JP2020120136A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2020120136A
JP2020120136A JP2020080888A JP2020080888A JP2020120136A JP 2020120136 A JP2020120136 A JP 2020120136A JP 2020080888 A JP2020080888 A JP 2020080888A JP 2020080888 A JP2020080888 A JP 2020080888A JP 2020120136 A JP2020120136 A JP 2020120136A
Authority
JP
Japan
Prior art keywords
core
thickness
thin
thick
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020080888A
Other languages
Japanese (ja)
Other versions
JP6881652B2 (en
Inventor
和嗣 草別
Kazutsugu Kusabetsu
和嗣 草別
慎太郎 南原
Shintaro Nanbara
慎太郎 南原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2020080888A priority Critical patent/JP6881652B2/en
Publication of JP2020120136A publication Critical patent/JP2020120136A/en
Application granted granted Critical
Publication of JP6881652B2 publication Critical patent/JP6881652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulating Of Coils (AREA)

Abstract

To provide a reactor excellent in heat dissipation.SOLUTION: In a reactor including a coil having a wound part, a magnetic core having an inner core part placed in the wound part, and an inner inclusion member for ensuring insulation between the wound part and the inner core part, the inner inclusion member includes a thin wall part which is made thin as the inner peripheral surface is recessed, and a thick part thicker than the thin wall part. The inner core part is provided, on the outer peripheral surface facing the inner inclusion member, a core side protrusion having a shape copying the inner peripheral surface shape of the thin wall part. The thickness of the thick part is 0.2-1.0 mm, the thickness of the thick wall part is 1.1-2.5 mm, the inner core part and the inner inclusion member adhere substantially, and there is a clearance at least partially between the inner inclusion member and the wound part.SELECTED DRAWING: Figure 3

Description

本発明は、リアクトルに関する。 The present invention relates to a reactor.

例えば特許文献1,2には、ハイブリッド自動車などの電動車両のコンバータに利用される磁性部品であるリアクトルが開示されている。特許文献1,2のリアクトルは、一対の巻回部を有するコイル、一部が巻回部の内部に配置される磁性コア、およびコイルと磁性コアとの間の絶縁を確保するボビン(絶縁介在部材)を備える。 For example, Patent Documents 1 and 2 disclose a reactor which is a magnetic component used in a converter of an electric vehicle such as a hybrid vehicle. The reactors of Patent Documents 1 and 2 include a coil having a pair of winding portions, a magnetic core partially disposed inside the winding portion, and a bobbin (insulating interposition) that ensures insulation between the coil and the magnetic core. Members).

特開2012−253289号公報JP 2012-253289 A 特開2013−4531号公報JP, 2013-4531, A

近年の電動車両の発達に伴い、リアクトルの性能の向上が求められている。例えば、リアクトルの放熱性を高めることで、リアクトルに熱が籠ることによるリアクトルの磁気特性の変化を抑制することが求められている。また、リアクトルには、小型で磁気特性に優れることが求められている。このような要請に応えるべく、リアクトルの構成の再検討が行なわれている。 With the development of electric vehicles in recent years, it is required to improve the performance of the reactor. For example, it is required to suppress the change in the magnetic characteristics of the reactor due to heat trapped in the reactor by increasing the heat dissipation of the reactor. Further, the reactor is required to be small and have excellent magnetic characteristics. In order to meet such demands, the structure of the reactor is being reexamined.

そこで、本開示は、放熱性に優れるリアクトルを提供することを目的の一つとする。また、本開示は、小型で磁気特性に優れるリアクトルを提供することを目的の一つとする。 Therefore, one of the objects of the present disclosure is to provide a reactor having excellent heat dissipation. Another object of the present disclosure is to provide a compact reactor having excellent magnetic characteristics.

本開示に係るリアクトルは、
巻回部を有するコイルと、
前記巻回部の内部に配置される内側コア部を有する磁性コアと、
前記巻回部と前記内側コア部との間の絶縁を確保する内側介在部材と、を備えるリアクトルであって、
前記内側介在部材は、その内周面側が凹むことで厚みが薄くなった薄肉部と、前記薄肉部よりも厚みが厚くなった厚肉部と、を備え、
前記内側コア部は、前記内側介在部材に対向する外周面に、前記薄肉部の内周面形状に沿った形状を有するコア側凸部を備え、
前記薄肉部の厚さが0.2mm以上1.0mm以下、前記厚肉部の厚さが1.1mm以上2.5mm以下で、
前記内側コア部と前記内側介在部材とが実質的に密着し、
前記内側介在部材と前記巻回部との間の少なくとも一部にクリアランスがある。
The reactor according to the present disclosure is
A coil having a winding portion,
A magnetic core having an inner core portion arranged inside the winding portion;
A reactor including an inner intervening member that secures insulation between the winding portion and the inner core portion,
The inner intervening member includes a thin-walled portion whose thickness is reduced by recessing the inner peripheral surface side thereof, and a thick-walled portion whose thickness is thicker than the thin-walled portion,
The inner core portion is provided with a core-side convex portion having a shape along the inner peripheral surface shape of the thin portion on the outer peripheral surface facing the inner interposing member,
The thickness of the thin portion is 0.2 mm or more and 1.0 mm or less, the thickness of the thick portion is 1.1 mm or more and 2.5 mm or less,
The inner core portion and the inner interposition member substantially come into close contact with each other,
There is a clearance in at least a part between the inner interposition member and the winding portion.

上記リアクトルは、放熱性に優れる。また、上記リアクトルは、小型で磁気特性に優れる。 The reactor has excellent heat dissipation. Further, the reactor is small and has excellent magnetic characteristics.

実施形態1に示す一対の巻回部を有するコイルを備えるリアクトルの概略斜視図である。1 is a schematic perspective view of a reactor including a coil having a pair of winding parts shown in Embodiment 1. FIG. 実施形態1に示すリアクトルの組合体の分解斜視図である。FIG. 3 is an exploded perspective view of the reactor combination shown in the first embodiment. 図1のIII−III断面図と、その部分拡大図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1 and a partially enlarged view thereof. 図3とは別の介在側凹部を備える内側介在部材と、その内外に配置される内側コア部および巻回部の位置関係を示す部分拡大図である。FIG. 4 is a partially enlarged view showing a positional relationship between an inner interposition member having an interposition side recess different from that of FIG. 3, and an inner core portion and a winding portion arranged inside and outside thereof. 実施形態1に示す内側コア部の概略斜視図である。FIG. 3 is a schematic perspective view of an inner core portion shown in the first embodiment. 図5とは別の内側コア部の概略斜視図である。It is a schematic perspective view of the inner core part different from FIG.

[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。
[Description of Embodiments of the Present Invention]
First, embodiments of the present invention will be listed and described.

内側介在部材は、射出成形によって形成されることが多い。射出成形品の寸法は、内側介在部材の厚みが薄くなるとバラツキ易い。そのため、従来は、内側介在部材の厚みを一定以上(例えば2.5mm以上)としたり、特許文献1,2に記載のように、内側介在部材にリブを設けるなどして、内側介在部材の寸法精度を上げることが行なわれている。しかし、このような構成では、巻回部と内側コア部の距離が大きくなってしまう。そのため、内側コア部から巻回部への放熱性には制約があり、巻回部の断面積を一定とした場合に、巻回部の内部に配置される内側コア部の磁路断面積を一定以上大きくすることができない。本願発明者らは、これらの点に鑑みて、以下に示す実施形態に係るリアクトルを完成させた。 The inner interposed member is often formed by injection molding. The dimensions of the injection-molded product tend to vary as the thickness of the inner intervening member decreases. Therefore, conventionally, the thickness of the inner intervening member is set to a certain value or more (for example, 2.5 mm or more), or ribs are provided on the inner intervening member as described in Patent Documents 1 and 2 to measure the size of the inner interposing member. The accuracy is being improved. However, with such a configuration, the distance between the winding portion and the inner core portion becomes large. Therefore, there is a restriction on the heat dissipation from the inner core portion to the winding portion, and when the cross-sectional area of the winding portion is constant, the magnetic path cross-sectional area of the inner core portion arranged inside the winding portion is It cannot be increased beyond a certain level. In view of these points, the inventors of the present invention have completed a reactor according to the following embodiment.

<1>実施形態に係るリアクトルは、
巻回部を有するコイルと、
前記巻回部の内部に配置される内側コア部を有する磁性コアと、
前記巻回部と前記内側コア部との間の絶縁を確保する内側介在部材と、を備えるリアクトルであって、
前記内側介在部材は、その内周面側が凹むことで厚みが薄くなった薄肉部と、前記薄肉部よりも厚みが厚くなった厚肉部と、を備え、
前記内側コア部は、前記内側介在部材に対向する外周面に、前記薄肉部の内周面形状に沿った形状を有するコア側凸部を備え、
前記薄肉部の厚さが0.2mm以上1.0mm以下、前記厚肉部の厚さが1.1mm以上2.5mm以下で、
前記内側コア部と前記内側介在部材とが実質的に密着し、
前記内側介在部材と前記巻回部との間の少なくとも一部にクリアランスがある。
<1> The reactor according to the embodiment,
A coil having a winding portion,
A magnetic core having an inner core portion arranged inside the winding portion;
A reactor including an inner intervening member that secures insulation between the winding portion and the inner core portion,
The inner intervening member includes a thin-walled portion whose thickness is reduced by recessing the inner peripheral surface side thereof, and a thick-walled portion whose thickness is thicker than the thin-walled portion,
The inner core portion is provided with a core-side convex portion having a shape along the inner peripheral surface shape of the thin portion on the outer peripheral surface facing the inner interposing member,
The thickness of the thin portion is 0.2 mm or more and 1.0 mm or less, the thickness of the thick portion is 1.1 mm or more and 2.5 mm or less,
The inner core portion and the inner interposition member substantially come into close contact with each other,
There is a clearance in at least a part between the inner interposition member and the winding portion.

金型内に樹脂を注入する射出成形で内側介在部材を作製する場合、金型の隙間が広い箇所に注入された樹脂が厚肉部、金型の隙間が狭い箇所に注入された樹脂が薄肉部となる。金型の隙間が広い部分は、金型の隙間全体に樹脂を素早く行き渡らせる機能を果たす。そのため、従来よりも厚みが薄い薄肉部を備えていても、所定厚さ以上の厚肉部を備える内側介在部材は、設計寸法通りに作製し易い。内側コア部の外周に内側介在部材を実質的に密着させるには、内側コア部に樹脂をモールドするか、または内側介在部材に内側コア部を圧入することになる。いずれの場合であっても、内側介在部材が設計寸法通りに作製できることで、内側コア部の外周に内側介在部材を実質的に密着した状態にできる。ここで、内側コア部に樹脂をモールドする場合も、内側介在部材に内側コア部を圧入する場合も、内側コア部と内側介在部材の界面の一部に離隔箇所が形成されることがある。そこで、上記界面の一部に離隔箇所があっても、界面全体に占める離隔箇所の総面積が小さければ(例えば、40%以下、あるいは20%以下であれば)、内側コア部と内側介在部材とが実質的に密着していると見做す。 When the inner intervening member is made by injection molding that injects resin into the mold, the resin injected into the mold with wide gaps is thick, and the resin injected into the mold with narrow gaps is thin. It becomes a part. The wide gap between the molds serves to quickly spread the resin throughout the gap between the molds. Therefore, even if a thin portion having a thickness smaller than that of a conventional one is provided, an inner intervening member having a thick portion having a predetermined thickness or more can be easily manufactured according to a design dimension. In order to make the inner interposition member substantially adhere to the outer periphery of the inner core unit, resin is molded on the inner core unit or the inner core unit is pressed into the inner interposition member. In any case, since the inner intervening member can be manufactured in accordance with the designed dimensions, the inner intervening member can be substantially in close contact with the outer periphery of the inner core portion. Here, even when resin is molded on the inner core portion or when the inner core portion is press-fitted into the inner interposition member, a separated portion may be formed at a part of the interface between the inner core portion and the inner interposition member. Therefore, even if there is a separation part in a part of the interface, if the total area of the separation part occupying the entire interface is small (for example, 40% or less, or 20% or less), the inner core portion and the inner interposition member It is considered that and are in close contact with each other.

上記内側介在部材の寸法のバラツキが小さいと、内側介在部材と巻回部との間のクリアランスが小さくなるように内側介在部材を設計しても、巻回部に内側介在部材を挿入できないといった不具合を抑制できる。 If the inner intervening member has a small dimensional variation, the inner intervening member cannot be inserted into the winding part even if the inner interposing member is designed so that the clearance between the inner intervening member and the winding part is small. Can be suppressed.

上記クリアランスを小さくできることで、内側コア部から巻回部までの距離を小さくでき、内側コア部から巻回部への放熱性を向上させることができる。しかも、内側コア部と内側介在部材とが実質的に密着しているため、両者の間の熱伝導性が良好で、内側コア部から巻回部への放熱性を向上させることができる。特に、実施形態のリアクトルでは、薄肉部の凹み(以下、介在側凹部と呼ぶ場合がある)に、内側コア部のコア側凸部が配置されているため、コア側凸部から巻回部までの放熱距離が短く、その結果、リアクトルの放熱性を向上させることができる。 By making the clearance small, the distance from the inner core portion to the winding portion can be made small, and the heat dissipation from the inner core portion to the winding portion can be improved. Moreover, since the inner core portion and the inner interposition member are substantially in close contact with each other, the thermal conductivity between them is good, and the heat dissipation from the inner core portion to the winding portion can be improved. In particular, in the reactor of the embodiment, since the core-side convex portion of the inner core portion is arranged in the recess of the thin-walled portion (hereinafter, also referred to as intervening-side concave portion), the core-side convex portion to the winding portion The heat dissipation distance is short, and as a result, the heat dissipation of the reactor can be improved.

また、上記クリアランスを小さくできることで、巻回部を大きくすること無く、巻回部内の内側コア部の磁路断面積を大きくすることができる。特に、実施形態のリアクトルでは、内側介在部材の介在側凹部に、内側コア部のコア側凸部が配置されることで、内側コア部の磁路断面積が大きくなっている。そのため、巻回部の大きさを変えることなく、介在側凹部を有さない従来の内側介在部材を用いたリアクトルよりも内側コア部の磁路断面積を大きくできる。 Further, since the clearance can be reduced, the magnetic path cross-sectional area of the inner core portion in the winding portion can be increased without increasing the winding portion. In particular, in the reactor of the embodiment, the core side convex portion of the inner core portion is arranged in the interposing side concave portion of the inner interposing member, so that the magnetic path cross-sectional area of the inner core portion is large. Therefore, the magnetic path cross-sectional area of the inner core portion can be made larger than that of the reactor using the conventional inner intervening member having no intervening recess without changing the size of the winding portion.

さらに、実施形態の構成には、内側コア部の外周に密着する内側介在部材によって内側コア部の磁歪振動を抑制し易いという利点がある。 Further, the configuration of the embodiment has an advantage that the magnetostrictive vibration of the inner core portion can be easily suppressed by the inner interposing member that is in close contact with the outer periphery of the inner core portion.

<2>実施形態に係るリアクトルの一形態として、
前記内側介在部材が、前記内側コア部の外部にモールドされた樹脂によって構成されている形態を挙げることができる。
<2> As one mode of the reactor according to the embodiment,
An example is a form in which the inner intervening member is made of resin molded outside the inner core portion.

内側コア部を金型内に配置し、内側コア部の外部に樹脂をモールドして内側介在部材を形成する場合、内側コア部の外周面と金型の内周面との隙間が広い箇所に注入された樹脂が厚肉部、金型の隙間が狭い箇所に注入された樹脂が薄肉部となる。内側コア部を樹脂モールドして内側介在部材を形成することで、内側コア部と内側介在部材とを確実に密着させることができる。また、内側コア部と内側介在部材とを一体に扱うことができるため、リアクトルの生産性を向上させることができる。 When the inner core part is placed in the mold and resin is molded on the outside of the inner core part to form the inner interposition member, in a place where there is a large gap between the outer peripheral surface of the inner core part and the inner peripheral surface of the mold. The injected resin becomes a thick portion, and the resin injected into a portion where the gap between the molds is narrow becomes a thin portion. By forming the inner intervening member by resin-molding the inner core portion, the inner core portion and the inner interposing member can be reliably brought into close contact with each other. Moreover, since the inner core portion and the inner interposition member can be handled integrally, the productivity of the reactor can be improved.

<3>実施形態に係るリアクトルの一形態として、
前記薄肉部の厚さと前記厚肉部の厚さとの差が0.2mm以上である形態を挙げることができる。
<3> As one mode of the reactor according to the embodiment,
An example is a form in which the difference between the thickness of the thin portion and the thickness of the thick portion is 0.2 mm or more.

薄肉部と厚肉部との差を0.2mm以上とすることで、薄肉部に対応する金型の狭小箇所への樹脂の充填性をより十分に確保しつつ、内側介在部材の寸法のバラツキを小さくすることができる。 By setting the difference between the thin-walled portion and the thick-walled portion to be 0.2 mm or more, it is possible to more sufficiently secure the resin filling property in the narrow portion of the mold corresponding to the thin-walled portion, and also the dimensional variation of the inner intervening member. Can be made smaller.

<4>実施形態に係るリアクトルの一形態として、
前記薄肉部の厚さが0.2mm以上0.7mm以下、前記厚肉部の厚さが1.1mm以上2.0mm以下である形態を挙げることができる。
<4> As one mode of the reactor according to the embodiment,
The thin portion may have a thickness of 0.2 mm or more and 0.7 mm or less, and the thick portion may have a thickness of 1.1 mm or more and 2.0 mm or less.

薄肉部の厚さを上記範囲とすることで、巻回部と内側コア部のコア側凸部との間の距離を十分に短くでき、リアクトルの放熱性をより向上させることができる。また、厚肉部の厚さを上記範囲とすることで、内側介在部材の寸法のバラツキをより一層、小さくすることができる。 By setting the thickness of the thin portion within the above range, the distance between the winding portion and the core-side convex portion of the inner core portion can be sufficiently shortened, and the heat dissipation of the reactor can be further improved. Further, by setting the thickness of the thick portion within the above range, it is possible to further reduce the dimensional variation of the inner interposition member.

<5>実施形態に係るリアクトルの一形態として、
前記厚肉部と前記薄肉部は、前記内側介在部材の周方向に分散して複数存在する形態を挙げることができる。
<5> As one form of the reactor according to the embodiment,
The thick part and the thin part may be distributed in the circumferential direction of the inner interposition member and exist in plural.

上記構成を備える内側介在部材を作製する金型では、樹脂を注入する際に金型の隙間全体に樹脂が行き渡り易く、寸法のバラツキが小さい内側介在部材を作製し易い。つまり、上記構成を備える内側介在部材は、その寸法のバラツキが小さい内側介在部材であって、リアクトルの放熱性と磁気特性を向上させることができる。特に、金型における樹脂を注入する隙間の周方向に隙間が狭い部分と隙間が広い部分が交互に並んだ状態となっていれば、より一層、金型の隙間全体に樹脂が行き渡り易くなる。このような金型であれば、厚肉部と薄肉部とが内側介在部材の周方向に交互に並んだ内側介在部材を、寸法精度良く作製することができる。 In the mold for producing the inner intervening member having the above configuration, when the resin is injected, the resin easily spreads over the entire gap of the die, and it is easy to produce the inner intervening member having small dimensional variation. That is, the inner interposition member having the above configuration is an inner interposition member having a small variation in size, and can improve the heat dissipation and magnetic characteristics of the reactor. In particular, if the narrow gap portion and the wide gap portion are alternately arranged in the circumferential direction of the gap for injecting the resin in the mold, the resin is even more easily spread over the entire gap of the mold. With such a mold, it is possible to manufacture an inner interposition member in which thick-walled portions and thin-walled portions are alternately arranged in the circumferential direction of the inner intervening member with high dimensional accuracy.

<6>実施形態に係るリアクトルの一形態として、
少なくとも一部の前記厚肉部は、前記巻回部の軸方向における前記内側介在部材の端面に達している形態を挙げることができる。
<6> As one mode of the reactor according to the embodiment,
At least a part of the thick portion may reach the end surface of the inner interposing member in the axial direction of the winding portion.

射出成形で内側介在部材を作製する場合、金型における内側介在部材の端面となる位置から樹脂を注入することが多い。この場合、内側介在部材の端面が樹脂の入口となるため、厚肉部に対応する大きな隙間がその樹脂の入口にあると、内側介在部材の成形性が向上する。ここで、内側介在部材の端面に達する厚肉部を備える内側介在部材を作製する場合、樹脂の入口に、厚肉部に対応する隙間が広くなった部分が形成される。そのため、上記構成の内側介在部材は、成形性に優れ、薄肉部の厚みが薄くても精度良く作製することができる。 When the inner intervening member is manufactured by injection molding, the resin is often injected from a position which is an end surface of the inner interposing member in the mold. In this case, since the end surface of the inner intervening member serves as the resin inlet, the formability of the inner intervening member is improved if the resin has a large gap corresponding to the thick portion. Here, when an inner interposition member having a thick portion reaching the end surface of the inner interposition member is produced, a portion having a wide gap corresponding to the thick portion is formed at the resin inlet. Therefore, the inner interposition member having the above-described configuration has excellent formability and can be accurately manufactured even if the thin portion has a small thickness.

<7>実施形態に係るリアクトルの一形態として、
前記内側介在部材の外周面は、前記巻回部の内周面形状に沿った形状である形態を挙げることができる。
<7> As one mode of the reactor according to the embodiment,
The outer peripheral surface of the inner interposition member may have a shape that follows the shape of the inner peripheral surface of the wound portion.

内側介在部材の外周面が巻回部の内周面形状に沿った形状であれば、内側介在部材と巻回部の間に隙間がほぼ無くなり、内側介在部材の外周面と、巻回部の内周面とのクリアランスを小さくし易い。その結果、リアクトルの放熱性と磁気特性を向上させ易い。 If the outer peripheral surface of the inner intervening member has a shape that conforms to the inner peripheral surface shape of the winding portion, there is almost no gap between the inner intervening member and the winding portion, and the outer peripheral surface of the inner interposing member and the winding portion It is easy to reduce the clearance with the inner surface. As a result, it is easy to improve the heat dissipation and magnetic properties of the reactor.

<8>実施形態に係るリアクトルの一形態として、
前記薄肉部から前記厚肉部に向かって徐々に前記内側介在部材の厚みが増す形態を挙げることができる。
<8> As one mode of the reactor according to the embodiment,
An example is a mode in which the thickness of the inner interposition member gradually increases from the thin portion to the thick portion.

内側介在部材の厚みが薄肉部から厚肉部に向かって徐々に増す形態とすることで、内側介在部材の成形性を向上させることができる。厚みが薄肉部から厚肉部に向かって徐々に増す構成には、例えば薄肉部から厚肉部に向かって曲面で構成されていたり、傾斜面で構成されていたりすることが挙げられる。上記構成によって内側介在部材の成形性が向上するのは、内側介在部材を射出成形する際、金型における厚肉部となる部分に注入された樹脂が、薄肉部となる部分に向って流れ込み易くなるからである。 The formability of the inner intervening member can be improved by adopting a configuration in which the thickness of the inner intervening member gradually increases from the thin portion to the thick portion. Examples of the configuration in which the thickness gradually increases from the thin portion to the thick portion include, for example, a curved surface from the thin portion to the thick portion, or an inclined surface. The above-mentioned configuration improves the moldability of the inner intervening member because when the inner intervening member is injection-molded, the resin injected into the thick-walled portion of the mold easily flows into the thin-walled portion. Because it will be.

<9>実施形態に係るリアクトルの一形態として、
前記内側介在部材と前記巻回部との間に形成される前記クリアランスが、0mm超0.3mm以下である形態を挙げることができる。
<9> As one mode of the reactor according to the embodiment,
The form which the said clearance formed between the said inner side interposition member and the said winding part is more than 0 mm and 0.3 mm or less can be mentioned.

上記クリアランスが0mm超0.3mm以下であれば、リアクトルの放熱性と磁気特性をより向上させることができる。 When the clearance is more than 0 mm and 0.3 mm or less, the heat dissipation and magnetic characteristics of the reactor can be further improved.

[本願発明の実施形態の詳細]
以下、本願発明のリアクトルの実施形態を図面に基づいて説明する。図中の同一符号は同一名称物を示す。なお、本願発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
[Details of Embodiment of Present Invention]
Hereinafter, embodiments of the reactor of the present invention will be described with reference to the drawings. The same reference numerals in the drawings indicate the same names. It should be noted that the present invention is not limited to the configurations shown in the embodiments, and is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

<実施形態1>
≪全体構成≫
図1に示すリアクトル1は、コイル2と磁性コア3と絶縁介在部材4とを組み合わせた組合体10を備える。このリアクトル1の特徴の一つとして、絶縁介在部材4の一部(後述する図2,3の内側介在部材41)の形状が従来と異なることを挙げることができる。まずリアクトル1の各構成を図1,2に基づいて簡単に説明した後、内側介在部材41の形状や、内側介在部材41と、その内外に配置される磁性コア3および巻回部2A,2Bとの関係について図3〜5を参照して詳しく説明する。
<Embodiment 1>
<<Overall structure>>
The reactor 1 shown in FIG. 1 includes a combined body 10 in which a coil 2, a magnetic core 3, and an insulating interposition member 4 are combined. One of the characteristics of this reactor 1 is that the shape of a part of the insulating intervening member 4 (the inner intervening member 41 in FIGS. 2 and 3 described later) is different from the conventional one. First, each configuration of the reactor 1 will be briefly described with reference to FIGS. 1 and 2, and then, the shape of the inner interposition member 41, the inner interposition member 41, and the magnetic core 3 and the winding portions 2A and 2B arranged inside and outside thereof. The relationship with and will be described in detail with reference to FIGS.

≪コイル≫
本実施形態におけるコイル2は、並列された一対の巻回部2A,2Bと、両巻回部2A,2Bを連結する連結部2Rと、を備える。コイル2の両端部2a,2bは、巻回部2A,2Bから引き出されて、図示しない端子部材に接続される。この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置が接続される。本例のコイル2に備わる各巻回部2A,2Bは、互いに同一の巻数、同一の巻回方向で概略角筒状に形成され、各軸方向が平行になるように並列されている。各巻回部2A,2Bで巻数や巻線の断面積が異なっても良い。また、本例の連結部2Rは、各巻回部2A,2Bの巻線の端部同士を溶接や圧着などにより接合することで形成されている。このコイル2は、接合部の無い一本の巻線を螺旋状に巻回して形成しても良い。
<< coil >>
The coil 2 in the present embodiment includes a pair of winding parts 2A and 2B arranged in parallel, and a connecting part 2R connecting the winding parts 2A and 2B. Both ends 2a, 2b of the coil 2 are pulled out from the winding portions 2A, 2B and connected to a terminal member (not shown). Through this terminal member, an external device such as a power supply for supplying power to the coil 2 is connected. The winding parts 2A and 2B provided in the coil 2 of this example are formed in a substantially rectangular tube shape with the same number of turns and the same winding direction, and are arranged in parallel so that the respective axial directions are parallel to each other. The number of turns and the cross-sectional area of the windings may be different between the winding parts 2A and 2B. Further, the connecting portion 2R of this example is formed by joining the ends of the windings of the winding portions 2A and 2B to each other by welding, crimping, or the like. The coil 2 may be formed by spirally winding a single winding having no joint.

巻回部2A,2Bを含むコイル2は、銅やアルミニウム、マグネシウム、あるいはその合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線によって構成することができる。本実施形態では、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線をエッジワイズ巻きにすることで、各巻回部2A,2Bを形成している。 The coil 2 including the winding portions 2A and 2B is a covered wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a rectangular wire or a round wire made of a conductive material such as copper, aluminum, magnesium, or an alloy thereof. Can be configured by. In the present embodiment, the conductor is made of copper rectangular wire, and the coated rectangular wire whose insulating coating is made of enamel (typically polyamide imide) is edgewise wound to form the winding portions 2A and 2B. There is.

≪磁性コア≫
本例の磁性コア3は、図2に示すように、内側コア部31,31と、外側コア部32,32と、に分けることができる。内側コア部31は、コイル2の巻回部2A,2Bの内部に配置される部分であって、本例では後述する内側介在部材41の内部にあり、図2では見えない位置にある。本例の内側コア部31は、二分割されたものを組み合わせることで構成されている。ここで、内側コア部31とは、磁性コア3のうち、コイル2の巻回部2A,2Bの軸方向に沿った部分を意味する。例えば、巻回部2A,2Bの内部から端面の外側に突出している部分も、内側コア部31の一部である。この内側コア部31の全体的な概略形状は、巻回部2A(2B)の内部形状に対応した形状であって、本例の場合、略直方体状である。
≪Magnetic core≫
As shown in FIG. 2, the magnetic core 3 of this example can be divided into inner core portions 31 and 31 and outer core portions 32 and 32. The inner core portion 31 is a portion arranged inside the winding portions 2A and 2B of the coil 2, and is inside the inner interposition member 41, which will be described later in this example, and is in a position not visible in FIG. The inner core portion 31 of the present example is configured by combining two divided ones. Here, the inner core portion 31 means a portion of the magnetic core 3 along the axial direction of the winding portions 2A and 2B of the coil 2. For example, the part projecting from the inside of the winding parts 2A and 2B to the outside of the end face is also a part of the inner core part 31. The overall schematic shape of the inner core portion 31 is a shape corresponding to the internal shape of the winding portion 2A (2B), and in the case of this example, it is a substantially rectangular parallelepiped shape.

本例の内側コア部31の外周面には、凹凸形状が形成されている。この内側コア部31の外周面の凹凸形状は、後述する内側介在部材41の内周面形状に対応している。当該凹凸形状の詳しい構成については、図3〜図6を参照し、後ほど説明する。 An uneven shape is formed on the outer peripheral surface of the inner core portion 31 of this example. The uneven shape of the outer peripheral surface of the inner core portion 31 corresponds to the inner peripheral surface shape of the inner interposition member 41 described later. The detailed configuration of the concavo-convex shape will be described later with reference to FIGS.

外側コア部32は、巻回部2A,2Bの外部に配置される部分であって、一対の内側コア部31,31の端部を繋ぐ形状を備える。本例の各外側コア部32は、直方体状に形成されている。この外側コア部32の下面は、コイル2の巻回部2A,2Bの下面とほぼ面一になっている(図1参照)。もちろん、両下面は面一となっていなくても構わない。 The outer core portion 32 is a portion arranged outside the winding portions 2A and 2B, and has a shape that connects the end portions of the pair of inner core portions 31 and 31. Each outer core portion 32 of this example is formed in a rectangular parallelepiped shape. The lower surface of the outer core portion 32 is substantially flush with the lower surfaces of the winding portions 2A and 2B of the coil 2 (see FIG. 1). Of course, both lower surfaces do not have to be flush with each other.

両コア部31,32は、軟磁性粉末と樹脂とを含む複合材料の成形体で構成することができる。軟磁性粉末は、鉄などの鉄族金属やその合金(Fe−Si合金、Fe−Si−Al合金、Fe−Ni合金など)などで構成される磁性粒子の集合体である。磁性粒子の表面には、リン酸塩などで構成される絶縁被覆が形成されていても良い。また、樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、ナイロン6、ナイロン66といったポリアミド(PA)樹脂、ポリイミド樹脂、フッ素樹脂などの熱可塑性樹脂などを利用できる。 Both core portions 31 and 32 can be formed of a molded body of a composite material containing soft magnetic powder and resin. The soft magnetic powder is an aggregate of magnetic particles composed of an iron group metal such as iron and its alloys (Fe-Si alloy, Fe-Si-Al alloy, Fe-Ni alloy, etc.). An insulating coating made of phosphate or the like may be formed on the surface of the magnetic particles. Examples of the resin include thermosetting resins such as epoxy resin, phenol resin, silicone resin and urethane resin, polyamide (PA) resin such as polyphenylene sulfide (PPS) resin, nylon 6 and nylon 66, polyimide resin, fluorine. A thermoplastic resin such as a resin can be used.

複合材料における軟磁性粉末の含有量は、複合材料を100%とするとき、50体積%以上80体積%以下が挙げられる。磁性体粉末が50体積%以上であることで、磁性成分の割合が十分に高いため、飽和磁束密度を高め易い。磁性体粉末が80体積%以下であると、磁性体粉末と樹脂との混合物の流動性が高く、成形性に優れた複合材料とすることができる。磁性体粉末の含有量の下限は、60体積%以上とすることが挙げられる。また、磁性体粉末の含有量の上限は、75体積%以下、更に70体積%以下とすることが挙げられる。 The content of the soft magnetic powder in the composite material may be 50% by volume or more and 80% by volume or less, based on 100% of the composite material. When the magnetic powder is 50% by volume or more, the ratio of the magnetic component is sufficiently high, so that the saturation magnetic flux density is easily increased. When the content of the magnetic powder is 80% by volume or less, the fluidity of the mixture of the magnetic powder and the resin is high, and the composite material having excellent moldability can be obtained. The lower limit of the content of the magnetic powder may be 60% by volume or more. Further, the upper limit of the content of the magnetic powder is 75% by volume or less, and further 70% by volume or less.

本例とは異なり、両コア部31,32は、軟磁性粉末を含む原料粉末を加圧成形してなる圧粉成形体で構成することもできる。軟磁性粉末には、複合材料の成形体に使用できる軟磁性粉末と同じものを利用することができる。内側コア部31と外側コア部32の一方を複合材料の成形体、他方を圧粉成形体とすることもできる。 Unlike the present example, both core portions 31 and 32 may be formed of a powder compact formed by pressure-molding a raw material powder containing soft magnetic powder. As the soft magnetic powder, the same soft magnetic powder that can be used for the molded body of the composite material can be used. One of the inner core portion 31 and the outer core portion 32 may be a molded body of a composite material, and the other may be a powder compact.

≪絶縁介在部材≫
絶縁介在部材4は、コイル2と磁性コア3との間の絶縁を確保する部材であって、巻回部2A,2Bの内周面と内側コア部31の外周面との間に介在される内側介在部材41,41と、巻回部2A,2Bの端面と外側コア部32との間に介在される端面介在部材42とで構成される。本例では、絶縁介在部材4は、内側コア部31と一体化した一対のモールドコア部材5A,5Bの形態で用いられている。本例のモールドコア部材5A,5Bは、同一形状としても良いし、巻回部2A,2Bの端部2a,2bが配置される側にあるモールドコア部材5Aと、連結部2Rが配置される側にあるモールドコア部材5Bと、で異なる形状としても良い。
<<Insulating material>>
The insulating intervening member 4 is a member that ensures insulation between the coil 2 and the magnetic core 3, and is interposed between the inner peripheral surfaces of the winding portions 2A and 2B and the outer peripheral surface of the inner core portion 31. The inner intervening members 41, 41 and the end intervening member 42 interposed between the end faces of the winding portions 2A, 2B and the outer core portion 32 are included. In this example, the insulating intervening member 4 is used in the form of a pair of mold core members 5A and 5B integrated with the inner core portion 31. The mold core members 5A and 5B of this example may have the same shape, and the mold core member 5A on the side where the ends 2a and 2b of the winding portions 2A and 2B are arranged and the connecting portion 2R are arranged. The shape may be different from that of the mold core member 5B on the side.

モールドコア部材5A,5Bは、一対の内側コア部31と、各内側コア部31の外周を覆う一対の内側介在部材41,41と、枠状の端面介在部材42と、が一体となった概略π字状の部材である。内側コア部31を金型内に配置し、金型内に樹脂を注入することで内側介在部材41と端面介在部材42を形成するモールドコア部材5A,5Bの作製においては、金型の内周面から内側コア部31を離隔させ、金型内での内側コア部31の位置を決める位置決め部材が用いられる。そのため、モールドコア部材5A,5Bでは、位置決め部材が内側介在部材41に埋設された状態、即ち位置決め部材が内側介在部材41の一部を構成した状態になる。この点に鑑み、位置決め部材は、絶縁性樹脂で構成することが好ましい。より好ましくは、内側介在部材41の熱膨張係数を揃えるために、位置決め部材を含む内側介在部材41全体を同じ種類の絶縁性樹脂で構成する。 The mold core members 5</b>A and 5</b>B are a combination of a pair of inner core portions 31, a pair of inner intervening members 41 and 41 that cover the outer circumference of each inner core portion 31, and a frame-shaped end face interposing member 42. It is a π-shaped member. In the production of the mold core members 5A and 5B in which the inner core portion 31 is arranged in the mold and the resin is injected into the mold to form the inner interposition member 41 and the end surface interposition member 42, the inner circumference of the mold A positioning member that separates the inner core portion 31 from the surface and determines the position of the inner core portion 31 in the mold is used. Therefore, in the mold core members 5A and 5B, the positioning member is embedded in the inner interposition member 41, that is, the positioning member constitutes a part of the inner interposition member 41. In view of this point, the positioning member is preferably made of an insulating resin. More preferably, in order to make the coefficient of thermal expansion of the inner interposition member 41 uniform, the entire inner interposition member 41 including the positioning member is made of the same type of insulating resin.

端面介在部材42のコイル2側の面には、巻回部2A,2Bの軸方向端部を収納する二つのターン収納部42s(特にモールドコア部材5Bを参照)が形成されている。ターン収納部42sは、巻回部2A,2Bの軸方向端面の形状に沿った凹みであって、当該端面全体を端面介在部材42に面接触させるために形成されている。また、端面介在部材42のコイル2側の面には、巻回部2A,2Bの間に配置され、巻回部2A,2Bを離隔させる仕切り部42dが設けられている。 On the surface of the end surface interposing member 42 on the coil 2 side, two turn accommodating portions 42s (especially see the mold core member 5B) for accommodating the axial ends of the winding portions 2A and 2B are formed. The turn accommodating portion 42s is a recess along the shape of the axial end faces of the winding portions 2A and 2B, and is formed to bring the entire end face into surface contact with the end face interposing member 42. Further, a partition portion 42d that is arranged between the winding portions 2A and 2B and that separates the winding portions 2A and 2B is provided on the surface of the end face interposing member 42 on the coil 2 side.

ここで、本例のモールドコア部材5A,5Bでは、内側介在部材41,41と端面介在部材42とが一体に成形されており、モールドコア部材5Aの二点鎖線で示す部分は、内側介在部材41,41である。 Here, in the mold core members 5A and 5B of this example, the inner intervening members 41 and 41 and the end face interposing member 42 are integrally molded, and the portion indicated by the two-dot chain line of the mold core member 5A is the inner interposing member. 41 and 41.

上記構成を備える絶縁介在部材4は、例えば、PPS樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6やナイロン66といったPA樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などの熱可塑性樹脂で構成することができる。その他、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの熱硬化性樹脂などで絶縁介在部材4を形成することができる。上記樹脂にセラミックスフィラーを含有させて、絶縁介在部材4の放熱性を向上させても良い。セラミックスフィラーとしては、例えば、アルミナやシリカなどの非磁性粉末を利用することができる。 The insulating intervening member 4 having the above-described configuration is, for example, PPS resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), PA resin such as nylon 6 or nylon 66, polybutylene terephthalate (PBT) resin, acrylonitrile butadiene. It can be composed of a thermoplastic resin such as styrene (ABS) resin. Alternatively, the insulating intervening member 4 can be formed of a thermosetting resin such as unsaturated polyester resin, epoxy resin, urethane resin, or silicone resin. The resin may contain a ceramics filler to improve the heat dissipation of the insulating interposition member 4. As the ceramic filler, for example, non-magnetic powder such as alumina or silica can be used.

≪その他の構成≫
本例のリアクトル1は、ケースレスの構成であるが、ケースの内部に組合体10を配置した構成とすることもできる。
≪Other configurations≫
Although the reactor 1 of this example has a caseless structure, the combination 10 may be arranged inside the case.

≪内側介在部材と、内側コア部および巻回部との関係≫
図3は、図1における巻回部2A,2Bの軸方向に直交するIII−III断面図である。この図3では、連結部2Rの図示を省略している。また、図3では、各部材の形状やクリアランスを誇張して示している。
<<Relationship between the inner interposing member and the inner core portion and the winding portion>>
FIG. 3 is a III-III cross-sectional view orthogonal to the axial direction of the winding portions 2A and 2B in FIG. In FIG. 3, illustration of the connecting portion 2R is omitted. Further, in FIG. 3, the shape and clearance of each member are exaggerated.

図3の丸囲み拡大図に示すように、内側介在部材41は、その内周面410に複数の介在側凹部411が形成されている。内側介在部材41は、介在側凹部411により内周面410が凹むことで厚みが薄くなった薄肉部41aと、薄肉部41aよりも厚みが厚くなった厚肉部41bとを備える。 As shown in the enlarged view of the circle in FIG. 3, the inner interposition member 41 has a plurality of interposition side recesses 411 formed on the inner peripheral surface 410 thereof. The inner interposition member 41 includes a thin portion 41a having a smaller thickness due to the inner peripheral surface 410 being recessed by the interposition concave portion 411, and a thick portion 41b having a larger thickness than the thin portion 41a.

介在側凹部411の延伸方向(図3の紙面奥行き方向であって、巻回部2A,2Bの軸方向に同じ)に直交する断面における介在側凹部411の内周面形状は特に限定されない。例えば、図3に示すように、介在側凹部411の内周面形状は、半円弧状とすることもできるし、図4に示すように概略矩形状とすることもできる。その他、介在側凹部411の内周面形状は、V溝形状や蟻溝形状としても良い。 The shape of the inner peripheral surface of the interposition side recess 411 in a cross section orthogonal to the extending direction of the interposition side recess 411 (the same as the axial direction of the winding portions 2A and 2B in the paper depth direction of FIG. 3) is not particularly limited. For example, as shown in FIG. 3, the shape of the inner peripheral surface of the interposition side recess 411 can be a semi-circular shape, or can be a substantially rectangular shape as shown in FIG. In addition, the inner peripheral surface shape of the interposition side concave portion 411 may be a V groove shape or a dovetail groove shape.

薄肉部41aの厚さt1は0.2mm以上1.0mm以下、厚肉部41bの厚さt2は1.1mm以上2.5mm以下とする。ここで、薄肉部41aの厚さt1とは、図3,4に示すように、介在側凹部411の最も深い位置に対応する部分の厚さ、即ち薄肉部41aにおける最小厚さのことである。薄肉部41aの厚さt1は、従来の均一な厚さの内側介在部材の厚さ(例えば、2.5mm)よりも明らかに薄い。また、厚肉部41bの厚さt2とは、介在側凹部411が存在しない部分における最大厚さのことである。 The thickness t1 of the thin portion 41a is 0.2 mm or more and 1.0 mm or less, and the thickness t2 of the thick portion 41b is 1.1 mm or more and 2.5 mm or less. Here, the thickness t1 of the thin portion 41a is the thickness of the portion corresponding to the deepest position of the interposition side recess 411, that is, the minimum thickness of the thin portion 41a, as shown in FIGS. .. The thickness t1 of the thin portion 41a is obviously thinner than the thickness (for example, 2.5 mm) of the conventional inner intervening member having a uniform thickness. In addition, the thickness t2 of the thick portion 41b is the maximum thickness in the portion where the interposition side recess 411 does not exist.

上記構成を備える内側介在部材41を内側コア部31の外周に射出成形で作製する場合、射出成形の金型と内側コア部31との隙間(以下、金型の隙間)が広い箇所に注入された樹脂が厚肉部41b、金型の隙間が狭い箇所に注入された樹脂が薄肉部41aとなる。金型の隙間が広い部分は、金型の隙間全体に樹脂を素早く行き渡らせる機能を果たす。そのため、従来よりも厚みが薄い薄肉部41aを備えていても、所定厚さ以上の厚肉部41bを備える内側介在部材41は、設計寸法通りに作製し易く、内側コア部31の外周全体に内側介在部材41を実質的に密着した状態にできる。内側介在部材41の寸法のバラツキが小さいと、内側介在部材41と巻回部2A,2Bとの間の外側クリアランスc2が小さくなるように内側介在部材41を設計することができる。外側クリアランスc2が小さくなるようにしても、内側介在部材41の寸法精度が高いため、巻回部2A,2Bに内側介在部材41を挿入できないといった不具合が生じ難い。 When the inner interposition member 41 having the above-described configuration is formed on the outer periphery of the inner core portion 31 by injection molding, the gap between the injection molding die and the inner core portion 31 (hereinafter, the die gap) is injected into a wide area. The thick resin portion 41b serves as the thick portion 41b, and the resin injected into the portion having a narrow gap between the molds serves as the thin portion 41a. The wide gap between the molds serves to quickly spread the resin throughout the gap between the molds. Therefore, even if the inner intervening member 41 including the thin-walled portion 41a having a smaller thickness than the conventional one is provided with the thick-walled portion 41b having a predetermined thickness or more, the inner intervening member 41 can be easily manufactured according to the design dimension, and the entire inner periphery of the inner core portion 31 The inner interposition member 41 can be brought into a substantially close contact state. If the dimensional variation of the inner intervening member 41 is small, the inner intervening member 41 can be designed so that the outer clearance c2 between the inner intervening member 41 and the winding portions 2A and 2B becomes small. Even if the outer clearance c2 is reduced, the dimensional accuracy of the inner interposition member 41 is high, and therefore the problem that the inner interposition member 41 cannot be inserted into the winding portions 2A and 2B hardly occurs.

内側介在部材41の成形性を考慮し、複数の介在側凹部411は、内側介在部材41の内周面410の周方向に分散して存在することが好ましい。この構成は言い換えれば、厚肉部41bと薄肉部41aとが、内側介在部材41の周方向に分散して複数存在する構成である。この内側介在部材41を作製する金型では、金型における樹脂を注入する隙間の周方向に隙間が狭い部分と隙間が広い部分が交互に並んだ状態になっている。このような金型であれば、樹脂を注入する際に金型の隙間全体に樹脂が行き渡り易く、寸法のバラツキが小さい内側介在部材41を作製し易い。特に、本例のように、薄肉部41aと厚肉部41bが内側介在部材41の軸方向に沿った構成であれば、成形時の金型内への樹脂の充填が一層容易である。 Considering the formability of the inner interposition member 41, it is preferable that the plurality of interposition side recesses 411 are dispersed and exist in the circumferential direction of the inner peripheral surface 410 of the inner interposition member 41. In other words, this configuration is a configuration in which there are a plurality of thick-walled portions 41b and thin-walled portions 41a dispersed in the circumferential direction of the inner interposition member 41. In the mold for manufacturing the inner interposition member 41, a portion having a narrow gap and a portion having a wide gap are alternately arranged in the circumferential direction of the gap for injecting the resin in the mold. With such a mold, when the resin is injected, the resin easily spreads over the entire gap of the mold, and it is easy to manufacture the inner interposition member 41 having small dimensional variation. In particular, if the thin portion 41a and the thick portion 41b are arranged along the axial direction of the inner interposition member 41 as in this example, it is easier to fill the resin into the mold during molding.

また、内側介在部材41の成形性を考慮し、少なくとも一部の厚肉部41bが、巻回部2A,2Bの軸方向における内側介在部材41の端面に達していることが好ましい。全部の厚肉部41bが、図2に示す内側介在部材41の端面に達していることが好ましい。射出成形で内側介在部材41を作製する場合、金型における内側介在部材41の端面となる位置から樹脂を注入することが多い。この場合、樹脂の入口となる位置の金型の隙間が大きいと、内側介在部材41の成形性が向上する。つまり、内側介在部材41の端面に達する厚肉部41bを備える内側介在部材41は、成形性に優れ、薄肉部41aの厚みが薄くても精度良く作製することができる。 Further, in consideration of the formability of the inner interposition member 41, it is preferable that at least a part of the thick portion 41b reaches the end surface of the inner interposition member 41 in the axial direction of the winding portions 2A and 2B. It is preferable that the entire thick portion 41b reaches the end surface of the inner interposition member 41 shown in FIG. When the inner interposition member 41 is manufactured by injection molding, resin is often injected from a position which is an end surface of the inner interposition member 41 in the mold. In this case, if the gap between the molds at the resin inlet is large, the moldability of the inner interposition member 41 is improved. That is, the inner interposition member 41 including the thick portion 41b reaching the end surface of the inner interposition member 41 has excellent formability and can be accurately manufactured even if the thin portion 41a has a small thickness.

一方、上記内側介在部材41の内部に配置される内側コア部31は、その外周面(コア外周面319)に形成されるコア側凸部311を備える(図5を合わせて参照)。本例では内側コア部31に内側介在部材41をモールドするため、内側介在部材41の内周面410に形成される介在側凹部411は、コア側凸部311に対応する形状に形成される。既に述べたように、介在側凹部411が形成される内側介在部材41の薄肉部41aは、従来の厚さが均一な内側介在部材よりも薄い。そのため、介在側凹部411に配置されるコア側凸部311を備える内側コア部31の磁路断面積は、コア側凸部311の分だけ、確実に従来の内側コア部よりも大きくなる。 On the other hand, the inner core portion 31 arranged inside the inner interposition member 41 includes a core-side convex portion 311 formed on its outer peripheral surface (core outer peripheral surface 319) (see also FIG. 5). In this example, since the inner core member 31 is molded with the inner interposition member 41, the interposition side recess 411 formed on the inner peripheral surface 410 of the inner interposition member 41 is formed in a shape corresponding to the core side projection 311. As described above, the thin portion 41a of the inner interposition member 41 in which the interposition side recess 411 is formed is thinner than the conventional inner interposition member having a uniform thickness. Therefore, the magnetic path cross-sectional area of the inner core portion 31 including the core-side convex portion 311 arranged in the intervening-side concave portion 411 is certainly larger than that of the conventional inner core portion by the core-side convex portion 311.

内側介在部材41の外周面419は、巻回部2A,2Bの内周面形状に沿った形状とすることが好ましい。そうすることで、内側介在部材41の外周面419と、巻回部2A,2Bのコイル内周面210との外側クリアランスc2を小さくし易い。具体的には、外側クリアランスc2を0mm超0.3mm以下とし易い。外側クリアランスc2を小さくできることで、内側コア部31から巻回部2A,2Bまでの距離を小さくでき、内側コア部31から巻回部2A,2Bへの放熱性を向上させることができ、かつ内側コア部31の磁路断面積を大きくできる。巻回部2A,2Bの内部への内側介在部材41の挿入のし易さ、内側コア部31から巻回部2A,2Bへの放熱性の向上効果、および内側コア部31の磁路断面積の増加効果を考慮して、外側クリアランスc2は、0.2mm以下、更には0.1mm以下とすることが好ましい。 It is preferable that the outer peripheral surface 419 of the inner interposition member 41 has a shape along the inner peripheral surface shape of the winding portions 2A and 2B. By doing so, it is easy to reduce the outer clearance c2 between the outer peripheral surface 419 of the inner interposing member 41 and the coil inner peripheral surfaces 210 of the winding portions 2A and 2B. Specifically, it is easy to set the outer clearance c2 to more than 0 mm and 0.3 mm or less. By making the outer clearance c2 small, the distance from the inner core portion 31 to the winding portions 2A, 2B can be made small, the heat dissipation from the inner core portion 31 to the winding portions 2A, 2B can be improved, and the inner side can be improved. The magnetic path cross-sectional area of the core portion 31 can be increased. Ease of inserting the inner interposition member 41 into the winding portions 2A and 2B, an effect of improving heat dissipation from the inner core portion 31 to the winding portions 2A and 2B, and a magnetic path cross-sectional area of the inner core portion 31. The outer clearance c2 is preferably 0.2 mm or less, and more preferably 0.1 mm or less in consideration of the effect of increasing the above.

[より好ましい構成]
厚肉部41bに対応する金型の隙間が広い部分が、内側介在部材41の成形性を良好にすることを考慮して、薄肉部41aの厚さt1と厚肉部41bの厚さt2との差(厚さt2−厚さt1)を0.2mm以上とすることが好ましい。薄肉部41aと厚肉部41bを具体的な数値で規定するなら、薄肉部41aの厚さt1が0.2mm以上0.7mm以下、厚肉部41bの厚さt2が1.1mm以上2.0mm以下とすることが好ましく、薄肉部41aの厚さt1が0.2mm以上0.5mm以下、厚肉部41bの厚さt2が1.1mm以上2.0mm以下とすることがより好ましい。
[More preferable configuration]
In consideration of improving the moldability of the inner interposition member 41, the portion of the mold having a wide gap corresponding to the thick portion 41b has a thickness t1 of the thin portion 41a and a thickness t2 of the thick portion 41b. It is preferable that the difference (thickness t2−thickness t1) is 0.2 mm or more. If the thin portion 41a and the thick portion 41b are specified by specific numerical values, the thickness t1 of the thin portion 41a is 0.2 mm or more and 0.7 mm or less, and the thickness t2 of the thick portion 41b is 1.1 mm or more.2. The thickness t1 of the thin portion 41a is preferably 0.2 mm or more and 0.5 mm or less, and the thickness t2 of the thick portion 41b is preferably 1.1 mm or more and 2.0 mm or less.

薄肉部41aから厚肉部41bに向って徐々に内側介在部材41の厚みが増す形態とすることで、内側介在部材41の成形性を向上させることができる。内側介在部材41を射出成形する際、金型における厚肉部41bとなる部分に注入された樹脂が、薄肉部41aとなる部分に流れ込み易くなるからである。上記形態の具体例として、例えば、図3,4に示すように、薄肉部41aの幅方向縁部(厚肉部41bがある方向の縁部)を、内側介在部材41の外方側に凹となる丸みを帯びた形状とすることが挙げられる。さらに、厚肉部41bの幅方向縁部(薄肉部41aがある方向の縁部)を、内側介在部材41の外方側に凸となる丸みを帯びた形状とすることも好ましい。上記幅方向縁部は円弧状とすることができ、その場合、円弧の曲率半径は0.05mm以上20mm以下、更には0.1mm以上10mm以下とすることができる。円弧の曲率半径が大きいと、図3に示すように薄肉部41aの幅方向縁部と厚肉部41bの幅方向縁部とが繋がったようになり、内側介在部材41の内周面410が波形形状となる。円弧の曲率半径が小さいと、図4に示すように、内側介在部材41の内周面410は、角が丸い矩形溝状の介在側凹部411が並んだ形状となる。その他、角が丸いV字溝状の介在側凹部411が並んだ形状としても構わない。 The formability of the inner interposition member 41 can be improved by adopting a form in which the thickness of the inner interposition member 41 gradually increases from the thin portion 41a to the thick portion 41b. This is because when the inner interposition member 41 is injection-molded, the resin injected into the portion that becomes the thick portion 41b of the mold easily flows into the portion that becomes the thin portion 41a. As a specific example of the above-described embodiment, as shown in FIGS. 3 and 4, for example, the width direction edge portion of the thin portion 41a (the edge portion in the direction in which the thick portion 41b is present) is recessed to the outside of the inner interposition member 41. The rounded shape is as follows. Further, it is also preferable that the widthwise edge of the thick portion 41b (the edge in the direction in which the thin portion 41a is present) has a rounded shape that is convex toward the outside of the inner interposition member 41. The widthwise edge can be arcuate, and in that case, the radius of curvature of the arc can be 0.05 mm or more and 20 mm or less, and further 0.1 mm or more and 10 mm or less. When the radius of curvature of the arc is large, the widthwise edge of the thin portion 41a and the widthwise edge of the thick portion 41b are connected to each other as shown in FIG. It has a wavy shape. When the radius of curvature of the arc is small, as shown in FIG. 4, the inner peripheral surface 410 of the inner interposition member 41 has a shape in which intervening recesses 411 in the form of rectangular grooves with rounded corners are arranged. In addition, the intervening recesses 411 having V-shaped grooves with rounded corners may be arranged side by side.

内側コア部31の外周に内側介在部材41をモールドする構成では、内側コア部31は、図5に示すように、コア外周面319に形成される複数のコア側凸部311を備える形態とすることが好ましい。図5のコア側凸部311は、内側コア部31の軸方向に沿った突条に形成されており、各コア側凸部311は、コア外周面319の周方向に所定の間隔を空けて配置されている。このような内側コア部31であれば、内側コア部31の端面側から樹脂をモールドする際、コア外周面319全体に樹脂が行き渡り易い。コア側凸部311の間に形成される溝部が、内側コア部31の軸方向への樹脂の移動を円滑にし、溝部の位置からコア側凸部311の外周にも樹脂が行き渡るからである。この内側コア部31を用いた場合、内側介在部材41の介在側凹部411は、内側介在部材41の軸方向(巻回部2A,2Bの軸方向に同じ)における一端側の端面から他端側の端面に及ぶ形状となる。 In the configuration in which the inner interposition member 41 is molded on the outer periphery of the inner core portion 31, the inner core portion 31 is configured to include a plurality of core-side convex portions 311 formed on the core outer peripheral surface 319, as shown in FIG. It is preferable. The core-side convex portion 311 of FIG. 5 is formed in a protrusion along the axial direction of the inner core portion 31, and each core-side convex portion 311 is spaced at a predetermined interval in the circumferential direction of the core outer peripheral surface 319. It is arranged. With such an inner core portion 31, when the resin is molded from the end surface side of the inner core portion 31, the resin easily spreads over the entire outer peripheral surface 319 of the core. This is because the groove portion formed between the core-side convex portions 311 facilitates the movement of the resin in the axial direction of the inner core portion 31, and the resin also spreads from the position of the groove portion to the outer periphery of the core-side convex portion 311. When this inner core portion 31 is used, the interposition side concave portion 411 of the inner interposition member 41 extends from the end surface on one end side to the other end side in the axial direction of the inner interposition member 41 (same as the axial direction of the winding portions 2A and 2B). The shape extends to the end face of.

図6に示すような内側コア部31に対応する内周面を備える内側介在部材とすることもできる。図6の内側コア部31は、内側コア部31の軸方向の一端側のコア側凸部311と、他端側のコア側凸部311とが、内側コア部31の周方向にズレた構成を備える。この内側コア部31の両端面側から樹脂を注入する場合、図5の構成と同様の理由で、内側コア部31のコア外周面319全体に樹脂が行き渡り易い。その他、コア側凸部311をさらに内側コア部31の軸方向に延長し、一端側の周方向に隣接するコア側凸部311の間の溝と、他端側の周方向に隣接するコア側凸部311の間の溝とが噛み合うようにしていても構わない。 It is also possible to use an inner interposition member having an inner peripheral surface corresponding to the inner core portion 31 as shown in FIG. In the inner core portion 31 of FIG. 6, the core-side convex portion 311 on one end side in the axial direction of the inner core portion 31 and the core-side convex portion 311 on the other end side are displaced in the circumferential direction of the inner core portion 31. Equipped with. When the resin is injected from both end surfaces of the inner core portion 31, the resin is easily spread over the entire core outer peripheral surface 319 of the inner core portion 31 for the same reason as in the configuration of FIG. In addition, the core-side convex portion 311 is further extended in the axial direction of the inner core portion 31, and the groove between the core-side convex portions 311 adjacent to the circumferential direction on one end side and the core side adjacent to the circumferential direction on the other end side. The grooves between the convex portions 311 may be engaged with each other.

≪リアクトルの製造方法≫
実施形態1のリアクトル1は、コイル2、モールドコア部材5A,5B、および外側コア部32,32を別個に作製し、組み合わせることで作製することができる。具体的には、コイル2の巻回部2A,2Bの内部に、モールドコア部材5A,5Bの内側介在部材41,41を挿入すると共に、モールドコア部材5A,5Bの端面介在部材42の外側に外側コア部32,32を配置する。外側コア部32は、接着剤などで端面介在部材42に接合することができる。
≪Reactor manufacturing method≫
The reactor 1 of the first embodiment can be manufactured by separately manufacturing the coil 2, the mold core members 5A and 5B, and the outer core portions 32 and 32 and combining them. Specifically, the inside intervening members 41, 41 of the mold core members 5A, 5B are inserted into the winding portions 2A, 2B of the coil 2 and the outside of the end face interposing member 42 of the mold core members 5A, 5B is inserted. The outer core portions 32, 32 are arranged. The outer core portion 32 can be joined to the end face interposing member 42 with an adhesive or the like.

<変形例1−1>
磁性コア3と絶縁介在部材4の分割状態は、実施形態1の例示に限定されるわけではない。例えば、約半分の長さの一対の内側コア部31と、一つの外側コア部32と、を絶縁介在部材4の材料でモールドした概略π字状の一対のモールドコア部材を用いても構わない。また、巻回部2A(2B)の全長にわたる一つの内側コア部31と、一つの外側コア部32と、を絶縁介在部材4の材料でモールドした概略L字状の一対のモールドコア部材を用いても構わない。その他、巻回部2A(2B)の全長にわたる内側コア部31を内側介在部材41でモールドした部材を二つ用意し、それに二つの外側コア部32を組み合わせて、磁性コア3と絶縁介在部材4とを構成することもできる。
<Modification 1-1>
The divided state of the magnetic core 3 and the insulating interposition member 4 is not limited to the example of the first embodiment. For example, a pair of approximately π-shaped mold core members obtained by molding a pair of inner core portions 31 and one outer core portion 32 having a length of about half with the material of the insulating interposition member 4 may be used. .. In addition, a pair of generally L-shaped mold core members obtained by molding one inner core portion 31 and one outer core portion 32 over the entire length of the winding portion 2A (2B) with the material of the insulating interposition member 4 are used. It doesn't matter. In addition, two members obtained by molding the inner core portion 31 over the entire length of the winding portion 2A (2B) with the inner interposition member 41 are prepared, and the two outer core portions 32 are combined therewith to form the magnetic core 3 and the insulating interposition member 4. And can also be configured.

<変形例1−2>
実施形態1のモールドコア部材とは異なり、内側介在部材41を射出成形で形成した後、その内側介在部材41に内側コア部31を圧入した圧入コア部材を用いることもできる。内側介在部材41に内側コア部31を圧入する構成であれば、内側コア部31と内側介在部材41との間のクリアランスをほぼ0mmとすることができる、即ち内側コア部31と内側介在部材41とが実質的に密着した状態とすることができる。このように、内側介在部材41に後から内側コア部31を圧入できるのは、内側介在部材41が薄肉部41aと厚肉部41bとで構成されているため、内側介在部材41を寸法精度良く作製することができるからである。
<Modification 1-2>
Unlike the mold core member of the first embodiment, it is also possible to use a press-fit core member in which the inner intervening member 41 is formed by injection molding and then the inner core portion 31 is press-fit into the inner interposing member 41. If the inner core portion 31 is press-fitted into the inner interposition member 41, the clearance between the inner core portion 31 and the inner interposition member 41 can be set to approximately 0 mm, that is, the inner core portion 31 and the inner interposition member 41. And can be in a state of being substantially in close contact with each other. In this way, the inner core portion 31 can be press-fitted into the inner interposition member 41 afterward because the inner interposition member 41 is made up of the thin portion 41a and the thick portion 41b, so that the inner interposition member 41 can be dimensioned with high dimensional accuracy. This is because it can be manufactured.

<実施形態2>
実施形態1では、コイル2が一対の巻回部2A,2Bを備える形態を説明した。これに対して、一つの巻回部を有するコイルを備えるリアクトルにおいても、実施形態1と同様の構成を採用することができる。
<Embodiment 2>
In the first embodiment, the coil 2 includes the pair of winding portions 2A and 2B. On the other hand, also in a reactor including a coil having one winding portion, the same configuration as that of the first embodiment can be adopted.

一つの巻回部を有するコイルを利用する場合、磁性コアは、上面視したときの形状が概略E字状の二つのモールドコア部材を組み合わせて構成すると良い。この場合、モールドコア部材のE字の真ん中の突出部が、巻回部の内部に挿入されて内側コア部が形成される。また、モールドコア部材のE字の真ん中の突出部以外の部分で、外側コア部が形成される。言うまでもないが、磁性コアや絶縁介在部材の分割状態は、E字型に限定されるわけではない。 When a coil having one winding portion is used, the magnetic core may be configured by combining two mold core members having a substantially E-shape when viewed from above. In this case, the E-shaped middle protruding portion of the mold core member is inserted into the winding portion to form the inner core portion. Further, the outer core portion is formed in a portion other than the E-shaped middle protruding portion of the mold core member. Needless to say, the divided state of the magnetic core and the insulating interposition member is not limited to the E shape.

<用途>
実施形態のリアクトルは、ハイブリッド自動車や電気自動車、燃料電池自動車といった電動車両に搭載される双方向DC−DCコンバータなどの電力変換装置に利用することができる。
<Use>
The reactor of the embodiment can be used for a power conversion device such as a bidirectional DC-DC converter mounted on an electric vehicle such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.

1 リアクトル
10 組合体
2 コイル
2A,2B 巻回部 2R 連結部 2a,2b 端部
210 コイル内周面
3 磁性コア
31 内側コア部 32 外側コア部 311 コア側凸部
319 コア外周面
4 絶縁介在部材
41 内側介在部材
410 内周面 411 介在側凹部 419 外周面
41a 薄肉部 41b 厚肉部
42 端面介在部材 42d 仕切り部 42s ターン収納部
5A,5B モールドコア部材
c2 外側クリアランス
DESCRIPTION OF SYMBOLS 1 reactor 10 combination 2 coil 2A, 2B winding part 2R connecting part 2a, 2b end part 210 coil inner peripheral surface 3 magnetic core 31 inner core part 32 outer core part 311 core side convex part 319 core outer peripheral surface 4 insulating intervening member 41 inner interposed member 410 inner peripheral surface 411 intervening concave portion 419 outer peripheral surface 41a thin portion 41b thick portion 42 end face intervening member 42d partition portion 42s turn accommodating portion 5A, 5B mold core member c2 outer clearance

Claims (9)

巻回部を有するコイルと、
前記巻回部の内部に配置される内側コア部を有する磁性コアと、
前記巻回部と前記内側コア部との間の絶縁を確保する内側介在部材と、を備えるリアクトルであって、
前記内側介在部材は、その内周面側が凹むことで厚みが薄くなった薄肉部と、前記薄肉部よりも厚みが厚くなった厚肉部と、を備え、
前記内側コア部は、前記内側介在部材に対向する外周面に、前記薄肉部の内周面形状に沿った形状を有するコア側凸部を備え、
前記薄肉部の厚さが0.2mm以上1.0mm以下、前記厚肉部の厚さが1.1mm以上2.5mm以下で、
前記内側コア部と前記内側介在部材とが実質的に密着し、
前記内側介在部材と前記巻回部との間の少なくとも一部にクリアランスがあるリアクトル。
A coil having a winding portion,
A magnetic core having an inner core portion arranged inside the winding portion;
A reactor including an inner intervening member that secures insulation between the winding portion and the inner core portion,
The inner intervening member includes a thin-walled portion whose thickness is reduced by recessing the inner peripheral surface side thereof, and a thick-walled portion whose thickness is thicker than the thin-walled portion,
The inner core portion is provided with a core-side convex portion having a shape along the inner peripheral surface shape of the thin portion on the outer peripheral surface facing the inner interposing member,
The thickness of the thin portion is 0.2 mm or more and 1.0 mm or less, the thickness of the thick portion is 1.1 mm or more and 2.5 mm or less,
The inner core portion and the inner interposition member substantially come into close contact with each other,
A reactor having a clearance at least at a part between the inner interposition member and the winding portion.
前記内側介在部材が、前記内側コア部の外部にモールドされた樹脂によって構成されている請求項1に記載のリアクトル。 The reactor according to claim 1, wherein the inner intervening member is made of a resin molded outside the inner core portion. 前記薄肉部の厚さと前記厚肉部の厚さとの差が0.2mm以上である請求項1または請求項2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein a difference between the thickness of the thin portion and the thickness of the thick portion is 0.2 mm or more. 前記薄肉部の厚さが0.2mm以上0.7mm以下、前記厚肉部の厚さが1.1mm以上2.0mm以下である請求項1から請求項3のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 3, wherein the thin portion has a thickness of 0.2 mm or more and 0.7 mm or less, and the thick portion has a thickness of 1.1 mm or more and 2.0 mm or less. .. 前記厚肉部と前記薄肉部は、前記内側介在部材の周方向に分散して複数存在する請求項1から請求項4のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 4, wherein a plurality of the thick-walled portions and the thin-walled portions are dispersed in the circumferential direction of the inner intervening member. 少なくとも一部の前記厚肉部は、前記巻回部の軸方向における前記内側介在部材の端面に達している請求項1から請求項5のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 5, wherein at least a part of the thick portion reaches an end surface of the inner intervening member in the axial direction of the winding portion. 前記内側介在部材の外周面は、前記巻回部の内周面に沿った形状である請求項1から請求項6のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 6, wherein an outer peripheral surface of the inner intervening member has a shape along the inner peripheral surface of the winding portion. 前記薄肉部から前記厚肉部に向かって徐々に前記内側介在部材の厚みが増す請求項1から請求項7のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 7, wherein the thickness of the inner interposition member gradually increases from the thin portion to the thick portion. 前記内側介在部材と前記巻回部との間に形成される前記クリアランスが、0mm超0.3mm以下である請求項1から請求項8のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 8, wherein the clearance formed between the inner interposition member and the winding portion is more than 0 mm and 0.3 mm or less.
JP2020080888A 2020-05-01 2020-05-01 Reactor Active JP6881652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020080888A JP6881652B2 (en) 2020-05-01 2020-05-01 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020080888A JP6881652B2 (en) 2020-05-01 2020-05-01 Reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017035999A Division JP2018142624A (en) 2017-02-28 2017-02-28 Reactor

Publications (2)

Publication Number Publication Date
JP2020120136A true JP2020120136A (en) 2020-08-06
JP6881652B2 JP6881652B2 (en) 2021-06-02

Family

ID=71891243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020080888A Active JP6881652B2 (en) 2020-05-01 2020-05-01 Reactor

Country Status (1)

Country Link
JP (1) JP6881652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023094806A (en) * 2021-12-24 2023-07-06 株式会社タムラ製作所 Reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019402A (en) * 2005-07-11 2007-01-25 Denso Corp Coil-sealing resin-molded reactor, and manufacturing method thereof
JP2007027185A (en) * 2005-07-12 2007-02-01 Denso Corp Coil-sealing resin-forming reactor and its manufacturing method
JP2010212632A (en) * 2009-03-12 2010-09-24 Denso Corp Reactor
JP2013062389A (en) * 2011-09-14 2013-04-04 Nippon Soken Inc Reactor
JP2016149453A (en) * 2015-02-12 2016-08-18 株式会社オートネットワーク技術研究所 Core piece for reactor, method of manufacturing core piece for reactor, and reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019402A (en) * 2005-07-11 2007-01-25 Denso Corp Coil-sealing resin-molded reactor, and manufacturing method thereof
JP2007027185A (en) * 2005-07-12 2007-02-01 Denso Corp Coil-sealing resin-forming reactor and its manufacturing method
JP2010212632A (en) * 2009-03-12 2010-09-24 Denso Corp Reactor
JP2013062389A (en) * 2011-09-14 2013-04-04 Nippon Soken Inc Reactor
JP2016149453A (en) * 2015-02-12 2016-08-18 株式会社オートネットワーク技術研究所 Core piece for reactor, method of manufacturing core piece for reactor, and reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023094806A (en) * 2021-12-24 2023-07-06 株式会社タムラ製作所 Reactor
JP7377250B2 (en) 2021-12-24 2023-11-09 株式会社タムラ製作所 reactor

Also Published As

Publication number Publication date
JP6881652B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6624520B2 (en) Reactor
CN110301020B (en) Electric reactor
JP2017199890A (en) Reactor
WO2015186674A1 (en) Reactor
CN110326069B (en) Electric reactor
JP6881652B2 (en) Reactor
JP6611081B2 (en) Reactor
CN113287179B (en) Electric reactor
JP7089672B2 (en) Reactor
CN111344822B (en) Electric reactor
JP7169108B2 (en) Reactor
US11923121B2 (en) Reactor
WO2019230458A1 (en) Reactor
JP2019153772A (en) Reactor
WO2017187925A1 (en) Reactor
JP6899999B2 (en) Reactor
CN112970080B (en) Electric reactor
WO2019171940A1 (en) Reactor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250