JP2020120630A - Cultured lactic acid bacteria with high content of reduced glutathione and method of production thereof - Google Patents

Cultured lactic acid bacteria with high content of reduced glutathione and method of production thereof Download PDF

Info

Publication number
JP2020120630A
JP2020120630A JP2019015692A JP2019015692A JP2020120630A JP 2020120630 A JP2020120630 A JP 2020120630A JP 2019015692 A JP2019015692 A JP 2019015692A JP 2019015692 A JP2019015692 A JP 2019015692A JP 2020120630 A JP2020120630 A JP 2020120630A
Authority
JP
Japan
Prior art keywords
lactic acid
reduced glutathione
culture
glutathione
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015692A
Other languages
Japanese (ja)
Other versions
JP7305361B2 (en
Inventor
悠 山本
Hisashi Yamamoto
悠 山本
史朗 楠原
Shiro Kusuhara
史朗 楠原
聡司 三井田
Satoshi Miida
聡司 三井田
譲 牧野
Yuzuru Makino
譲 牧野
彰久 松井
Akihisa Matsui
彰久 松井
伊藤 雅彦
Masahiko Ito
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP2019015692A priority Critical patent/JP7305361B2/en
Publication of JP2020120630A publication Critical patent/JP2020120630A/en
Application granted granted Critical
Publication of JP7305361B2 publication Critical patent/JP7305361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide cultured lactic acid bacteria that can maintain high content of intracellular reduced glutathione (GSH).SOLUTION: Cultured lactic acid bacteria with high content of reduced glutathione have a modified pH by acid addition to cultured Streptococcus bacteria producing reduced glutathione in cystine-containing milk medium.SELECTED DRAWING: Figure 2

Description

本発明は、還元型グルタチオン高含有乳酸菌培養物に関するものである。 TECHNICAL FIELD The present invention relates to a lactic acid bacterium culture containing high content of reduced glutathione.

肝機能向上作用、免疫賦活作用等の他、抗酸化作用を有することが知られているグルタチオンは、グルタミン酸、システイン、グリシンからなるトリペプチドであり、酸化型及び還元型が存在する。酸化型は、2分子の還元型グルタチオンがジスルフィド結合によってつながった分子であり、還元型グルタチオン(GSH)はチオール基を有しており、フリーラジカルや過酸化物などの活性酸素種を還元して消去することができる。 Glutathione, which is known to have an antioxidant action as well as a liver function improving action, an immunostimulating action, and the like, is a tripeptide consisting of glutamic acid, cysteine, and glycine, and exists in an oxidized form and a reduced form. The oxidized form is a molecule in which two molecules of reduced glutathione are linked by a disulfide bond. Reduced glutathione (GSH) has a thiol group and reduces active oxygen species such as free radicals and peroxides. Can be erased.

この還元型グルタチオンについては、所定量のシスチンを添加した乳培地で、ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)を培養すると、還元型グルタチオンを高濃度で含有する培養物を得る製造方法が提案されている(例えば、特許文献1参照)。 Regarding this reduced glutathione, a method for producing a culture containing reduced glutathione at a high concentration by culturing Streptococcus thermophilus in a milk medium supplemented with a predetermined amount of cystine has been proposed. (For example, refer to Patent Document 1).

この提案では、無脂乳固形分(SNF;Solids Not Fat)は10〜20%であり、培養温度30〜34℃、培養時間12〜24時間の条件が記載され、シスチン0.002〜0.004%を添加した培地では、還元型グルタチオン生産量が大きくなることが記載されており、更に具体的には、還元型グルタチオン量は、21日間保存しても5〜32%程度しか減少しない(特許文献1、表1参照)ことが開示されている。 In this proposal, the solid content of non-fat milk (SNF; Solids Not Fat) is 10 to 20%, the conditions of the culture temperature of 30 to 34° C. and the culture time of 12 to 24 hours are described, and 0.002 to 0.004% of cystine is added. It is described that the amount of reduced glutathione produced in the culture medium is large, and more specifically, the amount of reduced glutathione is reduced only by about 5 to 32% even when stored for 21 days (Patent Document 1, Table 1) is disclosed.

また、pH3〜4の発酵乳に、乳酸でpH3〜4に調整した副原料を添加する発酵乳の製造方法が提案されている(例えば、特許文献2参照)。これにより、微生物の産生する多糖類の濃度が高く、風味が良好な発酵乳食品を得ることができる効果を奏する。 Further, a method for producing fermented milk has been proposed in which an auxiliary material adjusted to pH 3 to 4 with lactic acid is added to fermented milk having pH 3 to 4 (see, for example, Patent Document 2). Thereby, the concentration of the polysaccharide produced by the microorganism is high, and the fermented dairy food product having a good flavor can be obtained.

特開2013−188177号公報JP, 2013-188177, A 特開2014−027943号公報JP, 2014-027943, A

さて、本出願人は、この特許文献1の技術に基づいて、新規な製品を種々検討していたところ、還元型グルタチオン産生細菌を高い無脂乳固形分(SNF)を含む乳培地で培養したところ、乳酸菌培養物の保存中に、菌体内で蓄積された還元型グルタチオン(以下、「GSH」とも記す)が菌体外に放出されて酸化型グルタチオン(以下、「GSSG」とも記す)に変化し、得られた乳酸菌培養物中のGSH量を維持することができないという新たな問題を確認するに至った。 By the way, the present applicant has conducted various studies on new products based on the technique of Patent Document 1, and found that reduced glutathione-producing bacteria were cultured in a milk medium containing high nonfat milk solids (SNF). However, during storage of the lactic acid bacterium culture, reduced glutathione (hereinafter also referred to as “GSH”) accumulated in the cells was released outside the cells and changed to oxidized glutathione (hereinafter also referred to as “GSSG”). Then, a new problem that the GSH amount in the obtained lactic acid bacterium culture cannot be maintained was confirmed.

この現象は、還元型グルタチオン産生細菌単菌のみの培養だけでなく、還元型グルタチオン産生細菌と他の細菌との混合培養においても、高い無脂乳固形分(SNF)を含む乳培地であれば、同様に菌体内で蓄積された還元型グルタチオン(GSH)が菌体外に放出されて酸化型グルタチオンに変化することが確認された。 This phenomenon is observed not only in the culture of only the reduced glutathione-producing bacteria alone but also in the mixed culture of the reduced glutathione-producing bacteria and other bacteria, as long as the milk medium contains high nonfat milk solids (SNF). Similarly, it was confirmed that reduced glutathione (GSH) accumulated in the cells was released outside the cells and changed to oxidized glutathione.

本発明は、高い菌体内還元型グルタチオン(GSH)を維持することができる乳酸菌培養物及びその製造法を得ることを目的とする。 An object of the present invention is to obtain a lactic acid bacterium culture capable of maintaining high intracellular reduced glutathione (GSH) and a method for producing the same.

本発明に係る還元型グルタチオン高含有乳酸菌培養物は、シスチン含有乳培地におけるストレプトコッカス属還元型グルタチオン産生細菌培養物の酸添加によるpH調整物であることを特徴とするものである。 The reduced-glutathione-rich lactic acid bacterium culture according to the present invention is characterized by being a pH-adjusted product by acid addition of a Streptococcus genus reduced glutathione-producing bacterial culture in a cystine-containing milk medium.

本発明に係る還元型グルタチオン高含有乳酸菌培養物は、前記ストレプトコッカス属還元型グルタチオン産生細菌とラクトバチルス属細菌との混合培養物であることを特徴とするものである。 The reduced-glutathione-rich lactic acid bacterium culture according to the present invention is characterized by being a mixed culture of the above-mentioned Streptococcus genus reduced glutathione-producing bacterium and Lactobacillus bacterium.

本発明に係る還元型グルタチオン高含有乳酸菌培養物は、前記pH調整物がpH4.1〜4.5に調整されたものであることを特徴とするものである。 The lactic acid bacterium culture containing high content of reduced glutathione according to the present invention is characterized in that the pH-adjusted product is adjusted to pH 4.1 to 4.5.

本発明に係る還元型グルタチオン高含有乳酸菌培養物の製造法は、ストレプトコッカス属還元型グルタチオン産生細菌をシスチン含有乳培地で培養し、増殖曲線が対数期から静止期に至る前に、前記培養された培養物に酸を添加してpHを調整することを特徴とするものである。 The reduced glutathione-rich lactic acid bacterial culture according to the present invention is produced by culturing Streptococcus genus reduced glutathione-producing bacteria in a cystine-containing milk medium, and before the growth curve reaches the logarithmic phase to the stationary phase, the culture was carried out. It is characterized in that the pH is adjusted by adding an acid to the culture.

本発明に係る還元型グルタチオン高含有乳酸菌培養物の製造法は、前記シスチン含有乳培地が、20%以上の無脂乳固形分(SNF)を含むものであることを特徴とするものである。 The method for producing a lactic acid bacterium culture having a high content of reduced glutathione according to the present invention is characterized in that the cystine-containing milk medium contains 20% or more of non-fat milk solids (SNF).

本発明に係る還元型グルタチオン高含有乳酸菌培養物の製造法は、前記ストレプトコッカス属還元型グルタチオン産生細菌とラクトバチルス属細菌とを、前記シスチン含有乳培地で混合培養することを特徴とするものである。 The method for producing a reduced-glutathione-rich lactic acid bacterium culture according to the present invention is characterized in that the Streptococcus genus reduced glutathione-producing bacterium and Lactobacillus bacterium are mixed and cultured in the cystine-containing milk medium. ..

本発明に係る還元型グルタチオン高含有乳酸菌培養物の製造法は、前記添加する酸が有機酸であることを特徴とするものである。 The method for producing a culture of lactic acid bacteria having a high content of reduced glutathione according to the present invention is characterized in that the acid to be added is an organic acid.

本発明は、菌体内還元型グルタチオン(GSH)量が高く、保存性も良い乳酸菌培養物を得ることができるという効果がある。 INDUSTRIAL APPLICABILITY The present invention has an effect that a lactic acid bacterium culture product containing a high amount of intracellular reduced glutathione (GSH) and having good storage stability can be obtained.

ストレプトコッカス属細菌(ST−1)単菌発酵乳と、ラクトバチルス属細菌(LcS)との混合培養発酵乳との菌体内GSH量の変化を示す線図である。It is a diagram which shows the change of the intracellular GSH amount of Streptococcus bacterium (ST-1) single bacterium fermented milk and the mixed culture fermented milk of Lactobacillus bacterium (LcS). 菌体内外GSH量及びGSSG量の推移を示す説明図である。It is explanatory drawing which shows the transition of the amount of GSH and the amount of GSSG inside and outside a microbial cell. 乳酸添加の有無による菌体内外GSH量及びGSSG量の保存性の相違を示す説明図である。It is explanatory drawing which shows the difference in the preservability of the amount of GSH and GSSG of the extracellular body by the presence or absence of addition of lactic acid. 乳酸添加による菌体内GSH量とその保存性の相違を示す説明図である。It is explanatory drawing which shows the difference in the intracellular GSH amount by the addition of lactic acid, and its preservation.

本発明の還元型グルタチオン高含有乳酸菌培養物は、シスチン含有乳培地におけるストレプトコッカス属還元型グルタチオン産生細菌培養物の酸添加によるpH調整物である。酸添加によって、菌体内で蓄積された還元型グルタチオン(GSH)が菌体外に移行することを阻害するため、高い菌体内GSH量を維持することができる。 The lactic acid bacterium culture containing reduced glutathione at a high content of the present invention is a pH-adjusted product obtained by adding an acid to a reduced glutathione-producing bacterial culture of Streptococcus in a cystine-containing milk medium. The addition of acid inhibits the transfer of reduced glutathione (GSH) accumulated in the bacterial cells to the outside of the bacterial cells, so that a high intracellular GSH amount can be maintained.

本発明のストレプトコッカス属還元型グルタチオン産生細菌としては、還元型グルタチオン産生能を有するストレプトコッカス属細菌であれば特に限定されるものではないが、例えば、ストレプトコッカス・サーモフィルス(Streptococcus thermophlus)、ストレプトコッカス・アガラクティア(Streptococcus agalactiae)等のストレプトコッカス属細菌が挙げられ、これらは、1種単独で用いることもできるし、2種以上を組み合わせて用いることもできる。 The Streptococcus genus reduced glutathione-producing bacterium of the present invention is not particularly limited as long as it is a Streptococcus genus bacterium having reduced glutathione-producing ability, for example, Streptococcus thermophlus (Streptococcus thermophlus), Streptococcus agalactiae ( Streptococcus agalactiae) and other bacteria belonging to the genus Streptococcus can be used, and these can be used alone or in combination of two or more.

これらの中でも、特にストレプトコッカス・サーモフィルスが好ましい。ストレプトコッカス・サーモフィルスとしては、ストレプトコッカス・サーモフィルスYIT 2001、ストレプトコッカス・サーモフィルスATCC 19258等を用いることができるが、これらの中でも還元型グルタチオン含量が高くなるため、ストレプトコッカス・サーモフィルスYIT 2001(FERM BP-7538、寄託日:平成13年(2001年)1月31日)が好適に用いられる。 Among these, Streptococcus thermophilus is particularly preferable. As Streptococcus thermophilus, Streptococcus thermophilus YIT 2001, Streptococcus thermophilus ATCC 19258 and the like can be used, but among these, the reduced glutathione content is high, so Streptococcus thermophilus YIT 2001 (FERM BP- 7538, deposit date: January 31, 2001) is preferably used.

ストレプトコッカス属還元型グルタチオン産生細菌は単独又は複数の同属の細菌で培養されてもよいが、製品化に際して他の属の乳酸菌と混合培養して還元型グルタチオン産生以外の好ましい性能を製品に持たせてもよい。例えば、ストレプトコッカス属細菌、ラクトコッカス属細菌、ラクトバチルス属微生物等が挙げられる。特に、ラクトバチルス・カゼイ(Lactobacillus casei)YIT9029(FERM BP-1366、寄託日:昭和62年(1987年)5月18日)をストレプトコッカス属還元型グルタチオン産生細菌と共に混合培養することにより、良好なヨーグルト飲料を得ることができて好ましい。 Streptococcus genus reduced glutathione-producing bacteria may be cultivated with a single or a plurality of bacteria of the same genus, but when commercialized, mixed culture with lactic acid bacteria of other genera to give the product a preferable performance other than reduced glutathione production. Good. Examples thereof include Streptococcus bacteria, Lactococcus bacteria, Lactobacillus microorganisms, and the like. Particularly, good yogurt can be obtained by co-culturing Lactobacillus casei YIT9029 (FERM BP-1366, deposit date: May 18, 1987) with Streptococcus genus reduced glutathione-producing bacteria. It is preferable that a beverage can be obtained.

還元型グルタチオン産生乳酸菌を培養する際には、培養した発酵物の食品への適応性が高いという点で乳培地が好適に用いられる。この乳培地としては、牛乳、山羊乳、羊乳、豆乳などの動物及び植物由来の液状乳、または脱脂粉乳、全粉乳などの粉乳、濃縮乳から還元した乳などをそのまま或いは水で希釈したものを用いることができる。 When culturing a reduced glutathione-producing lactic acid bacterium, a milk medium is preferably used because the fermented material that has been cultured is highly adaptable to foods. As this milk medium, liquid milk derived from animals and plants such as milk, goat milk, sheep milk, soy milk, skim milk powder, milk powder such as whole milk powder, milk reduced from concentrated milk, etc., or diluted with water Can be used.

本発明の乳培地には、還元型グルタチオンを産生させるために、シスチンを添加する。本発明で用いられるシスチンには、L−シスチン、D−シスチン及びこれらの混合物が含まれるが、L−シスチンが好ましく用いられる。乳培地中のシスチンの添加量は、通常0.001〜0.01%(w/w)、好ましくは0.001〜0.006%(w/w)である。 Cysteine is added to the milk medium of the present invention in order to produce reduced glutathione. The cystine used in the present invention includes L-cystine, D-cystine and a mixture thereof, and L-cystine is preferably used. The amount of cystine added to the milk medium is usually 0.001 to 0.01% (w/w), preferably 0.001 to 0.006% (w/w).

また、乳培地の無脂乳固形分(SNF)は、高濃度(20%(w/w) 以上、または20%〜25%(w/w) )に含まれると、乳酸菌培養物の保存中に、菌体内還元型グルタチオン(GSH)が菌体外に放出されて酸化型グルタチオン(GSSG)に変化し、有効量の菌体内GSH量を維持することができないという新たな問題が発生した。尚、この状態で単に培養をやめて10℃の冷蔵庫で保存しても、菌体外へのGSHの放出をとめることができず、やはり菌体内GSH量を維持することができなかった。 In addition, non-fat milk solids (SNF) in the milk medium is contained in a high concentration (20% (w/w) or more, or 20% to 25% (w/w)) during storage of the lactic acid bacterium culture. In addition, intracellular reduced glutathione (GSH) was released outside the cells and changed to oxidized glutathione (GSSG), which caused a new problem that an effective amount of intracellular GSH could not be maintained. Even if the culture was simply stopped in this state and stored in a refrigerator at 10° C., the release of GSH outside the bacterial cells could not be stopped and the intracellular GSH amount could not be maintained.

また、還元型グルタチオン産生細菌と他の細菌との混合培養においても、高い無脂乳固形分(SNF)を含む乳培地であれば、同様に菌体内で蓄積された還元型グルタチオン(GSH)が菌体外に放出されて酸化型グルタチオン(GSSG)に変化することが確認された。 Further, even in mixed culture of reduced glutathione-producing bacteria and other bacteria, reduced glutathione (GSH) accumulated in the cells is similarly produced in a milk medium containing high nonfat milk solids (SNF). It was confirmed that it was released outside the cells and changed to oxidized glutathione (GSSG).

本発明の培養物に酸を添加してpHを調整したpH調整物では、無脂乳固形分(SNF)が20%(w/w) 以上でも、乳酸菌培養物の保存中に、菌体内で蓄積された還元型グルタチオンが菌体外に放出され難く、菌体内で蓄積された還元型グルタチオン(GSH)が菌体外に移行することを阻害するため、高い菌体内GSHを維持することができる。具体的には、菌体内GSH量として、2000ng/mL以上であり、好ましくは2500ng/mL以上であり、より好ましくは3000ng/mL以上である。また、菌体内GSH、菌体内GSSG、菌体外GSH、菌体外GSSGの総量に対する菌体内GSHの割合は、30%以上であり、好ましくは40%以上であり、より好ましくは55%以上である。さらに、菌体内GSH、菌体内GSSG、菌体外GSH、菌体外GSSGの総量に対する菌体外GSH量の割合は、40%以下であり、好ましくは30%以下であり、より好ましくは20%以下である。 In the pH-adjusted product obtained by adding an acid to the culture of the present invention to adjust the pH, even if the non-fat milk solid content (SNF) is 20% (w/w) or more, the lactic acid bacteria culture is stored in the cells during storage. Accumulated reduced glutathione is difficult to be released to the outside of the bacterial cell, and it inhibits transfer of reduced glutathione (GSH) accumulated in the bacterial cell to the outside of the bacterial cell, so that high intracellular GSH can be maintained. .. Specifically, the intracellular GSH amount is 2000 ng/mL or more, preferably 2500 ng/mL or more, and more preferably 3000 ng/mL or more. Further, the ratio of intracellular GSH to the total amount of intracellular GSH, intracellular GSSG, extracellular GSH, and extracellular GSSG is 30% or more, preferably 40% or more, and more preferably 55% or more. is there. Furthermore, the ratio of the extracellular GSH amount to the total amount of the intracellular GSH, the intracellular GSSG, the extracellular GSH, and the extracellular GSSG is 40% or less, preferably 30% or less, and more preferably 20%. It is the following.

尚、酸の添加によって培地のpHが急激に酸性側へ移行するが、好ましいpH調整物としては、通常24時間後に到達するであろうpHまで調整すればよい。具体的には、pH4.1〜4.5に調整されるものであればよい。また、中和滴定法による乳酸酸度が19.0±2.0となるように酸を添加すればよい。 Although the pH of the medium rapidly shifts to the acidic side by the addition of acid, a preferable pH-adjusted product may be adjusted to a pH that would normally be reached after 24 hours. Specifically, the pH may be adjusted to 4.1 to 4.5. Further, the acid may be added so that the lactic acid acidity according to the neutralization titration method becomes 19.0±2.0.

pH調整を行う酸については、ストレプトコッカス属還元型グルタチオン産生細菌の菌体内で蓄積された還元型グルタチオンが菌体外に放出されることを防ぐために、酸性とするために添加されるものであればよい。酸については、種々の酸を添加することが可能であるが、有機酸が食品の添加物として多く認められるため好ましく、乳酸が還元型グルタチオン産生細菌自体が産生する酸と同じものであるため、より好ましい。 Regarding the acid for pH adjustment, in order to prevent the reduced glutathione accumulated in the cells of Streptococcus reduced glutathione-producing bacteria from being released to the outside of the cells, it is added to make it acidic. Good. Regarding the acid, it is possible to add various acids, but organic acids are preferable because many are recognized as additives in foods, and lactic acid is the same as the acid produced by the reduced glutathione-producing bacteria itself, More preferable.

本発明のpH調整については、ストレプトコッカス属還元型グルタチオン産生細菌が菌体内に充分に還元型グルタチオンが蓄積され、尚且つ、蓄積された還元型グルタチオンが菌体外へ移行する前に行われるのが最適である。多くの場合、還元型グルタチオン産生細菌の菌体内に還元型グルタチオンが充分に蓄積されるのは、ほぼピーク時、即ち、増殖曲線が対数期から静止期に至る前である。 Regarding the pH adjustment of the present invention, streptococcus reduced glutathione-producing bacteria are sufficiently reduced glutathione accumulated in the cells, and yet, the accumulated reduced glutathione is carried out before the extracellular transfer. Optimal. In many cases, the reduced glutathione is sufficiently accumulated in the cells of the reduced glutathione-producing bacterium at about the peak, that is, before the growth curve reaches the logarithmic phase to the stationary phase.

より詳しくは、ストレプトコッカス属還元型グルタチオン産生細菌をシスチン含有乳培地で12〜20時間培養し、増殖曲線が対数期から静止期に至る前に、培養された培養物に酸を添加してpHを調整するものである。 More specifically, Streptococcus reduced glutathione-producing bacteria are cultured in a cystine-containing milk medium for 12 to 20 hours, and an acid is added to the cultured culture to adjust the pH before the growth curve reaches from the logarithmic phase to the stationary phase. To adjust.

尚、酸を用いて急激にpHを下げたpH調整物については、風味確認を不特定多数の人間が行った結果、培養12時間で乳酸を添加して急激にpHを下げたものは、培養24時間のものに比べて後味がよく、さっぱり感があり、乳酸添加による急激なpH調整については、風味を悪化させるものではないことが判っている。 As for the pH-adjusted product whose pH was drastically lowered using acid, as a result of unspecified large number of people who confirmed the flavor, those whose pH was drastically lowered by adding lactic acid within 12 hours of culture were It has been found that it has a good aftertaste and a refreshing feeling as compared with the one for 24 hours, and the rapid pH adjustment by the addition of lactic acid does not deteriorate the flavor.

本発明のpH調整には、菌体内で蓄積された還元型グルタチオンが菌体外へ放出するのを阻害するが、この還元型グルタチオンの菌体外への放出は、冷蔵状態での保存で、酸の添加後7日間も阻害し続け菌体内への還元型グルタチオンの蓄積を充分に維持させることができる。 The pH adjustment of the present invention inhibits the release of reduced glutathione accumulated outside the cells outside the cells, but the release of the reduced glutathione outside the cells is stored in a refrigerated state, The inhibition can be continued for 7 days after the addition of the acid, and the accumulation of reduced glutathione in the cells can be sufficiently maintained.

本発明に示された還元型グルタチオン高含有乳酸菌培養物は、菌体内に還元型グルタチオンが蓄積されるため、培養物自体をヨーグルト食品、ヨーグルト飲料等として供したり、培養物自体や菌体を集菌して、これを乾燥することにより、食品やサプリメント剤等として供与してもよい。この場合、保存安定性は培養物自体の液体での保存と比べて遙かに高い利点もある。 The reduced glutathione high-content lactic acid bacterium culture shown in the present invention, since reduced glutathione is accumulated in the bacterial cells, the culture itself can be used as a yogurt food, a yogurt beverage, or the like, or the culture itself or the bacterial cells can be collected. It may be provided as a food, a supplement agent or the like by sterilizing it and drying it. In this case, the storage stability is also much higher than the storage of the culture itself in a liquid.

図1はストレプトコッカス属細菌(ST−1)単菌発酵乳と、ラクトバチルス属細菌(LcS)との混合培養発酵乳との菌体内GSH量の変化を示す線図である。図2は菌体内外GSH量及びGSSG量の推移を示す説明図である。図3は乳酸添加の有無による菌体内外GSH量及びGSSG量の保存性の相違を示す説明図である。図4は乳酸添加による菌体内GSH量とその保存性の相違を示す説明図である。 FIG. 1 is a diagram showing changes in the intracellular GSH amount between Streptococcus bacterium (ST-1) single bacterium fermented milk and mixed culture fermented milk of Lactobacillus bacterium (LcS). FIG. 2 is an explanatory diagram showing changes in the amount of GSH inside and outside the cells and the amount of GSSG. FIG. 3 is an explanatory diagram showing the difference in the preservability of the intracellular and extracellular GSH amount and GSSG amount depending on the presence or absence of lactic acid addition. FIG. 4 is an explanatory diagram showing the difference between the intracellular GSH amount and the preservability due to the addition of lactic acid.

実施例1
先ず、SNF濃度が高いと乳酸菌発酵物中の菌体内グルタチオン量がSNF濃度の低いものと比べて少なくなることを検証した。具体的には、本実施例1では、供試菌株として、ストレプトコッカス・サーモフィルスYIT2001(以下、「ST−1」とも記す)及びラクトバチルス・カゼイYIT9029(以下、「LcS」とも記す)を用いた。ST−1のみ又は両菌の凍結保存菌液を10%(w/w)脱脂粉乳水溶液(ST−1は0.01%(v/v)、LcSは0.5%(v/v))に接種し、37℃で22時間前培養した。
Example 1
First, it was verified that when the SNF concentration was high, the amount of intracellular glutathione in the fermented product of lactic acid bacteria was smaller than that when the SNF concentration was low. Specifically, in this Example 1, Streptococcus thermophilus YIT2001 (hereinafter also referred to as "ST-1") and Lactobacillus casei YIT9029 (hereinafter also referred to as "LcS") were used as the test strains. .. Inoculate 10% (w/w) non-fat dry milk aqueous solution (0.01% (v/v) for ST-1 and 0.5% (v/v) for LcS) with cryopreserved bacterial solution of only ST-1 or both bacteria, The cells were precultured at 37°C for 22 hours.

先ず、これら単菌と両菌との2種の前培養液25mLを、L-シスチン濃度を変えて添加した乳培地(無脂乳固形分(SNF)16%(w/w)及び22.7%(w/w)、L-シスチン0〜0.006%)10Lに接種し、34.5±0.5℃でpHが4.4未満に到達するまで撹拌培養を行って各々の乳酸菌発酵物を得た。乳酸菌発酵物中の菌体内の還元型グルタチオン含量を測定した。結果を次の表1に示す。表1からSNFが20%以上の場合、菌体内還元型グルタチオン量はSNFが16%の場合に比べ、低いことが判明した。 First, a milk culture medium (non-fat milk solid content (SNF) 16% (w/w) and 22.7% ( w/w), L-cystine 0-0.006%) 10 L, and culturing with stirring at 34.5±0.5° C. until the pH reached less than 4.4 was obtained to obtain each fermented lactic acid bacterium. The content of reduced glutathione in the cells of the lactic acid bacterium fermentation product was measured. The results are shown in Table 1 below. From Table 1, it was found that when the SNF was 20% or more, the amount of intracellular reduced glutathione was lower than when the SNF was 16%.

尚、菌体内の還元型グルタチオンの測定法としては、次の通りに行った。先ず、検体1mLを10mMエチレンジアミン四酢酸(EDTA)9mLで希釈した。この溶液600μLを遠心分離(20,000g、4℃、10min)した後、上清を除去し菌体を回収した。これにφ0.1mmガラスビーズ(1,000mg)とホウ酸緩衝液(2mM EDTA、100mMホウ酸緩衝液、pH8.0) 800μLを加え、振とう(6.5/ms、60s)して菌体を破砕後、遠心分離(20,000g、4℃、10min)して上清を回収した。 The method for measuring reduced glutathione in the cells was performed as follows. First, 1 mL of the sample was diluted with 9 mL of 10 mM ethylenediaminetetraacetic acid (EDTA). After centrifuging 600 μL of this solution (20,000 g, 4° C., 10 min), the supernatant was removed to collect bacterial cells. Φ0.1 mm glass beads (1,000 mg) and borate buffer solution (2 mM EDTA, 100 mM borate buffer solution, pH 8.0) 800 μL were added, and the cells were shaken (6.5/ms, 60 s) to disrupt the cells. The supernatant was recovered by centrifugation (20,000 g, 4° C., 10 min).

この上清200μLに1mM 4-(アミノスルホニル)-7-フルオロ-2,1,3-ベンゾオキサジアゾール(ABD-F)添加100mM ホウ酸緩衝液(pH8.0)300μLを添加し、60℃で15分間誘導体化反応を行った。10分間氷冷後、 0.1N 塩酸を200μL添加し、孔径0.45μmのフィルターで遠心ろ過(10,000g、4℃、2min)したものを、HPLC/蛍光検出法で分析、定量した。 To 200 μL of this supernatant, 300 μL of 100 mM borate buffer (pH 8.0) containing 1 mM 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F) was added, and the temperature was adjusted to 60°C. The derivatization reaction was carried out for 15 minutes. After ice-cooling for 10 minutes, 200 μL of 0.1N hydrochloric acid was added, and centrifugal filtration (10,000 g, 4° C., 2 min) with a filter having a pore size of 0.45 μm was analyzed and quantified by HPLC/fluorescence detection method.

Figure 2020120630
Figure 2020120630

次に、菌体内GSH量の培養時間に対する変化を検証した結果を図1に示す。即ち、ST−1単菌及びST−1とLcSとの混合菌を用いて、L-シスチンを0.002%添加した乳培地(無脂乳固形分(SNF) 16%(w/w)及び22.7%(w/w))10Lに接種し、撹拌培養を行い乳酸菌発酵物を経時的に摂取して、乳酸菌発酵物中の菌体内の還元型グルタチオン含量を測定した。図1に示す通り、菌体内GSH量は、培養12時間をピークにして徐々に低下していることが判った。 Next, FIG. 1 shows the results of verifying changes in the intracellular GSH amount with respect to the culture time. That is, using a ST-1 single bacterium and a mixed bacterium of ST-1 and LcS, L-cystine was added to 0.002% in a milk medium (non-fat milk solids (SNF) 16% (w/w) and 22.7%. (w/w)) 10 L was inoculated, stirred and cultured, and the fermented product of lactic acid bacteria was ingested with time, and the content of reduced glutathione in the cells of the fermented product of lactic acid bacteria was measured. As shown in FIG. 1, it was found that the intracellular GSH amount peaked at 12 hours of culture and gradually decreased.

実施例2
本実施例では、グルタチオンの経時変化を示す。具体的には、供試菌株として、実施例1と同様に、ST−1単菌及びST−1とLcSとの混合菌を用いた。ST−1のみ又は両菌の凍結保存菌液を10%(w/w)脱脂粉乳水溶液に(ST−1は0.01%(v/v)、LcSは0.5%(v/v))接種し、37℃で24時間前培養した。
Example 2
In this example, the time course of glutathione is shown. Specifically, as test strains, as in Example 1, ST-1 single bacteria and mixed bacteria of ST-1 and LcS were used. ST-1 alone or a cryopreserved bacterial solution of both bacteria was inoculated into a 10% (w/w) non-fat dry milk solution (0.01% (v/v) for ST-1 and 0.5% (v/v) for LcS), It precultured at 37 degreeC for 24 hours.

得られた前培養液5mLを、3Lジャーファーメンター中の、L-シスチンを濃度0.002%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w)) 2LにST−1単菌又はST−1とLcSとの混合菌を接種し、34℃で26時間撹拌培養して乳酸菌発酵物を得た。 5 mL of the obtained preculture liquid was added to L-cystine in a 3 L jar fermenter at a concentration of 0.002% (w/w) in a milk medium (non-fat milk solids (SNF) 22.7% (w/w)). w)) 2 L was inoculated with ST-1 single bacterium or a mixed bacterium of ST-1 and LcS, and cultured with stirring at 34° C. for 26 hours to obtain a fermented lactic acid bacterium.

これら各乳酸菌発酵物は培養6時間目より2時間おきに回収し、菌体内外の還元型・酸化型グルタチオン量を測定した。結果を図2及び表2に示す。 Each of these fermented lactic acid bacteria was recovered every 2 hours from the 6th hour of culture, and the amount of reduced/oxidized glutathione inside and outside the cells was measured. The results are shown in FIG. 2 and Table 2.

Figure 2020120630
Figure 2020120630

尚、菌体内の還元型及び酸化型グルタチオンの測定方法は、次の通りである。即ち、検体lmLを10mM エチレンジアミン四酢酸(EDTA)9mLで希釈した。この溶液600μLを遠心分離(20,000g、4℃、10min)した後、上清を除去し菌体を回収した。これにφ0.lmmガラスビーズ(1,000mg)と2mM EDTA添加100mM ホウ酸緩衝液(pH8.0)800μLを加え、FastPrep-24(MP Biomedicals)で振とう(6.5/ms、60s)して菌体を破砕後、遠心分離(20,000g、4℃、10min)して上清を回収した。 The method for measuring reduced and oxidized glutathione in the cells is as follows. That is, 1 mL of the sample was diluted with 9 mL of 10 mM ethylenediaminetetraacetic acid (EDTA). After centrifuging 600 μL of this solution (20,000 g, 4° C., 10 min), the supernatant was removed to collect bacterial cells. To this, add 800 μL of φ0.1 mm glass beads (1,000 mg) and 2 mM EDTA-added 100 mM borate buffer (pH 8.0), and shake (6.5/ms, 60 s) with FastPrep-24 (MP Biomedicals) to microbial cells. After crushing, the mixture was centrifuged (20,000 g, 4° C., 10 min) and the supernatant was collected.

上清200μLに精製水または還元剤(5mM TCEP、ナカライテスク)10μLを添加し、これに2mM EDTA添加100mMホウ酸緩衝液(pH8.0)290μLとlmM 4-(アミノスルホニル)-7-フルオロ-2,1,3-ベンゾオキサジアゾール(ABD-F)添加100mMホウ酸緩衝液(pH8.0)300μLを添加し、60℃で15分間誘導体化反応を行った。10分間氷冷後、0.1N塩酸を200μL添加し、孔径0.45μmのフィルターで遠心ろ過(10,000g、4℃、2min)したものを、HPLC/蛍光検出法で分析、定量した。 Purified water or reducing agent (5 mM TCEP, Nacalai Tesque) 10 μL was added to 200 μL of the supernatant, and 2 mM EDTA added 100 mM borate buffer (pH 8.0) 290 μL and lmM 4-(aminosulfonyl)-7-fluoro- 300 μL of 100 mM borate buffer (pH 8.0) containing 2,1,3-benzoxadiazole (ABD-F) was added, and a derivatization reaction was performed at 60° C. for 15 minutes. After ice-cooling for 10 minutes, 200 μL of 0.1N hydrochloric acid was added, and centrifugal filtration (10,000 g, 4° C., 2 min) with a filter having a pore size of 0.45 μm was analyzed and quantified by HPLC/fluorescence detection method.

また、菌体外の還元型及び酸化型グルタチオンの測定方法は、次の通りである。即ち、検体1mLを10mMエチレンジアミン四酢酸(EDTA)9mLで希釈した溶液600μLを遠心分離(20,000g、4℃、10min)した後、上清を回収した。上清200μLに精製水または還元剤(5mM TCEP、ナカライテスク)10μLを添加し、これに0.5mM 4-(アミノスルホニル)-7-フルオロ-2,1,3-ベンゾオキサジアゾール(ABD-F)添加400mMホウ酸緩衝液(pH8.0)590μLを添加し、60℃で20分間誘導体化反応を行った。15分間氷冷後、0.4N塩酸200μLを添加したものをHPLC/蛍光検出法で分析、定量した。 The method for measuring reduced and oxidized glutathione outside the cells is as follows. That is, 600 μL of a solution prepared by diluting 1 mL of a sample with 9 mL of 10 mM ethylenediaminetetraacetic acid (EDTA) was centrifuged (20,000 g, 4° C., 10 min), and then the supernatant was recovered. Purified water or reducing agent (5 mM TCEP, Nacalai Tesque) 10 μL was added to 200 μL of the supernatant, and 0.5 mM 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F) was added to this. ) Addition 590 μL of 400 mM borate buffer (pH 8.0) was added, and a derivatization reaction was performed at 60° C. for 20 minutes. After ice-cooling for 15 minutes, 200 μL of 0.4N hydrochloric acid was added, and the mixture was analyzed and quantified by HPLC/fluorescence detection method.

図2及び表2に示す通り、培養時間毎の菌体内GSH量の推移については、18時間までの菌体内GSH量が多くなってはいるが、それ以降は、菌体内GSHの量が減少することが判った。 As shown in FIG. 2 and Table 2, with respect to the change in the intracellular GSH amount for each culture time, the intracellular GSH amount increased until 18 hours, but after that, the intracellular GSH amount decreased. I knew that.

実施例3
本実施例では、培養時間の短縮により菌体内GSH高含有な菌液が得られること、及び乳酸の培養後添加によりそれを高く維持できることを示す。具体的には、供試菌株として、ST−1とLcSとの混合菌を用いた。10%(w/w)脱脂粉乳水溶液に、ST−1を0.01%(v/v)及びLcSを0.5%(v/v)接種し、37℃で24時間前培養した。
Example 3
In this example, it is shown that a shortened culturing time can provide a bacterial solution having a high content of intracellular GSH, and that it can be maintained at a high level by adding lactic acid after culturing. Specifically, a mixed bacterium of ST-1 and LcS was used as the test strain. 0.01% (v/v) of ST-1 and 0.5% (v/v) of LcS were inoculated into a 10% (w/w) skim milk powder aqueous solution, and precultured at 37° C. for 24 hours.

得られた前培養液0.25mLを、300mLコルベン中へ、L-シスチンを濃度0.002%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w))100mLに接種し、34℃で12時間静置培養して乳酸菌発酵物を得た。培養終了後に乳酸をpH4.3±0.1となるよう添加し、4℃で最大7日間保存した。保存前後の乳酸菌発酵物について、菌体内の還元型グルタチオン量を実施例1と同様の方法により測定し、保存後の残存率を算出した。 0.25 mL of the obtained preculture liquid was added to 300 mL Kolben so that L-cystine was added at a concentration of 0.002% (w/w) in a milk medium (non-fat milk solids (SNF) 22.7% (w/w). )) 100 mL was inoculated and statically cultured at 34° C. for 12 hours to obtain a fermented lactic acid bacterium. After the culture was completed, lactic acid was added to adjust the pH to 4.3±0.1 and stored at 4° C. for up to 7 days. The amount of reduced glutathione in the cells of the fermented lactic acid bacterium before and after storage was measured by the same method as in Example 1, and the residual rate after storage was calculated.

Figure 2020120630
Figure 2020120630

乳酸菌発酵物中のLcSの生菌数をセファロチン添加BCP培地(最終濃度2μg/mL)培地で測定した。ST−1の生菌数は、ST−1・LcSの総生菌数からLcSの生菌数を差し引いて算出した。結果を表3に示す。表3に示す通り、乳酸を添加したものが菌体内還元型グルタチオン量の残存率が乳酸を添加しなかったものよりも圧倒的に大きかった。 The number of viable LcS bacteria in the fermented lactic acid bacterium was measured in a cephalothin-added BCP medium (final concentration 2 μg/mL). The viable cell count of ST-1 was calculated by subtracting the viable cell count of LcS from the total viable cell count of ST-1·LcS. The results are shown in Table 3. As shown in Table 3, the residual ratio of intracellular reduced glutathione amount in the case of adding lactic acid was overwhelmingly higher than that in the case of not adding lactic acid.

実施例4
本実施例では、乳酸添加の有無によるグルタチオンの経時変化を示す。具体的には、実施例1と同様に、ST−1単菌及びST−1とLcSとの混合菌を用いた。ST−1のみ又は両菌の凍結保存菌液を10%(w/w)脱脂粉乳水溶液に(ST−1は0.01%(v/v)、LcSは0.5%(v/v))接種し、37℃で24時間前培養した。
Example 4
In this example, changes over time of glutathione with and without the addition of lactic acid are shown. Specifically, as in Example 1, a single ST-1 bacterium and a mixed bacterium of ST-1 and LcS were used. ST-1 alone or a cryopreserved bacterial solution of both bacteria was inoculated into a 10% (w/w) non-fat dry milk solution (0.01% (v/v) for ST-1 and 0.5% (v/v) for LcS), It precultured at 37 degreeC for 24 hours.

得られた前培養液0.25mLを、300mLコルベン中へ、L-シスチンを濃度0.002%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w))100mLに接種し、34℃で12時間静置培養して乳酸菌発酵物を得た。得られた乳酸菌発酵物の1つをサンプリングして、10℃で保存した。サンプリング時、保存2日、保存7日目の菌体内外の還元型・酸化型グルタチオン量を実施例2と同様に測定した。 0.25 mL of the obtained preculture liquid was added to 300 mL Kolben so that L-cystine was added at a concentration of 0.002% (w/w) in a milk medium (non-fat milk solids (SNF) 22.7% (w/w). )) 100 mL was inoculated and statically cultured at 34° C. for 12 hours to obtain a fermented lactic acid bacterium. One of the obtained fermentation products of lactic acid bacteria was sampled and stored at 10°C. At the time of sampling, the amount of reduced/oxidized glutathione inside and outside the cells on the 2nd day of storage and the 7th day of storage was measured in the same manner as in Example 2.

また、他の乳酸発酵物は、培養終了後に乳酸をpH4.3±0.1となるよう添加した後に、サンプリングして、1つ目と同様に10℃で保存した。サンプリング時、保存2日目、保存7日目の菌体内外の還元型・酸化型グルタチオン量を実施例2と同様に測定した。結果を図3に示す。 Further, other lactic acid fermentation products were prepared by adding lactic acid to pH 4.3±0.1 after completion of the culture, sampling and storing at 10° C. as in the case of the first sample. At the time of sampling, the amount of reduced/oxidized glutathione inside and outside the cells on the second and seventh storage days was measured in the same manner as in Example 2. Results are shown in FIG.

図3に示す通り、乳酸を添加して急激にpHを低減させたものでは、保存2日目、保存7日目共に菌体内の還元型グルタチオン量が乳酸を添加していないものと比べて圧倒的に保存されていることが示された。また、10℃保存7日目において、乳酸無添加の場合、菌体内GSH、菌体内GSSG、菌体外GSH、菌体外GSSGの総量に対する菌体内GSHの割合は20.2%であり、菌体外GSHの割合は48.1%であった。一方、10℃保存7日目において、乳酸添加の場合、菌体内GSH、菌体内GSSG、菌体外GSH、菌体外GSSGの総量に対する菌体内GSHの割合は60.6%であり、菌体外GSHの割合は13.6%であり、両者に顕著な相違が見られた。 As shown in Fig. 3, when the pH was rapidly reduced by adding lactic acid, the amount of reduced glutathione in the cells was overwhelming on both the 2nd day of storage and the 7th day of storage compared to the case where lactic acid was not added. It was shown that it was preserved. In addition, on the 7th day of storage at 10° C., when lactic acid was not added, the ratio of intracellular GSH to the total amount of intracellular GSH, intracellular GSSG, extracellular GSH, and extracellular GSSG was 20.2%. The ratio of in vitro GSH was 48.1%. On the other hand, on the 7th day of storage at 10° C., when lactic acid was added, the ratio of intracellular GSH to the total amount of intracellular GSH, intracellular GSSG, extracellular GSH, and extracellular GSSG was 60.6%. The ratio of outer GSH was 13.6%, showing a significant difference between the two.

実施例5
本実施例では、乳酸以外の酸にも菌体内GSHの維持効果があることを示す。具体的には、供試菌株として、ST−1を用いた。10%(w/w)脱脂粉乳水溶液にそれぞれ0.Ol%(v/v)接種し、37℃で24時間前培養した。この前培養液0.25mLを、300mLコルベン中の、L-シスチンを濃度0.004%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w))100mLに接種し、34℃で12時間静置培養して乳酸菌発酵物を得た。
Example 5
In this example, it is shown that acids other than lactic acid also have an effect of maintaining intracellular GSH. Specifically, ST-1 was used as the test strain. A 10% (w/w) skim milk powder aqueous solution was inoculated with 0.01% (v/v) of each, and precultured at 37° C. for 24 hours. 0.25 mL of this preculture liquid was added to L-cystine in 300 mL Kolben at a concentration of 0.004% (w/w) in a milk medium (non-fat milk solids (SNF) 22.7% (w/w)). 100 mL was inoculated and statically cultured at 34° C. for 12 hours to obtain a lactic acid bacterium fermented product.

培養終了後に無機酸(塩酸、リン酸)もしくは有機酸(乳酸、クエン酸、コハク酸)を添加し、10℃で最大7日間保存した。保存前後の乳酸菌発酵物について、菌体内の還元型グルタチオン(GSH)量を実施例1と同様の方法により測定し、保存後の残存率を算出した。結果を表4に示す。表4の結果から、無機酸よりも、有機酸の方が酸を添加することにより、菌体内還元型グルタチオンの残存率が高くなることが判明した。また、特に乳酸を添加した場合に効果が高いことが判明した。 After completion of the culture, an inorganic acid (hydrochloric acid, phosphoric acid) or an organic acid (lactic acid, citric acid, succinic acid) was added, and the mixture was stored at 10°C for up to 7 days. The amount of reduced glutathione (GSH) in the cells of the fermented lactic acid bacterium before and after storage was measured by the same method as in Example 1, and the residual rate after storage was calculated. The results are shown in Table 4. From the results of Table 4, it was found that the organic acid has a higher residual ratio of intracellular reduced glutathione by adding the acid than the inorganic acid. It was also found that the effect is particularly high when lactic acid is added.

Figure 2020120630
Figure 2020120630

実施例6
本実施例では、培養を18時間行った乳酸菌発酵物及びそれを用いて得た発酵乳製品が乳酸の後添加により菌体内GSH高含有かつ高保存性となることを示す。具体的には、供試菌株として、ST−1及びLcSを用いた。
Example 6
In this Example, it is shown that the fermented product of lactic acid bacterium that has been cultured for 18 hours and the fermented milk product obtained by using the lactic acid bacterium have a high GSH content in cells and a high storage stability by post-addition of lactic acid. Specifically, ST-1 and LcS were used as the test strains.

両菌の凍結保存菌液を10%(w/w)脱脂粉乳水溶液に(ST−1は0.01%(v/v)、LcSは0.5%(v/v))接種し、37℃で21時間前培養した。この前培養液25mLを、L-シスチンを添加した乳培地(無脂乳固形分(SNF)22.7%(w/w)、L-シスチン0.004%)10Lに接種し、34℃で18時間撹拌培養を行った後、乳酸をpH4.3±0.1となるよう添加し乳酸菌発酵物を得た。 Cryopreserved bacterial liquor of both bacteria was inoculated into 10% (w/w) non-fat dry milk solution (0.01% (v/v) for ST-1 and 0.5% (v/v) for LcS) and incubated at 37°C for 21 hours. Precultured. 25 mL of this preculture liquid was inoculated into 10 L of a milk medium (non-fat milk solids (SNF) 22.7% (w/w), L-cystine 0.004%) supplemented with L-cystine, and cultured with stirring at 34°C for 18 hours. After that, lactic acid was added to pH 4.3±0.1 to obtain a fermented lactic acid bacterium.

また、当該乳酸菌発酵物 530gを均質化後、シロップ(ファインリカー(FL):製品あたり7.36%(w/w)、乳酸カルシウム:製品あたり0.055%(w/w)、クリーム:製品あたり1.5%(w/w))と混合し、1000gの発酵乳製品を得た。乳酸菌発酵物は5℃で7日間、発酵乳製品は10℃で21日間保存した。 After homogenizing 530 g of the fermented lactic acid bacterium, syrup (fine liquor (FL): 7.36% (w/w) per product, calcium lactate: 0.055% (w/w) per product, cream: 1.5% per product ( w/w)) to obtain 1000 g of fermented milk product. Fermented lactic acid bacteria were stored at 5°C for 7 days, and fermented dairy products were stored at 10°C for 21 days.

保存前後の乳酸菌発酵物と発酵乳製品について、菌体内の還元型グルタチオン量を実施例1と同様の方法により測定し、残存率を算出した。その結果、乳酸を添加することにより、シロップを混合した発酵乳飲料でも菌体内GSH量が残存することが判明した。 With respect to the fermented lactic acid bacteria and the fermented milk product before and after storage, the amount of reduced glutathione in the cells was measured by the same method as in Example 1, and the residual rate was calculated. As a result, it was found that by adding lactic acid, the intracellular GSH amount remained in the fermented milk beverage mixed with syrup.

実施例7
本実施例は、pH調整の時期について検討した。具体的には、実施例4と同様に調整した。即ち、ST−1及びLcSの凍結保存菌液を10%(w/w)脱脂粉乳水溶液に(ST−1は0.01%(v/v)、LcSは0.5%(v/v))接種し、37℃で21時間前培養した。
Example 7
In this example, the timing of pH adjustment was examined. Specifically, the same adjustment as in Example 4 was performed. That is, a cryopreserved bacterial solution of ST-1 and LcS was inoculated into a 10% (w/w) skim milk powder aqueous solution (0.01% (v/v) for ST-1 and 0.5% (v/v) for LcS), It was precultured at 37° C. for 21 hours.

前培養液25mLを、L-シスチンを濃度0.004%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w)) 10Lに接種し、34℃で18時間撹拌培養して乳酸菌発酵物を得た。培養終了後に乳酸をpH4.3±0.1、中和滴定法による乳酸酸度が19.0±2.0となるよう添加した後に、サンプリングして、10℃で7日間保存し、菌体内の還元型・酸化型グルタチオン量を測定した(乳酸後添加)。 25 mL of the preculture liquid was inoculated into 10 L of a milk medium (non-fat milk solid content (SNF) 22.7% (w/w)) containing L-cystine at a concentration of 0.004% (w/w), and the temperature was 34°C. After stirring and culturing for 18 hours, a lactic acid bacterium fermented product was obtained. After culturing, lactic acid was added to pH 4.3±0.1 and the degree of lactic acid by neutralization titration was 19.0±2.0, then sampled and stored at 10℃ for 7 days. The amount was measured (post-lactic acid addition).

比較例として、前培養液を添加する前のL-シスチンを濃度0.004%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w)) 10LのpHを乳酸を添加して6.0に調整した後、ST−1とLcSとの混合菌液25mLを接種し、34℃で32時間(中和滴定法による乳酸酸度が19.0±2.0になるまで)撹拌培養した乳酸菌発酵物(乳酸後添加)と、L-シスチンを濃度0.004%(w/w)となるように添加した乳培地(無脂乳固形分(SNF)22.7%(w/w)) 10Lに、ST−1とLcSとの混合菌液を接種し、34℃で32時間(中和滴定法による乳酸酸度が19.0±2.0になるまで)撹拌培養した乳酸菌発酵物(現行処方)を調製し、培養終了後にサンプリングして、10℃で7日間保存し、菌体内の還元型・酸化型グルタチオン量を測定した。 As a comparative example, 10 L of a milk medium (non-fat milk solids (SNF) 22.7% (w/w)) added with L-cystine at a concentration of 0.004% (w/w) before adding a preculture liquid After adjusting the pH of the mixture to 6.0 by adding lactic acid, inoculate 25 mL of a mixed bacterial solution of ST-1 and LcS, and incubate at 34° C. for 32 hours (lactic acid acidity by neutralization titration becomes 19.0±2.0. Lactic acid bacteria fermented product (after addition of lactic acid) that has been stirred and cultured, and a milk medium (non-fat milk solids (SNF) 22.7% (w/w) added with L-cystine at a concentration of 0.004% (w/w). )) 10 L was inoculated with a mixed bacterial solution of ST-1 and LcS, and stirred and cultured at 34° C. for 32 hours (until the lactic acid acidity by the neutralization titration method was 19.0±2.0), the fermentation product of lactic acid bacteria (current formulation) Was prepared, sampled after completion of the culture, and stored at 10° C. for 7 days, and the amount of reduced/oxidized glutathione in the cells was measured.

結果を図4に示す。図4に示す通り、乳酸の添加によるpH調整は、18時間培養後に行うことが還元型グルタチオンの産生量が多く、また、7日間の保存後も還元型グルタチオンの蓄積量が多いことが確認された。 The results are shown in Fig. 4. As shown in FIG. 4, it was confirmed that the pH adjustment by the addition of lactic acid was performed after 18 hours of culturing, so that the amount of reduced glutathione produced was large and that the amount of accumulated reduced glutathione was large even after storage for 7 days. It was

Claims (7)

シスチン含有乳培地におけるストレプトコッカス属還元型グルタチオン産生細菌の培養物の酸添加によるpH調整物であることを特徴とする還元型グルタチオン高含有乳酸菌培養物。 A lactic acid bacterium culture containing a high amount of reduced glutathione, which is a pH-adjusted product of a culture of a reduced glutathione-producing bacterium belonging to the genus Streptococcus in a cystine-containing milk medium. 前記ストレプトコッカス属還元型グルタチオン産生細菌と、ラクトバチルス属細菌との混合培養物であることを特徴とする請求項1に記載の還元型グルタチオン高含有乳酸菌培養物。 The reduced-glutathione-rich lactic acid bacterium culture according to claim 1, which is a mixed culture of the Streptococcus genus reduced glutathione-producing bacterium and Lactobacillus genus. 前記pH調整物がpH4.1〜4.5に調整されたものであることを特徴とする請求項1又は2に記載の還元型グルタチオン高含有乳酸菌培養物。 The reduced-glutathione-rich lactic acid bacterium culture according to claim 1 or 2, wherein the pH-adjusted product is adjusted to pH 4.1 to 4.5. ストレプトコッカス属還元型グルタチオン産生細菌をシスチン含有乳培地で培養し、増殖曲線が対数期から静止期に至る前に、前記培養された培養物に酸を添加してpHを調整することを特徴とする乳酸菌培養物の製造法。 Streptococcus reduced glutathione-producing bacteria are cultivated in a cystine-containing milk medium, and before the growth curve goes from the logarithmic phase to the stationary phase, an acid is added to the cultivated culture to adjust the pH. A method for producing a lactic acid bacterium culture. 前記シスチン含有乳培地が、20%以上の無脂乳固形分(SNF)を含むものであることを特徴とする請求項4に記載の乳酸菌培養物の製造法。 The method for producing a lactic acid bacterium culture according to claim 4, wherein the cystine-containing milk medium contains 20% or more non-fat milk solids (SNF). 前記ストレプトコッカス属還元型グルタチオン産生細菌とラクトバチルス属細菌とを、前記シスチン含有乳培地で混合培養することを特徴とする請求項4又は5に記載の乳酸菌培養物の製造法。 The method for producing a lactic acid bacterium culture according to claim 4 or 5, wherein the Streptococcus genus reduced glutathione-producing bacterium and the Lactobacillus genus are mixed and cultured in the cystine-containing milk medium. 前記添加する酸が有機酸であることを特徴とする請求項4〜6の何れか1項に記載の乳酸菌培養物の製造法。 The method for producing a lactic acid bacterium culture according to any one of claims 4 to 6, wherein the acid to be added is an organic acid.
JP2019015692A 2019-01-31 2019-01-31 Method for producing lactic acid bacteria culture containing reduced glutathione Active JP7305361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015692A JP7305361B2 (en) 2019-01-31 2019-01-31 Method for producing lactic acid bacteria culture containing reduced glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015692A JP7305361B2 (en) 2019-01-31 2019-01-31 Method for producing lactic acid bacteria culture containing reduced glutathione

Publications (2)

Publication Number Publication Date
JP2020120630A true JP2020120630A (en) 2020-08-13
JP7305361B2 JP7305361B2 (en) 2023-07-10

Family

ID=71991566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015692A Active JP7305361B2 (en) 2019-01-31 2019-01-31 Method for producing lactic acid bacteria culture containing reduced glutathione

Country Status (1)

Country Link
JP (1) JP7305361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820511A (en) * 2022-12-23 2023-03-21 闽榕茶业有限公司 Streptococcus thermophilus for co-production of folic acid and glutathione and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512584A (en) * 2001-12-21 2005-05-12 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ Denatured methionine-rich food and process for producing the same
JP2006197834A (en) * 2005-01-19 2006-08-03 Yakult Honsha Co Ltd Cysteine-enriched fermented dairy food and method for producing the same
JP2013188177A (en) * 2012-03-14 2013-09-26 Yakult Honsha Co Ltd Lactobacillus fermented matter highly containing reduced type glutathione, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512584A (en) * 2001-12-21 2005-05-12 デーエスエム イーペー アセッツ ベスローテン フェンノートシャップ Denatured methionine-rich food and process for producing the same
JP2006197834A (en) * 2005-01-19 2006-08-03 Yakult Honsha Co Ltd Cysteine-enriched fermented dairy food and method for producing the same
JP2013188177A (en) * 2012-03-14 2013-09-26 Yakult Honsha Co Ltd Lactobacillus fermented matter highly containing reduced type glutathione, and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"食品群名/食品名: 乳類/<牛乳及び乳製品>/(粉乳類)/脱脂粉乳", 食品詳細表示, 出典:日本食品標準成分表2020年版(八訂), JPN6022023374, ISSN: 0004967524 *
ANN IG, 2014年, vol. 26, JPN6022023372, pages 205 - 212, ISSN: 0004967522 *
INTERNATIONAL DAIRY JOURNAL, 2015年, vol. 45, JPN6022023373, pages 41 - 47, ISSN: 0004967523 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820511A (en) * 2022-12-23 2023-03-21 闽榕茶业有限公司 Streptococcus thermophilus for co-production of folic acid and glutathione and application thereof
CN115820511B (en) * 2022-12-23 2024-01-02 闽榕茶业有限公司 Streptococcus thermophilus capable of co-producing folic acid and glutathione and application thereof

Also Published As

Publication number Publication date
JP7305361B2 (en) 2023-07-10

Similar Documents

Publication Publication Date Title
RU2751166C2 (en) Method for obtaining a dairy product fermented with lactic acid bacteria and bacillus bacteria, bacterial composition and its application in this method
US9848615B2 (en) Storage stable frozen lactic acid bacteria culture
Tserovska et al. Identification of lactic acid bacteria isolated from katyk, goat’s milk and cheese
JP4862053B2 (en) New lactic acid bacteria
JP4772131B2 (en) Method for producing fermented milk using novel lactic acid bacteria
JP5592048B2 (en) Lactic acid bacteria growth promoter and survival improver
Gilliland Concentrated starter cultures
Williams et al. Factors affecting the activity of enzymes involved in peptide and amino acid catabolism in non-starter lactic acid bacteria isolated from Cheddar cheese
AU2011347349B2 (en) Flavour modulation by bio-processing using cream-flavour forming bacteria strains
KR20150138846A (en) Soy milk fermented substance
JPWO2011027719A1 (en) Lactobacillus lactic acid bacteria growth promoter and / or survival improver
MX2012009975A (en) Method for producing fermented food containing bifidobacterium bacteria.
JP5505909B2 (en) Method for culturing lactic acid bacteria and method for producing fermented milk
JP2020120630A (en) Cultured lactic acid bacteria with high content of reduced glutathione and method of production thereof
CN111295096A (en) Method for producing medium-temperature fermented dairy product
WO2009056979A1 (en) Growth medium for lactic acid bacteria
JP4794592B2 (en) New lactic acid bacteria
JP7053241B2 (en) Fermented milk production method
JP2008017785A (en) METHOD FOR ENRICHING COMMON SALT-CONTAINING FOOD WITH gamma-AMINOBUTYRIC ACID
JP5660629B2 (en) Lactic acid bacteria culture method and fermented milk production method
JP4794593B2 (en) Method for producing fermented milk using novel lactic acid bacteria
JP7269021B2 (en) Lactic acid bacteria culture that does not impair flavor and method for producing the same
RU2316585C2 (en) Method for culturing lactic acid microorganisms in milk
KR20220071353A (en) Methods for preparing yogurt using chlorophyll-deficient chlorella
Teneva et al. Antimicrobial activity of Lactobacillus plantarum strains against pathogens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230421

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R151 Written notification of patent or utility model registration

Ref document number: 7305361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151