JP2020120488A - Method for manufacturing rotary electric machine rotor - Google Patents

Method for manufacturing rotary electric machine rotor Download PDF

Info

Publication number
JP2020120488A
JP2020120488A JP2019009490A JP2019009490A JP2020120488A JP 2020120488 A JP2020120488 A JP 2020120488A JP 2019009490 A JP2019009490 A JP 2019009490A JP 2019009490 A JP2019009490 A JP 2019009490A JP 2020120488 A JP2020120488 A JP 2020120488A
Authority
JP
Japan
Prior art keywords
shaft
press
laminated
laminated core
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019009490A
Other languages
Japanese (ja)
Inventor
健太 武島
Kenta Takeshima
健太 武島
宏 金原
Hiroshi Kanehara
宏 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019009490A priority Critical patent/JP2020120488A/en
Publication of JP2020120488A publication Critical patent/JP2020120488A/en
Pending legal-status Critical Current

Links

Abstract

To suppress deformation of a laminated core when a shaft is press-fitted in a shaft hole of the laminated core and to suppress generation of shortage of tightening force between the shaft and the laminated core and imbalance that a centroid of a rotary electric machine rotor deviates.SOLUTION: There is provided a method for manufacturing a rotary electric machine rotor 10 which comprises: a laminated core 1 constituted of a plurality of laminated electromagnetic steel sheets 11 and formed with a shaft hole 12 penetrating in a lamination direction; and a shaft 2 press-fitted in the shaft hole 12 and provided with a flange 21 with outer diameter larger than an inner diameter of the shaft hole 12. Distance in the lamination direction between the flange 21 and the laminated core 1 is measured during press-fit of the shaft 2 in the shaft hole 12 of the laminated core 1, and the press-fit of the shaft 2 is terminated when the distance reaches a predetermined value.SELECTED DRAWING: Figure 3

Description

本発明は、電磁鋼板を積層した積層鉄心を積層方向に貫通するシャフト穴にシャフトを圧入する回転電機ロータの製造方法に関する。 The present invention relates to a method for manufacturing a rotary electric machine rotor in which a shaft is press-fitted into a shaft hole that penetrates a laminated iron core formed by laminating electromagnetic steel sheets in the laminating direction.

積層鉄心のシャフト穴にシャフトを圧入して組み付ける回転電機ロータが特許文献1で開示されている。 Patent Document 1 discloses a rotary electric machine rotor in which a shaft is press-fitted into a shaft hole of a laminated iron core to be assembled.

特開2015−082862号公報JP, 2005-082862, A

シャフト穴の内径よりも外径が大きい鍔部が設けられたシャフトを積層鉄心のシャフト穴に圧入する際、圧入する長さが長すぎると、シャフトの鍔部が積層鉄心を押して積層鉄心が変形してしまうことがある。また、逆に圧入する長さが不足して鍔部と積層鉄心との間に隙間が空いた状態では、シャフトと積層鉄心との間の締結力が不足したり、シャフトが傾いた状態で積層鉄心に締結されて回転電機ロータの重心が偏るアンバランスが生じたりすることがある。そのため、シャフトを圧入する長さの位置決め精度はマイクロメートル単位の精度が求められる。マイクロメートル単位の精度では積層鉄心の厚さに個体差があるため、シャフトを圧入する長さは個々の積層鉄心の厚さに応じて調整する必要がある。 When press-fitting a shaft with a flange with an outer diameter larger than the inner diameter of the shaft hole into the shaft hole of the laminated iron core, if the press-fitting length is too long, the flange of the shaft pushes the laminated iron core to deform the laminated iron core. I may end up doing it. On the other hand, if the length of press-fitting is insufficient and there is a gap between the flange and the laminated core, the fastening force between the shaft and the laminated core will be insufficient, or the shaft will be tilted when laminated. An imbalance may occur in which the center of gravity of the rotating electrical machine rotor is biased by being fastened to the iron core. Therefore, the positioning accuracy of the length for press-fitting the shaft is required to be in the order of micrometers. Since there is individual difference in the thickness of the laminated core in the accuracy of the micrometer unit, the length of press-fitting the shaft needs to be adjusted according to the thickness of the individual laminated core.

また、シャフトを圧入する圧力を測定してシャフトの鍔部が積層鉄心に接触した瞬間の圧力上昇を検知する方法によれば、積層鉄心の厚さの個体差によらず鍔部と積層鉄心との接触を検知できるが、接触した瞬間に圧力が一気に上昇し、圧力が急上昇した時点で既にシャフトの鍔部が積層鉄心を押して積層鉄心を変形させてしまっている。 Further, according to the method of measuring the pressure at which the shaft is press-fitted and detecting the pressure increase at the moment when the flange portion of the shaft contacts the laminated iron core, the flange portion and the laminated iron core are not affected by the individual difference in the thickness of the laminated iron core. However, the flange portion of the shaft has already pushed the laminated core and deformed the laminated core when the pressure suddenly increased at the moment of contact.

そこで、本発明は、シャフトを積層鉄心のシャフト穴に圧入する際に積層鉄心が変形することを抑制し、シャフトと積層鉄心との間の締結力の不足や回転電機ロータの重心が偏るアンバランスが生じることを抑制することを目的とする。 Therefore, the present invention suppresses deformation of the laminated core when the shaft is press-fitted into the shaft hole of the laminated core, insufficient fastening force between the shaft and the laminated core, and an imbalance in which the center of gravity of the rotating electrical machine rotor is biased. The purpose is to suppress the occurrence of.

本発明に係る回転電機ロータの製造方法は、積層された複数の電磁鋼板によって構成され、積層方向に貫通するシャフト穴が形成された積層鉄心と、前記シャフト穴に圧入されると共に、前記シャフト穴の内径よりも外径が大きい鍔部が設けられたシャフトと、を備える回転電機ロータの製造方法であって、前記積層鉄心の前記シャフト穴へ前記シャフトを圧入中に前記鍔部と前記積層鉄心との間の積層方向の距離を測定し、前記距離が所定値に到達したら前記シャフトの圧入を終了すること、を特徴とする。 A method for manufacturing a rotary electric machine rotor according to the present invention is composed of a plurality of laminated electromagnetic steel sheets, and a laminated iron core having a shaft hole penetrating in the laminating direction, and the shaft hole while being press-fitted into the shaft hole. And a shaft provided with a flange portion having an outer diameter larger than the inner diameter of the rotary electric machine rotor, wherein the flange portion and the laminated iron core are formed while the shaft is press-fitted into the shaft hole of the laminated iron core. Is measured in the stacking direction, and when the distance reaches a predetermined value, the press-fitting of the shaft is terminated.

本発明は、シャフトの鍔部と積層鉄心との間の積層方向の距離を測定しながら積層鉄心のシャフト穴にシャフトを圧入し、距離が所定値に到達すると圧入を終了するため、シャフトの鍔部が積層鉄心を押し過ぎて積層鉄心を変形させることを抑制でき、シャフトの鍔部と積層鉄心との間に隙間が生じないようにシャフトを積層鉄心に締結することができる。このようにシャフトの鍔部と積層鉄心との間に隙間が生じないようにシャフトを積層鉄心に締結することにより、締結力の不足や回転電機ロータの重心が偏るアンバランスが生じることを抑制することができる。また、積層鉄心のシャフト穴へシャフトを圧入中に個々の積層鉄心毎にシャフトの鍔部と積層鉄心との距離を測定するため、積層鉄心の厚さの個体差に応じてシャフトの圧入位置を調整することができる。 According to the present invention, the shaft is press-fitted into the shaft hole of the laminated iron core while measuring the distance in the laminating direction between the flange portion of the shaft and the laminated iron core, and when the distance reaches a predetermined value, the press-fitting is completed. It is possible to prevent the portion from pressing the laminated core too much and deform the laminated core, and the shaft can be fastened to the laminated core so that no gap is created between the flange portion of the shaft and the laminated core. By fastening the shaft to the laminated core so that no gap is created between the flange portion of the shaft and the laminated iron core, it is possible to prevent insufficient fastening force and unbalance in which the center of gravity of the rotary electric machine rotor is deviated. be able to. In addition, since the distance between the flange of the shaft and the laminated core is measured for each laminated core while the shaft is being press-fitted into the shaft hole of the laminated core, the press-fitting position of the shaft should be determined according to the individual difference in the thickness of the laminated core. Can be adjusted.

本開示の実施形態の製造方法で製造される回転電機ロータのシャフト及び積層鉄心を分解して示した斜視図(a)と、シャフトが積層鉄心に圧入された状態を示す斜視図(b)である。FIG. 2A is an exploded perspective view of a shaft and a laminated iron core of a rotary electric machine rotor manufactured by the manufacturing method according to the embodiment of the present disclosure, and FIG. 2B is a perspective view illustrating a state in which the shaft is press-fitted into the laminated iron core. is there. 第一の形態の回転電機ロータの製造方法の製造工程を示すフローチャートである。It is a flow chart which shows the manufacturing process of the manufacturing method of the rotary electric machine rotor of the first form. 第一の形態の回転電機ロータの製造方法において、シャフトの圧入を開始する状態を示す断面図(a)と、シャフトを圧入中の状態を示す断面図(b)と、圧入を終了した状態を示す断面図(c)である。In the method for manufacturing a rotary electric machine rotor according to the first embodiment, a cross-sectional view (a) showing a state in which press-fitting of a shaft is started, a cross-sectional view (b) showing a state in which a shaft is being press-fitted, and a state in which press-fitting has been completed. It is sectional drawing (c) shown. シャフトを圧入する距離が長すぎてシャフトの鍔部が積層鉄心を押して変形させた状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the shaft is press-fitted too long and the flange portion of the shaft pushes and deforms the laminated core. 第二の形態の回転電機ロータの製造方法の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the manufacturing method of the rotary electric machine rotor of a 2nd form. 第二の形態の回転電機ロータの製造方法において、シャフトの圧入を開始する状態を示す断面図(a)と、シャフトを圧入中の状態を示す断面図(b)と、圧入を終了した状態を示す断面図(c)である。In the method for manufacturing a rotary electric machine rotor according to the second embodiment, a cross-sectional view (a) showing a state in which press-fitting of a shaft is started, a cross-sectional view (b) showing a state in which the shaft is being press-fitted, and a state in which press-fitting has been completed. It is sectional drawing (c) shown.

<第一の形態>
以下、図面を参照しながら、第一の形態の回転電機ロータ10の製造方法について説明する。図1(a)に示すように、積層鉄心1は積層された複数の円形の電磁鋼板11によって構成された円筒形状をしている。そして、積層鉄心1には、積層方向に貫通するシャフト穴12が形成されている。回転電機ロータ10の回転軸となるシャフト2には、シャフト穴12の内径よりも外径が大きい鍔部21が設けられている。シャフト2の圧入部22の外径は一様ではなく、鍔部21側の方が僅かに外径が大きくなっており、図1(b)に示すようにシャフト2の鍔部21が積層鉄心1に接触するまでシャフト2を積層鉄心1のシャフト穴12に圧入することにより、シャフト2の圧入部22が積層鉄心1に締結される。
<First form>
Hereinafter, a method for manufacturing the rotary electric machine rotor 10 according to the first embodiment will be described with reference to the drawings. As shown in FIG. 1A, the laminated iron core 1 has a cylindrical shape constituted by a plurality of circular magnetic steel sheets 11 that are laminated. The laminated iron core 1 is formed with a shaft hole 12 penetrating in the laminating direction. The shaft 2 serving as the rotation axis of the rotating electric machine rotor 10 is provided with a flange portion 21 having an outer diameter larger than the inner diameter of the shaft hole 12. The outer diameter of the press-fitting portion 22 of the shaft 2 is not uniform, and the outer diameter of the collar portion 21 side is slightly larger. As shown in FIG. 1(b), the collar portion 21 of the shaft 2 has a laminated core. By pressing the shaft 2 into the shaft hole 12 of the laminated iron core 1 until it comes into contact with 1, the press-fitting portion 22 of the shaft 2 is fastened to the laminated iron core 1.

図2に示すステップS1からステップS6までの製造工程により、シャフト2を積層鉄心1のシャフト穴12に圧入する。図2のステップS1において、図3(a)に示すように、積層鉄心1を下型3の上に載せて、シャフト2を上型4に固定する。上型4にはシャフト2の水平方向の位置を定めて締め付けるチャック部が設けられているが、図3(a)、図3(b)、図3(c)及び図4ではチャック部の記載が省略されている。下型3には、圧入したシャフト2との干渉を避けるための穴31が形成されている。 The shaft 2 is press-fitted into the shaft hole 12 of the laminated core 1 by the manufacturing process from step S1 to step S6 shown in FIG. In step S1 of FIG. 2, the laminated iron core 1 is placed on the lower die 3 and the shaft 2 is fixed to the upper die 4, as shown in FIG. The upper mold 4 is provided with a chuck portion for fixing the position of the shaft 2 in the horizontal direction and tightening it. However, in FIG. 3(a), FIG. 3(b), FIG. 3(c) and FIG. Is omitted. The lower die 3 is formed with a hole 31 for avoiding interference with the shaft 2 that is press-fitted.

次に、図2のステップS2において、例えばレーザ測定器など非接触式の距離測定器でシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yの測定を開始する。なお、図3(a)、図3(b)、図3(c)及び図4では距離測定器の記載が省略されている。 Next, in step S2 of FIG. 2, measurement of the distance Y in the stacking direction between the flange portion 21 of the shaft 2 and the laminated core 1 is started with a non-contact type distance measuring device such as a laser measuring device. Note that the distance measuring device is omitted in FIGS. 3A, 3B, 3C, and 4.

次に、図2のステップS3において、図3(b)に示すように、不図示のプレス機で上型4を下降する。上型4の下降により、シャフト2は上型4に上から押されて積層鉄心1のシャフト穴12に圧入される。シャフト2の圧入中も距離測定器はシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yの測定を継続する。 Next, in step S3 of FIG. 2, as shown in FIG. 3B, the upper die 4 is lowered by a press machine (not shown). As the upper die 4 descends, the shaft 2 is pushed by the upper die 4 from above and press-fitted into the shaft hole 12 of the laminated iron core 1. The distance measuring device continues to measure the distance Y in the stacking direction between the collar portion 21 of the shaft 2 and the laminated core 1 even during the press-fitting of the shaft 2.

次に、図2のステップS4において、シャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yが所定値0より大きいか判定する。距離測定器で測定した距離Yが0より大きい場合は、ステップS3に戻り更に上型4を下降しシャフト2の圧入を継続する。そして、距離測定器で測定した距離Yが所定値0に到達した場合は、ステップS4からステップS5に進み、図3(c)に示すように、プレス機は上型4の下降を停止し、シャフト2の圧入を終了する。つまり、距離Yが所定値0に到達した瞬間にプレス機が停止してシャフト2の圧入を終了する。その後、図2のステップS6に進み、プレス機は上型4の上昇を開始する。 Next, in step S4 of FIG. 2, it is determined whether the distance Y between the flange portion 21 of the shaft 2 and the laminated iron core 1 in the laminating direction is larger than a predetermined value 0. When the distance Y measured by the distance measuring device is larger than 0, the process returns to step S3, the upper die 4 is further lowered, and the press-fitting of the shaft 2 is continued. When the distance Y measured by the distance measuring device reaches the predetermined value 0, the process proceeds from step S4 to step S5, and the press machine stops the lowering of the upper mold 4, as shown in FIG. The press fitting of the shaft 2 is completed. That is, at the moment when the distance Y reaches the predetermined value 0, the press machine stops and the press-fitting of the shaft 2 ends. After that, the process proceeds to step S6 in FIG. 2, and the press machine starts to move up the upper die 4.

なお、シャフト2の下降の停止位置精度を高めるために、圧入を開始する際のシャフト2の鍔部21と積層鉄心1との間の積層方向の距離をXとすると、上型4の下降中に、例えば距離測定器で測定した距離Yが0.1Xに到達した際など下降距離がXに近づいたら、プレス機は下降速度を低下させている。このように下降速度を変更し、精密な位置制御を行うため、プレス機はサーボプレスを用いている。 In order to improve the stop position accuracy of the lowering of the shaft 2, when the distance in the stacking direction between the flange portion 21 of the shaft 2 and the laminated iron core 1 at the time of starting the press fitting is X, the upper die 4 is descending. When the descending distance approaches X, such as when the distance Y measured by the distance measuring device reaches 0.1X, the pressing machine decreases the descending speed. In this way, the press machine uses a servo press in order to change the descending speed and perform precise position control.

図4に示すように、シャフト2の鍔部21が積層鉄心1に到達しても更にシャフトの圧入を続けると、鍔部21が積層鉄心1を押し過ぎて積層鉄心1が変形してしまう。 As shown in FIG. 4, even if the collar portion 21 of the shaft 2 reaches the laminated core 1, if the shaft is further press-fitted, the collar portion 21 pushes the laminated core 1 too much and the laminated core 1 is deformed.

しかし、図2に示すステップS1からステップS6までの製造工程を行うことにより、シャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yを測定しながら積層鉄心1のシャフト穴12にシャフト2を圧入し、距離Yが0に到達したら圧入を終了するため、シャフト2の鍔部21が積層鉄心1を押し過ぎて積層鉄心1を変形させることを抑制でき、シャフト2の鍔部21と積層鉄心1との間に隙間が生じないようにシャフト2を積層鉄心1に締結することができる。このようにシャフト2の鍔部21と積層鉄心1との間に隙間が生じないようにシャフト2を積層鉄心1に締結することにより、締結力の不足や回転電機ロータ10の重心が偏るアンバランスが生じることを抑制することができる。また、積層鉄心1のシャフト穴12へシャフト2を圧入中に個々の積層鉄心1毎にシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yを測定するため、積層鉄心1の厚さの個体差に応じてシャフト2の圧入位置を調整することができる。 However, by performing the manufacturing process from step S1 to step S6 shown in FIG. 2, the shaft hole 12 of the laminated core 1 is measured while measuring the distance Y in the laminating direction between the flange portion 21 of the shaft 2 and the laminated core 1. Since the shaft 2 is press-fitted into the shaft 2 and the press-fitting is terminated when the distance Y reaches 0, it is possible to prevent the flange portion 21 of the shaft 2 from excessively pushing the laminated iron core 1 and deforming the laminated iron core 1. The shaft 2 can be fastened to the laminated core 1 so that no gap is created between the core 21 and the laminated core 1. As described above, by fastening the shaft 2 to the laminated core 1 so that there is no gap between the flange portion 21 of the shaft 2 and the laminated iron core 1, the imbalance in which the fastening force is insufficient and the center of gravity of the rotary electric machine rotor 10 is deviated. Can be suppressed. Further, since the distance Y in the laminating direction between the flange portion 21 of the shaft 2 and the laminated core 1 is measured for each laminated iron core 1 during the press-fitting of the shaft 2 into the shaft hole 12 of the laminated iron core 1, the laminated core 1 The press-fitting position of the shaft 2 can be adjusted according to the individual difference in the thickness.

<第二の形態>
次に、第二の形態の回転電機ロータ10の製造方法について説明する。この形態は、第一の形態と全く同じ積層鉄心1にシャフト2を下型3及び上型4などを用いて圧入固定するものであり、第一の形態とは、製造工程のみが異なる。第2の形態では、図5に示すステップS11からステップS16までの製造工程により、シャフト2を積層鉄心1のシャフト穴12に圧入する。
<Second form>
Next, a method for manufacturing the rotary electric machine rotor 10 of the second embodiment will be described. In this form, the shaft 2 is press-fitted and fixed to the laminated iron core 1 exactly the same as in the first form by using the lower mold 3 and the upper mold 4, and only the manufacturing process is different from the first form. In the second embodiment, the shaft 2 is press-fitted into the shaft hole 12 of the laminated core 1 by the manufacturing process from step S11 to step S16 shown in FIG.

図5のステップS11は、第一の形態の図2に示すステップS1と同様に、図6(a)に示すように、積層鉄心1を下型3の上に載せて、シャフト2を上型4に固定する。なお、図6(a)、図6(b)及び図6(c)も、図3(a)、図3(b)及び図3(c)と同様に、シャフト2の水平方向の位置を定めて締め付けるチャック部の記載が省略されている。 Step S11 of FIG. 5 is similar to step S1 shown in FIG. 2 of the first embodiment, as shown in FIG. 6A, the laminated iron core 1 is placed on the lower die 3 and the shaft 2 is placed on the upper die. Fix at 4. 6(a), 6(b) and 6(c) also show the horizontal position of the shaft 2 as in FIGS. 3(a), 3(b) and 3(c). The description of the chuck portion that is fixed and tightened is omitted.

次に、図5のステップS12において、例えばレーザ測定器など非接触式の距離測定器でシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Xを測定する。 Next, in step S12 of FIG. 5, the distance X in the stacking direction between the flange portion 21 of the shaft 2 and the laminated core 1 is measured by a non-contact type distance measuring device such as a laser measuring device.

次に、図5のステップS13において、図6(b)に示すように、不図示のプレス機で上型4を下降する。上型4の下降により、シャフト2は上型4に上から押されて積層鉄心1のシャフト穴12に圧入される。プレス機はサーボプレスであり、上型4を下降した下降量Zを把握しており、ステップS12で測定した距離Xから下降量Zを引いたX−Zが、シャフト2の圧入中のシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yとなる。そのため、シャフト2の圧入中はシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Y=X−Zを測定していることになる。 Next, in step S13 of FIG. 5, as shown in FIG. 6B, the upper die 4 is lowered by a press machine (not shown). As the upper die 4 descends, the shaft 2 is pushed by the upper die 4 from above and press-fitted into the shaft hole 12 of the laminated iron core 1. The press machine is a servo press, and knows the descending amount Z that descends the upper die 4, and X-Z obtained by subtracting the descending amount Z from the distance X measured in step S12 is the shaft 2 during press fitting of the shaft 2. The distance Y between the collar portion 21 and the laminated iron core 1 in the laminating direction. Therefore, during press-fitting of the shaft 2, the distance Y=X-Z in the stacking direction between the flange portion 21 of the shaft 2 and the laminated core 1 is measured.

次に、図5のステップS14において、シャフト2の鍔部21と積層鉄心1との間の積層方向の距離Y=X−Zが所定値0より大きいか判定する。距離Y=X−Zが0より大きい場合は、ステップS13に戻り更に上型4を下降しシャフト2の圧入を継続する。距離Y=X−Zが所定値0に到達した場合は、ステップS15に進み、図6(c)に示すように、プレス機は上型4の下降を停止し、シャフト2の圧入を終了する。つまり、距離Y=X−Zが所定値0に到達した瞬間にプレス機が停止してシャフト2の圧入を終了する。その後、図5のステップS16に進み、プレス機は上型4の上昇を開始する。 Next, in step S14 of FIG. 5, it is determined whether the distance Y=X−Z between the flange portion 21 of the shaft 2 and the laminated iron core 1 in the laminating direction is larger than a predetermined value 0. If the distance Y=X-Z is greater than 0, the process returns to step S13, the upper die 4 is further lowered, and the press-fitting of the shaft 2 is continued. When the distance Y=X−Z reaches the predetermined value 0, the process proceeds to step S15, and as shown in FIG. 6C, the press machine stops the lowering of the upper die 4 and finishes the press fitting of the shaft 2. .. That is, at the moment when the distance Y=X−Z reaches the predetermined value 0, the press machine stops and the press fitting of the shaft 2 is completed. After that, the process proceeds to step S16 in FIG. 5, and the press machine starts to move up the upper die 4.

このように図5に示すステップS11からステップS16までの製造工程を行うことにより、第一の形態と同様に、シャフト2の鍔部21と積層鉄心1との間の積層方向の距離Yを測定しながら積層鉄心1のシャフト穴12にシャフト2を圧入し、距離Y=X−Zが0に到達したら圧入を終了するため、シャフト2の鍔部21が積層鉄心1を押し過ぎて積層鉄心1を変形させることを抑制でき、シャフト2の鍔部21と積層鉄心1との間に隙間が生じないようにシャフト2を積層鉄心1に締結することができる。このようにシャフト2の鍔部21と積層鉄心1との間に隙間が生じないようにシャフト2を積層鉄心1に締結することにより、締結力の不足や回転電機ロータ10の重心が偏るアンバランスが生じることを抑制することができる。また、積層鉄心1のシャフト穴12へシャフト2の圧入を開始する際に個々の積層鉄心1毎にシャフト2の鍔部21と積層鉄心1との間の積層方向の距離Xを測定するため、積層鉄心1の厚さの個体差に応じてシャフト2の圧入位置を調整することができる。 In this way, by performing the manufacturing process from step S11 to step S16 shown in FIG. 5, the distance Y in the stacking direction between the collar portion 21 of the shaft 2 and the laminated iron core 1 is measured as in the first embodiment. However, when the shaft 2 is press-fitted into the shaft hole 12 of the laminated core 1 and the press-fitting ends when the distance Y=X−Z reaches 0, the flange portion 21 of the shaft 2 pushes the laminated core 1 too much and the laminated core 1 Can be suppressed, and the shaft 2 can be fastened to the laminated core 1 so that no gap is created between the flange portion 21 of the shaft 2 and the laminated core 1. As described above, by fastening the shaft 2 to the laminated core 1 so that there is no gap between the flange portion 21 of the shaft 2 and the laminated iron core 1, the imbalance in which the fastening force is insufficient and the center of gravity of the rotary electric machine rotor 10 is deviated. Can be suppressed. Further, when the press-fitting of the shaft 2 into the shaft hole 12 of the laminated iron core 1 is started, the distance X in the laminating direction between the flange portion 21 of the shaft 2 and the laminated iron core 1 is measured for each laminated iron core 1. The press-fitting position of the shaft 2 can be adjusted according to the individual difference in the thickness of the laminated core 1.

<実施形態の補足>
本開示の回転電機ロータの製造方法は、上述した形態に限定されず、本開示の要旨の範囲内において種々の形態にて実施できる。例えば、上記各形態では、積層鉄心1を停止させた状態でシャフト2移動して圧入しているが、逆にシャフト2を停止させた状態で積層鉄心1を移動して圧入してもよい。また、シャフト2の鍔部21と積層鉄心1との間の積層方向の距離を測定する距離測定器はレーザ測定器に限らず、CCDカメラ等でシャフト2及び積層鉄心1を撮影して距離を測定してもよい。
<Supplement to Embodiment>
The method for manufacturing a rotating electrical machine rotor according to the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms within the scope of the gist of the present disclosure. For example, in each of the above-described embodiments, the shaft 2 is moved and press-fitted with the laminated core 1 stopped, but the laminated core 1 may be moved and press-fitted with the shaft 2 stopped. The distance measuring device for measuring the distance in the laminating direction between the flange portion 21 of the shaft 2 and the laminated iron core 1 is not limited to the laser measuring device, and the distance can be measured by photographing the shaft 2 and the laminated iron core 1 with a CCD camera or the like. You may measure.

1 積層鉄心、2 シャフト、3 下型、4 上型、10 回転電機ロータ、11 電磁鋼板、12 シャフト穴、21 鍔部、22 圧入部、31 穴。
1 laminated core, 2 shaft, 3 lower mold, 4 upper mold, 10 rotating electrical machine rotor, 11 electromagnetic steel plate, 12 shaft hole, 21 collar part, 22 press fitting part, 31 hole.

Claims (1)

積層された複数の電磁鋼板によって構成され、積層方向に貫通するシャフト穴が形成された積層鉄心と、
前記シャフト穴に圧入されると共に、前記シャフト穴の内径よりも外径が大きい鍔部が設けられたシャフトと、を備える回転電機ロータの製造方法であって、
前記積層鉄心の前記シャフト穴へ前記シャフトを圧入中に前記鍔部と前記積層鉄心との間の積層方向の距離を測定し、
前記距離が所定値に到達したら前記シャフトの圧入を終了すること、を特徴とする回転電機ロータの製造方法。
A laminated iron core formed of a plurality of laminated electromagnetic steel plates, and having a shaft hole penetrating in the laminating direction,
A method of manufacturing a rotating electrical machine rotor, comprising: a shaft provided with a flange portion having an outer diameter larger than an inner diameter of the shaft hole while being press-fitted into the shaft hole;
Measuring the distance in the laminating direction between the collar portion and the laminated iron core while press-fitting the shaft into the shaft hole of the laminated iron core,
A method for manufacturing a rotary electric machine rotor, characterized in that the press fitting of the shaft is terminated when the distance reaches a predetermined value.
JP2019009490A 2019-01-23 2019-01-23 Method for manufacturing rotary electric machine rotor Pending JP2020120488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019009490A JP2020120488A (en) 2019-01-23 2019-01-23 Method for manufacturing rotary electric machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009490A JP2020120488A (en) 2019-01-23 2019-01-23 Method for manufacturing rotary electric machine rotor

Publications (1)

Publication Number Publication Date
JP2020120488A true JP2020120488A (en) 2020-08-06

Family

ID=71892207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009490A Pending JP2020120488A (en) 2019-01-23 2019-01-23 Method for manufacturing rotary electric machine rotor

Country Status (1)

Country Link
JP (1) JP2020120488A (en)

Similar Documents

Publication Publication Date Title
JP6164039B2 (en) Manufacturing method of laminated iron core
US7986072B2 (en) Stator core of electric rotating machine and method of manufacturing the core
US8963387B2 (en) Motor rotor including a resolver rotor for detecting rotation position
US7420310B2 (en) Brushless motor
JPWO2015008544A1 (en) Stator
JP2017116429A (en) Resolver rotor fixing structure
JP2012100499A (en) Manufacturing method for rotary electric machine rotor
JP5840006B2 (en) Shaft fixing method of rotor core
US11277053B2 (en) Rotor, motor, and method for manufacturing rotor
JP7321099B2 (en) Electric machine with knurled rotor shaft and method of manufacturing such machine
JP2014033549A (en) Rotor, rotary electric machine and method for manufacturing rotor
CN109687656B (en) Method for manufacturing core of rotating electrical machine and core of rotating electrical machine
JP2020120488A (en) Method for manufacturing rotary electric machine rotor
WO2018061179A1 (en) Rotor production method, rotor, and motor
JP2009254065A (en) Apparatus for manufacturing rotor for rotating electrical machine
JP5606168B2 (en) Method of transposing laminated core and laminated core
JP4844994B2 (en) Molding device for manufacturing laminated core
JP6967987B2 (en) Rotor, motor and rotor manufacturing method
JP2008029192A (en) Rotor of dynamo-electric machine and manufacturing method thereof
JP2006205357A (en) Electromagnetic steel sheet laminated part, its manufacturing method and magnetic bearing device
JP2010110123A (en) Laminate core and manufacturing method thereof
US20110050050A1 (en) Bearing structure and spindle motor having the same
KR102040127B1 (en) Method for setting up motor core plate concentricity
JP5100614B2 (en) Magnet generator and manufacturing method thereof
JP2011055607A (en) Dynamo-electric machine and method of manufacturing the same