Download PDF

Info

Publication number
JP2020121120A
JP2020121120A JP2020012714A JP2020012714A JP2020121120A JP 2020121120 A JP2020121120 A JP 2020121120A JP 2020012714 A JP2020012714 A JP 2020012714A JP 2020012714 A JP2020012714 A JP 2020012714A JP 2020121120 A JP2020121120 A JP 2020121120A
Authority
JP
Japan
Prior art keywords
sound
bone
information acquisition
acoustic signal
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012714A
Other languages
Japanese (ja)
Other versions
JP7287612B2 (en
Inventor
翔太 中島
Shota Nakajima
翔太 中島
進 田妻
Susumu Tatsuma
進 田妻
浩士 中村
Hiroshi Nakamura
浩士 中村
哲夫 大八木
Tetsuo Oyagi
哲夫 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Phonic Co Ltd
Hiroshima University NUC
National Hospital Organization
Yamaguchi University NUC
Original Assignee
J Phonic Co Ltd
Hiroshima University NUC
National Hospital Organization
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Phonic Co Ltd, Hiroshima University NUC, National Hospital Organization, Yamaguchi University NUC filed Critical J Phonic Co Ltd
Publication of JP2020121120A publication Critical patent/JP2020121120A/en
Application granted granted Critical
Publication of JP7287612B2 publication Critical patent/JP7287612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

To provide a device capable of acquiring a bone/flesh-conducted sound of a subject by mounting a bone/flesh-conducted sound sensor in an external auditory meatus, and stably measuring a blood vessel sound and a respiration sound of the subject simultaneously over a long time without imposing particular efforts on the user, in which the subject can hear ambient sounds easily even during the measurement.SOLUTION: A biological information acquisition device includes: a housing 3 that can be fixed to the ear of a subject having a body part 1 to which an ambient air-conducted sound microphone 6 is provided, and an insertion part 2 that can be inserted into an external auditory meatus 8 of the subject and is provided with a bone/flesh-conducted sound sensor 4 and an ambient air-conducted sound speaker 7 in the vicinity of the tip; and acoustic signal processing means 5 for processing an acoustic signal acquired by the bone/flesh-conducted sound sensor. The acoustic signal processing means includes a low range band-pass filter 51 for extracting a blood vessel sound waveform from the acoustic signal and a high range band-pass filter 52 for extracting a respiration sound waveform.SELECTED DRAWING: Figure 1

Description

この発明は、外耳道内に装着した骨肉導音センサ(マイク)を用いて骨肉導音を取得し、被検者の血管音と呼吸音を同時に測定することのできる生体情報取得装置に関するものである。
また、この発明は、被検者の血管音と呼吸音を長時間にわたって測定し、その測定結果から脈拍数、脈拍変動、呼吸数及び呼吸変動等を演算し、被検者の心身の状態を監視できるようにするための生体情報取得装置に関するものである。
The present invention relates to a biological information acquisition device capable of acquiring bone-flesh conduction sound by using a bone-flesh conduction sound sensor (microphone) mounted in the ear canal and simultaneously measuring a blood vessel sound and a breathing sound of a subject. ..
Further, the present invention measures the blood vessel sound and breathing sound of the subject over a long period of time, and calculates the pulse rate, the pulse fluctuation, the respiratory rate, the respiratory fluctuation, etc. from the measurement results to determine the physical and mental condition of the subject. The present invention relates to a biometric information acquisition device that enables monitoring.

本発明者らは、特許文献1(特開2018−126511号公報)に開示されているとおり、被検者の脇の下に挿入可能な棒状体の先端部に体導音センサを設け、その体導音センサにより取得された音響信号に基づいて、音響心拍数及び音響呼吸数を同時に計測することのできる心拍数及び呼吸数計測装置を提案した。 As disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2018-126511), the present inventors provide a body-conduction sound sensor at the tip of a rod-shaped body that can be inserted under the armpit of a subject, and We proposed a heart rate and respiratory rate measuring device that can simultaneously measure the acoustic heart rate and acoustic respiratory rate based on the acoustic signal acquired by the sound sensor.

また、特許文献2(特表2006−505300号公報)に記載されるように、被検者の耳にイヤーセンサを装着して身体内で発生する生体音を検出する装置(特に、段落0021〜0022及び図1、2を参照)や特許文献3(特許第6219889号公報)に記載されるように、被検者の耳に生体センサを挿入して脈拍を測定する装置(特に、段落0043及び図5を参照)が提案されている。 Further, as described in Patent Document 2 (Japanese Patent Publication No. 2006-505300), a device that attaches an ear sensor to an ear of a subject and detects a body sound generated in the body (particularly, paragraphs 0021 to ). 0022 and FIGS. 1 and 2) and Patent Document 3 (Japanese Patent No. 6219889), a device for inserting a biosensor into the ear of a subject to measure a pulse (in particular, paragraphs 0043 and (See FIG. 5) is proposed.

特開2018−126511号公報Japanese Unexamined Patent Application Publication No. 2018-126511 特表2006−505300号公報Japanese Patent Publication No. 2006-505300 特許第6219889号公報Japanese Patent No. 6219889

特許文献1に記載されている心拍数及び呼吸数計測装置は、簡易な装置で手軽に心拍数及び呼吸数を高い精度で同時に計測することができるが、体導音センサを被検者の脇の下に挟んで音響信号を取得するため、長時間にわたる安定的なデータ測定は困難である。
また、特許文献2に記載されているイヤーセンサは、雑音遮断用の防音シールドを有しているため、計測中は身体外で発生した周囲の音が聞きづらいという問題がある。
そして、特許文献3に記載されている生体センシング機能を備えた音響機器は、被検者の耳に生体センサを挿入するものではあるが、その生体センサは、受光部及び発光部を用いる血流センサ若しくは脈拍センサであるため、被検者の血管音と呼吸音を同時に測定することができない。
なお、特許文献3には、生体センサとして体温測定センサを併用することも記載されているが、その場合でも被検者の血管音と呼吸音を同時に測定することはできない。
この発明は、これらの問題を一挙に解決しようとするものであり、外耳道内に骨肉導音センサを装着して被検者の骨肉導音を取得し、被検者に特別な労力をかけることなく長時間にわたって安定的に被検者の血管音と呼吸音を同時に測定できるようにすることを第1の目的とし、計測中においても被検者が周囲の音を聞き易くすることを第2の目的としてなされたものである。
さらに、骨肉導音センサの装着感を良くすること、確実に血管音と呼吸音を分離すること及び分離した呼吸音波形から脈拍ノイズを除去し、肺の異常状態や呼吸数をより正確に検出することも目的としている。
The heart rate and respiration rate measuring device described in Patent Document 1 can easily measure the heart rate and respiration rate simultaneously with high accuracy with a simple device, but a body-conducting sound sensor is used under the armpit of the subject. Since the acoustic signal is acquired by sandwiching it between, it is difficult to measure data stably over a long period of time.
Further, since the ear sensor described in Patent Document 2 has a soundproof shield for blocking noise, there is a problem that ambient sounds generated outside the body are hard to hear during measurement.
The acoustic device having the biometric sensing function described in Patent Document 3 inserts the biometric sensor into the ear of the subject, but the biometric sensor uses a light receiving unit and a light emitting unit for blood flow. Since it is a sensor or a pulse sensor, it is not possible to simultaneously measure the blood vessel sound and the respiratory sound of the subject.
Note that Patent Document 3 also describes that a body temperature measuring sensor is also used as a biometric sensor, but even in that case, it is not possible to simultaneously measure the blood vessel sound and the breathing sound of the subject.
The present invention is intended to solve these problems all at once, and to attach a bone-flesh-conducting sound sensor in the ear canal to acquire the bone-flesh-conducting sound of a subject, and to put special effort on the subject. The first purpose is to enable stable simultaneous measurement of the blood vessel sound and the breathing sound of the subject over a long period of time, and the second purpose is to make it easy for the subject to hear surrounding sounds even during measurement. It was made for the purpose of.
Furthermore, it improves the feeling of wearing the bone-and-mesh-conducting sound sensor, reliably separates blood vessel sound and respiratory sound, and removes pulse noise from the separated respiratory sound waveform to detect lung abnormalities and respiratory rate more accurately. It is also intended to do.

請求項1に係る発明の生体情報取得装置は、
骨肉導音を取得する骨肉導音センサと、
本体部及び該本体部から延び被検者の外耳道に挿入される挿入部を有する筐体と、
前記骨肉導音センサにより取得された音響信号に基づいて血管音波形及び呼吸音波形を抽出する音響信号処理手段を備える生体情報取得装置であって、
前記骨肉導音センサは前記挿入部の先端付近に設けられ、
前記挿入部を前記外耳道に挿入したとき、前記筐体は前記被検者の耳に固定可能であるとともに、前記挿入部の先端は前記外耳道における第1カーブと第2カーブの間に到達可能であり、かつ、前記骨肉導音センサは前記被検者の外耳道壁に接する状態となることを特徴とする。
The biological information acquisition apparatus of the invention according to claim 1 is
A bone-conducting sound sensor for acquiring bone-conducting sound,
A housing having a body portion and an insertion portion extending from the body portion and inserted into the ear canal of the subject;
A biometric information acquisition device comprising acoustic signal processing means for extracting a blood vessel sound waveform and a respiratory sound waveform based on an acoustic signal acquired by the bone-flesh conduction sensor,
The bone-flesh-conduction sensor is provided near the tip of the insertion portion,
When the insertion section is inserted into the ear canal, the housing can be fixed to the ear of the subject, and the tip of the insertion section can reach between the first curve and the second curve in the ear canal. And the bone-conducting sound sensor is in contact with the external auditory meatus wall of the subject.

請求項2に係る発明は、請求項1に記載の生体情報取得装置において、
前記本体部には、外部の音を取得する外気導音マイクが設けられ、
前記挿入部の先端付近には、外気導音マイクが取得した外部の音を出力する外気導音スピーカが設けられており、
前記挿入部を前記外耳道に挿入したとき、前記外気導音スピーカは前記外耳道壁に接しない状態となることを特徴とする。
The invention according to claim 2 is the biological information acquisition apparatus according to claim 1,
The main body portion is provided with an outside air conduction sound microphone that acquires external sound,
In the vicinity of the tip of the insertion portion, an outside air conducted sound speaker that outputs the outside sound acquired by the outside air conducted sound microphone is provided,
When the insertion portion is inserted into the ear canal, the outside air-conducting speaker is in a state of not being in contact with the wall of the ear canal.

請求項3に係る発明は、請求項1に記載の生体情報取得装置において、
前記筐体には、前記本体部の外面から前記挿入部の先端付近まで貫通する空洞部が設けられ、
前記挿入部を前記外耳道に挿入したとき、前記空洞部の挿入部側は前記外耳道壁に接しない状態となり、前記空洞部の本体部側は前記被検者の皮膚に接しない状態となることを特徴とする。
The invention according to claim 3 is the biological information acquisition apparatus according to claim 1,
The housing is provided with a cavity portion that penetrates from the outer surface of the main body portion to the vicinity of the tip of the insertion portion,
When the insertion portion is inserted into the ear canal, the insertion portion side of the cavity is in a state of not contacting the ear canal wall, and the main body side of the cavity is in a state of not contacting the skin of the subject. Characterize.

請求項4に係る発明は、請求項1〜3のいずれかに記載の生体情報取得装置において、
前記骨肉導音センサは、表面にダイヤフラムを有するエレクトレットコンデンサマイクと、前記ダイヤフラムの前面を覆う充填剤と、前記エレクトレットコンデンサマイクの側面及び後面を覆う樹脂ケースからなり、
前記挿入部を前記外耳道に挿入したとき、前記充填剤が前記外耳道壁に接する状態となることを特徴とする。
The invention according to claim 4 is the biological information acquisition apparatus according to any one of claims 1 to 3,
The bone-flesh-conduction sensor comprises an electret condenser microphone having a diaphragm on the surface, a filler covering the front surface of the diaphragm, and a resin case covering the side surface and the rear surface of the electret condenser microphone,
When the insertion portion is inserted into the ear canal, the filler comes into contact with the wall of the ear canal.

請求項5に係る発明は、請求項1〜4のいずれかに記載の生体情報取得装置において、
前記音響信号処理手段は、前記骨肉導音センサにより取得された音響信号に対して所定周波数より低い周波数の信号のみを通過させる処理を行って血管音波形を抽出する低域バンドパスフィルタ又はローパスフィルタ及び前記音響信号に対して所定周波数より高い周波数の信号のみを通過させる処理を行って呼吸音波形を抽出する高域バンドパスフィルタ又はハイパスフィルタを備えていることを特徴とする。
The invention according to claim 5 is the biological information acquisition apparatus according to any one of claims 1 to 4,
The acoustic signal processing means performs a process of passing only a signal having a frequency lower than a predetermined frequency with respect to the acoustic signal acquired by the bone-flesh conduction sensor, and extracts a blood vessel sound waveform by a low-pass bandpass filter or a lowpass filter. And a high-pass band-pass filter or a high-pass filter that performs a process of passing only a signal having a frequency higher than a predetermined frequency to the acoustic signal to extract a respiratory sound waveform.

請求項6に係る発明は、請求項5に記載の生体情報取得装置において、
前記音響信号処理手段は、前記音響信号又は抽出した血管音波形における所定値以上の極大点が発生する時点から次の極小点が発生する時点までの期間にある呼吸音波形を除去する処理を行う脈拍ノイズ除去手段を備えていることを特徴とする。
The invention according to claim 6 is the biological information acquisition apparatus according to claim 5,
The acoustic signal processing means performs a process of removing a respiratory sound waveform in a period from a time point at which a maximum point of a predetermined value or more is generated in the sound signal or the extracted blood vessel sound waveform to a time point at which the next minimum point is generated. A pulse noise removing means is provided.

請求項7に係る発明は、請求項1〜6のいずれかに記載の生体情報取得装置において、
前記骨肉導音センサよりも前記第1カーブ側及び前記第2カーブ側の少なくとも一方に、膨張及び収縮可能な第1膨張収縮部がさらに設けられ、該第1膨張収縮部は、膨張時に前記外耳道壁を圧迫することを特徴とする。
The invention according to claim 7 is the biological information acquisition apparatus according to any one of claims 1 to 6,
At least one of the first curve side and the second curve side of the bone-flesh conduction sensor is further provided with a first expansion/contraction part capable of expansion and contraction, and the first expansion/contraction part expands the ear canal during expansion. Characterized by compressing the wall.

請求項8に係る発明は、請求項1〜7のいずれかに記載の生体情報取得装置において、
前記骨肉導音センサが接する外耳道壁とは反対側の外耳道壁と前記挿入部との間に膨張及び収縮可能な第2膨張収縮部がさらに設けられ、該第2膨張収縮部は、膨張時に前記反対側の外耳道壁を圧迫することを特徴とする。
The invention according to claim 8 is the biological information acquisition apparatus according to any one of claims 1 to 7,
A second expansion/contraction part capable of expansion and contraction is further provided between the insertion part and the external auditory meatus wall opposite to the external auditory meatus wall with which the bone-flesh conduction sensor is in contact, and the second expansion/contraction part is expanded during expansion. It is characterized by compressing the wall of the ear canal on the opposite side.

請求項1に係る発明の生体情報取得装置によれば、骨肉導音センサが挿入部の先端付近に設けられているとともに、挿入部を被検者の外耳道に挿入したとき、筐体が被検者の耳に固定可能であり、挿入部の先端が外耳道における第1カーブと第2カーブの間に到達可能であり、かつ、骨肉導音センサが被検者の外耳道壁に接する状態となるので、被検者に特別な労力をかけることなく長時間にわたって安定的に被検者の血管音と呼吸音を同時に測定できる。
また、外耳道壁に接触させて骨肉導音を取得するタイプの骨肉導音センサを利用しているため、雑音の影響を小さくすることができ、しかも筐体を被検者の耳に固定できるので、被検者が日常生活を送っている状態で血管音と呼吸音を計測することが可能となる。
そして、継続的に取得される血管音からは心臓の異常状態や脈拍数を検出することができ、呼吸音からは肺の異常状態や呼吸数を検出することができる。
さらに、血管音と呼吸音が同時に測定できることにより、従来は病院の設備でしか診断できなかったような循環器疾患や呼吸器疾患を早期発見することも可能となる。
According to the biological information acquisition apparatus of the invention of claim 1, the bone-flesh conduction sensor is provided near the tip of the insertion portion, and when the insertion portion is inserted into the ear canal of the subject, the housing is inspected. Since it can be fixed to the ear of the person, the tip of the insertion portion can reach between the first curve and the second curve in the ear canal, and the bone-and-bone conduction sensor comes into contact with the wall of the ear canal of the subject. , It is possible to stably measure the blood vessel sound and the breathing sound of the subject at the same time over a long period of time without extra effort on the subject.
Further, since a bone-conducting sound sensor of the type that acquires bone-conducting sound by contacting the wall of the external auditory meatus is used, the influence of noise can be reduced and the housing can be fixed to the ear of the subject. , It becomes possible to measure blood vessel sounds and respiratory sounds while the subject is living his/her daily life.
The abnormal state of the heart and the pulse rate can be detected from the continuously acquired blood vessel sound, and the abnormal state of the lung and the respiratory rate can be detected from the respiratory sound.
Furthermore, since blood vessel sounds and respiratory sounds can be measured simultaneously, it becomes possible to detect circulatory diseases and respiratory diseases at an early stage, which can be diagnosed only by hospital facilities.

血管音と呼吸音の同時測定により、早期発見することが可能となる循環器疾患としては、慢性心不全(急性増悪も含む)・不整脈(徐脈、頻脈など)・狭心症・弁膜症・チェーンストーク呼吸(心不全末期に出現する)・心筋症(拡張型、肥大型)・心筋炎が挙げられ、呼吸器疾患としては、慢性閉塞性肺疾患:COPD(急性増悪を含む)・肺血栓塞栓症・気管支喘息・肺炎・気管支炎・睡眠時無呼吸症候群・肺がんが挙げられる。
また、詳細については後述するが、呼吸変動(σRR)と脈拍変動(σHR)の比であるストレス指数(SI)は、精神科疾患一般・過換気症候群・パニック障害の診断や痛みの定量化(PTSD)、すなわち痛み刺激の大きさの判定にも利用可能である。
Cardiovascular diseases that can be detected early by simultaneous measurement of blood vessel sounds and respiratory sounds include chronic heart failure (including acute exacerbations), arrhythmia (bradycardia, tachycardia, etc.), angina, valvular disease, Cheyne-Stokes breathing (appears at the end of heart failure), cardiomyopathy (dilated, hypertrophic), myocarditis, and respiratory diseases include chronic obstructive pulmonary disease: COPD (including acute exacerbation) and pulmonary thromboembolism. Illness, bronchial asthma, pneumonia, bronchitis, sleep apnea syndrome, and lung cancer.
In addition, as will be described in detail later, the stress index (SI), which is the ratio of respiratory variability (σRR) and pulse variability (σHR), is used to diagnose general psychiatric disorders, hyperventilation syndrome, panic disorder, and quantify pain ( PTSD), that is, it can also be used to determine the magnitude of pain stimulation.

請求項2に係る発明の生体情報取得装置によれば、請求項1に係る発明の効果に加え、本体部に外部の音を取得する外気導音マイクが設けられ、挿入部の先端付近には、外気導音マイクが取得した外部の音を出力する外気導音スピーカが設けられているとともに、挿入部を被検者の外耳道に挿入したとき、外気導音スピーカが外耳道壁に接しない状態となるので、被検者は計測中においても常時周囲の音を聞きとることができる。
そのため、被検者の血管音と呼吸音を計測している期間中においても、被検者はテレビ・ラジオの音声並びにオーディオ装置からの音楽等を両耳で視聴することができる。
According to the biological information acquisition apparatus of the invention of claim 2, in addition to the effect of the invention of claim 1, the main body is provided with the outside air conducted sound microphone for acquiring external sound, and near the tip of the insertion part. In addition to the external air-conducting speaker that outputs the external sound acquired by the external air-conducting microphone, the external air-conducting speaker does not come into contact with the external auditory meatus wall when the insertion part is inserted into the ear canal of the subject. Therefore, the subject can always hear the ambient sound even during the measurement.
Therefore, even during the period in which the blood vessel sound and the breathing sound of the subject are being measured, the subject can watch the voice of the television/radio, the music from the audio device, and the like with both ears.

請求項3に係る発明の生体情報取得装置によれば、請求項1に係る発明の効果に加え、筐体に本体部の外面から挿入部の先端付近まで貫通する空洞部が設けられているとともに、挿入部を被検者の外耳道に挿入したとき、空洞部の本体部側は被検者の皮膚に接しない状態となり、空洞部の挿入部側は外耳道壁に接しない状態となるので、被検者は計測中においても常時周囲の音を聞きとることができる。
そのため、被検者の血管音と呼吸音を計測している期間中においても、被検者はテレビ・ラジオの音声並びにオーディオ装置からの音楽等を両耳で視聴することができる。
According to the biological information acquisition apparatus of the invention of claim 3, in addition to the effect of the invention of claim 1, the housing is provided with a cavity portion that penetrates from the outer surface of the main body portion to the vicinity of the tip of the insertion portion. When the insertion part is inserted into the ear canal of the subject, the body side of the cavity does not contact the skin of the subject, and the insertion side of the cavity does not contact the ear canal wall. The examiner can always hear ambient sounds even during measurement.
Therefore, even during the period in which the blood vessel sound and the breathing sound of the subject are being measured, the subject can listen to the sound of the television/radio, the music from the audio device, and the like with both ears.

請求項4に係る発明の生体情報取得装置によれば、請求項1〜3のいずれかに係る発明の効果に加え、骨肉導音センサが表面にダイヤフラムを有するエレクトレットコンデンサマイクと、ダイヤフラムの前面を覆う充填剤と、エレクトレットコンデンサマイクの側面及び後面を覆う樹脂ケースからなっているとともに、挿入部を外耳道に挿入したとき、充填剤が外耳道壁に接する状態となるので、骨肉導音センサの装着感が良くなり、骨肉導音の測定精度も良くなる。 According to the biological information acquisition device of the invention according to claim 4, in addition to the effect of the invention according to any one of claims 1 to 3, the bone-flesh conduction sensor has an electret condenser microphone having a diaphragm on its surface, and a front surface of the diaphragm. It consists of a filler that covers it and a resin case that covers the side and back of the electret condenser microphone, and when the insertion part is inserted into the ear canal, the filler comes into contact with the wall of the ear canal, so the feeling of wearing a bone-conducting sound sensor Is improved, and the accuracy of measuring bone-conducted sound is also improved.

請求項5に係る発明の生体情報取得装置によれば、請求項1〜4のいずれかに係る発明の効果に加え、音響信号処理手段が、骨肉導音センサにより取得された音響信号に対して所定周波数より低い周波数の信号のみを通過させる処理を行って血管音波形を抽出する低域バンドパスフィルタ又はローパスフィルタ及び音響信号に対して所定周波数より高い周波数の信号のみを通過させる処理を行って呼吸音波形を抽出する高域バンドパスフィルタ又はハイパスフィルタを備えているので、確実に血管音と呼吸音を分離することができる。 According to the biological information acquisition apparatus of the invention of claim 5, in addition to the effect of the invention of any one of claims 1 to 4, the acoustic signal processing means is adapted to the acoustic signal acquired by the bone-flesh conduction sensor. Performing a process of passing only signals of frequencies lower than a predetermined frequency to extract blood vessel sound waveforms Performing a process of passing only signals of frequencies higher than a predetermined frequency with respect to low-pass bandpass filters or low-pass filters and acoustic signals Since the high-pass band-pass filter or the high-pass filter for extracting the respiratory sound waveform is provided, the blood vessel sound and the respiratory sound can be reliably separated.

請求項6に係る発明の生体情報取得装置によれば、請求項5に係る発明の効果に加え、音響信号処理手段が、音響信号又は抽出した血管音波形における所定値以上の極大点が発生する時点から次の極小点が発生する時点までの期間にある呼吸音波形を除去する処理を行う脈拍ノイズ除去手段を備えているので、呼吸音波形から脈拍ノイズを除去することができ、肺の異常状態や呼吸数をより正確に検出することができる。 According to the biological information acquisition apparatus of the invention of claim 6, in addition to the effect of the invention of claim 5, the acoustic signal processing means generates a local maximum of a predetermined value or more in the acoustic signal or the extracted blood vessel sound waveform. Since it has pulse noise removal means that performs processing to remove the respiratory sound waveform in the period from the time point to the time point at which the next minimum point occurs, it is possible to remove the pulse noise from the respiratory sound wave shape, and the lung abnormality. The condition and respiratory rate can be detected more accurately.

請求項7に係る発明の生体情報取得装置によれば、請求項1〜6のいずれかに係る発明の効果に加え、骨肉導音センサよりも第1カーブ側及び第2カーブ側の少なくとも一方に、膨張及び収縮可能な第1膨張収縮部がさらに設けられ、第1膨張収縮部は、膨張時に外耳道壁を圧迫するので、第1膨張収縮部を膨張させ外耳道壁を圧迫して血流を止めた後、第1膨張収縮部を収縮させコロトコフ音が取得できた瞬間における第1膨張収縮部の圧力が最高血圧となり、さらに第1膨張収縮部を収縮させ再度コロトコフ音が取得できなくなる瞬間における第1膨張収縮部の圧力が最低血圧となるので、血圧計として機能させることもできる。 According to the biological information acquisition device of the invention according to claim 7, in addition to the effect of the invention according to any one of claims 1 to 6, the biological information acquisition device is provided on at least one of the first curve side and the second curve side of the bone-flesh conduction sensor. Further, a first inflatable/contractible portion that can be inflated and deflated is further provided, and the first inflatable/contractile portion compresses the ear canal wall when inflated, so that the first inflatable/contractile portion is inflated to press the ear canal wall to stop blood flow. After that, the pressure of the first expansion/contraction part becomes systolic at the moment when the first expansion/contraction part is contracted to obtain the Korotkoff sound, and the first expansion/contraction part is further contracted to obtain the Korotkoff sound again. Since the pressure in the expansion/contraction part 1 becomes the minimum blood pressure, it can also function as a sphygmomanometer.

請求項8に係る発明の生体情報取得装置によれば、請求項1〜7のいずれかに係る発明の効果に加え、骨肉導音センサが接する外耳道壁とは反対側の外耳道壁と挿入部との間に膨張及び収縮可能な第2膨張収縮部がさらに設けられ、第2膨張収縮部は、膨張時に反対側の外耳道壁を圧迫するので、第2膨張収縮部を膨張及び収縮させることで、請求項7に係る発明の生体情報取得装置と同様に、血圧計として機能させることができる。
また、第2膨張収縮部を適当な大きさに膨張させておくことによって、骨肉導音センサを常にしっかりと被検者の外耳道壁に接する状態にしておくことができるので、骨肉導音センサにより取得される音響信号の振幅を大きくすることができる。
According to the biological information acquisition device of the invention according to claim 8, in addition to the effect of the invention according to any one of claims 1 to 7, the ear canal wall and the insertion portion on the opposite side of the ear canal wall in contact with the bone-flesh conduction sensor. A second expansion/contraction part capable of expanding and contracting is further provided between the two, and the second expansion/contraction part presses the ear canal wall on the opposite side at the time of expansion, so that by expanding and contracting the second expansion/contraction part, Similar to the biological information acquisition apparatus of the invention according to claim 7, it can function as a blood pressure monitor.
Further, by expanding the second expansion/contraction part to an appropriate size, it is possible to keep the bone-flesh-conducting sound sensor in contact with the external auditory meatus wall of the subject at all times. The amplitude of the acquired acoustic signal can be increased.

実施例1に係る生体情報取得装置の概念図。3 is a conceptual diagram of the biometric information acquisition apparatus according to the first embodiment. FIG. 人間の耳の断面図と骨肉導音の測定部位を示す図。The figure which shows the cross section of a human ear, and the measurement site of bone-conducting sound. 骨肉導音センサ4の断面図。Sectional drawing of the bone-flesh conduction sensor 4. 骨肉導音センサ4で取得された音響信号及びその音響信号から抽出された血管音波形及び呼吸音波形の一例。An example of the acoustic signal acquired by the bone-and-flesh conduction sensor 4 and the blood vessel sound waveform and respiratory sound waveform extracted from the sound signal. 実施例2に係る筐体30を示す図。FIG. 6 is a diagram showing a housing 30 according to the second embodiment. 実施例3に係る音響信号処理手段50のブロック図。FIG. 6 is a block diagram of an acoustic signal processing means 50 according to a third embodiment. 呼吸音波形に残っている脈拍ノイズを除去する手法を説明する図。The figure explaining the method of removing the pulse noise remaining in the respiratory sound waveform. 脈拍ノイズ集中期間における呼吸音波形を補完する手法を説明する図。The figure explaining the method of complementing the respiratory sound waveform in the pulse noise concentration period. 実施例4に係る生体情報取得装置の概念図。9 is a conceptual diagram of a biometric information acquisition apparatus according to a fourth embodiment. FIG. 実施例5に係る生体情報取得装置の概念図。9 is a conceptual diagram of a biometric information acquisition apparatus according to a fifth embodiment. FIG. 音響信号の振幅の変化についての実験結果を示す図。The figure which shows the experimental result about the change of the amplitude of an acoustic signal. 第1膨張収縮部18及び第2膨張収縮部23の配置例を示す図。The figure which shows the example of arrangement|positioning of the 1st expansion/contraction part 18 and the 2nd expansion/contraction part 23.

以下、実施例によって本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to examples.

図1は実施例1に係る生体情報取得装置の概念図である。
実施例1に係る生体情報取得装置は、図1の概念図に示すように、本体部1及び挿入部2を有する筐体3と、挿入部2の先端付近に設けられている骨肉導音センサ4により取得された音響信号を処理する音響信号処理手段5を備えている。
本体部1には外部の音を取得する外気導音マイク6が設けられ、挿入部2の先端付近には、骨肉導音センサ4以外に外気導音マイク6が取得した外部の音を出力する外気導音スピーカ7が設けられている。また、挿入部2は被検者の外耳道8に挿入できるようになっており、その先端は挿入部2を外耳道8に挿入したとき、外耳道8における第1カーブ9と第2カーブ10の間に到達可能な形状に成型されている。
なお、挿入部2を標準的な外耳道8に適する形状に成型して汎用の生体情報取得装置とする場合と、挿入部2を装着する被検者の外耳道8に適する形状に成型して被検者専用の生体情報取得装置とする場合があるが、後者の方が高い精度で音響信号を取得できる。
FIG. 1 is a conceptual diagram of the biometric information acquisition apparatus according to the first embodiment.
As shown in the conceptual diagram of FIG. 1, the biological information acquisition apparatus according to the first embodiment includes a casing 3 having a main body 1 and an insertion portion 2, and a bone-flesh conduction sensor provided near the tip of the insertion portion 2. The sound signal processing means 5 is provided for processing the sound signal acquired by 4.
The main body 1 is provided with an outside air conducted sound microphone 6 for obtaining an outside sound, and an outside sound obtained by the outside air conducted sound microphone 6 is output near the tip of the insertion portion 2 in addition to the bone-flesh conducted sound sensor 4. An outside air conducted sound speaker 7 is provided. In addition, the insertion portion 2 can be inserted into the ear canal 8 of the subject, and the tip thereof is between the first curve 9 and the second curve 10 in the ear canal 8 when the insertion portion 2 is inserted into the ear canal 8. It is molded into a reachable shape.
In addition, when the insertion part 2 is molded into a shape suitable for the standard external auditory meatus 8 to be a general-purpose biometric information acquisition device, and when the insertion part 2 is molded into a shape suitable for the external auditory meatus 8 of the subject, There is a case in which the biological information acquisition device dedicated to the person is used, but the latter can acquire the acoustic signal with higher accuracy.

図2は人間の耳の断面図と骨肉導音の測定部位を示す図である。
図2から分かるように、外耳道8における第1カーブ9及び第2カーブ10は、外耳道8に2箇所ある屈曲部のうち入口11に近い方が第1カーブ9であり、鼓膜12に近い方が第2カーブ10である。
そして、挿入部2を外耳道8に挿入したとき、筐体3は被検者の耳に固定され、また、挿入部2の先端付近に設けられている骨肉導音センサ4は、図2に示されている第1カーブ9と第2カーブ10の間にある測定部位(外耳道壁)に接する状態となり、外気導音スピーカ7は外耳道壁13に接しない状態となるようになっている。
そのため、骨肉導音センサ4は、耳周辺の動脈を音源とする骨肉導音及び副鼻腔や口腔反響骨導音、耳管を音源とする骨肉導音を同時に取得することができ、被検者は計測中においても常時外気導音スピーカ7から出力される周囲の音を聞きとることができる。
なお、骨肉導音センサ4による測定部位を第1カーブ9と第2カーブ10の間としているのは、図2から分かるように、この部分に頭蓋骨の端部が張り出しているため、主として骨を伝わる骨肉導音を取得するのに適した位置であることによる。
FIG. 2 is a cross-sectional view of a human ear and a diagram showing a measurement site for bone-conducted sound.
As can be seen from FIG. 2, in the first curve 9 and the second curve 10 in the ear canal 8, one of the two bent portions of the ear canal 8 is closer to the entrance 11 than the first curve 9 and closer to the eardrum 12. It is the second curve 10.
When the insertion part 2 is inserted into the external auditory meatus 8, the housing 3 is fixed to the ear of the subject, and the bone-conducting sound sensor 4 provided near the tip of the insertion part 2 is shown in FIG. The measurement site (external ear canal wall) between the first curve 9 and the second curve 10 is in contact with the external air conduction speaker 7, and the external air conduction speaker 7 is not in contact with the external ear canal wall 13.
Therefore, the bone-flesh conduction sound sensor 4 can simultaneously acquire the bone-flesh conduction sound using the arteries around the ear as a sound source, the sinus cavity and the oral echo bone conduction sound, and the bone-flesh conduction sound using the ear canal as the sound source. Can always hear the ambient sound output from the outside air conducted sound speaker 7 even during measurement.
It should be noted that the measurement site of the bone-flesh conduction sensor 4 is between the first curve 9 and the second curve 10, as shown in FIG. This is because the position is suitable for obtaining the transmitted bone and meat conduction sound.

図3は骨肉導音センサ4の断面図である。
骨肉導音センサ4は、全体の形状は円柱状であり、図3に示すように表面にダイヤフラムを有するエレクトレットコンデンサマイク14と、ダイヤフラムの前面を覆う充填剤15(ポリウレタンエラストマ製やメディカルグレードシリコン製等)と、エレクトレットコンデンサマイク14の側面及び後面を覆う樹脂ケース16(ポリカーボネート製等)からなっている。
そして、充填剤15の表面は、樹脂ケース16の周縁より前面側に膨らんでいるとともに、挿入部2の先端付近においてその表面が露出するように設けられているので、挿入部2を外耳道8に挿入したとき、充填剤15の表面が第1カーブ9と第2カーブ10の間の外耳道壁13に密着し、精度良く骨肉導音を取得できる。
FIG. 3 is a sectional view of the bone-flesh conduction sensor 4.
The bone-flesh-conducting sound sensor 4 has a cylindrical shape as a whole, and as shown in FIG. 3, an electret condenser microphone 14 having a diaphragm on its surface, and a filler 15 (made of polyurethane elastomer or medical grade silicon) for covering the front surface of the diaphragm. Etc.) and a resin case 16 (made of polycarbonate, etc.) that covers the side surface and the rear surface of the electret condenser microphone 14.
The surface of the filler 15 swells to the front side from the peripheral edge of the resin case 16 and is provided so that the surface thereof is exposed near the tip of the insertion part 2, so that the insertion part 2 is placed in the ear canal 8. When inserted, the surface of the filler 15 comes into close contact with the external auditory meatus wall 13 between the first curve 9 and the second curve 10, and bone-conducting sound can be acquired with high accuracy.

次に、音響信号処理手段5について説明する。
音響信号処理手段5は、骨肉導音センサ4から有線又は無線の送受信手段を介して、図4(a)に示すような音響信号を受信する。
その後、その音響信号に対し、低域バンドパスフィルタ51を用いて、所定周波数(通常は200Hz程度)より低い周波数(通常は20〜200Hz程度)の信号のみを通過させる処理を行い、図4(b)に示すような血管音波形を抽出する。
また、同じ音響信号に対し、高域バンドパスフィルタ52を用いて、所定周波数より高い周波数(通常は200〜700Hz程度)の信号のみを通過させる処理を行い、図4(c)に示すような呼吸音波形を抽出する。
抽出した血管音波形及び呼吸音波形は、その後の利用目的に応じて、例えば医師等がそれらの波形をチェックする場合には波形表示手段に送信され、脈拍数や呼吸数を演算表示したり、脈拍数の変動、呼吸数の変動又はストレス指数(SI)を演算表示したり、演算した脈拍数や呼吸数等に基づいて状態判定を行い判定結果を表示したりする場合には脈拍数・呼吸数等演算表示手段に送信される。
Next, the acoustic signal processing means 5 will be described.
The acoustic signal processing means 5 receives an acoustic signal as shown in FIG. 4A from the bone-flesh conduction sensor 4 via a wired or wireless transmission/reception means.
Then, the acoustic signal is processed by using the low-pass band-pass filter 51 to pass only a signal having a frequency (usually about 20 to 200 Hz) lower than a predetermined frequency (usually about 200 Hz). Extract the blood vessel sound waveform as shown in b).
Further, with respect to the same acoustic signal, a process of passing only a signal having a frequency higher than a predetermined frequency (usually about 200 to 700 Hz) is performed by using the high band pass filter 52, and as shown in FIG. Extract respiratory sound waveforms.
The extracted vascular sound waveform and respiratory sound waveform are transmitted to the waveform display means, for example, when a doctor or the like checks those waveforms, depending on the purpose of use thereafter, and displays the pulse rate and the respiratory rate by calculation, When the fluctuation of the pulse rate, the fluctuation of the respiratory rate, or the stress index (SI) is calculated and displayed, or the status is judged based on the calculated pulse rate or respiratory rate, and the judgment result is displayed, the pulse rate/respiration It is transmitted to the arithmetic display means.

図5は実施例2に係る筐体30を示す図である。
実施例2に係る生体情報取得装置の筐体30以外の構成は実施例1と同様であり、実施例1における筐体3と相違しているのは、外気導音マイク6及び外気導音スピーカ7に代えて空洞部17が設けられている点である。
そこで、筐体30及び空洞部17以外の構成に対しては実施例1と同じ番号を用い、空洞部17以外についての説明は省略する。
空洞部17は、挿入部2の先端付近から本体部1の外面まで貫通しており、挿入部2を外耳道8に挿入したとき、挿入部側にある開口は外耳道壁13に接しない状態となり、本体部側にある開口は被検者の皮膚(耳介等)に接しない状態となる。
そのため、実施例1のように外気導音マイク6及び外気導音スピーカ7を用いなくても、被検者は計測中においても常時周囲の音を聞きとることができ、マイクやスピーカを用いないので故障しない上に低コストであるという長所もある。
FIG. 5 is a diagram illustrating the housing 30 according to the second embodiment.
The configuration of the biometric information acquisition apparatus according to the second embodiment is the same as that of the first embodiment except for the housing 30, and differs from the housing 3 in the first embodiment in that the outside air conducted sound microphone 6 and the outside air conducted sound speaker. The point is that a hollow portion 17 is provided instead of 7.
Therefore, the same numbers as those in the first embodiment are used for the configurations other than the housing 30 and the hollow portion 17, and the description for the portions other than the hollow portion 17 is omitted.
The hollow portion 17 penetrates from the vicinity of the tip of the insertion portion 2 to the outer surface of the main body portion 1, and when the insertion portion 2 is inserted into the ear canal 8, the opening on the insertion portion side does not contact the ear canal wall 13. The opening on the main body side does not come into contact with the skin (auricle, etc.) of the subject.
Therefore, the subject can always hear the ambient sound even during the measurement without using the outside air conducted sound microphone 6 and the outside air conducted sound speaker 7 as in the first embodiment, and does not use the microphone and the speaker. Therefore, there is an advantage that it does not break down and is low cost.

図6は実施例3に係る音響信号処理手段50のブロック図である。
実施例3に係る生体情報取得装置の音響信号処理手段50以外の構成は実施例1と同様であり、実施例1における音響信号処理手段5と相違しているのは、脈拍ノイズ除去手段53が追加されている点である。
そこで、音響信号処理手段50及び脈拍ノイズ除去手段53以外の構成に対しては実施例1と同じ番号を用い、脈拍ノイズ除去手段53以外についての説明は省略する。
FIG. 6 is a block diagram of the acoustic signal processing means 50 according to the third embodiment.
The configuration of the biological information acquisition apparatus according to the third embodiment other than the acoustic signal processing means 50 is the same as that of the first embodiment, and the difference from the acoustic signal processing means 5 of the first embodiment is that the pulse noise removing means 53 is This is an added point.
Therefore, the same numbers as those in the first embodiment are used for the configurations other than the acoustic signal processing means 50 and the pulse noise removing means 53, and the explanations other than the pulse noise removing means 53 are omitted.

音響信号を高域バンドパスフィルタ52によって処理し抽出された呼吸音波形(図4(c)参照)には、周波数が高めの脈拍ノイズが分離しきれずに残っている。
脈拍ノイズが残った状態の呼吸音波形を用いた場合、呼吸数等の演算に悪影響を及ぼすこともあるので、その問題を解決するために、呼吸音波形に残っている脈拍ノイズをできる限り除去する工夫を追加したのが実施例3である。
ところで、骨肉導音センサ4によって取得された音響信号(図4(a)参照)において、脈拍に由来する周波数の高い信号(脈拍ノイズとなる信号)は、図7に示すように、脈拍のピーク部分から始まる急峻なアンダーシュート部分に集中している。
そこで、脈拍ノイズ除去手段53は、まず、取得された音響信号又は抽出された血管音波形における所定値以上(図7の血管音波形の場合、0.7V以上)の極大点が発生する時点から次の極小点が発生する時点までの期間(図7のt1からt2の期間及びt3からt4の期間)にある呼吸音波形を削除する処理を行う(図7の「脈拍ノイズ集中期間を削除した呼吸音波形」を参照)。
そして、脈拍ノイズ集中期間を削除した呼吸音波形に対して、図8に示すように、脈拍ノイズ集中期間の前後にある呼吸音波形(楕円形で示した領域にある波形)を用いて脈拍ノイズ集中期間を補完する処理を行う(図8の「波形補完した呼吸音波形(呼吸音処理波形)」を参照)。
In the respiratory sound waveform (see FIG. 4C) obtained by processing the acoustic signal by the high-frequency bandpass filter 52, pulse noise having a high frequency remains unseparated.
When using a respiratory sound waveform with pulse noise remaining, it may adversely affect the calculation of the respiratory rate, so in order to solve this problem, remove the pulse noise remaining in the respiratory sound waveform as much as possible. It is the third embodiment that the device for adding is added.
By the way, in the acoustic signal acquired by the bone-flesh conduction sensor 4 (see FIG. 4A), a high frequency signal derived from a pulse (a signal that becomes pulse noise) is a peak of the pulse as shown in FIG. It concentrates on the steep undershoot that starts from the part.
Therefore, the pulse noise removing means 53 first starts from a time point when a maximum point of a predetermined value or more (0.7 V or more in the case of the blood vessel sound waveform of FIG. 7) in the acquired acoustic signal or the extracted blood vessel sound waveform occurs. The process of deleting the respiratory sound waveform in the period until the time when the next minimum point occurs (the period from t1 to t2 and the period from t3 to t4 in FIG. 7) is performed (the “pulse noise concentration period in FIG. 7 is deleted”). Respiratory sound waveform").
Then, as shown in FIG. 8, for the respiratory sound waveform in which the pulse noise concentration period is deleted, the pulse noise is measured using the respiratory sound waveforms (waveforms in the region indicated by the ellipse) before and after the pulse noise concentration period. A process for complementing the concentration period is performed (see “Respiratory sound waveform with waveform complement (respiratory sound processing waveform)” in FIG. 8 ).

脈拍ノイズ除去手段53による処理を行って得られた呼吸音処理波形に基づけば、より正確な呼吸数を演算することができるので、循環器疾患や呼吸器疾患の判定精度を上げることができ、また、ストレス指数(SI)を利用した精神科疾患一般・過換気症候群・パニック障害等の診断や痛み刺激の大きさの判定にも資することとなる。 Since a more accurate respiratory rate can be calculated based on the respiratory sound processing waveform obtained by performing the processing by the pulse noise removing means 53, it is possible to improve the accuracy of determination of circulatory diseases and respiratory diseases. It also contributes to the diagnosis of general psychiatric disorders, hyperventilation syndrome, panic disorder, etc. using the stress index (SI) and the determination of the magnitude of pain stimulation.

最後にストレス指数(SI)について説明する。
ストレス指数は、一定時間中(例えば1分間)における単位時間中(例えば5秒間)の呼吸数群についての標準偏差(σRR)である呼吸変動(Respiratory rate variability:RRV)を、一定時間中(例えば1分間)における単位時間中(例えば5秒間)の脈拍数群についての標準偏差(σHR)である脈拍変動(Heart rate variability:HRV)で除したものであり、SI=σRR/σHRの式で表すことができる。
なお、呼吸変動は副交感神経の神経活動と関連し、脈拍変動は交感神経の神経活動と関連していることが分かっている。
そして、SIが小さくなる時には被検者が安定状態から不安定状態に向かっていると判定でき、SIが大きくなる時には被検者が不安定状態から安定状態に向かっていると判定できる。
そのため、ストレス指数(SI)は、精神科疾患一般・過換気症候群・パニック障害の診断を行う際の参考データとして利用することができる。
さらに、同指数は、痛み刺激の大きさの判定にも利用することができる。
その理由は、「痛み」は生体にとって包括的不安定状態であり、脳は「痛み」を感じる
と原始的反射を使って優先的に、かつ、可能な限り速やかに、この包括的不安定状態から
脱しようとするからである。
すなわち、脳は自分(脳)自身の維持の為に、心臓と肺のサイクルを副交感神経と交感神経の神経活動を調整することによって、脳内の酸素濃度と持続時間を確保しようとしているものと考えられる。
Finally, the stress index (SI) will be described.
The stress index is a respiratory rate (Respiratory rate variability: RRV), which is a standard deviation (σRR) of a respiratory rate group during a unit time (for example, 5 seconds) in a fixed time (for example, 1 minute), for a fixed time (for example, It is divided by the pulse rate fluctuation (Heart rate variability: HRV) which is the standard deviation (σHR) of the pulse rate group during a unit time (for example, 5 seconds) in 1 minute) and is represented by the formula of SI=σRR/σHR. be able to.
It is known that respiratory fluctuation is associated with parasympathetic nerve activity, and pulse fluctuation is associated with sympathetic nerve activity.
When the SI becomes smaller, it can be determined that the subject is moving from the stable state to the unstable state, and when the SI is larger, it can be determined that the subject is moving from the unstable state to the stable state.
Therefore, the stress index (SI) can be used as reference data when diagnosing general psychiatric disorders, hyperventilation syndrome, and panic disorder.
Furthermore, the index can also be used to judge the magnitude of pain stimulus.
The reason is that "pain" is a global instability for the living body, and when the brain feels "pain", it uses the primitive reflex to give priority to this global instability as quickly as possible. Because I try to get out of it.
That is, the brain tries to secure the oxygen concentration and duration in the brain by adjusting the cycle of the heart and lungs to regulate the nerve activities of the parasympathetic nerve and the sympathetic nerve in order to maintain itself (the brain). Conceivable.

図9は実施例4に係る生体情報取得装置の概念図である。
実施例4に係る生体情報取得装置は、図9に示すとおり、実施例1に係る生体情報取得装置の本体部1に加えて、挿入部2の先端より第2カーブ10側に膨張及び収縮可能な第1膨張収縮部18を設けるとともに、第1膨張収縮部18の空気圧を制御するためのポンプ19及び第1膨張収縮部18とポンプ19を接続するホース20を有しており、また、実施例1に係る生体情報取得装置の音響信号処理手段5に代えて、音響信号処理手段54を有している。
そこで、本体部1、挿入部2、筐体3及び骨肉導音センサ4等については実施例1と同じ番号を用い、第1膨張収縮部18、ポンプ19、ホース20及び音響信号処理手段54以外についての説明は省略する。
FIG. 9 is a conceptual diagram of the biometric information acquisition apparatus according to the fourth embodiment.
As shown in FIG. 9, the biometric information acquisition apparatus according to the fourth embodiment can be expanded and contracted from the tip of the insertion section 2 to the second curve 10 side in addition to the main body section 1 of the biometric information acquisition apparatus according to the first embodiment. The first expansion/contraction part 18 is provided, and the pump 19 for controlling the air pressure of the first expansion/contraction part 18 and the hose 20 connecting the first expansion/contraction part 18 and the pump 19 are provided. An acoustic signal processing unit 54 is provided instead of the acoustic signal processing unit 5 of the biological information acquisition apparatus according to the first example.
Therefore, the same numbers as in the first embodiment are used for the main body part 1, the insertion part 2, the housing 3, the bone-flesh conduction sensor 4, and the like, except for the first expansion/contraction part 18, the pump 19, the hose 20, and the acoustic signal processing means 54. Will not be described.

第1膨張収縮部18は、挿入部2の先端より第2カーブ10側に、膨張させた状態で挿入部2の先端に接触しない位置であって、耳周辺の動脈の一つである深耳介動脈21を圧迫可能な位置に配置する。
そして、第1膨張収縮部18にポンプ19からホース20を介して空気を送り込み、第1膨張収縮部18を膨張させると外耳道壁13が圧迫されて深耳介動脈21の血流が止まる。そのため、その血流が止まる前の状態において骨肉導音センサ4で取得できるコロトコフ音は、血流が止まってしまうと取得できなくなる。
その後、第1膨張収縮部18からホース20及びポンプ19を介して空気を排出し、第1膨張収縮部18を収縮させると、血流が止まった状態からコロトコフ音を伴う血流が流れ出し、さらに第1膨張収縮部18を収縮させて深耳介動脈21を全く圧迫しない状態にすると、再度コロトコフ音は取得できなくなる。
ここで、深耳介動脈21の血流が止まった状態からコロトコフ音を伴う血流が流れ出す瞬間における第1膨張収縮部18内の圧力は最高血圧であり、さらに第1膨張収縮部18を収縮させていき深耳介動脈21が全く圧迫されない状態になって再度コロトコフ音を取得できなくなってしまう瞬間における第1膨張収縮部18内の圧力は最低血圧である。
The first expansion/contraction part 18 is a position that does not come into contact with the tip of the insertion part 2 in the expanded state toward the second curve 10 side from the tip of the insertion part 2, and is a deep ear that is one of the arteries around the ear. The arterial artery 21 is placed at a position where it can be compressed.
Then, when air is sent from the pump 19 to the first expansion/contraction part 18 via the hose 20 to expand the first expansion/contraction part 18, the external auditory meatus wall 13 is pressed and the blood flow in the deep auricle artery 21 is stopped. Therefore, the Korotkoff sound that can be acquired by the bone-flesh conduction sensor 4 before the blood flow is stopped cannot be acquired when the blood flow is stopped.
After that, when air is discharged from the first expansion/contraction part 18 through the hose 20 and the pump 19 and the first expansion/contraction part 18 is contracted, a blood flow accompanied by Korotkoff sounds flows out from the state where the blood flow is stopped, When the first expansion/contraction part 18 is contracted so that the deep auricular artery 21 is not pressed at all, the Korotkoff sound cannot be acquired again.
Here, the pressure in the first expansion/contraction part 18 is the systolic blood pressure at the moment when the blood flow accompanied by the Korotkoff sound starts to flow from the state where the blood flow in the deep auricle artery 21 is stopped, and the first expansion/contraction part 18 is further contracted. The pressure in the first inflation/deflation part 18 at the moment when the deep auricular artery 21 is not pressed at all and the Korotkoff sound cannot be obtained again is the minimum blood pressure.

次に、音響信号処理手段54について説明する。
音響信号処理手段54は、実施例1の音響信号処理手段5と同様、低域バンドパスフィルタ51及び高域バンドパスフィルタ52を有するとともに、図9右側のブロック図に示すとおり、抽出した血管音波形に基づいて、コロトコフ音を検知するコロトコフ音検出手段55を有している。
そして、第1膨張収縮部18内の圧力上昇中にコロトコフ音検出手段55がコロトコフ音を検知しなくなった時点における第1膨張収縮部18内の圧力を最高血圧、第1膨張収縮部18内の圧力低下中にコロトコフ音検出手段55がコロトコフ音を検知しなくなった時点における第1膨張収縮部18内の圧力を最低血圧として表示する血圧表示手段を備えている。
すなわち、実施例4に係る生体情報取得装置は、血圧計としての機能も有している。
なお、波形表示手段又は脈拍数・呼吸数等演算表示手段については、実施例1に係る生体情報取得装置と同様である。
Next, the acoustic signal processing means 54 will be described.
The acoustic signal processing means 54 has a low-pass bandpass filter 51 and a high-pass bandpass filter 52, as in the acoustic signal processing means 5 of the first embodiment, and as shown in the block diagram on the right side of FIG. It has Korotkoff sound detection means 55 for detecting the Korotkoff sound based on the shape.
The pressure in the first expansion/contraction unit 18 at the time when the Korotkoff sound detecting unit 55 stops detecting the Korotkoff sound during the pressure increase in the first expansion/contraction unit 18 is the systolic blood pressure, Blood pressure display means is provided for displaying the pressure in the first inflation/deflation unit 18 as the minimum blood pressure when the Korotkoff sound detection means 55 no longer detects the Korotkoff sound during the pressure decrease.
That is, the biological information acquisition apparatus according to the fourth embodiment also has a function as a sphygmomanometer.
The waveform display means or the pulse rate/respiration rate calculation display means is the same as that of the biological information acquisition apparatus according to the first embodiment.

図10は実施例5に係る生体情報取得装置の概念図である。
実施例5に係る生体情報取得装置は、図10に示すとおり、実施例4に係る生体情報取得装置の挿入部2、第1膨張収縮部18、ポンプ19及びホース20に代えて、挿入部22、第2膨張収縮部23、ポンプ24及びホース25としたものであり、他の構成は実施例4に係る生体情報取得装置と同じである。
そこで、本体部1、筐体3及び骨肉導音センサ4等については実施例4と同じ番号を用い、挿入部22、第2膨張収縮部23、ポンプ24及びホース25以外についての説明は省略する。
FIG. 10 is a conceptual diagram of the biometric information acquisition apparatus according to the fifth embodiment.
As shown in FIG. 10, the biometric information acquisition apparatus according to the fifth embodiment has an insertion section 22 instead of the insertion section 2, the first expansion/contraction section 18, the pump 19 and the hose 20 of the bioinformation acquisition apparatus according to the fourth embodiment. The second expansion/contraction part 23, the pump 24, and the hose 25 are the same as the biological information acquisition device according to the fourth embodiment.
Therefore, the same numbers as those in the fourth embodiment are used for the main body 1, the housing 3, the bone-flesh-conducting sound sensor 4, and the like, and the description except for the insertion portion 22, the second expansion/contraction portion 23, the pump 24, and the hose 25 is omitted. ..

第2膨張収縮部23は、骨肉導音センサ4が接する外耳道壁13とは反対側の外耳道壁と挿入部22との間に設けられ、膨張させることによって骨肉導音センサ4が深耳介動脈21を圧迫できるようにしている。
そのため、挿入部22の骨肉導音センサ4の後面側には、第2膨張収縮部23を収容するための凹部26が設けられている。
そして、第2膨張収縮部23にポンプ24からホース25を介して空気を送り込み、第2膨張収縮部23を膨張させると外耳道壁が圧迫され深耳介動脈21の血流が止まり、逆に第2膨張収縮部23からホース25及びポンプ24を介して空気を排出し、第2膨張収縮部23を収縮させると、血流が止まった状態からコロトコフ音を伴う血流が流れ出し、さらに第2膨張収縮部23を収縮させて深耳介動脈21を全く圧迫しない状態にすると、再度コロトコフ音は取得できなくなるので、実施例4と同様に血圧を測定できる。
The second expansion/contraction part 23 is provided between the insertion part 22 and the external auditory meatus wall on the side opposite to the external auditory meatus wall 13 with which the bone-flesh transduction sensor 4 is in contact. 21 can be squeezed.
Therefore, a recess 26 for accommodating the second expansion/contraction part 23 is provided on the rear surface side of the bone-flesh conduction sensor 4 of the insertion part 22.
Then, when air is sent from the pump 24 to the second expansion/contraction part 23 via the hose 25 and the second expansion/contraction part 23 is expanded, the external auditory meatus wall is compressed and blood flow in the deep auricular artery 21 is stopped, and conversely 2 When air is discharged from the expansion/contraction part 23 via the hose 25 and the pump 24 and the second expansion/contraction part 23 is contracted, blood flow accompanied by Korotkoff sounds starts to flow from the state where the blood flow is stopped, and further the second expansion is performed. When the constricting portion 23 is contracted so that the deep auricular artery 21 is not pressed at all, the Korotkoff sound cannot be acquired again, so that the blood pressure can be measured as in the fourth embodiment.

さらに、実施例5では、第2膨張収縮部23を適当な大きさに膨張させておくことによって、骨肉導音センサ4を常にしっかりと被検者の外耳道壁に接する状態にしておくことができるので、骨肉導音センサ4により取得される音響信号の振幅を大きくすることができる。
図11は、骨肉導音センサ4により取得される音響信号の振幅の変化についての実験結果を示す図である。
図11(A)は、実施例1に係る生体情報取得装置を装着した被験者の両耳を結ぶ線が水平となっている状態における音響信号、図11(B)は、実施例1に係る生体情報取得装置を装着した被験者の両耳を結ぶ線が鉛直となっている状態における音響信号、図11(C)は、実施例5に係る生体情報取得装置を装着した被験者の両耳を結ぶ線が鉛直となっており、第2膨張収縮部23内の圧力が最低血圧と最高血圧の中間の値である状態における音響信号を示している。
この実験結果から、第2膨張収縮部23内の圧力を最低血圧と最高血圧の中間の値程度にしておけば、被検者の姿勢によらず音響信号の振幅をほぼ一定の大きさ以上で取得できることが分かる。
Further, in the fifth embodiment, by expanding the second expansion/contraction part 23 to an appropriate size, the bone-flesh-conducting sound sensor 4 can be kept in contact with the subject's ear canal wall at all times. Therefore, the amplitude of the acoustic signal acquired by the bone-flesh conduction sound sensor 4 can be increased.
11: is a figure which shows the experimental result about the change of the amplitude of the acoustic signal acquired by the bone-flesh conduction sensor 4. As shown in FIG.
FIG. 11A is an acoustic signal in a state where the line connecting both ears of the subject wearing the biological information acquisition apparatus according to the first embodiment is horizontal, and FIG. 11B is the living body according to the first embodiment. An acoustic signal in a state where the line connecting both ears of the subject who wears the information acquisition device is vertical. FIG. 11C shows a line connecting both ears of the subject who wears the biometric information acquisition device according to the fifth embodiment. Is vertical and indicates an acoustic signal in a state where the pressure in the second expansion/contraction part 23 is an intermediate value between the minimum blood pressure and the maximum blood pressure.
From this experimental result, if the pressure in the second inflating/deflating unit 23 is set to an intermediate value between the minimum blood pressure and the maximum blood pressure, the amplitude of the acoustic signal becomes equal to or larger than a certain level regardless of the posture of the subject. You can see that you can get it.

実施例1〜5の生体情報取得装置に関する変形例を列記する。
(1)実施例1及び3〜5では外気導音マイク6及び外気導音スピーカ7を用いて、また、実施例2では空洞部17を用いて、挿入部2を外耳道8に挿入し筐体3を固定した状態であっても、筐体3を固定した方の耳で外部の音を聞くことができるようにしている。
しかし、通常は筐体3を両方の耳に固定することはなく、筐体3を固定しない方の耳で外部の音を聞くことができるので、実施例1及び3〜5においては外気導音マイク6と外気導音スピーカ7を設けなくても良く、実施例2においては空洞部17を設けなくても良い。
(2)実施例1〜5では、骨肉導音センサ4として、ECM14と、充填剤15と、樹脂ケース16からなるものを用いたが、挿入部2の先端付近に凹部を設け、その凹部に直接ECM14を嵌め込み、その開口側を充填材で覆うようにしても良い。
また、ECM14に代えて通常のコンデンサ型、可動コイル型、圧電型などのマイクロホンを用いても良く、充填材としてはポリウレタンエラストマ製やメディカルグレードシリコン製に限らず、硬化後の状態で人体の皮膚と同等の音響インピーダンス特性をもつ疎水性の樹脂であれば、適宜の弾性高分子材料が採用可能である。
Modification examples of the biological information acquisition devices of Examples 1 to 5 will be listed.
(1) In the first and third to fifth embodiments, the outside air-conducting microphone 6 and the outside air-conducting sound speaker 7 are used, and in the second embodiment, the cavity portion 17 is used to insert the insertion portion 2 into the external auditory meatus 8 and the housing. Even when the housing 3 is fixed, the ear with the housing 3 fixed allows external sounds to be heard.
However, normally, the casing 3 is not fixed to both ears, and an external sound can be heard by the ear not fixing the casing 3. Therefore, in the first and third to fifth embodiments, the outside air conducted sound is transmitted. The microphone 6 and the outside air conduction sound speaker 7 may not be provided, and the cavity 17 may not be provided in the second embodiment.
(2) In Examples 1 to 5, as the bone-flesh-conducting sound sensor 4, the one including the ECM 14, the filler 15, and the resin case 16 was used. However, a concave portion is provided near the tip of the insertion portion 2 and The ECM 14 may be directly fitted and the opening side thereof may be covered with the filler.
Further, instead of the ECM 14, a normal condenser type, a moving coil type, a piezoelectric type microphone or the like may be used, and the filling material is not limited to polyurethane elastomer or medical grade silicone, but may be the skin of the human body after curing. An appropriate elastic polymer material can be used as long as it is a hydrophobic resin having an acoustic impedance characteristic equivalent to.

(3)実施例1〜5では低域バンドパスフィルタを用いて血管音波形を抽出し、高域バンドパスフィルタを用いて呼吸音波形を抽出したが、所定周波数より低い周波数の信号は全て通過させるローパスフィルタを用いて血管音波形を抽出し、所定周波数より高い周波数の信号は全て通過させるハイパスフィルタを用いて呼吸音波形を抽出するようにしても良い。
(4)実施例1及び2の音響信号処理手段5、実施例3の信号処理手段50並びに実施例4及び5の音響信号処理手段54においては、音響信号に対し、低域バンドパスフィルタ51を用い、所定周波数(通常は200Hz程度)より低い周波数(通常は20〜200Hz程度)の信号のみを通過させる処理を行うことで血管音波形を抽出し、同じ音響信号に対し、高域バンドパスフィルタ52を用いて、所定周波数より高い周波数(通常は200〜700Hz程度)の信号のみを通過させる処理を行うことで呼吸音波形を抽出した。
しかし、どの範囲の信号を通過させるかについては、個人差や計測時の被検者の状態に応じて適宜変化させても良い。
例えば、被検者の脈拍音の周波数が低い場合には、所定周波数を150Hz程度とした上で、低域バンドパスフィルタ51では15〜150Hz程度の信号のみを通過させる処理を行って血管音波形を抽出し、高域バンドパスフィルタ52では150〜600Hz程度の信号のみを通過させる処理を行って呼吸音波形を抽出すれば良い。
(3) In Examples 1 to 5, the blood vessel sound waveform was extracted using the low-pass bandpass filter and the respiratory sound waveform was extracted using the high-pass bandpass filter, but all signals with a frequency lower than the predetermined frequency pass. The blood vessel sound waveform may be extracted using a low-pass filter that allows the breathing sound waveform to be extracted using a high-pass filter that allows all signals having a frequency higher than a predetermined frequency to pass.
(4) In the acoustic signal processing means 5 of the first and second embodiments, the signal processing means 50 of the third embodiment, and the acoustic signal processing means 54 of the fourth and fifth embodiments, the low-pass bandpass filter 51 is applied to the acoustic signal. The vascular sound waveform is extracted by performing a process of passing only a signal having a frequency (usually about 20 to 200 Hz) lower than a predetermined frequency (usually about 200 Hz), and a high frequency band pass filter for the same acoustic signal. Using 52, a respiratory sound waveform was extracted by performing a process of passing only a signal having a frequency higher than a predetermined frequency (usually about 200 to 700 Hz).
However, the range of signals to be passed may be appropriately changed depending on individual differences and the state of the subject at the time of measurement.
For example, when the frequency of the pulse sound of the subject is low, the predetermined frequency is set to about 150 Hz, and the low-pass bandpass filter 51 performs a process of passing only a signal of about 15 to 150 Hz to obtain the blood vessel sound waveform. Is extracted, and the high frequency band pass filter 52 may perform a process of passing only a signal of about 150 to 600 Hz to extract the respiratory sound waveform.

(5)実施例4では、膨張及び収縮可能な第1膨張収縮部18を挿入部2の先端より第2カーブ10側に挿入部2とは分離させて設けたが、第1膨張収縮部18を設ける位置は、深耳介動脈21を圧迫可能な位置であれば、骨肉導音センサ4の第1カーブ9側、第2カーブ10側のいずれでも良く、骨肉導音センサ4の第1カーブ9側及び第2カーブ10側の両方であっても良い。
また、第1膨張収縮部18に加えて、実施例5の第2膨張収縮部23を合わせて設けても良い。
ただし、第1膨張収縮部18を膨張させた時に骨肉導音センサ4の位置がずれたり、骨肉導音センサ4が外耳道壁13から離れたりすることの無いように、図12に示す(c−1)、(c−2)及び(c−3)の各例のような配置が好ましい。
さらに、骨肉導音センサ4からずれた位置に設ける場合には、できるだけ一方向のみに伸縮するものが好ましいが、図12に示す(b−1)、(b−2)及び(b−3)のように骨肉導音センサ4の真上や同図に示す(a−1)、(a―2)及び(a―3)のように骨肉導音センサ4の片側及び両側に設ける場合には、複数の方向に膨らむ球体や楕円体の膨張収縮部を用いても良い。
(5) In the fourth embodiment, the first inflatable/contractible portion 18 that can be inflated and contracted is provided on the second curve 10 side from the tip of the insertable portion 2 separately from the insertable portion 2. The position to be provided may be either the first curve 9 side or the second curve 10 side of the bone-flesh-conducting sound sensor 4 as long as the deep-auricle artery 21 can be compressed. It may be on both the 9 side and the second curve 10 side.
In addition to the first expansion/contraction part 18, the second expansion/contraction part 23 of the fifth embodiment may be provided together.
However, when the first expansion/contraction part 18 is expanded, the position of the bone-flesh conduction sensor 4 is not displaced and the bone-flesh conduction sensor 4 is not separated from the ear canal wall 13 as shown in FIG. 12 (c- 1), (c-2) and (c-3) are preferable.
Further, when it is provided at a position deviated from the bone-flesh conduction sensor 4, it is preferable that it is expanded and contracted in only one direction as much as possible, but (b-1), (b-2) and (b-3) shown in FIG. In the case where it is provided on the bone meat conduction sensor 4 on one side or both sides thereof as shown in (a-1), (a-2) and (a-3) shown in FIG. Alternatively, a spherical or elliptical expansion/contraction portion that swells in a plurality of directions may be used.

実施例1〜5の生体情報取得装置の応用例を列記する。
(A)被検者への装着が容易であり、しかも脈拍数と呼吸数を同時に計測できるため、心筋細胞又は冠状動脈硬化巣に中性脂肪が蓄積する難病で“心臓の肥満”と呼ばれることもある中性脂肪蓄積心筋血管症(TGCV)の医学研究用生体量計測装置として病院での治験用として好適に利用できる。
なお、TGCVの医学研究用に限らず、各種の呼吸器や循環器系疾患に関する研究や治験用としても利用できる。
(B)実施例1〜5の生体情報取得装置で取得した血管音波形や呼吸音波形又はそれらの波形に基づいて演算された脈拍数や呼吸数等の各種データをインターネット回線等の通信手段を経由して病院にあるサーバやクラウドサーバに送信できるようにして、在宅患者の遠隔診断システムを実現することができる。
特に、ぜんそく、睡眠時無呼吸症候群又は心疾患等、呼吸器や循環器系の病気に罹患している通院患者に適用するのに適している。
また、呼吸器や循環器系の病気に罹患していなくても、そのような病気にかかる可能性の高い中高齢者等に適用して健康管理を行う健康管理システムに利用できる。
さらに、睡眠不足がアルツハイマー病の原因になることに鑑み、脈拍数、呼吸数、ストレス指数等の各種データに基づいて睡眠状態を監視し、睡眠不足の解消に向けてアドバイスしたり環境を整えたりすることで認知症の予防に役立てることもできる。
Application examples of the biometric information acquisition devices of Examples 1 to 5 will be listed.
(A) It is easy to put on the subject and can measure the pulse rate and the respiratory rate at the same time. Therefore, it is an intractable disease in which neutral fat accumulates in myocardial cells or coronary arteriosclerotic lesions, and is called "heart obesity". It can be suitably used for clinical trials in hospitals as a biometric measuring device for medical research of neutral fat accumulation myocardial vascular disease (TGCV).
It can be used not only for medical research of TGCV but also for research and clinical trials on various respiratory and cardiovascular diseases.
(B) Various kinds of data such as the pulse rate and the respiratory rate calculated based on the blood vessel sound waveform and the respiratory sound waveform acquired by the biological information acquisition device of the first to fifth embodiments or their waveforms are transmitted to a communication means such as an Internet line. It is possible to realize a remote diagnosis system for home patients by enabling transmission to a server in a hospital or a cloud server via the system.
In particular, it is suitable for application to outpatients suffering from respiratory and cardiovascular diseases such as asthma, sleep apnea syndrome or heart disease.
Further, the present invention can be applied to a health management system for performing health management by applying to middle-aged people and the like who are highly likely to suffer from such diseases even if they do not suffer from respiratory or cardiovascular diseases.
In addition, considering that lack of sleep causes Alzheimer's disease, we monitor sleep status based on various data such as pulse rate, respiratory rate, stress index, etc. By doing so, it can be useful for prevention of dementia.

(C)実施例1〜5の生体情報取得装置を災害現場で治療を必要としている被災者に装着するとともに、各生体情報取得装置からのデータを収集、解析できるようにすることにより、脈拍数、呼吸数、ストレス指数等のデータに異常のある被災者を的確に把握して警報や指示を発するトリアージ支援用のシステムを構築できる。
(D)実施例1〜5の生体情報取得装置を運転者に装着するとともに、脈拍数、呼吸数、ストレス指数等のデータに異常のある場合に、運転者や同乗者に対して警報を発する装置を車に搭載するか運転者が所持するようにすれば、居眠り運転や心身異常の検知システムを構築できる。
(C) The pulse rate is obtained by mounting the biometric information acquisition devices of Examples 1 to 5 on a victim who needs treatment at a disaster site and collecting and analyzing data from each biometric information acquisition device. It is possible to build a system for triage support that accurately grasps a victim with abnormal data such as respiratory rate and stress index and issues an alarm or instruction.
(D) The driver is equipped with the biometric information acquisition device according to the first to fifth embodiments, and an alarm is issued to the driver and fellow passengers when data such as pulse rate, respiratory rate, and stress index is abnormal. If the device is installed in a car or is carried by the driver, a detection system for drowsy driving and abnormal physical and mental conditions can be constructed.

1 本体部 2、22 挿入部 3、30 筐体
4 骨肉導音センサ 5、50、54 音響信号処理手段
6 外気導音マイク 7 外気導音スピーカ
8 外耳道 9 第1カーブ 10 第2カーブ
11 入口 12 鼓膜 13 外耳道壁
14 エレクトレットコンデンサマイク(ECM)
15 充填剤 16 樹脂ケース 17 空洞部
18 第1膨張収縮部 19、24 ポンプ 20、25 ホース
21 深耳介動脈 23 第2膨張収縮部 26 凹部
51 低域バンドパスフィルタ 52 高域バンドパスフィルタ
53 脈拍ノイズ除去手段 55 コロトコフ音検出手段
DESCRIPTION OF SYMBOLS 1 Main body part 2, 22 Insertion part 3, 30 Housing 4 Bone-flesh conduction sensor 5, 50, 54 Acoustic signal processing means 6 Outside air conduction microphone 7 Outside air conduction speaker 8 External ear canal 9 1st curve 10 2nd curve 11 Entrance 12 Eardrum 13 ear canal wall 14 electret condenser microphone (ECM)
15 Filler 16 Resin case 17 Cavity 18 First expansion/contraction part 19, 24 Pump 20, 25 Hose 21 Deep ear artery 23 Second expansion/contraction part 26 Recess 51 Low bandpass filter 52 High bandpass filter 53 Pulse Noise removal means 55 Korotkoff sound detection means

Claims (8)

骨肉導音を取得する骨肉導音センサと、
本体部及び該本体部から延び被検者の外耳道に挿入される挿入部を有する筐体と、
前記骨肉導音センサにより取得された音響信号に基づいて血管音波形及び呼吸音波形を抽出する音響信号処理手段を備える生体情報取得装置であって、
前記骨肉導音センサは前記挿入部の先端付近に設けられ、
前記挿入部を前記外耳道に挿入したとき、前記筐体は前記被検者の耳に固定可能であるとともに、前記挿入部の先端は前記外耳道における第1カーブと第2カーブの間に到達可能であり、かつ、前記骨肉導音センサは前記被検者の外耳道壁に接する状態となる
ことを特徴とする生体情報取得装置。
A bone-conducting sound sensor for acquiring bone-conducting sound,
A housing having a body portion and an insertion portion extending from the body portion and inserted into the ear canal of the subject;
A biometric information acquisition device comprising acoustic signal processing means for extracting a blood vessel sound waveform and a respiratory sound waveform based on an acoustic signal acquired by the bone-flesh conduction sensor,
The bone-flesh-conduction sensor is provided near the tip of the insertion portion,
When the insertion section is inserted into the ear canal, the housing can be fixed to the ear of the subject, and the tip of the insertion section can reach between the first curve and the second curve in the ear canal. The biological information acquiring apparatus is characterized in that the bone-flesh conduction sensor is in contact with the external auditory meatus wall of the subject.
前記本体部には、外部の音を取得する外気導音マイクが設けられ、
前記挿入部の先端付近には、外気導音マイクが取得した外部の音を出力する外気導音スピーカが設けられており、
前記挿入部を前記外耳道に挿入したとき、前記外気導音スピーカは前記外耳道壁に接しない状態となる
ことを特徴とする請求項1に記載の生体情報取得装置。
The main body portion is provided with an outside air conduction sound microphone that acquires external sound,
In the vicinity of the tip of the insertion portion, an outside air conducted sound speaker that outputs the outside sound acquired by the outside air conducted sound microphone is provided,
The biometric information acquisition apparatus according to claim 1, wherein when the insertion section is inserted into the external auditory meatus, the external air-conducting speaker does not come into contact with the external auditory meatus wall.
前記筐体には、前記本体部の外面から前記挿入部の先端付近まで貫通する空洞部が設けられ、
前記挿入部を前記外耳道に挿入したとき、前記空洞部の挿入部側は前記外耳道壁に接しない状態となり、前記空洞部の本体部側は前記被検者の皮膚に接しない状態となる
ことを特徴とする請求項1に記載の生体情報取得装置。
The housing is provided with a cavity portion that penetrates from the outer surface of the main body portion to the vicinity of the tip of the insertion portion,
When the insertion portion is inserted into the ear canal, the insertion portion side of the cavity is in a state of not contacting the ear canal wall, and the main body side of the cavity is in a state of not contacting the skin of the subject. The biometric information acquisition device according to claim 1, characterized in that
前記骨肉導音センサは、表面にダイヤフラムを有するエレクトレットコンデンサマイクと、前記ダイヤフラムの前面を覆う充填剤と、前記エレクトレットコンデンサマイクの側面及び後面を覆う樹脂ケースからなり、
前記挿入部を前記外耳道に挿入したとき、前記充填剤が前記外耳道壁に接する状態となる
ことを特徴とする請求項1〜3のいずれかに記載の生体情報取得装置。
The bone-flesh-conduction sensor comprises an electret condenser microphone having a diaphragm on the surface, a filler covering the front surface of the diaphragm, and a resin case covering the side surface and the rear surface of the electret condenser microphone,
The biological information acquisition apparatus according to any one of claims 1 to 3, wherein the filler comes into contact with the wall of the ear canal when the insertion portion is inserted into the ear canal.
前記音響信号処理手段は、前記骨肉導音センサにより取得された音響信号に対して所定周波数より低い周波数の信号のみを通過させる処理を行って血管音波形を抽出する低域バンドパスフィルタ又はローパスフィルタ及び前記音響信号に対して所定周波数より高い周波数の信号のみを通過させる処理を行って呼吸音波形を抽出する高域バンドパスフィルタ又はハイパスフィルタを備えている
ことを特徴とする請求項1〜4のいずれかに記載の生体情報取得装置。
The acoustic signal processing means performs a process of passing only a signal having a frequency lower than a predetermined frequency with respect to the acoustic signal acquired by the bone-flesh conduction sensor, and extracts a blood vessel sound waveform by a low-pass bandpass filter or a lowpass filter. And a high-pass band-pass filter or a high-pass filter that performs a process of passing only a signal having a frequency higher than a predetermined frequency to the acoustic signal to extract a respiratory sound waveform. The biological information acquisition device according to any one of 1.
前記音響信号処理手段は、前記音響信号又は抽出した血管音波形における所定値以上の極大点が発生する時点から次の極小点が発生する時点までの期間にある呼吸音波形を除去する処理を行う脈拍ノイズ除去手段を備えている
ことを特徴とする請求項5に記載の生体情報取得装置。
The acoustic signal processing means performs a process of removing a respiratory sound waveform in a period from a time point at which a maximum point of a predetermined value or more is generated in the sound signal or the extracted blood vessel sound waveform to a time point at which the next minimum point is generated. The biological information acquisition apparatus according to claim 5, further comprising pulse noise removing means.
前記骨肉導音センサよりも前記第1カーブ側及び前記第2カーブ側の少なくとも一方に、膨張及び収縮可能な第1膨張収縮部がさらに設けられ、
該第1膨張収縮部は、膨張時に前記外耳道壁を圧迫する
ことを特徴とする請求項1〜6のいずれかに記載の生体情報取得装置。
A first expansion/contraction part capable of expansion and contraction is further provided on at least one of the first curve side and the second curve side of the bone-flesh conduction sensor,
The biometric information acquisition apparatus according to claim 1, wherein the first expansion/contraction unit presses the external auditory meatus wall during expansion.
前記骨肉導音センサが接する外耳道壁とは反対側の外耳道壁と前記挿入部との間に膨張及び収縮可能な第2膨張収縮部がさらに設けられ、
該第2膨張収縮部は、膨張時に前記反対側の外耳道壁を圧迫する
ことを特徴とする請求項1〜7のいずれかに記載の生体情報取得装置。
A second expansion/contraction part capable of expansion and contraction is further provided between the insertion part and the external auditory meatus wall opposite to the external auditory meatus wall with which the bone-conducting sound sensor is in contact,
The biological information acquisition apparatus according to claim 1, wherein the second expansion/contraction unit presses the opposite ear canal wall during expansion.
JP2020012714A 2019-01-29 2020-01-29 Biometric information acquisition device Active JP7287612B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013587 2019-01-29
JP2019013587 2019-01-29

Publications (2)

Publication Number Publication Date
JP2020121120A true JP2020121120A (en) 2020-08-13
JP7287612B2 JP7287612B2 (en) 2023-06-06

Family

ID=71991730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012714A Active JP7287612B2 (en) 2019-01-29 2020-01-29 Biometric information acquisition device

Country Status (1)

Country Link
JP (1) JP7287612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239317A1 (en) * 2021-05-13 2022-11-17 株式会社島津製作所 Respiration measurement method, respiration measurement device, and respiration measurement system
WO2023026612A1 (en) * 2021-08-25 2023-03-02 国立研究開発法人科学技術振興機構 Device for measuring characteristic of object under measurement and method for measuring characteristic of object under measurement
CN115844339A (en) * 2022-11-11 2023-03-28 中国人民解放军空军军医大学 Diagnosis and treatment system and method based on bone voiceprint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102181A (en) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> Blood pressure measuring device
JP2011212167A (en) * 2010-03-31 2011-10-27 Japan Health Science Foundation Transducer for inputting biological information, biological information transmitter, biological information monitoring device and biological information monitoring system
JP2014087387A (en) * 2012-10-29 2014-05-15 Yamaguchi Univ Pulse measuring apparatus, and safety confirmation report system using the same
US20170171679A1 (en) * 2015-12-15 2017-06-15 Sony Mobile Communications Inc. Controlling own-voice experience of talker with occluded ear
JP2018504157A (en) * 2014-11-25 2018-02-15 イノヴァ デザイン ソリューション エルティーディーInova Design Solutions Ltd Portable physiological monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102181A (en) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> Blood pressure measuring device
JP2011212167A (en) * 2010-03-31 2011-10-27 Japan Health Science Foundation Transducer for inputting biological information, biological information transmitter, biological information monitoring device and biological information monitoring system
JP2014087387A (en) * 2012-10-29 2014-05-15 Yamaguchi Univ Pulse measuring apparatus, and safety confirmation report system using the same
JP2018504157A (en) * 2014-11-25 2018-02-15 イノヴァ デザイン ソリューション エルティーディーInova Design Solutions Ltd Portable physiological monitor
US20170171679A1 (en) * 2015-12-15 2017-06-15 Sony Mobile Communications Inc. Controlling own-voice experience of talker with occluded ear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239317A1 (en) * 2021-05-13 2022-11-17 株式会社島津製作所 Respiration measurement method, respiration measurement device, and respiration measurement system
WO2023026612A1 (en) * 2021-08-25 2023-03-02 国立研究開発法人科学技術振興機構 Device for measuring characteristic of object under measurement and method for measuring characteristic of object under measurement
CN115844339A (en) * 2022-11-11 2023-03-28 中国人民解放军空军军医大学 Diagnosis and treatment system and method based on bone voiceprint

Also Published As

Publication number Publication date
JP7287612B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP4494985B2 (en) Heart rate and respiratory information collection device
US6454718B1 (en) Intra aural integrated vital signs monitor
JP7287612B2 (en) Biometric information acquisition device
US6976963B2 (en) Apparatus and method for precision vital signs determination
US20080013747A1 (en) Digital stethoscope and monitoring instrument
JP2006505300A (en) Headphone device for physiological parameter measurement
JP2017064338A (en) Sleep state measurement device and method, phase coherence calculation device, and heart beat waveform extraction method
JP2007021106A (en) Biological information-measuring device
EP3678551B1 (en) Electronic stethoscope with enhanced features
WO2015170772A2 (en) Circular breathing function measurement device
JP5098035B2 (en) Method and system for obtaining an RR interval index
JP7297190B2 (en) alarm system
JP3735603B2 (en) Sleep state detection device and sleep state management system
JPH0647005A (en) At-home medical examination system using electric stethoscope
KR20060087852A (en) Method and apparatus for diagnosing sleep apnea and treating according to sleep apnea type
JP2021074464A (en) Contact type biological sound sensor
US20230404518A1 (en) Earbud Based Auscultation System and Method Therefor
EP4356822A2 (en) Sleep staging using an in-ear photoplethysmography (ppg)
JP2005329148A (en) Instrument and method for bioinformation measurement
CN107949322A (en) System and method for measuring ICP
EP3694416B1 (en) System for recording chest signals and method using said system
JP6989826B2 (en) Intracranial pressure estimation method and intracranial pressure estimation device
JP2008173280A (en) Cough detecting system
JP4131735B2 (en) Method and apparatus for determining pressure associated with the left atrium
KR20100094042A (en) Apparatus for wireless sound transmission electronic stethoscope using separable auscultating chest piece

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7287612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150