JP2020120128A - Composite substrate - Google Patents

Composite substrate Download PDF

Info

Publication number
JP2020120128A
JP2020120128A JP2020076868A JP2020076868A JP2020120128A JP 2020120128 A JP2020120128 A JP 2020120128A JP 2020076868 A JP2020076868 A JP 2020076868A JP 2020076868 A JP2020076868 A JP 2020076868A JP 2020120128 A JP2020120128 A JP 2020120128A
Authority
JP
Japan
Prior art keywords
intervening layer
composite substrate
substrate
piezoelectric material
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020076868A
Other languages
Japanese (ja)
Inventor
昌次 秋山
Shoji Akiyama
昌次 秋山
省三 白井
Shozo Shirai
省三 白井
丹野 雅行
Masayuki Tanno
雅行 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020076868A priority Critical patent/JP2020120128A/en
Publication of JP2020120128A publication Critical patent/JP2020120128A/en
Pending legal-status Critical Current

Links

Abstract

To provide a composite substrate capable of maintaining high resistance after processing at 300°C, and a method of manufacturing the composite substrate.SOLUTION: A composite substrate according to the present invention is manufactured by bonding a silicon (Si) wafer as a support substrate having interstitial oxygen concentration of 2 to 10 ppma to a piezoelectric material substrate and thinning the piezoelectric material substrate after bonding. The piezoelectric material substrate is particularly preferably a lithium tantalate wafer (LT) substrate or a lithium niobate (LN) substrate.SELECTED DRAWING: Figure 1

Description

本発明は、表面弾性波(SAW)デバイス等に用いられる複合基板および複合基板の製造方法に関する。 The present invention relates to a composite substrate used for a surface acoustic wave (SAW) device or the like and a method for manufacturing the composite substrate.

近年、スマートフォンに代表される移動体通信の市場において、通信量が急激に増大している。これに対応するため、必要なバンド数を増やすとともに、必然的に各種部品の小型化、高性能化が重要になってきている。 In recent years, in the mobile communication market represented by smartphones, the amount of communication has been rapidly increasing. In order to cope with this, it is inevitably important to increase the number of bands required and to miniaturize and improve the performance of various parts.

一般的な圧電材料であるタンタル酸リチウム(Lithium Tantalate:LTと略称されることもあり)やニオブ酸リチウム(Lithium Niobate:LNと略称されることもあり)は、表面弾性波(SAW)デバイスの材料として広く用いられている。これらの材料は大きな電気機械結合係数を有し、広帯域化が可能である反面、温度安定性が低く、温度変化によって対応できる周波数がシフトしてしまうという問題点を有する。これはタンタル酸リチウムやニオブ酸リチウムが非常に高い熱膨張係数を有することに起因する。 Common piezoelectric materials such as lithium tantalate (sometimes abbreviated as LT) and lithium niobate (sometimes abbreviated as LN) are used in surface acoustic wave (SAW) devices. Widely used as a material. These materials have a large electromechanical coupling coefficient and can be used for a wide band, but have low temperature stability and have a problem that the frequency that can be handled shifts due to temperature change. This is because lithium tantalate or lithium niobate has a very high coefficient of thermal expansion.

この問題を低減するために、タンタル酸リチウムやニオブ酸リチウムに、より小さな熱膨張係数を有する材料、具体的にはサファイアを貼り合わせ、タンタル酸リチウムやニオブ酸リチウムのウェーハを研削などで数μm〜数十μmに薄化することで、熱膨張を抑え、温度特性を改善する方法が提案されている(例えば、非特許文献1参照)。図5は、各種材料の熱膨張係数を対比して示すグラフである。この中でシリコンは熱膨張係数も小さく、且つ劈開などもしやすく、熱伝導性も高く、加工性にも優れていることからバランスの取れた優れた選択の様に見受けられる。 In order to reduce this problem, lithium tantalate or lithium niobate is bonded with a material having a smaller thermal expansion coefficient, specifically sapphire, and a wafer of lithium tantalate or lithium niobate is ground to several μm. A method has been proposed in which thermal expansion is suppressed and temperature characteristics are improved by thinning the thickness to tens of micrometers (for example, see Non-Patent Document 1). FIG. 5 is a graph showing the thermal expansion coefficients of various materials for comparison. Among them, silicon has a small coefficient of thermal expansion, is easy to be cleaved, has high thermal conductivity, and is excellent in workability, and thus seems to be a well-balanced and excellent choice.

しかしこの方法にも問題がある。シリコン(Si)は図5に示した他の材料(石英、サファイアなど)の様に絶縁体ではない。このため、薄化したLT等の圧電材料の支持基板にSiを用いるとある程度の誘電損失が発生する。この誘電損失はQ値(共振尖鋭度)などの特性を劣化させる。誘電損失を抑えるためにはSi基板の抵抗率を極力高くする必要がある。Si基板の抵抗率を高くするには、その製造過程でSi結晶に混入する酸素の量を極力減らすことが重要である。通常のSiはCZ法(Czochralski法)で製造され、この際、石英坩堝に溶融したSiから単結晶インゴットを引き上げる。このとき石英坩堝から酸素が混入することを完全に防ぐことは困難である。 However, this method also has problems. Silicon (Si) is not an insulator like the other materials (quartz, sapphire, etc.) shown in FIG. Therefore, when Si is used for the supporting substrate made of a thinned piezoelectric material such as LT, some dielectric loss occurs. This dielectric loss deteriorates characteristics such as Q value (resonance sharpness). In order to suppress the dielectric loss, it is necessary to maximize the resistivity of the Si substrate. In order to increase the resistivity of the Si substrate, it is important to reduce the amount of oxygen mixed in the Si crystal during the manufacturing process as much as possible. Ordinary Si is manufactured by the CZ method (Czochralski method). At this time, a single crystal ingot is pulled up from Si melted in a quartz crucible. At this time, it is difficult to completely prevent mixing of oxygen from the quartz crucible.

このことから、高抵抗Siを製造するには、成長に石英坩堝を用いないFZ法(Floating Zone法)が望ましいように思われる。しかしFZ法には、大口径化が難しい(最大でも150mmΦ)、通常のCZ法と比較して生産性が低い、といった問題点がある。また、製造工程の生産性だけでなく、材料に不純物の少ないポリシリコンを厳選しなければならないという供給の問題点も、FZ法の総合的な生産性に大きく影響を及ぼす。 From this, it seems that the FZ method (Floating Zone method) that does not use a quartz crucible for growth is desirable for producing high-resistance Si. However, the FZ method has problems that it is difficult to increase the diameter (up to 150 mmΦ at the maximum) and that the productivity is lower than that of the normal CZ method. Further, not only the productivity of the manufacturing process but also the supply problem that polysilicon having a small amount of impurities must be carefully selected as a material has a great influence on the overall productivity of the FZ method.

生産性の問題を解決するために幾つかの方法が提案されている(例えば、特許文献1参照)。特許文献1で開示されているのは、低生産性の要因であるFZ法を用いず、CZ法を用いる方法である。すなわち、磁場を印加することで(Magnetic Field Applied CZ:MCZ法)単結晶シリコンインゴットを成長する際にメルトの対流を抑制し、石英坩堝からの酸素の混入を極力防ぎ、且つ、混入した溶存した酸素を特殊な熱処理で析出させることで高抵抗を実現するというものである。ただし、酸素析出を促すための特殊熱処理が必要となるため、FZ法ほどではないが、やはり生産性を根本的に向上させることは困難である。 Several methods have been proposed to solve the productivity problem (see Patent Document 1, for example). What is disclosed in Patent Document 1 is a method that uses the CZ method instead of the FZ method that is a factor of low productivity. That is, by applying a magnetic field (Magnetic Field Applied CZ: MCZ method), convection of the melt is suppressed when growing a single crystal silicon ingot, oxygen contamination from the quartz crucible is prevented as much as possible, and the dissolved contaminants are present. High resistance is achieved by precipitating oxygen by a special heat treatment. However, since it requires a special heat treatment for promoting oxygen precipitation, it is still difficult to fundamentally improve the productivity, though not as much as the FZ method.

また、室温での抵抗率に加えて、通常の半導体のCMOS工程(最大1050℃程度)を経てもなお高抵抗を保っている必要があることが高抵抗ウェーハの製造が困難なもうひとつの理由である。特に溶存酸素がドナー化(サーマルドナー化)し抵抗率を下げると言われている温度域(400℃〜600℃)は特に抵抗率の低下を引き押す可能性のある危険な温度域と言える。このため、CMOS工程後に高抵抗を保つウェーハを製造することは容易ではない。 In addition to the resistivity at room temperature, another reason why it is difficult to manufacture a high-resistance wafer is that it is necessary to maintain a high resistance even after a normal semiconductor CMOS process (up to about 1050° C.). Is. In particular, the temperature range (400° C. to 600° C.) in which it is said that the dissolved oxygen becomes a donor (thermal donor) to reduce the resistivity can be said to be a dangerous temperature range in which the reduction in the resistivity can be particularly pushed. Therefore, it is not easy to manufacture a wafer that maintains a high resistance after the CMOS process.

また、抵抗率の問題よりもさらに深刻且つ根本的な問題が存在する。それはSiそのものの機械的強度(あるいは熱耐性)の問題である。LT/Si貼り合わせウェーハはLTとSiの膨張係数差が極めて大きいため、貼り合わせ後に低温の熱処理(例えば300℃)を施すとSi基板にスリップと呼ばれる結晶のズレを生じたり、基板そのものが割れてしまったりする場合がある。LT(20μm厚)と高抵抗(>1000Ωcm)FZウェーハ(酸素濃度は1ppma未満)を貼り合わせたウェーハに300℃の熱処理を加えた後に生じたスリップの光学顕微鏡写真を図6及び図7に示す。これらの写真はスリップ発生後にLTが剥がれた箇所を観察したものであり、図6は基板の外周付近、図7は基板の外周より5mm付近の写真である。スリップが生じると、その周辺のLTが剥がれ、基板が破損することもある。これは低酸素濃度ウェーハを使うがゆえの大きな問題と考えられる。 There is also a more serious and fundamental problem than the resistivity problem. It is a problem of mechanical strength (or heat resistance) of Si itself. Since the LT/Si bonded wafer has an extremely large difference in expansion coefficient between LT and Si, if a low temperature heat treatment (for example, 300° C.) is performed after bonding, a crystal shift called slip occurs on the Si substrate or the substrate itself is cracked. It may be lost. FIGS. 6 and 7 show optical micrographs of slips produced after heat treatment at 300° C. was applied to a wafer obtained by bonding an LT (20 μm thick) and a high resistance (>1000 Ωcm) FZ wafer (oxygen concentration is less than 1 ppma). .. These photographs are observations of the portion where the LT was peeled off after the occurrence of slip. FIG. 6 is a photograph near the outer circumference of the substrate, and FIG. 7 is a photograph near 5 mm from the outer circumference of the substrate. When the slip occurs, the LT around it may be peeled off and the substrate may be damaged. This is considered to be a big problem because a low oxygen concentration wafer is used.

スリップの発生に関し重要な点として、用いるSiウェーハに溶存する酸素濃度が高くなることで降伏応力が増大し、Si結晶に「粘り」が生じ(例えば、非特許文献2参照)、スリップ(転位)が発生し難くなることが明らかになっている。 As an important point regarding the occurrence of slip, the increase in the oxygen concentration dissolved in the Si wafer to be used increases the yield stress and causes the Si crystal to become “sticky” (see, for example, Non-Patent Document 2) and slip (dislocation). It has become clear that is less likely to occur.

つまり、誘電損失を抑制するために抵抗率を高めるには溶存酸素を少なくする必要がある一方で、機械的強度の問題を抑制するには溶存酸素を増やす必要がある。 That is, in order to suppress the dielectric loss, it is necessary to reduce the amount of dissolved oxygen in order to increase the resistivity, while it is necessary to increase the amount of dissolved oxygen in order to suppress the problem of mechanical strength.

なお、本明細書において、溶存酸素の測定方法は赤外を用いた格子間酸素の原子濃度の標準測定法であるJEIDA−61−2000に準拠した。この方法は格子間酸素に特有の吸収ピークである1106cm−1を測定するものである。測定装置は日本電子(株)製のJIR−6500フーリエ変換赤外分光器(FT−IR)を用いた。ここで得られた吸収係数αに係数6.28を掛けたものが格子間酸素濃度(ppma)となる。本明細書では、この方法で得た格子間酸素濃度を単に「酸素濃度」を記す。 In the present specification, the method for measuring dissolved oxygen was based on JEIDA-61-2000, which is a standard method for measuring the atomic concentration of interstitial oxygen using infrared rays. This method measures 1106 cm −1 which is an absorption peak peculiar to interstitial oxygen. A JIR-6500 Fourier transform infrared spectroscope (FT-IR) manufactured by JEOL Ltd. was used as a measuring device. The interstitial oxygen concentration (ppma) is obtained by multiplying the absorption coefficient α obtained here by a coefficient of 6.28. In this specification, the interstitial oxygen concentration obtained by this method is simply referred to as "oxygen concentration".

米国特許第6544656号明細書US Pat. No. 6,544,656

電波新聞ハイテクノロジー,2012年11月8日,「スマートフォンのRFフロントエンドに用いられるSAW−Duplexerの温度補償技術」Denpa Shimbun High Technology, November 8, 2012, "SAW-Duplexer Temperature Compensation Technology Used for RF Front Ends of Smartphones" UCS半導体基盤技術研究会編、「シリコンの科学」リアライズ理工センター、1996年6月28日、p.576-582UCS Semiconductor Technology Research Group, "Science of Silicon" Realize Science and Technology Center, June 28, 1996, p.576-582

本発明の目的は、300℃のプロセス後に高抵抗を保つことができる複合基板および複合基板の製造方法を提供することである。 An object of the present invention is to provide a composite substrate and a method for manufacturing the composite substrate that can maintain high resistance after the process at 300°C.

本発明は、Siを支持基板とした場合に生じる誘電損失と機械的強度の問題を同時に解決するために、本発明者らはLT/Si貼り合わせ基板を含むLT−SAWデバイスの製造プロセスに着目した。LT、LT/SiなどのSAWデバイスでは、半導体CMOSプロセスの様に高温プロセス(ゲート酸化など)が不要で、最高温度は最大300℃程度である。この温度まで高抵抗を保っていれば特性上問題は生じない。よって、最大300℃程度まで高抵抗を保つことのできるSi基板を支持基板として使用すればよい、という発想に辿り着いた。この観点から、酸素濃度が多少高くとも本目的には合致すると言える。すなわち、LT−SAWデバイスへの適用においては、300℃のプロセス後に高抵抗を保つことができるか否かが採用可否の非常に重要な判断基準となる。 In order to solve the problems of dielectric loss and mechanical strength that occur when Si is used as a supporting substrate, the present inventors focus on the manufacturing process of LT-SAW devices including an LT/Si bonded substrate. did. SAW devices such as LT and LT/Si do not require a high temperature process (such as gate oxidation) unlike the semiconductor CMOS process, and the maximum temperature is about 300° C. at the maximum. If the high resistance is maintained up to this temperature, there will be no problem in characteristics. Therefore, the inventors arrived at the idea that a Si substrate capable of maintaining high resistance up to about 300° C. should be used as a supporting substrate. From this point of view, even if the oxygen concentration is somewhat high, it can be said that this purpose is met. That is, in the application to the LT-SAW device, whether or not the high resistance can be maintained after the process at 300° C. is a very important criterion for judging the adoption.

上記課題を解決するために、本発明に係る複合基板は、圧電材料基板に、格子間酸素濃度が2から10ppmaのシリコン(Si)ウェーハを支持基板として貼り合わせ、貼り合わせ後に前記圧電材料基板を薄化することにより作製されることを特徴とする。 In order to solve the above-mentioned problems, the composite substrate according to the present invention is configured such that a silicon (Si) wafer having an interstitial oxygen concentration of 2 to 10 ppma is bonded to a piezoelectric material substrate as a supporting substrate, and the piezoelectric material substrate is bonded after bonding. It is characterized by being manufactured by thinning.

本発明では、前記圧電材料基板は、タンタル酸リチウムウェーハ(LT)基板又はニオブ酸リチウム(LN)基板とするとよい。また、シリコンウェーハは、FZ法、MCZ法、及びCZ法の何れかにより製造された結晶から切り出されたものを用いるとよい。 In the present invention, the piezoelectric material substrate may be a lithium tantalate wafer (LT) substrate or a lithium niobate (LN) substrate. Further, it is preferable to use a silicon wafer that is cut out from a crystal manufactured by any one of the FZ method, the MCZ method, and the CZ method.

本発明では、複合基板は、前記圧電材料基板と前記シリコンウェーハとの間に介在層を有するとよい。介在層は、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、及びアモルファスシリコンのいずれかを含むとよい。また、前記介在層は熱酸化シリカであってもよい。また、前記介在層は、化学気相成長(CVD)又は物理気相成長(PVD)で形成されてもよいし、シリコーン系のオイルを塗布することで形成されてもよい。シリコーン系のオイルを塗布することで介在層を形成する場合、当該オイルはパーヒドロポリシラザン又はメチルトリメトキシシランを含有するとよい。このような介在層を設けることで、接合強度を高めるとともに、剥離を抑制することができる。 In the present invention, the composite substrate may have an intervening layer between the piezoelectric material substrate and the silicon wafer. The intervening layer may include any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. Further, the intervening layer may be thermally oxidized silica. The intervening layer may be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD), or may be formed by applying a silicone-based oil. When the intervening layer is formed by applying a silicone-based oil, the oil preferably contains perhydropolysilazane or methyltrimethoxysilane. By providing such an intervening layer, the bonding strength can be increased and peeling can be suppressed.

本発明では、前記圧電材料基板及び前記シリコンウェーハの片方もしくは双方に対し、貼り合わせの前に表面活性化処理を施すとよい。この場合、前記表面活性化処理は、真空イオンビーム又はプラズマ活性化法を用いて行われるとよい。これらの表面活性化処理により、接合強度を高めることができる。 In the present invention, one or both of the piezoelectric material substrate and the silicon wafer may be subjected to surface activation treatment before bonding. In this case, the surface activation treatment may be performed using a vacuum ion beam or plasma activation method. Bonding strength can be increased by these surface activation treatments.

また、上記課題を解決するために、本発明に係る複合基板の製造方法は、圧電材料基板を用意する工程と、支持基板として格子間酸素濃度が2から10ppmaのシリコン(Si)ウェーハを用意する工程と、前記圧電材料基板と前記シリコンウェーハとを貼り合わせる工程と、前記貼り合わせる工程の後で、前記圧電材料基板を薄化する工程とを含む。 In order to solve the above-mentioned problems, the method for manufacturing a composite substrate according to the present invention provides a step of preparing a piezoelectric material substrate and a silicon (Si) wafer having an interstitial oxygen concentration of 2 to 10 ppma as a supporting substrate. A step of bonding the piezoelectric material substrate and the silicon wafer, and a step of thinning the piezoelectric material substrate after the bonding step.

本発明では、前記圧電材料基板は、タンタル酸リチウムウェーハ(LT)基板又はニオブ酸リチウム(LN)基板とするとよい。また、シリコンウェーハは、FZ法、MCZ法、及びCZ法の何れかにより製造された結晶から切り出されたものを用いるとよい。 In the present invention, the piezoelectric material substrate may be a lithium tantalate wafer (LT) substrate or a lithium niobate (LN) substrate. Further, it is preferable to use a silicon wafer that is cut out from a crystal manufactured by any one of the FZ method, the MCZ method, and the CZ method.

本発明では、前記貼り合わせる工程の前に、前記圧電材料基板及び前記シリコンウェーハの何れか又は両方の表面、介在層を設ける工程をさらに有するとよい。前記介在層は、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、及びアモルファスシリコンのいずれかを含むとよい。また、介在層を設ける工程において、前記シリコンウェーハを熱酸化するとよい。また、前記介在層を設ける工程において、前記介在層を化学気相成長(CVD)又は物理気相成長(PVD)で形成してもよい。また、前記介在層を設ける工程において、シリコーン系のオイルを塗布することにより前記介在層を形成してもよい。この場合、前記シリコーン系のオイルは、パーヒドロポリシラザン又はメチルトリメトキシシランを含有するとよい。 The present invention may further include a step of providing a surface of one or both of the piezoelectric material substrate and the silicon wafer and an intervening layer before the step of bonding. The intervening layer may include any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. In addition, the silicon wafer may be thermally oxidized in the step of providing the intervening layer. Further, in the step of providing the intervening layer, the intervening layer may be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Further, in the step of providing the intervening layer, the intervening layer may be formed by applying a silicone-based oil. In this case, the silicone oil preferably contains perhydropolysilazane or methyltrimethoxysilane.

本発明では、前記貼り合わせる工程の前に、前記圧電材料基板及び前記シリコンウェーハの片方もしくは双方に対し、表面活性化処理を施す工程をさらに備えるとよい。前記表面活性化処理は、真空イオンビーム又はプラズマ活性化法を用いて行われるとよい。これらの表面活性化処理により、接合強度を高めることができる。 The present invention may further include a step of performing a surface activation treatment on one or both of the piezoelectric material substrate and the silicon wafer before the bonding step. The surface activation treatment may be performed using a vacuum ion beam or plasma activation method. Bonding strength can be increased by these surface activation treatments.

本実施形態に係る複合基板の製造工程のフローチャートである。It is a flow chart of a manufacturing process of a compound substrate concerning this embodiment. 本実施形態に係る複合基板を例示する模式断面図である。It is a schematic cross section which illustrates the composite substrate which concerns on this embodiment. 実施例2の結果を示すグラフである。5 is a graph showing the results of Example 2. 実施例3の結果を示すグラフである。9 is a graph showing the results of Example 3. 各種材料の熱膨張係数を対比して示すグラフである。It is a graph which shows in comparison the coefficient of thermal expansion of various materials. Si基板の外周付近における熱処理を加えた後に生じたスリップの光学顕微鏡写真である。It is an optical microscope photograph of a slip generated after applying heat treatment in the vicinity of the outer periphery of the Si substrate. Si基板の外周より5mm付近における熱処理を加えた後に生じたスリップの光学顕微鏡写真である。It is an optical microscope photograph of a slip generated after applying a heat treatment in the vicinity of 5 mm from the outer periphery of the Si substrate.

本実施形態の複合基板1は、支持基板10と圧電材料基板20についてそれぞれ必要に応じて貼り合わせ前の処理を行い、その後両基板を貼り合わせる工程を経て製造される。以下ではその製造方法を、図1に示すフローチャートを参照して説明する。 The composite substrate 1 of the present embodiment is manufactured through a process of performing pre-bonding processing on the support substrate 10 and the piezoelectric material substrate 20 as needed, and then bonding both substrates. The manufacturing method will be described below with reference to the flowchart shown in FIG.

〔支持基板の処理〕
はじめに、支持基板10を用意する(ステップS100)。支持基板10としては、格子間酸素濃度が2から10ppmaのシリコン(Si)ウェーハを用いる。支持基板10として用いるSiウェーハは、FZ法、MCZ法、もしくはCZ法にて製造されたSiの単結晶インゴットから切り出される。
[Treatment of supporting substrate]
First, the support substrate 10 is prepared (step S100). As the support substrate 10, a silicon (Si) wafer having an interstitial oxygen concentration of 2 to 10 ppma is used. The Si wafer used as the support substrate 10 is cut out from a Si single crystal ingot manufactured by the FZ method, the MCZ method, or the CZ method.

続いて、必要に応じて、支持基板10の表面に介在層31を形成する(ステップS120)。介在層31の材質は、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、アモルファスシリコンの何れかを含むとよい。介在層31は、例えば、Siウェーハを熱酸化して得られる熱酸化シリカの膜として形成することができる。熱酸化シリカは、高温で成長させるため緻密で不純物が少なく、且つある程度の量のガスを吸収できるという性質がある。介在層31は、他の方法で形成されてもよい。例えば、介在層31は、プラズマCVD等の化学気相成長法(CVD)により、介在層として適切な素材を堆積してもよい。また、介在層31は、物理気相成長法(PVD)により、介在層として適切な素材を堆積してもよい。あるいは、介在層31は、シリコーン系のオイルを塗布することで形成されてもよい。塗布するシリコーン系のオイルは、パーヒドロポリシラザン又はメチルトリメトキシシランを含有するとよい。シリコーン系のオイルは、スピンコートにより塗布するとよい。 Then, the intervening layer 31 is formed on the surface of the support substrate 10 as needed (step S120). The material of the intervening layer 31 may include any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. The intervening layer 31 can be formed, for example, as a film of thermally oxidized silica obtained by thermally oxidizing a Si wafer. Since the thermally oxidized silica is grown at a high temperature, it has a property that it is dense, has few impurities, and can absorb a certain amount of gas. The intervening layer 31 may be formed by another method. For example, the intervening layer 31 may be formed by depositing a suitable material as the intervening layer by chemical vapor deposition (CVD) such as plasma CVD. Further, the intervening layer 31 may be formed by depositing a suitable material as the intervening layer by physical vapor deposition (PVD). Alternatively, the intervening layer 31 may be formed by applying silicone oil. The applied silicone-based oil may contain perhydropolysilazane or methyltrimethoxysilane. The silicone oil may be applied by spin coating.

続いて、必要に応じて、圧電材料基板20と貼り合わせる表面を平坦化する(ステップS140)。平坦化の程度としては、表面粗さがRa(算術平均粗さ)で0.3nm以下となるようにすることが好ましい。この平坦化は、化学的機械研磨により行うとよい。支持基板10上に介在層31を設けない場合には、支持基板10自体を平坦化する。また、支持基板10上に介在層31を設ける場合には、介在層31の表面を平坦化する。介在層31を設ける場合、複合基板1の特性は、下地となる支持基板10の初期面粗さには依存しない。例えば、支持基板10の初期面粗さはRaで150nm以上であってもよい。 Then, if necessary, the surface to be bonded to the piezoelectric material substrate 20 is flattened (step S140). As the degree of flattening, it is preferable that the surface roughness Ra (arithmetic mean roughness) is 0.3 nm or less. This flattening may be performed by chemical mechanical polishing. When the intervening layer 31 is not provided on the supporting substrate 10, the supporting substrate 10 itself is flattened. When the intervening layer 31 is provided on the support substrate 10, the surface of the intervening layer 31 is flattened. When the intervening layer 31 is provided, the characteristics of the composite substrate 1 do not depend on the initial surface roughness of the supporting substrate 10 that is the base. For example, the initial surface roughness Ra of the support substrate 10 may be 150 nm or more.

また、「必要に応じて」と記載したとおり、平坦化の工程を経ずとも十分に平坦な表面が得られる場合には、平坦化の工程を省略してもよい。例えば、表面が鏡面に仕上げられている支持基板10を用い、熱酸化により介在層31を形成する場合、介在層31の表面も下地と同様に鏡面となるので、この平坦化の工程は不要である。 Further, as described as “if necessary”, if a sufficiently flat surface can be obtained without going through the flattening step, the flattening step may be omitted. For example, when the support substrate 10 whose surface is finished as a mirror surface is used and the intervening layer 31 is formed by thermal oxidation, the surface of the intervening layer 31 is also a mirror surface like the base, and thus this flattening step is unnecessary. is there.

さらに、貼り合わせ時の接合強度を高めるべく、必要に応じて、貼り合わせる表面(すなわち、介在層31を設けない場合には支持基板10の表面、介在層31を設ける場合には介在層31の表面)に活性化処理を施す(ステップS160)。表面活性化処理は、例えば、オゾン水処理、UVオゾン処理、イオンビーム処理、プラズマ処理のいずれかとするとよい。 Furthermore, in order to increase the bonding strength at the time of bonding, the surface to be bonded (that is, the surface of the supporting substrate 10 when the intervening layer 31 is not provided, the surface of the supporting substrate 10 when the intervening layer 31 is provided, and the intervening layer 31 when the intervening layer 31 is provided). An activation process is applied to the surface (step S160). The surface activation treatment may be, for example, one of ozone water treatment, UV ozone treatment, ion beam treatment, and plasma treatment.

以上で支持基板10に対する貼り合わせ前の処理が完了する。 This completes the processing before bonding to the support substrate 10.

〔圧電材料基板の処理〕
はじめに、圧電材料基板20を用意する(ステップS200)。圧電材料基板20は、タンタル酸リチウム(LT)やニオブ酸リチウム(LN)などの圧電材料の基板であり、好ましくは、これらの圧電材料の単結晶基板である。
[Treatment of piezoelectric material substrate]
First, the piezoelectric material substrate 20 is prepared (step S200). The piezoelectric material substrate 20 is a substrate of a piezoelectric material such as lithium tantalate (LT) or lithium niobate (LN), and is preferably a single crystal substrate of these piezoelectric materials.

続いて、必要に応じて、圧電材料基板20の表面に介在層32形成する(ステップS220)。介在層32の材質は、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、アモルファスシリコンの何れかを含むとよい。介在層32は、下記の方法で形成することができる。すなわち、介在層32は、プラズマCVD等の化学気相成長法(CVD)により、介在層として適切な素材を堆積してもよい。また、介在層32は、物理気相成長法(PVD)により、介在層として適切な素材を堆積してもよい。あるいは、介在層32は、シリコーン系のオイルを塗布することで形成されてもよい。塗布するシリコーン系のオイルは、パーヒドロポリシラザン又はメチルトリメトキシシランを含有するとよい。シリコーン系のオイルは、スピンコートにより塗布するとよい。 Subsequently, if necessary, the intervening layer 32 is formed on the surface of the piezoelectric material substrate 20 (step S220). The material of the intervening layer 32 may include any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. The intervening layer 32 can be formed by the following method. That is, the intervening layer 32 may be formed by depositing a suitable material as the intervening layer by chemical vapor deposition (CVD) such as plasma CVD. Further, the intervening layer 32 may be formed by depositing a suitable material as the intervening layer by physical vapor deposition (PVD). Alternatively, the intervening layer 32 may be formed by applying silicone oil. The applied silicone-based oil may contain perhydropolysilazane or methyltrimethoxysilane. The silicone oil may be applied by spin coating.

続いて、必要に応じて、支持基板10と貼り合わせる表面を平坦化する(ステップS240)。平坦化の程度としては、表面粗さがRa(算術平均粗さ)で0.3nm以下となるようにすることが好ましい。この平坦化は、化学的機械研磨により行うとよい。圧電材料基板20上に介在層32を設けない場合には、圧電材料基板20自体を平坦化する。また、圧電材料基板20上に介在層32を設ける場合には、介在層32の表面を平坦化する。介在層32を設ける場合、複合基板1の特性は、下地となる圧電材料基板20の初期面粗さには依存しない。例えば、圧電材料基板20の初期面粗さはRaで150nm以上であってもよい。 Then, if necessary, the surface to be bonded to the support substrate 10 is flattened (step S240). As the degree of flattening, it is preferable that the surface roughness Ra (arithmetic mean roughness) is 0.3 nm or less. This flattening may be performed by chemical mechanical polishing. When the intervening layer 32 is not provided on the piezoelectric material substrate 20, the piezoelectric material substrate 20 itself is flattened. Further, when the intervening layer 32 is provided on the piezoelectric material substrate 20, the surface of the intervening layer 32 is flattened. When the intervening layer 32 is provided, the characteristics of the composite substrate 1 do not depend on the initial surface roughness of the piezoelectric material substrate 20 as the base. For example, the initial surface roughness Ra of the piezoelectric material substrate 20 may be 150 nm or more.

さらに、貼り合わせ時の接合強度を高めるべく、必要に応じて、貼り合わせる表面(すなわち、介在層32を設けない場合には圧電材料基板20の表面、介在層31を設ける場合には介在層32の表面)に活性化処理を施す(ステップS260)。表面活性化処理は、例えば、オゾン水処理、UVオゾン処理、イオンビーム処理(例えば真空イオンビーム処理)、プラズマ処理のいずれかとするとよい。 Further, in order to enhance the bonding strength at the time of bonding, the surface to be bonded (that is, the surface of the piezoelectric material substrate 20 when the intervening layer 32 is not provided, or the intervening layer 32 when the intervening layer 31 is provided, if necessary. The activation process is performed on the surface of the (step S260). The surface activation treatment may be any one of ozone water treatment, UV ozone treatment, ion beam treatment (for example, vacuum ion beam treatment), and plasma treatment.

以上で圧電材料基板20に対する貼り合わせ前の処理が完了する。 With the above, the process before bonding to the piezoelectric material substrate 20 is completed.

〔貼り合わせとその後の処理〕
上記のように処理した支持基板10と圧電材料基板20とを貼り合わせる(ステップS300)。その際、低温に加熱して接合強度を高めるとよい。この低温での加熱温度は例えば100℃程度とするとよく、加熱時間は24時間程度とするとよい。
[Lamination and subsequent processing]
The support substrate 10 processed as described above and the piezoelectric material substrate 20 are attached to each other (step S300). In that case, it is good to heat at low temperature and to raise joining strength. The heating temperature at this low temperature is preferably about 100° C., and the heating time is preferably about 24 hours.

続いて、必要に応じて、圧電材料基板20を研削・研磨して薄化する(ステップS320)。例えば、圧電材料基板20の厚さが20μm程度になるまで薄化する。その後さらに必要に応じて追加の熱処理を行い、接合力を強化してもよい(ステップS340)。 Subsequently, if necessary, the piezoelectric material substrate 20 is ground and polished to be thinned (step S320). For example, the thickness of the piezoelectric material substrate 20 is reduced to about 20 μm. Thereafter, if necessary, additional heat treatment may be performed to strengthen the bonding force (step S340).

以上で説明した製造方法により、圧電材料基板20と支持基板10とを張り合わせた複合基板1を製造することができる。図2に本実施形態に係る複合基板1の模式断面図を示す。複合基板1において、支持基板10に設けた介在層31及び/又は圧電材料基板20に設けた介在層32が、圧電材料基板20と支持基板10との間に挟まれた介在層30となる。 By the manufacturing method described above, the composite substrate 1 in which the piezoelectric material substrate 20 and the support substrate 10 are bonded together can be manufactured. FIG. 2 shows a schematic cross-sectional view of the composite substrate 1 according to this embodiment. In the composite substrate 1, the intervening layer 31 provided on the support substrate 10 and/or the intervening layer 32 provided on the piezoelectric material substrate 20 serve as the intervening layer 30 sandwiched between the piezoelectric material substrate 20 and the support substrate 10.

以下、本発明の効果を確認すべく行った実施例を説明する。圧電材料基板として主にタンタル酸リチウム(LT)ウェーハを用いた実施例を記載するが、LTウェーハに代えてニオブ酸リチウム(LN)ウェーハを用いても同様の効果が得られる。 Hereinafter, examples performed to confirm the effects of the present invention will be described. Although an example in which a lithium tantalate (LT) wafer is mainly used as a piezoelectric material substrate will be described, the same effect can be obtained by using a lithium niobate (LN) wafer instead of the LT wafer.

[実施例1]
10種類の150mmΦのSiウェーハ(厚さ625μm、P型、抵抗率1100Ωcm前後)を用意し、150mmΦのLTウェーハ(厚さ250μm)を貼り合わせ行った。用意した10種類のSiウェーハのそれぞれについて、単結晶インゴットの製造方法と酸素濃度を表1に示す。なお、ウェーハの種類は、単結晶インゴットの製造方法と酸素濃度の数値との組み合わせにより表した。例えば、FZ法で製造した1ppmaのウェーハは「FZ1」と記載した。
[Example 1]
Ten types of 150 mmΦ Si wafers (thickness 625 μm, P type, resistivity around 1100 Ωcm) were prepared, and 150 mmΦ LT wafers (thickness 250 μm) were bonded. Table 1 shows the method for producing a single crystal ingot and the oxygen concentration for each of the 10 types of prepared Si wafers. The type of wafer is represented by a combination of the method for producing a single crystal ingot and the numerical value of oxygen concentration. For example, a 1 ppma wafer manufactured by the FZ method is described as “FZ1”.

貼り合わせるSiウェーハ及びLTウェーハの表面粗さは、いずれもRa(算術平均粗さ)で0.3nm以下であることを確認した。貼り合わせは真空イオンビームを用いた常温接合法で行った。貼り合わせの後にLTウェーハを20μmまで研削と研磨で薄化した。このようにして貼り合わせた複合基板のウェーハを300℃のホットプレートと冷却ステージを10往復させ、その後でスリップの発生やウェーハの割れ状況を観察した。その結果を表2に示す。この結果からスリップの発生やウェーハ割れは、Siウェーハの酸素濃度が2ppma以上であれば防ぐことが可能であることが判明した。なお、同様の実験を、LTに代えてLNを用いた場合も同様の結果となった。
It was confirmed that the surface roughness of the Si wafer and the LT wafer to be bonded together was Ra (arithmetic mean roughness) of 0.3 nm or less. The bonding was performed by a room temperature bonding method using a vacuum ion beam. After bonding, the LT wafer was thinned to 20 μm by grinding and polishing. The composite substrate wafer thus bonded was reciprocated between the hot plate at 300° C. and the cooling stage 10 times, and then the occurrence of slip and the cracking condition of the wafer were observed. The results are shown in Table 2. From this result, it was found that the occurrence of slip and the cracking of the wafer can be prevented if the oxygen concentration of the Si wafer is 2 ppma or more. The same result was obtained when LN was used instead of LT in the same experiment.

[実施例2]
実施例1と同様の10種類のSiウェーハを用意し、250℃、300℃、350℃、400℃、450℃、500℃の熱処理を窒素雰囲気で1時間行った。熱処理の前後で抵抗率の測定を行った結果を表3及び図3に示す。この結果、Siウェーハの酸素濃度が10ppma以下であれば、Si単結晶インゴットの製造方法によらず、LTデバイス製造プロセスの最高温度と考えられる350℃までの熱処理を行っても抵抗率の変化はほとんど無いことが判明した。
[Example 2]
Ten kinds of Si wafers similar to those in Example 1 were prepared, and heat treatments at 250° C., 300° C., 350° C., 400° C., 450° C. and 500° C. were performed in a nitrogen atmosphere for 1 hour. The results of measuring the resistivity before and after the heat treatment are shown in Table 3 and FIG. As a result, if the oxygen concentration of the Si wafer is 10 ppma or less, the resistivity does not change even if heat treatment is performed up to 350° C., which is considered to be the maximum temperature of the LT device manufacturing process, regardless of the Si single crystal ingot manufacturing method. It turned out to be almost nonexistent.

[実施例3]
実施例1にて得られた10種類の複合基板のウェーハを用いて共振器を作製し、Q値を測定した。LTデバイスである共振器の製造プロセスの最高温度は350℃程度である。割れたウェーハについては生き残った箇所(つまり、デバイスの製造が可能な程度のサイズの部位)を用い、スリップの出たウェーハについてはスリップの出ていない部分でデバイスを作製し、測定を行った。Q値の結果を表4及び図4に示す。この結果からSiウェーハの酸素濃度が10ppma以下のものに関しては特性の劣化が無く、10ppmaよりも大きいものは特性の劣化が観察された。この結果は、実施例2における抵抗率の変化と整合していることが判明した。
[Example 3]
A resonator was manufactured using the wafers of 10 kinds of composite substrates obtained in Example 1, and the Q value was measured. The maximum temperature of the manufacturing process of the resonator that is the LT device is about 350°C. For a broken wafer, a surviving portion (that is, a portion having a size capable of manufacturing a device) was used, and for a slipped wafer, a device was manufactured in a portion without slipping, and measurement was performed. The results of the Q value are shown in Table 4 and FIG. From these results, it was observed that the characteristics of the Si wafer having an oxygen concentration of 10 ppma or less did not deteriorate, and the characteristics of the Si wafer having an oxygen concentration of more than 10 ppma deteriorated. This result was found to be consistent with the change in resistivity in Example 2.

[実施例4]
実施例1と同様の10種類の150mmΦのSiウェーハ(厚さ625μm)を用意し、100nmの熱酸化膜を成長させた。熱酸化の条件は700℃投入、1000℃のドライ酸化である。また、150mmΦのLTウェーハ(厚さ250μm)を用意した。熱酸化膜を成長させたSiウェーハ及びLTウェーハの双方にプラズマ活性化により表面活性化を行い、両ウェーハを貼り合わせた。貼り合わせ後は100℃で24時間の熱処理を施した。貼り合わせ前の各ウェーハの表面粗さは、いずれもRaで0.3nm以下であることを確認した。
[Example 4]
Ten types of 150 mmΦ Si wafers (thickness 625 μm) similar to those in Example 1 were prepared, and a 100 nm thermal oxide film was grown. The conditions of thermal oxidation are 700° C. input and 1000° C. dry oxidation. In addition, a 150 mmΦ LT wafer (thickness 250 μm) was prepared. Surface activation was performed by plasma activation on both the Si wafer and the LT wafer on which the thermal oxide film was grown, and both wafers were bonded. After the bonding, heat treatment was performed at 100° C. for 24 hours. It was confirmed that the surface roughness of each wafer before bonding was 0.3 nm or less in Ra.

貼り合わせ・熱処理の後にLTウェーハを20μmまで研削と研磨で薄化した。これらのウェーハを300℃のホットプレートと冷却ステージを10往復させ、その後でスリップの発生やウェーハの割れ状況を観察した。その結果を表5に示す。この結果からスリップの発生、ウェーハ割れはSiウェーハの酸素濃度が2ppma以上であれば防ぐことが可能であることが判明した。この結果は実施例1とほぼ同様であり、熱酸化膜の有無によらず、スリップの発生やウェーハ割れはSiウェーハの酸素濃度に依存し、酸素濃度が2ppma以上であることが重要であることが判明した。
After bonding and heat treatment, the LT wafer was thinned to 20 μm by grinding and polishing. These wafers were reciprocated between a hot plate at 300° C. and a cooling stage 10 times, and then the occurrence of slip and the cracking state of the wafer were observed. The results are shown in Table 5. From this result, it was found that slip generation and wafer cracking can be prevented if the oxygen concentration of the Si wafer is 2 ppma or more. This result is almost the same as in Example 1, and regardless of the presence or absence of the thermal oxide film, the occurrence of slip and the cracking of the wafer depend on the oxygen concentration of the Si wafer, and it is important that the oxygen concentration is 2 ppma or more. There was found.

[実施例5]
実施例1と同様の10種類のSiウェーハを用意し、実施例4と同様の方法で熱酸化を施した。このようにして熱酸化膜を設けたSiウェーハについて、追加熱処理の条件を変化させ、追加熱処理の前後における抵抗率を測定した。追加熱処理の条件は、追加熱処理無し、250℃、300℃、350℃、400℃、500℃の6通りであり、追加熱処理は窒素雰囲気で1時間行った。その前後で抵抗率の測定を行った。測定の結果は実施例2とほぼ同様となり、酸素濃度が10ppma以下であれば、350℃までの熱処理を行っても抵抗率の変化はほとんど無いことが判明した。熱酸化膜を設けたSiウェーハを用いた場合でもサーマルドナー発生温度域(400〜600℃)での処理を避けることで、抵抗率の低下などの問題無く使用できることが判明した。
[Example 5]
Ten types of Si wafers similar to those in Example 1 were prepared and subjected to thermal oxidation in the same manner as in Example 4. With respect to the Si wafer thus provided with the thermal oxide film, the conditions of the additional heat treatment were changed, and the resistivity before and after the additional heat treatment was measured. The conditions for the additional heat treatment were six without heat treatment, 250° C., 300° C., 350° C., 400° C. and 500° C., and the additional heat treatment was performed in a nitrogen atmosphere for 1 hour. The resistivity was measured before and after that. The results of the measurement were almost the same as in Example 2, and it was found that if the oxygen concentration was 10 ppma or less, there was almost no change in the resistivity even if heat treatment was performed up to 350°C. It was found that even when using a Si wafer provided with a thermal oxide film, by avoiding the treatment in the thermal donor generation temperature range (400 to 600° C.), it can be used without a problem such as a decrease in resistivity.

[実施例6]
実施例1と同様の10種類の150mmΦのSiウェーハ(厚さ625μm)を用意し、200nmのプラズマCVD酸化膜を室温近傍で堆積した。酸化膜を堆積した後、鏡面化のために研磨を行った。また、150mmΦのLTウェーハ(厚さ250μm)を用意した。酸化膜を堆積したSiウェーハ及びLTウェーハの双方にプラズマ活性化により表面活性化を行い、両ウェーハを貼り合わせた。貼り合わせ後は100℃で24時間の熱処理を施した。貼り合わせ前の両ウェーハの表面粗さは、いずれもRaで0.3nm以下であることを確認した。実施例1と同様の熱耐性実験を行った結果、実施例1と同じ傾向を示した。この結果から、酸化膜の形成方法には依存せず、本発明の効果が得られることが判明した。
[Example 6]
Ten kinds of 150 mmΦ Si wafers (thickness: 625 μm) similar to those in Example 1 were prepared, and a 200 nm plasma CVD oxide film was deposited near room temperature. After depositing the oxide film, polishing was performed for mirroring. In addition, a 150 mmΦ LT wafer (thickness 250 μm) was prepared. Surface activation was performed by plasma activation on both the Si wafer and the LT wafer on which the oxide film was deposited, and the both wafers were bonded together. After the bonding, heat treatment was performed at 100° C. for 24 hours. It was confirmed that the surface roughness of both wafers before bonding was Ra of 0.3 nm or less. As a result of the same heat resistance experiment as in Example 1, the same tendency as in Example 1 was shown. From this result, it was found that the effect of the present invention can be obtained regardless of the method of forming the oxide film.

[実施例7]
実施例1と同様の10種類の150mmΦのSiウェーハ(厚さ625μm)と150mmΦのLTウェーハ(厚さ250μm)を用意し、200nmのプラズマCVD酸化膜をLTウェーハ上に室温近傍で堆積した。堆積の後に鏡面化のために研磨を行った。Siウェーハ及び酸化膜を堆積したLTウェーハの双方にプラズマ活性化により表面活性化を行い、両ウェーハを貼り合わせた。貼り合わせ後は100℃で24時間の熱処理を施した。貼り合わせ前の両ウェーハの表面粗さは、いずれもRaで0.3nm以下であることを確認した。実施例1と同様の熱耐性実験を行ったが、結果は実施例1と全く同じ傾向を示した。この結果から、酸化膜の形成箇所(すなわち、SiウェーハとLTウェーハのどちらに酸化膜等の介在層を設けるか)には依存せず、本発明の効果が得られることが判明した。
[Example 7]
Similar to Example 1, ten kinds of 150 mmΦ Si wafers (thickness 625 μm) and 150 mmΦ LT wafers (thickness 250 μm) were prepared, and a 200 nm plasma CVD oxide film was deposited on the LT wafer near room temperature. After the deposition, polishing was performed for mirroring. Surface activation was performed by plasma activation on both the Si wafer and the LT wafer on which an oxide film was deposited, and the two wafers were bonded together. After the bonding, heat treatment was performed at 100° C. for 24 hours. It was confirmed that the surface roughness of both wafers before bonding was Ra of 0.3 nm or less. The same heat resistance experiment as in Example 1 was performed, but the results showed exactly the same tendency as in Example 1. From this result, it was found that the effect of the present invention can be obtained irrespective of where the oxide film is formed (that is, which of the Si wafer and the LT wafer is provided with the intervening layer such as the oxide film).

[実施例8]
実施例1と同様の10種類の150mmΦのSiウェーハ(厚さ625μm)と、表面の荒れた(Ra=160nm)150mmΦのLTウェーハ(厚さ250μm)を用意し、5μmのプラズマCVD酸化膜をLTウェーハ上に室温近傍に堆積した。堆積の後に鏡面化のために研磨を行った。Siウェーハ及び酸化膜を堆積したLTウェーハの双方にプラズマ活性化により表面活性化を行い、両ウェーハを貼り合わせた。貼り合わせ後は100℃で24時間の熱処理を施した。貼り合わせ前の両ウェーハの表面粗さは、いずれもRaで0.3nm以下であることを確認した。結果は実施例1と全く同じ傾向を示した。この結果から、介在層を形成するLTウェーハの初期面粗さには依存せず本発明の効果が得られることが判明した。同様に表面の荒れたSi(Ra=175nm)を用い、同様の実験をした場合も実施例1と同様の結果を示した。また、LTとSi双方の貼り合わせ面が荒れているものに介在層を設けた場合も同様の結果を示した。よって、LTとSiの間に介在層を設ける場合は、LTもしくはSiの貼り合わせ面の片方、もしくは両面が鏡面化されていなくとも本方法の効果には影響が無い事が判明した。
[Example 8]
Similar to Example 1, ten types of 150 mmΦ Si wafers (thickness 625 μm) and a roughened surface (Ra=160 nm) 150 mmΦ LT wafer (thickness 250 μm) were prepared, and a 5 μm plasma CVD oxide film was used as the LT. It was deposited on the wafer near room temperature. After the deposition, polishing was performed for mirroring. Surface activation was performed by plasma activation on both the Si wafer and the LT wafer on which an oxide film was deposited, and the two wafers were bonded together. After the bonding, heat treatment was performed at 100° C. for 24 hours. It was confirmed that the surface roughness of both wafers before bonding was Ra of 0.3 nm or less. The results showed exactly the same tendency as in Example 1. From this result, it was found that the effect of the present invention can be obtained without depending on the initial surface roughness of the LT wafer forming the intervening layer. Similarly, when Si (Ra=175 nm) having a rough surface was used and the same experiment was performed, the same results as in Example 1 were shown. Similar results were also obtained when the intervening layer was provided on the surface where both LT and Si were bonded together. Therefore, when the intervening layer is provided between LT and Si, it has been found that the effect of this method is not affected even if one or both of the LT or Si bonding surfaces is not mirror-finished.

[実施例9]
実施例1と同様の10種類の150mmΦのSiウェーハ(厚さ625μm)を用意し、200nmのプラズマCVD窒化(SiN)膜を室温近傍で堆積した。堆積の後に鏡面化のために研磨を行った。また、150mmΦのLTウェーハ(厚さ250μm)を用意した。窒化膜を堆積したSiウェーハ及びLTウェーハの双方にプラズマ活性化により表面活性化を行い、両ウェーハを貼り合わせた。貼り合わせ後は100℃で24時間の熱処理を施した。貼り合わせ前の両ウェーハの表面粗さは、いずれもRaで0.3nm以下であることを確認した。結果は実施例1と全く同じ傾向を示した。本方法は酸化膜の形成方法には依存しないことが判明した。また、同様にSiウェーハの上にアモルファスSi(物理気相成長法(PVD法)で形成)やSiONなどを堆積した場合も同様の結果となった。この結果から、介在層の種類(材質)によらず本発明の効果が得られることが判明した。またシリコン酸化膜をパーヒドロポリシラザンやメチルトリメトキシシランなどのシリコーンオイルをスピンコートして形成した場合も同様の結果となった。
[Example 9]
Ten kinds of 150 mmΦ Si wafers (thickness: 625 μm) similar to those in Example 1 were prepared, and a 200 nm plasma CVD nitride (SiN) film was deposited near room temperature. After the deposition, polishing was performed for mirroring. In addition, a 150 mmΦ LT wafer (thickness 250 μm) was prepared. Surface activation was performed by plasma activation on both the Si wafer and the LT wafer on which the nitride film was deposited, and the both wafers were bonded together. After the bonding, heat treatment was performed at 100° C. for 24 hours. It was confirmed that the surface roughness of both wafers before bonding was Ra of 0.3 nm or less. The results showed exactly the same tendency as in Example 1. It was found that this method does not depend on the method of forming an oxide film. Similarly, when amorphous Si (formed by a physical vapor deposition method (PVD method)), SiON, or the like is deposited on a Si wafer, similar results are obtained. From this result, it was found that the effect of the present invention can be obtained regardless of the type (material) of the intervening layer. Similar results were obtained when the silicon oxide film was formed by spin coating a silicone oil such as perhydropolysilazane or methyltrimethoxysilane.

以上の結果から支持基板として格子間酸素濃度が2から10ppmaのSiウェーハを用いることで高い機械的強度・熱耐性(スリップ耐性、基板割れ耐性)を達成できると同時に誘電損失に伴うデバイス特性(Q値)の劣化も防げることが判明した。また、介在層の有無や種類、また基板の初期面粗さなどには依存しないことも判明した。CZ法により作製したSiウェーハを支持基板として用いることもできるため、機械的強度及び誘電損失の問題を解消するとともに、低コストも同時に達成できることが判明した。 From the above results, high mechanical strength and heat resistance (slip resistance, substrate crack resistance) can be achieved by using a Si wafer having an interstitial oxygen concentration of 2 to 10 ppma as a supporting substrate, and at the same time, device characteristics (Q It has been found that the deterioration of (value) can also be prevented. It was also found that it does not depend on the presence or type of the intervening layer or the initial surface roughness of the substrate. Since a Si wafer manufactured by the CZ method can also be used as a supporting substrate, it has been found that the problems of mechanical strength and dielectric loss can be solved and at the same time low cost can be achieved.

なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。 Although the present embodiment has been described above, the present invention is not limited to these examples. For example, a person skilled in the art appropriately added, deleted, or modified the configuration of each of the above-described embodiments, or a combination of the features of the embodiments is also included in the gist of the present invention. As long as it is included in the scope of the present invention.

1…複合基板
10…支持基板
20…圧電材料基板
30、31、32…介在層
DESCRIPTION OF SYMBOLS 1... Composite substrate 10... Support substrate 20... Piezoelectric material substrate 30, 31, 32... Intervening layer

Claims (24)

圧電材料基板に、格子間酸素濃度が2から10ppmaのシリコン(Si)ウェーハを支持基板として貼り合わせ、貼り合わせ後に前記圧電材料基板を薄化することにより作製される複合基板。 A composite substrate produced by bonding a silicon (Si) wafer having an interstitial oxygen concentration of 2 to 10 ppma as a supporting substrate to the piezoelectric material substrate, and thinning the piezoelectric material substrate after the bonding. 前記圧電材料基板は、タンタル酸リチウムウェーハ(LT)基板又はニオブ酸リチウム(LN)基板であることを特徴とする請求項1に記載の複合基板。 The composite substrate according to claim 1, wherein the piezoelectric material substrate is a lithium tantalate wafer (LT) substrate or a lithium niobate (LN) substrate. 前記シリコンウェーハは、FZ法、MCZ法、及びCZ法の何れかにより製造された結晶から切り出されたものであることを特徴とする請求項1または2に記載の複合基板。 The composite substrate according to claim 1 or 2, wherein the silicon wafer is cut out from a crystal manufactured by any one of the FZ method, the MCZ method, and the CZ method. 前記圧電材料基板と前記シリコンウェーハとの間に介在層を有することを特徴とする請求項1から3の何れか1項に記載の複合基板。 The composite substrate according to any one of claims 1 to 3, further comprising an intervening layer between the piezoelectric material substrate and the silicon wafer. 前記介在層が、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、及びアモルファスシリコンのいずれかを含むことを特徴とする請求項4に記載の複合基板。 The composite substrate according to claim 4, wherein the intervening layer contains any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. 前記介在層が熱酸化シリカであることを特徴とする請求項4に記載の複合基板。 The composite substrate according to claim 4, wherein the intervening layer is thermally oxidized silica. 前記介在層が化学気相成長(CVD)又は物理気相成長(PVD)で形成されることを特徴とする請求項4または5に記載の複合基板。 The composite substrate according to claim 4, wherein the intervening layer is formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). 前記介在層がシリコーン系のオイルを塗布することで形成されることを特徴とする請求項4または5に記載の複合基板。 The composite substrate according to claim 4, wherein the intervening layer is formed by applying a silicone-based oil. 前記シリコーン系のオイルがパーヒドロポリシラザン又はメチルトリメトキシシランを含有することを特徴とする請求項8に記載の複合基板。 The composite substrate according to claim 8, wherein the silicone-based oil contains perhydropolysilazane or methyltrimethoxysilane. 前記圧電材料基板及び前記シリコンウェーハの少なくとも一方の表面が非鏡面とされ、当該非鏡面の表面上に貼り合せ前に前記介在層が予め設けられることを特徴とすることを特徴とする請求項4から9の何れか1項に記載の複合基板。 The surface of at least one of the piezoelectric material substrate and the silicon wafer is non-mirror surface, and the intervening layer is provided in advance on the surface of the non-mirror surface before bonding. 10. The composite substrate according to any one of items 1 to 9. 前記圧電材料基板及び前記シリコンウェーハの片方もしくは双方に対し、貼り合わせの前に表面活性化処理を施すことを特徴とする請求項1から10のいずれか1項に記載の複合基板。 The composite substrate according to any one of claims 1 to 10, wherein one or both of the piezoelectric material substrate and the silicon wafer are subjected to surface activation treatment before bonding. 前記表面活性化処理が、真空イオンビーム又はプラズマ活性化法を用いて行われることを特徴とする請求項11に記載の複合基板。 The composite substrate according to claim 11, wherein the surface activation treatment is performed using a vacuum ion beam or a plasma activation method. 圧電材料基板を用意する工程と、
支持基板として格子間酸素濃度が2から10ppmaのシリコン(Si)ウェーハを用意する工程と、
前記圧電材料基板と前記シリコンウェーハとを貼り合わせる工程と、
前記貼り合わせる工程の後で、前記圧電材料基板を薄化する工程とを含む
複合基板の製造方法。
A step of preparing a piezoelectric material substrate,
A step of preparing a silicon (Si) wafer having an interstitial oxygen concentration of 2 to 10 ppma as a supporting substrate,
Bonding the piezoelectric material substrate and the silicon wafer,
And a step of thinning the piezoelectric material substrate after the bonding step.
前記圧電材料基板は、タンタル酸リチウムウェーハ(LT)基板もしくはニオブ酸リチウム(LN)基板であることを特徴とする請求項13に記載の複合基板の製造方法。 14. The method of manufacturing a composite substrate according to claim 13, wherein the piezoelectric material substrate is a lithium tantalate wafer (LT) substrate or a lithium niobate (LN) substrate. 前記シリコンウェーハは、FZ法、MCZ法、及びCZ法の何れかにより製造された結晶から切り出されたものであることを特徴とする請求項13または14に記載の複合基板の製造方法。 The method of manufacturing a composite substrate according to claim 13 or 14, wherein the silicon wafer is cut out from a crystal manufactured by any one of the FZ method, the MCZ method, and the CZ method. 前記貼り合わせる工程の前に、前記圧電材料基板及び前記シリコンウェーハの何れか又は両方の表面に、介在層を設ける工程をさらに有することを特徴とする請求項13から15の何れか1項に記載の複合基板の製造方法。 The method according to any one of claims 13 to 15, further comprising a step of providing an intervening layer on a surface of either or both of the piezoelectric material substrate and the silicon wafer before the bonding step. A method for manufacturing a composite substrate. 前記介在層が、シリコン酸化膜、シリコン窒化膜、シリコンオキシナイトライド(SiON)、及びアモルファスシリコンのいずれかを含むことを特徴とする請求項16に記載の複合基板の製造方法。 The method of manufacturing a composite substrate according to claim 16, wherein the intervening layer contains any one of a silicon oxide film, a silicon nitride film, silicon oxynitride (SiON), and amorphous silicon. 前記介在層を設ける工程において、前記シリコンウェーハを熱酸化することを特徴とする請求項16に記載の複合基板の製造方法。 The method of manufacturing a composite substrate according to claim 16, wherein the silicon wafer is thermally oxidized in the step of providing the intervening layer. 前記介在層を設ける工程において、前記介在層を化学気相成長(CVD)又は物理気相成長(PVD)で形成することを特徴とする請求項16または17に記載の複合基板の製造方法。 18. The method of manufacturing a composite substrate according to claim 16, wherein in the step of providing the intervening layer, the intervening layer is formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). 前記介在層を設ける工程において、シリコーン系のオイルを塗布することにより前記介在層を形成することを特徴とする請求項16または17に記載の複合基板の製造方法。 18. The method of manufacturing a composite substrate according to claim 16, wherein in the step of providing the intervening layer, the intervening layer is formed by applying a silicone-based oil. 前記シリコーン系のオイルがパーヒドロポリシラザン又はメチルトリメトキシシランを含有することを特徴とする請求項20に記載の複合基板の製造方法。 The method of manufacturing a composite substrate according to claim 20, wherein the silicone-based oil contains perhydropolysilazane or methyltrimethoxysilane. 前記圧電材料基板及び前記シリコンウェーハの少なくとも一方の表面が非鏡面とされ、当該非鏡面の表面上に貼り合せ前に前記介在層が予め設けられることを特徴とする請求項16から21の何れか1項に記載の複合基板の製造方法。 22. The surface of at least one of the piezoelectric material substrate and the silicon wafer is a non-mirror surface, and the intervening layer is provided in advance on the surface of the non-mirror surface before bonding. Item 1. A method for manufacturing a composite substrate according to item 1. 前記貼り合わせる工程の前に、前記圧電材料基板及び前記シリコンウェーハの片方もしくは双方に対し、表面活性化処理を施す工程をさらに備えることを特徴とする請求項13から22のいずれか1項に記載の複合基板の製造方法。 The method according to any one of claims 13 to 22, further comprising a step of subjecting one or both of the piezoelectric material substrate and the silicon wafer to a surface activation treatment before the bonding step. A method for manufacturing a composite substrate. 前記表面活性化処理が、真空イオンビーム又はプラズマ活性化法を用いて行われることを特徴とする請求項22に記載の複合基板の製造方法。 23. The method of manufacturing a composite substrate according to claim 22, wherein the surface activation treatment is performed using a vacuum ion beam or a plasma activation method.
JP2020076868A 2020-04-23 2020-04-23 Composite substrate Pending JP2020120128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076868A JP2020120128A (en) 2020-04-23 2020-04-23 Composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076868A JP2020120128A (en) 2020-04-23 2020-04-23 Composite substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017006351A Division JP6696917B2 (en) 2017-01-18 2017-01-18 Manufacturing method of composite substrate

Publications (1)

Publication Number Publication Date
JP2020120128A true JP2020120128A (en) 2020-08-06

Family

ID=71891265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076868A Pending JP2020120128A (en) 2020-04-23 2020-04-23 Composite substrate

Country Status (1)

Country Link
JP (1) JP2020120128A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055397A1 (en) * 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
WO2016084526A1 (en) * 2014-11-28 2016-06-02 株式会社村田製作所 Elastic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055397A1 (en) * 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
WO2016084526A1 (en) * 2014-11-28 2016-06-02 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
JP6696917B2 (en) Manufacturing method of composite substrate
JP6650463B2 (en) Method of manufacturing high resistivity semiconductor-on-insulator wafer with charge trapping layer
RU2728484C2 (en) Method of making composite substrate from sic
JP5926527B2 (en) Manufacturing method of transparent SOI wafer
JP2018507562A (en) Method for growing polycrystalline silicon film for charge trapping on silicon substrate with controllable film stress
EP3352197B1 (en) Method for producing a composite sic substrate
FR2995136A1 (en) PSEUDO-SUBSTRATE WITH IMPROVED EFFICIENCY OF USE OF MONOCRYSTALLINE MATERIAL
TW202006835A (en) Semiconductor-on-insulator structure
WO2014017368A1 (en) Method for producing sos substrates, and sos substrate
JP6288323B2 (en) Method for producing thermally oxidized heterogeneous composite substrate
TWI582911B (en) A method of manufacturing silicon-on-insulator wafers
JP7262415B2 (en) Composite substrate and manufacturing method thereof
JP5819614B2 (en) Manufacturing method of SOI wafer
JP2020120128A (en) Composite substrate
JP5053252B2 (en) Method for manufacturing a heterostructure comprising at least one thick layer of semiconductor material
TWI750389B (en) Method of manufacture of a semiconductor on insulator structure
WO2020235074A1 (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JP7271458B2 (en) Composite substrate manufacturing method
JP2011134852A (en) METHOD OF MANUFACTURING GeOI SUBSTRATE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019