JP2020118807A - Converter device, interchangeable lens, and image capturing device - Google Patents

Converter device, interchangeable lens, and image capturing device Download PDF

Info

Publication number
JP2020118807A
JP2020118807A JP2019008713A JP2019008713A JP2020118807A JP 2020118807 A JP2020118807 A JP 2020118807A JP 2019008713 A JP2019008713 A JP 2019008713A JP 2019008713 A JP2019008713 A JP 2019008713A JP 2020118807 A JP2020118807 A JP 2020118807A
Authority
JP
Japan
Prior art keywords
optical system
imaging optical
image
imaging
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019008713A
Other languages
Japanese (ja)
Inventor
公平 木村
Kohei Kimura
公平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019008713A priority Critical patent/JP2020118807A/en
Publication of JP2020118807A publication Critical patent/JP2020118807A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a converter device which allows for adjusting a field curvature component independently from other aberration components.SOLUTION: An optical system of a converter device 300 of the present invention is a re-imaging optical system CL configured to re-form a primary image formed by a lens device 200 onto an image surface as a secondary image. The re-imaging optical system CL includes a movable group VL capable of moving along an optical axis. The position of the movable group VL in the re-imaging optical system CL is predetermined.SELECTED DRAWING: Figure 7

Description

本発明は、コンバータ装置、交換レンズ、及び撮像装置に関する。 The present invention relates to a converter device, an interchangeable lens, and an image pickup device.

一眼レフカメラやミラーレスカメラ等の撮像装置と、撮像装置に対して取り外し可能な
交換レンズを含む撮像システムにおいて、撮像装置と交換レンズの間に装着されるコンバータ装置が知られている。こうした撮像システムでは、コンバータ装置を用いることにより、撮影機能の拡張または撮影倍率の拡大等を図っている。
In an imaging system including an imaging device such as a single-lens reflex camera or a mirrorless camera, and an interchangeable lens detachable from the imaging device, a converter device mounted between the imaging device and the interchangeable lens is known. In such an imaging system, a converter device is used to expand a shooting function or a shooting magnification.

特許文献1は、交換レンズによって形成された1次像を、像面に2次像として再結像させる光学系を有するコンバータ装置を開示している。 Patent Document 1 discloses a converter device having an optical system for re-imaging a primary image formed by an interchangeable lens as a secondary image on an image plane.

特開2017−102227号公報JP, 2017-102227, A

近年、撮影表現の拡大のために、画面中心におけるピントずれを抑制しつつ、ユーザが所定の収差成分を独立して調整可能な光学系が望まれている。例えば、像面湾曲収差を他の収差成分に対して独立に調整することで、画面中心に対して画面周辺がぼけた像を得ることができる。 In recent years, in order to expand the photographic expression, an optical system in which a user can independently adjust a predetermined aberration component while suppressing a focus shift at the center of the screen is desired. For example, by adjusting the field curvature aberration independently of other aberration components, it is possible to obtain an image in which the periphery of the screen is blurred with respect to the center of the screen.

しかし、特許文献1に記載のコンバータ装置では、各レンズ群の位置が固定されているため、交換レンズにより形成された1次像に対してこのような撮影表現機能を付加することは困難である。 However, in the converter device described in Patent Document 1, since the position of each lens group is fixed, it is difficult to add such a shooting expression function to the primary image formed by the interchangeable lens. ..

上記課題に鑑み、本発明は、像面湾曲収差成分を他の収差成分に対して独立に調整することが可能なコンバータ装置、交換レンズ、撮像装置を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a converter device, an interchangeable lens, and an imaging device that can adjust the field curvature aberration component independently of other aberration components.

本発明の一実施例に係るコンバータ装置は撮像装置に対して着脱可能なレンズ装置と前記撮像装置との間に装着されるコンバータ装置であって、前記コンバータ装置が備える光学系は、前記レンズ装置によって形成された1次像を2次像として像面に再結像する再結像光学系であり、前記再結像光学系は、光軸に沿って移動可能な移動群を有し、前記移動群は、通常撮影時における、前記1次像の結像面から前記移動群の最も物体側の面までの距離および通常撮影時における前記移動群の最も像側の面から像面までの距離のうち小さいほうをDm、前記再結像光学系CLのレンズ全長をTTDとするとき、
|Dm|/TTD<0.40
なる条件式を満たすことを特徴とする。
A converter device according to an embodiment of the present invention is a converter device that is mounted between a lens device that is attachable to and detachable from an imaging device and the imaging device, and an optical system included in the converter device is the lens device. Is a re-imaging optical system for re-imaging the primary image formed as a secondary image on an image plane, the re-imaging optical system having a movable group movable along an optical axis, The moving group is the distance from the image plane of the primary image to the most object-side surface of the moving group during normal shooting, and the distance from the most image-side surface of the moving group to the image surface during normal shooting. When the smaller one is Dm and the total lens length of the re-imaging optical system CL is TTD,
|Dm|/TTD<0.40
It is characterized by satisfying the following conditional expression.

本発明の一実施例に係るコンバータ装置によれば、像面湾曲収差成分を他の収差成分に対して独立に調整することができる。 According to the converter device of one embodiment of the present invention, the field curvature aberration component can be adjusted independently of other aberration components.

実施例Aの主光学系の広角端における断面図。6 is a sectional view of the main optical system of Example A at the wide-angle end. FIG. 実施例Aの主光学系の物体距離無限遠における収差図。9 is an aberration diagram of the main optical system of Example A at an object distance of infinity. FIG. 実施例Bの主光学系の広角端における断面図。FIG. 16 is a sectional view of the main optical system of Example B at the wide-angle end. 実施例Bの主光学系の物体距離無限遠における収差図。16 is an aberration diagram of the main optical system of Example B at an object distance of infinity. FIG. 実施例Cの主光学系の断面図。Sectional drawing of the main optical system of Example C. 実施例Cの主光学系の物体距離無限遠における収差図。16 is an aberration diagram of the main optical system of Example C at an object distance of infinity. FIG. 実施例1の再結像光学系の断面図。3 is a cross-sectional view of the re-imaging optical system of Example 1. FIG. 実施例1の再結像光学系の収差図。6 is an aberration diagram of the re-imaging optical system of Example 1. FIG. 実施例Aの主光学系と実施例1の再結像光学系を用いたときの断面図。FIG. 6 is a sectional view when the main optical system of Example A and the re-imaging optical system of Example 1 are used. 実施例Aの主光学系と実施例1の再結像光学系を用いたときの通常撮影時の収差図。FIG. 9 is an aberration diagram during normal shooting when the main optical system of Example A and the re-imaging optical system of Example 1 are used. 実施例Aの主光学系と実施例1の再結像光学系を用いたときの像面湾曲収差オーバー側設定時の収差図。FIG. 9 is an aberration diagram when the main optical system of Example A and the re-imaging optical system of Example 1 are used and the field curvature aberration excessive side is set. 実施例Aの主光学系と実施例1の再結像光学系を用いたときの像面湾曲収差アンダー側設定時の収差図。FIG. 7 is an aberration diagram when the main optical system of Example A and the re-imaging optical system of Example 1 are used and the field curvature aberration underside is set. 実施例2の再結像光学系の断面図。6 is a cross-sectional view of the re-imaging optical system of Example 2. FIG. 実施例2の再結像光学系の収差図。FIG. 9 is an aberration diagram of the re-imaging optical system of Example 2. 実施例Bの主光学系と実施例2の再結像光学系を用いたときの断面図。FIG. 13 is a cross-sectional view when the main optical system of Example B and the re-imaging optical system of Example 2 are used. 実施例Bの主光学系と実施例2の再結像光学系を用いたときの通常撮影時の収差図。FIG. 16 is an aberration diagram during normal shooting when the main optical system of Example B and the re-imaging optical system of Example 2 are used. 実施例Bの主光学系と実施例2の再結像光学系を用いたときの像面湾曲収差オーバー側設定時の収差図。FIG. 9 is an aberration diagram when the main optical system of Example B and the re-imaging optical system of Example 2 are used and the overside curvature of field is set. 実施例Bの主光学系と実施例2の再結像光学系を用いたときの像面湾曲収差アンダー側設定時の収差図。FIG. 16 is an aberration diagram when the field curvature aberration underside is set when the main optical system of Example B and the re-imaging optical system of Example 2 are used. 実施例3の再結像光学系の断面図。FIG. 9 is a cross-sectional view of the re-imaging optical system according to the third embodiment. 実施例3の再結像光学系の収差図。16 is an aberration diagram of the re-imaging optical system of Example 3. FIG. 実施例Bの主光学系と実施例3の再結像光学系を用いたときの断面図。Sectional drawing when the main optical system of Example B and the re-imaging optical system of Example 3 are used. 実施例Bの主光学系と実施例3の再結像光学系を用いたときの通常撮影時の収差図。FIG. 16 is an aberration diagram during normal shooting when the main optical system of Example B and the re-imaging optical system of Example 3 are used. 実施例Bの主光学系と実施例3の再結像光学系を用いたときの像面湾曲収差オーバー側設定時の収差図。FIG. 16 is an aberration diagram when the main optical system of Example B and the re-imaging optical system of Example 3 are used and the overside curvature of field is set. 実施例Bの主光学系と実施例3の再結像光学系を用いたときの像面湾曲収差アンダー側設定時の収差図。FIG. 16 is an aberration diagram when the field curvature aberration is set to the under side when the main optical system of Example B and the re-imaging optical system of Example 3 are used. 実施例4の再結像光学系の断面図。11 is a sectional view of the re-imaging optical system of Example 4. FIG. 実施例4の再結像光学系の収差図。16 is an aberration diagram of the re-imaging optical system of Example 4. FIG. 実施例Bの主光学系と実施例4の再結像光学系を用いたときの断面図。Sectional drawing when the main optical system of Example B and the re-imaging optical system of Example 4 are used. 実施例Bの主光学系と実施例4の再結像光学系を用いたときの通常撮影時の収差図。FIG. 16 is an aberration diagram during normal shooting when the main optical system of Example B and the re-imaging optical system of Example 4 are used. 実施例Bの主光学系と実施例4の再結像光学系を用いたときの像面湾曲収差オーバー側設定時の収差図。FIG. 16 is an aberration diagram when the main optical system of Example B and the re-imaging optical system of Example 4 are used and the overside curvature of field is set. 実施例Bの主光学系と実施例4の再結像光学系を用いたときの像面湾曲収差アンダー側設定時の収差図。FIG. 16 is an aberration diagram when the field curvature aberration is set to the under side when the main optical system of Example B and the re-imaging optical system of Example 4 are used. 実施例5の再結像光学系の断面図。16 is a sectional view of the re-imaging optical system of Example 5. FIG. 実施例5の再結像光学系の収差図。16 is an aberration diagram of the re-imaging optical system of Example 5. FIG. 実施例Cの主光学系と実施例5の再結像光学系を用いたときの断面図。FIG. 16 is a sectional view when the main optical system of Example C and the re-imaging optical system of Example 5 are used. 実施例Cの主光学系と実施例5の再結像光学系を用いたときの収差図。FIG. 16 is an aberration diagram when the main optical system of Example C and the re-imaging optical system of Example 5 are used. 実施例にかかる撮像システムの構成を示す図である。It is a figure which shows the structure of the imaging system concerning an Example.

図35(A)、図35(B)は、実施例にかかるコンバータ装置を有する撮像システムの構成を示す図である。当該撮像システムは、撮像装置100と撮像装置100に対して着脱可能な交換レンズ200と、撮像装置100と交換レンズ200との間に装着可能なコンバータ装置300とを有する。交換レンズ200は主光学系MLを有し、コンバータ装置300は、主光学系MLによって形成された1次像を撮像装置100内の像面に再結像する光学系としての再結像光学系CLを有する。 FIG. 35A and FIG. 35B are diagrams showing the configuration of an imaging system including the converter device according to the embodiment. The imaging system includes an imaging device 100, an interchangeable lens 200 detachable from the imaging device 100, and a converter device 300 attachable between the imaging device 100 and the interchangeable lens 200. The interchangeable lens 200 has a main optical system ML, and the converter device 300 is a re-imaging optical system as an optical system for re-imaging the primary image formed by the main optical system ML on the image plane in the imaging device 100. With CL.

図35(A)は、コンバータ装置300を介さずに交換レンズ200を撮像装置100に装着した場合の構成を示している。また、図35(B)は、コンバータ装置300を介して交換レンズ200を撮像装置100に装着した場合を示している。 FIG. 35A shows a configuration in which the interchangeable lens 200 is attached to the imaging device 100 without the converter device 300. Further, FIG. 35B shows a case where the interchangeable lens 200 is attached to the imaging device 100 via the converter device 300.

この撮像システムでは、コンバータ装置300を装着有無に関わらず撮像装置100は撮影可能である。交換レンズ200の主光学系MLによって形成される1次像を再結像させるように再結像光学系CLを構成することで、コンバータ装置300を小型化に構成することができる。 In this image pickup system, the image pickup apparatus 100 can take an image regardless of whether or not the converter apparatus 300 is attached. By configuring the re-imaging optical system CL to re-image the primary image formed by the main optical system ML of the interchangeable lens 200, the converter device 300 can be downsized.

また、コンバータ装置300はスイッチ、ダイヤル、ボタン等の操作部材301を有する。操作部材301は、ユーザが像面湾曲収差量の調整方向および調整量を指示するために用いられる。 Further, the converter device 300 has an operation member 301 such as a switch, a dial, and a button. The operation member 301 is used by the user to instruct the adjustment direction and the adjustment amount of the field curvature aberration amount.

また、コンバータ装置300は、移動可能な像面湾曲調整群VL(移動群)と、CPUを含む制御部302を有する。像面湾曲調整群VLは、移動によって、像面湾曲収差を他の収差成分に比べて大きく変動させることが可能なレンズ群である。 Further, converter device 300 has movable field curvature adjustment group VL (moving group) and control unit 302 including a CPU. The field curvature adjustment group VL is a lens group capable of largely changing the field curvature aberration by movement, as compared with other aberration components.

ユーザにより操作部材301が操作されると、その操作方向および操作量が制御部302に出力される。そして、制御部302は、操作部材301の操作量に応じた、像面湾曲調整群VLの移動方向および移動量を決定し、像面湾曲調整群VLを移動させるための不図示のアクチュエータを制御する。このように、操作部材301の操作に応じて制御部302が像面湾曲調整群VLを移動させることによって、撮像装置で撮像される像の画面周辺のピントを任意に調整することが可能となる。 When the user operates the operation member 301, the operation direction and operation amount are output to the control unit 302. Then, the control unit 302 determines the moving direction and the moving amount of the field curvature adjustment group VL according to the operation amount of the operation member 301, and controls an actuator (not shown) for moving the field curvature adjustment group VL. To do. As described above, the control unit 302 moves the image surface curvature adjustment group VL in accordance with the operation of the operation member 301, whereby it is possible to arbitrarily adjust the focus around the screen of the image captured by the imaging device. ..

以下、このような撮影表現を実現するために好ましい、実施例に係る再結像光学系CLについて、添付の図面に基づいて詳細に説明する。 Hereinafter, the re-imaging optical system CL according to the embodiment, which is preferable for realizing such a shooting expression, will be described in detail with reference to the accompanying drawings.

図1、3、5は主光学系MLの断面図であり、図7、13、19、25、31は再結像光学系CLの断面図である。図9は実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置した時の断面図であり、図15は実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの断面図であり、図21は実施例Bの主光学系MLの像側に実施例3の再結像光学系CLを配置したときの断面図である。図27は実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの断面図であり、図33は実施例Cの主光学系MLの像側に実施例5の再結像光学系CLを配置したときの断面図である。各断面図において、左方が物体側(前方)であり、右方が像側(後方)である。また各断面図において、iを物体側から像側へのレンズ群の順番とすると、Liは第iレンズ群を示す。CGは物体側および像側が平面の光学部材である。 1, 3 and 5 are sectional views of the main optical system ML, and FIGS. 7, 13, 19, 25 and 31 are sectional views of the re-imaging optical system CL. FIG. 9 is a sectional view when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A, and FIG. 15 is on the image side of the main optical system ML of Example B. FIG. 21 is a cross-sectional view when the re-imaging optical system CL of Example 2 is arranged, and FIG. 21 shows the re-imaging optical system CL of Example 3 arranged on the image side of the main optical system ML of Example B. FIG. 27 is a sectional view when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B, and FIG. 33 is an image side of the main optical system ML of Example C. 16 is a cross-sectional view when a re-imaging optical system CL of Example 5 is arranged. In each sectional view, the left side is the object side (front side), and the right side is the image side (rear side). Further, in each sectional view, when i is the order of the lens groups from the object side to the image side, Li represents the i-th lens group. The CG is an optical member whose object side and image side are flat.

本明細書において、主光学系MLがズームレンズの場合の「レンズ群」は、ズーミングに際して変化するレンズ同士の間隔を境に分けられた群とする。再結像光学系CLの場合の「レンズ群」は、像面湾曲調整に際して変化する、レンズ同士の間隔を境に分けられた群とする。また、「レンズ群」は、複数のレンズから構成されていてもよいし、1枚のレンズから構成されていてもよい。 In the present specification, the “lens group” in the case where the main optical system ML is a zoom lens is a group divided by the distance between the lenses which changes during zooming. In the case of the re-imaging optical system CL, the “lens group” is a group divided by the distance between the lenses, which changes when the field curvature is adjusted. The "lens group" may be composed of a plurality of lenses or may be composed of one lens.

開口絞りSPは開放Fナンバー(Fno)の光束を決定(制限)する。APはフレアーカット絞りであり、不要光をカットする。 The aperture stop SP determines (limits) the light flux of the open F number (Fno). AP is a flare cut diaphragm that cuts unnecessary light.

1次像の結像面を1次結像面IP1とし、2次像の結像面を2次結像面IP2とする。主光学系MLと撮像装置100との間に、再結像光学系CLが配置された場合であって、撮像装置100がデジタルビデオカメラやデジタルカメラなどである場合は、2次結像面IP2は、CCDセンサまたはCMOSセンサ等の撮像素子(光電変換素子)の撮像面に相当する。主光学系MLと撮像装置100との間に、再結像光学系CLが配置された場合であって、撮像装置100が銀塩フィルムカメラである場合は、2次結像面IP2はフィルム面に相当する。主光学系MLと撮像装置100との間に再結像光学系CLが配置されない場合は、2次結像面IP2の代わりに1次結像面IP1が相当する撮像面やフィルム面に相当する。 The image plane of the primary image is defined as the primary image plane IP1, and the image plane of the secondary image is defined as the secondary image plane IP2. In the case where the re-imaging optical system CL is arranged between the main optical system ML and the imaging device 100 and the imaging device 100 is a digital video camera, a digital camera, or the like, the secondary imaging plane IP2 Corresponds to an image pickup surface of an image pickup element (photoelectric conversion element) such as a CCD sensor or a CMOS sensor. In the case where the re-imaging optical system CL is arranged between the main optical system ML and the imaging device 100, and the imaging device 100 is a silver salt film camera, the secondary imaging plane IP2 is the film surface. Equivalent to. When the re-imaging optical system CL is not arranged between the main optical system ML and the imaging device 100, the primary imaging surface IP1 instead of the secondary imaging surface IP2 corresponds to the corresponding imaging surface or film surface. ..

図2、4、6は主光学系MLの収差図であり、図8、14、20、26、32後述の各実施例の再結像光学系CLの収差図である。図10〜12は実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置したときの収差図であり、図16〜18は実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの収差図であり、図22〜24は実施例Bの主光学系MLの像側に実施例3の再結像光学系を配置したときの収差図である。図28〜30は実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの収差図であり、図34は実施例Cの主光学系MLの像側に実施例5の再結像光学系CLを配置したときの収差図である。球面収差図において、実線はd線、二点鎖線はg線を示している。非点収差図において破線ΔMはメリディオナル像面、実線ΔSはサジタル像面である。歪曲収差はd線について示している。倍率色収差はg線について示している。ωは半画角(度)、FnoはFナンバーである。 2, 4, and 6 are aberration diagrams of the main optical system ML, and FIGS. 8, 14, 20, 26, and 32 are aberration diagrams of the re-imaging optical system CL of each example described later. 10 to 12 are aberration diagrams when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A, and FIGS. 16 to 18 are main optical system ML of Example B. 22 to 24 are aberration diagrams when the re-imaging optical system CL of Example 2 is arranged on the image side of FIG. 22, and FIGS. 22 to 24 are re-imaging optical systems of Example 3 on the image side of the main optical system ML of Example B. FIG. 6A is an aberration diagram when G is arranged. 28 to 30 are aberration diagrams when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B, and FIG. 34 is an image of the main optical system ML of Example C. FIG. 16 is an aberration diagram when the re-imaging optical system CL of Example 5 is arranged on the side. In the spherical aberration diagram, the solid line indicates the d line and the chain double-dashed line indicates the g line. In the astigmatism diagram, the broken line ΔM is the meridional image plane, and the solid line ΔS is the sagittal image plane. The distortion aberration is shown for the d line. The chromatic aberration of magnification is shown for the g-line. ω is a half angle of view (degree), and Fno is an F number.

本発明の実施例に係る再結像光学系CLは、例えば、コンバータ装置300に含まれ、主光学系MLによって形成された1次像を2次像として像面に再結像する光学系である。また、再結像光学系CLは、像中心の結像性能を維持したまま、周辺のピントを意図的に調整できるようにするために、光軸に沿って移動可能な像面湾曲調整群VLを有する。 The re-imaging optical system CL according to the embodiment of the present invention is, for example, an optical system included in the converter device 300 and re-imaging the primary image formed by the main optical system ML as a secondary image on the image plane. is there. Further, the re-imaging optical system CL is movable in the field curvature adjustment group VL along the optical axis in order to allow the peripheral focus to be intentionally adjusted while maintaining the image forming performance at the image center. Have.

特に、画面中心での光学性能を決める主要因である球面収差の量の増大を抑制しつつ、像面湾曲収差を独立して調整可能とする必要がある。像面湾曲収差は軸外光束に起因して生じるものであるため、軸上光束と軸外光束が光軸直交方向に比較的大きく分離している位置に像面湾曲調整群VLを配置することで、像面湾曲調整群VLの移動に際して像面湾曲収差を球面収差等に比べて大きく変動させることが可能となる。 In particular, it is necessary to be able to independently adjust the field curvature aberration while suppressing an increase in the amount of spherical aberration, which is the main factor that determines the optical performance at the center of the screen. Since the field curvature aberration occurs due to the off-axis light flux, the field curvature adjustment group VL should be arranged at a position where the on-axis light flux and the off-axis light flux are relatively separated in the direction orthogonal to the optical axis. Thus, when the field curvature adjustment group VL is moved, the field curvature aberration can be largely changed as compared with the spherical aberration and the like.

そこで、本実施例では、通常撮影時における、1次結像面IP1から像面湾曲調整群VL(移動群)の最も物体側の面までの距離および通常撮影時における像面湾曲調整群VLの最も像側の面から像面までの距離のうち小さいほうをDm、再結像光学系CLのレンズ全長をTTDとするとき、
|Dm|/TTD<0.40 ・・・(1)
なる条件式を満たすことを特徴とする。
Therefore, in the present embodiment, the distance from the primary imaging plane IP1 to the most object-side surface of the field curvature adjustment group VL (moving group) during normal shooting and the field curvature adjustment group VL during normal shooting. When the smaller one of the distances from the image-side surface to the image surface is Dm and the total lens length of the re-imaging optical system CL is TTD,
|Dm|/TTD<0.40 (1)
It is characterized by satisfying the following conditional expression.

ここで、「通常撮影時」とは像面湾曲収差の収差量が最小となるときのことを意味している。 Here, “during normal imaging” means when the amount of field curvature aberration is minimized.

レンズ全長TTDは、1次結像面IP1から再結像光学系CLの最も物体側のレンズ面までの光軸上の空気換算距離と、再結像光学系CLの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離と、再結像光学系CLの最も像側のレンズ面から2次結像面IP2までの光軸上の空気換算距離とを足した長さである。 The total lens length TTD is calculated from the air-equivalent distance on the optical axis from the primary imaging plane IP1 to the lens surface of the re-imaging optical system CL closest to the object side, and from the lens surface of the re-imaging optical system CL closest to the object side. A length obtained by adding the distance on the optical axis to the lens surface closest to the image and the air-equivalent distance on the optical axis from the lens surface closest to the image of the re-imaging optical system CL to the secondary image formation surface IP2. Is.

条件式(1)は、像面湾曲調整群VLが、1次結像面IP1または2次結像面IP2に比較的近い位置に配置されることを示している。 Conditional expression (1) indicates that the field curvature adjustment group VL is arranged at a position relatively close to the primary imaging plane IP1 or the secondary imaging plane IP2.

条件式(1)の上限値を上回って、像面湾曲調整群VLの位置が1次結像面IP1または2次結像面IP2から遠ざかると、軸上光束と軸外光束が光軸直交方向に十分に分離していない位置に像面湾曲調整群VLが配置されることになる。このため、像面湾曲調整群VLの移動による像面湾曲調整に際して球面収差の変動量が大きくなり、他の収差成分に比べて像面湾曲収差を独立して調整することが困難になるため好ましくない。または、条件式(1)の上限値を上回って再結像光学系CLのレンズ全長が短くなり、再結像光学系CLの屈折力が強くなると、球面収差などが悪化して、画面中心から周辺にわたって高い光学性能を備えることが困難となり好ましくない。 When the upper limit of conditional expression (1) is exceeded and the position of the field curvature adjustment group VL moves away from the primary image formation plane IP1 or the secondary image formation plane IP2, the on-axis light flux and the off-axis light flux are orthogonal to the optical axis. The field curvature adjustment group VL is arranged at a position that is not sufficiently separated. Therefore, the amount of fluctuation of spherical aberration becomes large when adjusting the field curvature due to the movement of the field curvature adjustment group VL, and it becomes difficult to independently adjust the field curvature aberration as compared with other aberration components, which is preferable. Absent. Alternatively, when the total lens length of the re-imaging optical system CL is shortened and the refracting power of the re-imaging optical system CL is increased to exceed the upper limit value of the conditional expression (1), spherical aberration and the like are deteriorated, and from the center of the screen. It is not preferable because it is difficult to provide high optical performance around the periphery.

このように、条件式(1)を満たすことによって、ユーザの好みに応じて像面湾曲収差を調整することが可能になる。特に、再結像光学系CLがコンバータ装置300に備わっている場合は、全系の焦点距離変更などのコンバータ装置300の本来の機能を維持しつつ、像面湾曲収差の調整という表現拡大機能を備えることができる。また、特に、再結像光学系CLがコンバータ装置300に備わっている場合は、このコンバータ装置300を1つ有するだけで、様々な種類の交換レンズ200に対して像面湾曲収差の調整機能を付与することが可能となる。 Thus, by satisfying the conditional expression (1), it becomes possible to adjust the field curvature aberration according to the preference of the user. In particular, when the re-imaging optical system CL is provided in the converter device 300, while maintaining the original function of the converter device 300 such as changing the focal length of the entire system, an expression expansion function of adjusting the field curvature aberration is provided. Can be equipped. Further, particularly when the re-imaging optical system CL is provided in the converter device 300, only one converter device 300 is required to provide a field curvature aberration adjusting function for various types of interchangeable lenses 200. It is possible to give.

なお条件式(1)の数値範囲を以下のようにすることが好ましい。
|Dm|/TTD<0.30 ・・・(1a)
The numerical range of conditional expression (1) is preferably set as follows.
|Dm|/TTD<0.30 (1a)

さらに、条件式(1)の数値範囲を以下のようにすることが好ましい。
|Dm|/TTD<0.20 ・・・(1b)
Furthermore, it is preferable that the numerical range of the conditional expression (1) is as follows.
|Dm|/TTD<0.20 (1b)

なお、像面湾曲調整群VLが、再結像光学系CLに含まれる屈折力を有するレンズのうち、最も物体側のレンズ、当該最も物体側のレンズの像側に隣接して配置されたレンズ、最も像側のレンズ、当該最も像側のレンズの物体側に隣接して配置されたレンズのいずれかを含む場合も、条件式(1)を満たす場合とほぼ同様の効果を得ることができる。 Note that the field curvature adjustment group VL is arranged adjacent to the image side of the most object-side lens and the most object-side lens among the lenses having refractive power included in the re-imaging optical system CL. In the case where any one of the lens closest to the image side and the lens disposed adjacent to the object side of the lens closest to the image side is included, it is possible to obtain substantially the same effect as in the case where the conditional expression (1) is satisfied. ..

さらに、再結像光学系CLが次の条件式(2)〜(9)のうち少なくとも1つを満足することが好ましい。
0.50<|Hbi/Hgi|<2.00 ・・・(2)
0.01<|(1−βm)βr|<1.50 ・・・(3)
0.10<|fm/f|<50 ・・・(4)
−10.0<βc<−0.45 ・・・(5)
−10.0<PI/f<−1.00 ・・・(6)
−10.0<PO/f<−0.10 ・・・(7)
−0.30<Di/TTD<0.30 ・・・(8)
0.01<skd/f<1.00 ・・・(9)
Furthermore, it is preferable that the re-imaging optical system CL satisfy at least one of the following conditional expressions (2) to (9).
0.50<|Hbi/Hgi|<2.00 (2)
0.01<|(1-βm 2 )βr 2 |<1.50 (3)
0.10<|fm/f|<50 (4)
-10.0<βc<-0.45 (5)
-10.0<PI/f<-1.00 (6)
-10.0<PO/f<-0.10 (7)
-0.30<Di/TTD<0.30 (8)
0.01<skd/f<1.00 (9)

ただし、通常撮影時における像面湾曲調整群VLの最も物体側の面に入射する最軸外光束の主光線の高さをHbi、通常撮影時における1次像の最大像高をHgiとする。通常撮影時における像面湾曲調整群VLの横倍率をβmとする。像面湾曲調整群VLより像側に配置される全てのレンズの通常撮影時における合成横倍率をβrとする。通常撮影時における像面湾曲調整群VLの焦点距離をfm、通常撮影時における再結像光学系CLの焦点距離をfとする。通常撮影時における再結像光学系CLの横倍率をβcとする。 However, the height of the chief ray of the most off-axis light flux incident on the most object-side surface of the field curvature adjustment group VL during normal shooting is Hbi, and the maximum image height of the primary image during normal shooting is Hgi. The lateral magnification of the field curvature adjustment group VL at the time of normal shooting is βm. Let βr be the combined lateral magnification of all the lenses arranged on the image side of the field curvature adjustment group VL during normal shooting. The focal length of the field curvature adjustment group VL during normal shooting is fm, and the focal length of the re-imaging optical system CL during normal shooting is f. Let βc be the lateral magnification of the re-imaging optical system CL during normal shooting.

通常撮影時における1次結像面IP1から再結像光学系CLの入射瞳位置までの光軸上の距離をPIとする。ここで、入射瞳位置とは入射瞳の光軸上の位置のことをいう。PIの符号は、1次結像面IP1よりも入射瞳位置が像側にあるときを正、1次結像面IP1よりも入射位置が物体側にあるときを負とする。通常撮影時における2次結像面IP2から再結像光学系CLの射出瞳位置までの光軸上の距離をPOとする。ここで、射出瞳位置とは射出瞳の光軸上の位置のことをいう。POの符号は、2次結像面IP2よりも射出瞳位置が像側にあるときを正、2次結像面IP2よりも射出瞳位置が物体側にあるときを負とする。 Let PI be the distance on the optical axis from the primary imaging plane IP1 to the entrance pupil position of the re-imaging optical system CL during normal imaging. Here, the entrance pupil position means a position on the optical axis of the entrance pupil. The sign of PI is positive when the entrance pupil position is on the image side of the primary imaging plane IP1, and is negative when the entrance position is on the object side of the primary imaging plane IP1. Let PO be the distance on the optical axis from the secondary imaging plane IP2 to the exit pupil position of the re-imaging optical system CL during normal imaging. Here, the exit pupil position means a position on the optical axis of the exit pupil. The sign of PO is positive when the exit pupil position is on the image side of the secondary imaging plane IP2 and is negative when the exit pupil position is on the object side of the secondary imaging plane IP2.

通常撮影時における1次結像面IP1から、再結像光学系CLの最も物体側の面までの光軸上の距離をDiとする。ここでDiの符号は、再結像光学系CLの最も物体側の面が1次結像面IP1よりも像側にあるときを正、再結像光学系CLの最も物体側の面が1次結像面IP1よりも物体側にあるときを負とする。距離Diは空気換算距離である。通常撮影時における再結像光学系CLの最も物体側の面から像面までの光軸上の空気換算距離をskdとする。 The distance on the optical axis from the primary imaging plane IP1 at the time of normal photographing to the most object-side surface of the re-imaging optical system CL is Di. Here, the sign of Di is positive when the most object-side surface of the re-imaging optical system CL is on the image side of the primary imaging surface IP1, and the most object-side surface of the re-imaging optical system CL is 1. The value is negative when it is on the object side of the next image plane IP1. The distance Di is an air conversion distance. Let skd be the air-converted distance on the optical axis from the most object-side surface of the re-imaging optical system CL to the image plane during normal shooting.

条件式(2)は光軸中心における結像性能の劣化を抑制したまま、画面周辺の結像性能を意図的に操作するために、像面湾曲調整群VLの最も物体側の面に入る最軸外光束の主光線の高さHbiと1次結像面IP1における最大像高Hgiの割合を規定している。条件式(2)の上限値を上回って、像面湾曲調整群VLに入射する最軸外光束の主光線の高さHbiが大きくなる、または1次結像面IP1における最大像高Hgiが小さくなると、再結像光学系CLの外径が主光学系MLの外径に対して大きくなり、再結像光学系CLが大型になるため好ましくない。条件式(2)の下限値を下回って、像面湾曲調整群VLに入射する最軸外光束の主光線の高さHbiが小さくなる、または1次結像面IP1における最大像高Hgiが大きくなると、像面湾曲調整に際して球面収差の変動量が大きくなり、他の収差成分に比べて像面湾曲収差を独立して調整することが困難になるため好ましくない。 Conditional expression (2) is set to the most object-side surface of the field curvature adjustment group VL in order to intentionally operate the imaging performance around the screen while suppressing the deterioration of the imaging performance at the optical axis center. It defines the ratio between the height Hbi of the principal ray of the off-axis light beam and the maximum image height Hgi on the primary image plane IP1. If the upper limit of conditional expression (2) is exceeded, the height Hbi of the chief ray of the most off-axis light beam incident on the field curvature adjustment group VL becomes large, or the maximum image height Hgi at the primary image plane IP1 becomes small. Then, the outer diameter of the re-imaging optical system CL becomes larger than the outer diameter of the main optical system ML, and the re-imaging optical system CL becomes large, which is not preferable. Below the lower limit of conditional expression (2), the height Hbi of the chief ray of the most off-axis light flux entering the field curvature adjustment group VL becomes small, or the maximum image height Hgi at the primary image plane IP1 becomes large. In this case, the amount of fluctuation of spherical aberration becomes large when adjusting the field curvature, and it becomes difficult to independently adjust the field curvature aberration as compared with other aberration components, which is not preferable.

条件式(3)は像面湾曲調整群VLと像面湾曲調整群VLの像側に配置されるレンズの横倍率の関係を規定している。すなわち、条件式(3)は像面湾曲調整群VLの単位移動量あたりの像面湾曲の変動量を示す敏感度である。条件式(3)の上限値を上回ると、単位移動量あたりの像面湾曲収差の変動量が大きくなり、像面湾曲収差の微調整が困難になる。したがって、操作性の観点から好ましくない。さらに、発生したピントズレを補正するために、主光学系MLに含まれるフォーカシングに際して移動する部分群を移動させる必要があるため好ましくない。条件式(3)の下限値を下回ると、像面湾曲収差の量を十分に調整するために必要な像面湾曲調整群VLの移動量が長くなり、再結像光学系CLが大型化するため好ましくない。移動量に制限がある場合は、本件の目的である像面湾曲調整効果を十分に得ることが困難になるため好ましくない。 Conditional expression (3) defines the relationship between the lateral curvature adjustment group VL and the lateral magnification of the lens arranged on the image side of the negative field curvature adjustment group VL. That is, the conditional expression (3) is the sensitivity indicating the variation amount of the field curvature per unit movement amount of the field curvature adjustment group VL. When the value exceeds the upper limit of the conditional expression (3), the variation amount of the field curvature aberration per unit movement amount becomes large, and it becomes difficult to finely adjust the field curvature aberration. Therefore, it is not preferable from the viewpoint of operability. Further, in order to correct the generated focus deviation, it is necessary to move the sub-group that is included in the main optical system ML and moves during focusing, which is not preferable. When the value goes below the lower limit of the conditional expression (3), the amount of movement of the field curvature adjustment group VL required to sufficiently adjust the amount of field curvature aberration becomes long, and the re-imaging optical system CL becomes large. Therefore, it is not preferable. If the amount of movement is limited, it is difficult to obtain the effect of adjusting the curvature of field that is the object of the present case, which is not preferable.

条件式(4)は像面湾曲調整群VLの焦点距離fmと再結像光学系CLの焦点距離fを規定している。条件式(4)の上限値を上回って、像面湾曲調整群VLの焦点距離が長くなって像面湾曲調整群VLの屈折力が弱くなると、像面湾曲収差の量を十分に調整するために必要な像面湾曲調整群VLの移動量が長くなり、再結像光学系CLが大型化するため好ましくない。条件式(4)の上限値を上回って、再結像光学系CLの焦点距離が短くなって、再結像光学系CLの屈折力が強くなると、像面湾曲以外の諸収差が大きくなる。これを補正するためには補正用のレンズを追加する必要があり、再結像光学系CLが大型化するため好ましくない。条件式(4)の下限値を下回って、像面湾曲調整群VLの焦点距離が短くなり屈折力が強くなると、単位移動量あたりの像面湾曲収差の変動量が大きくなる。これにより、像面湾曲収差の微調整が困難になるため、操作性の観点から好ましくない。また、像面湾曲収差調整群VLの屈折力が強くなると、像面湾曲収差だけでなく、コマ収差や色収差も大きくなるため、再結像光学系CLにおける光学性能が低下するため好ましくない。また、条件式(4)の下限値を下回って、再結像光学系CLの焦点距離が長くなり再結像光学系CLの屈折力が弱くなると、再結像光学系CLのレンズ全長が長くなるため好ましくない。 Conditional expression (4) defines the focal length fm of the field curvature adjustment group VL and the focal length f of the re-imaging optical system CL. If the upper limit of conditional expression (4) is exceeded and the focal length of the field curvature adjustment group VL becomes longer and the refractive power of the field curvature adjustment group VL becomes weaker, the amount of field curvature aberration will be adjusted sufficiently. The amount of movement of the field curvature adjustment group VL required for the above becomes long and the re-imaging optical system CL becomes large, which is not preferable. When the upper limit of conditional expression (4) is exceeded and the focal length of the re-imaging optical system CL becomes short and the refracting power of the re-imaging optical system CL becomes strong, various aberrations other than field curvature increase. In order to correct this, it is necessary to add a lens for correction, and the re-imaging optical system CL becomes large, which is not preferable. When the value is below the lower limit of the conditional expression (4) and the focal length of the field curvature adjustment group VL becomes short and the refractive power becomes strong, the variation amount of the field curvature aberration per unit movement amount becomes large. This makes it difficult to finely adjust the field curvature aberration, which is not preferable from the viewpoint of operability. Further, when the refractive power of the field curvature aberration adjustment group VL becomes strong, not only field curvature aberration but also coma aberration and chromatic aberration become large, so that the optical performance of the re-imaging optical system CL deteriorates, which is not preferable. When the lower limit of conditional expression (4) is exceeded and the focal length of the re-imaging optical system CL becomes long and the refracting power of the re-imaging optical system CL becomes weak, the total lens length of the re-imaging optical system CL becomes long. Is not preferable.

条件式(5)は再結像光学系CLの横倍率βcを規定している。再結像光学系CLにより1次像が反転されて、結像面に2次像として再結像されるため横倍率が負の値となる。条件式(5)の上限値を上回って再結像光学系CLの横倍率βcの絶対値が小さくなると、再結像光学系CLを有するコンバータ装置を交換レンズ200と撮像装置100との間に装着したときに軸外光束のケラレが発生するか、当該ケラレを回避するために主光学系MLの外径が大型化するため好ましくない。条件式(5)の下限値を下回って再結像光学系CLの横倍率βcの絶対値が大きくなると、再結像光学系CLにおいて生じる軸上色収差の補正が困難になるため好ましくない。 Conditional expression (5) defines the lateral magnification βc of the re-imaging optical system CL. The primary image is inverted by the re-imaging optical system CL and re-imaged as a secondary image on the imaging surface, so that the lateral magnification has a negative value. When the absolute value of the lateral magnification βc of the re-imaging optical system CL becomes smaller than the upper limit value of the conditional expression (5), the converter device having the re-imaging optical system CL is provided between the interchangeable lens 200 and the imaging device 100. Vignetting of the off-axis light flux occurs when it is attached, or the outer diameter of the main optical system ML becomes large in order to avoid the vignetting, which is not preferable. If the absolute value of the lateral magnification βc of the re-imaging optical system CL is increased below the lower limit of conditional expression (5), it becomes difficult to correct the axial chromatic aberration occurring in the re-imaging optical system CL, which is not preferable.

また、後述する実施例1乃至3及び実施例5のように、横倍率(撮影倍率)の絶対値が1より大きくなるように再結像光学系CLを構成すると、コンバータ装置300の未装着時における交換レンズ200の大型化を招くことなく、コンバータ装置300の装着時の軸外光束のケラレにくくすることができる。また、撮影機能(像面湾曲可変機能)の拡張だけでなく、像の大きさを拡大することもできる。 When the re-imaging optical system CL is configured such that the absolute value of the lateral magnification (shooting magnification) is larger than 1, as in Examples 1 to 3 and Example 5 described later, when the converter device 300 is not attached. It is possible to prevent vignetting of the off-axis light flux when the converter device 300 is attached without increasing the size of the interchangeable lens 200. In addition to expanding the photographing function (variable field curvature function), the size of the image can be expanded.

条件式(6)は再結像光学系CLが主光学系MLからの光線を適切に取り込むために、1次結像面IP1から再結像光学系CLの入射瞳位置までの光軸上の距離PIと再結像光学系の焦点距離fの関係を規定している。条件式(6)の上限値を上回って、距離PIが短くなると、再結像光学系CLに入射する軸外光束の最大入射角度が大きくなり、1次結像面IP1近傍のレンズの外径が大きくなるため好ましくない。また像面湾曲調整群VLの移動に際しての像面湾曲収差に対する位置敏感度も高くなって、像面湾曲収差の微調整が困難になるため好ましくない。さらに、像面湾曲調整群VLの移動に際して、主光学系MLから射出された軸外光束がケラレやすくなるため好ましくない。また、条件式(6)の上限値を上回って再結像光学系CLの焦点距離が長くなることで、再結像光学系CLのレンズ全長が長くなり、コンバータ装置300が大型化するため好ましくない。条件式(6)の下限値を下回って、距離PIが長くなると、交換レンズ200の主光学系MLが長い射出瞳を持つ光学系に限定されてしまう。そのため、様々な交換レンズに適用可能なコンバータ装置300を得ることが困難になり、汎用性の観点から好ましくない。また、条件式(6)の下限値を下回って再結像光学系CLの焦点距離が短くなり、再結像光学系CLの屈折力が強くなると、像面湾曲収差以外の収差が大きくなる。よって、当該収差の補正が困難になるか、補正のためにレンズ枚数が多くなるため好ましくない。 Conditional expression (6) is on the optical axis from the primary imaging plane IP1 to the entrance pupil position of the re-imaging optical system CL in order that the re-imaging optical system CL properly takes in the light rays from the main optical system ML. It defines the relationship between the distance PI and the focal length f of the re-imaging optical system. When the distance PI exceeds the upper limit value of the conditional expression (6) and the distance PI becomes short, the maximum incident angle of the off-axis light beam entering the re-imaging optical system CL becomes large, and the outer diameter of the lens near the primary imaging plane IP1. Is large, which is not preferable. In addition, the position sensitivity to the field curvature aberration during the movement of the field curvature adjustment group VL also becomes high, which makes it difficult to finely adjust the field curvature aberration, which is not preferable. Further, when the field curvature adjustment group VL moves, the off-axis light flux emitted from the main optical system ML is likely to be vignetted, which is not preferable. Further, since the focal length of the re-imaging optical system CL becomes longer than the upper limit value of the conditional expression (6), the total lens length of the re-imaging optical system CL becomes long and the converter device 300 becomes large, which is preferable. Absent. If the distance PI becomes lower than the lower limit of conditional expression (6), the main optical system ML of the interchangeable lens 200 is limited to an optical system having a long exit pupil. Therefore, it becomes difficult to obtain the converter device 300 applicable to various interchangeable lenses, which is not preferable from the viewpoint of versatility. If the focal length of the re-imaging optical system CL is shortened and the refracting power of the re-imaging optical system CL is increased below the lower limit of the conditional expression (6), aberrations other than the field curvature aberration are increased. Therefore, it is not preferable because it becomes difficult to correct the aberration or the number of lenses increases for the correction.

条件式(7)は再結像光学系CLの射出瞳位置POと再結像光学系の焦点距離の関係を規定した式である。条件式(7)の上限値を上回って、距離POの長さが短くなると、2次結像面IP2近傍に配置されるレンズの屈折力が強くなる。そのため、通常撮影時において像面湾曲収差を低減させることが困難になるため好ましくない。また、条件式(7)の上限値を上回って再結像光学系CLの焦点距離が長くなって、再結像光学系CLの屈折力が弱くなると、再結像光学系CLのレンズ全長が長くなりコンバータ装置300が大型化するため好ましくない。条件式(7)の下限値を下回って距離POの長さが長くなると、2次結像面IP2への最大入射角が大きくなりすぎてシェーディングが生じやすくなるため好ましくない。また、条件式(7)の下限値を下回って再結像光学系CLの焦点距離が短くなり、再結像光学系CLの屈折力が強くなると、球面収差等の諸収差が大きくなり、補正が困難になるため好ましくない。 条件式(8)は主光学系MLから射出される軸外光束を再結像光学系CLに適切に伝播させるために、1次結像面IP1から再結像光学系CLの第1レンズの物体側像側面までの距離Diと再結像光学系CLのレンズ全長TTDを規定した条件式である。条件式(8)の上限値を上回って距離Diが大きくなり、1次結像面IP1の像側に再結像光学系CLの最も物体側の面が離れると、再結像光学系CLのレンズ全長が長くなって、再結像光学系CLが大型化するため好ましくない。1次結像面IP1の像側に再結像光学系CLの最も物体側の面が離れても再結像光学系CLのレンズ全長の伸長を抑制する場合、再結像光学系CLの屈折力を強くすることが必要になり、球面収差等の諸収差が大きくなるため好ましくない。条件式(8)の下限値を下回って距離Diが小さくなると、主光学系MLのバックフォーカスの範囲に再結像光学系CLが入り込む構成となる。このため、交換レンズ200とコンバータ装置300との接続部分のメカレイアウトが困難となるため好ましくない。または、条件式(8)の下限値を下回って距離Diが小さくなると、再結像光学系CLのレンズ全長が長くなって、コンバータ装置300が大型化するため好ましくない。 Conditional expression (7) defines the relationship between the exit pupil position PO of the re-imaging optical system CL and the focal length of the re-imaging optical system. If the upper limit of conditional expression (7) is exceeded and the length of the distance PO is shortened, the refractive power of the lens arranged near the secondary imaging plane IP2 becomes strong. Therefore, it becomes difficult to reduce the field curvature aberration during normal shooting, which is not preferable. Further, when the focal length of the re-imaging optical system CL becomes longer than the upper limit value of the conditional expression (7) and the refracting power of the re-imaging optical system CL becomes weak, the total lens length of the re-imaging optical system CL becomes large. This is not preferable because it becomes long and the converter device 300 becomes large. If the length of the distance PO becomes longer than the lower limit value of the conditional expression (7), the maximum incident angle on the secondary image formation plane IP2 becomes too large and shading easily occurs, which is not preferable. If the lower limit value of the conditional expression (7) is exceeded and the focal length of the re-imaging optical system CL becomes short and the refracting power of the re-imaging optical system CL becomes strong, various aberrations such as spherical aberration become large, and correction is performed. Is difficult to do, which is not preferable. Conditional expression (8) is used for properly propagating the off-axis light beam emitted from the main optical system ML to the re-imaging optical system CL from the primary imaging plane IP1 to the first lens of the re-imaging optical system CL. This is a conditional expression that defines the distance Di to the object-side image side surface and the total lens length TTD of the re-imaging optical system CL. When the distance Di exceeds the upper limit of conditional expression (8) and the surface of the re-imaging optical system CL closest to the object side is separated from the image side of the primary imaging plane IP1, the distance of the re-imaging optical system CL is increased. This is not preferable because the total lens length becomes long and the re-imaging optical system CL becomes large. Even if the most object-side surface of the re-imaging optical system CL is separated from the image side of the primary imaging plane IP1, if the extension of the total lens length of the re-imaging optical system CL is suppressed, refraction of the re-imaging optical system CL Since it is necessary to increase the force and various aberrations such as spherical aberration increase, it is not preferable. When the distance Di becomes smaller than the lower limit of the conditional expression (8), the re-imaging optical system CL enters the back focus range of the main optical system ML. For this reason, it is not preferable because the mechanical layout of the connecting portion between the interchangeable lens 200 and the converter device 300 becomes difficult. Alternatively, if the distance Di becomes smaller than the lower limit value of the conditional expression (8), the total lens length of the re-imaging optical system CL becomes long and the converter device 300 becomes large, which is not preferable.

条件式(9)は再結像光学系CLの最も物体側の面から2次結像面IP2でもある像面までの光軸上の距離(以下、バックフォーカスという)と再結像光学系CLの焦点距離を規定している。 Conditional expression (9) is the distance on the optical axis from the most object-side surface of the re-imaging optical system CL to the image plane that is also the secondary imaging plane IP2 (hereinafter referred to as back focus) and the re-imaging optical system CL. It defines the focal length of.

条件式(9)の上限値を上回って、再結像光学系CLのバックフォーカスskdが長くなると、再結像光学系CLのレンズ全長が長くなってコンバータ装置300が大型化するため好ましくない。また、条件式(9)の上限値を上回って、再結像光学系CLの焦点距離が短くなり、再結像光学系CLの屈折力が強くなると、球面収差等の諸収差が大きくなって、バックフォーカスの範囲内に配置可能なレンズ枚数で当該諸収差の補正をすることが困難になるため好ましくない。条件式(9)の下限値を下回って、再結像光学系CLのバックフォーカスが短くなると、コンバータ装置300と撮像装置100の接続部に関わるメカレイアウトが困難になるため好ましくない。また、条件式(9)の下限値を下回って、再結像光学系CLの焦点距離が長くなって再結像光学系CLの屈折力が弱くなると、再結像光学系CLのレンズ全長が長くなるため好ましくない。 If the back focus skd of the re-imaging optical system CL becomes longer than the upper limit of the conditional expression (9), the total lens length of the re-imaging optical system CL becomes long and the converter device 300 becomes large, which is not preferable. Further, when the upper limit of conditional expression (9) is exceeded and the focal length of the re-imaging optical system CL becomes short and the refracting power of the re-imaging optical system CL becomes strong, various aberrations such as spherical aberration become large. However, it becomes difficult to correct the various aberrations with the number of lenses that can be arranged within the range of the back focus, which is not preferable. If the lower limit of the conditional expression (9) is exceeded and the back focus of the re-imaging optical system CL becomes short, the mechanical layout related to the connecting portion between the converter device 300 and the imaging device 100 becomes difficult, which is not preferable. If the focal length of the re-imaging optical system CL becomes longer and the refracting power of the re-imaging optical system CL becomes weaker than the lower limit value of the conditional expression (9), the total lens length of the re-imaging optical system CL becomes smaller. It is not preferable because it becomes long.

さらに、条件式(2)〜(9)の数値範囲を以下のようにすることが好ましい。
0.55<|Hbi/Hgi|<1.50 ・・・(2a)
0.02<|(1−βm)βr|<1.00 ・・・(3a)
0.20<|fm/f|<40 ・・・(4a)
−5.0<βc<−0.50 ・・・(5a)
−8.00<PI/f<−1.25 ・・・(6a)
−5.00<PO/f<−0.25 ・・・(7a)
−0.20<Di/TTD<0.20 ・・・(8a)
0.05<skd/f<0.80 ・・・(9a)
Furthermore, it is preferable that the numerical ranges of the conditional expressions (2) to (9) are set as follows.
0.55<|Hbi/Hgi|<1.50 (2a)
0.02<|(1-βm 2 )βr 2 |<1.00 (3a)
0.20<|fm/f|<40 (4a)
-5.0<βc<-0.50 (5a)
−8.00<PI/f<−1.25 (6a)
-5.00<PO/f<-0.25... (7a)
-0.20<Di/TTD<0.20 (8a)
0.05<skd/f<0.80 (9a)

さらに、条件式(2)〜(9)の数値範囲を以下のようにすることが好ましい。
0.60<|Hbi/Hgi|<1.35 ・・・(2b)
0.03<|(1−βm)βr|<2,10 ・・・(3b)
0.40<|fm/f|<30 ・・・(4b)
−3.0<βc<−0.60 ・・・(5b)
−5.00<PI/f<−1.50 ・・・(6b)
−3.50<PO/f<−0.35 ・・・(7b)
−0.15<Di/TTD<0.16 ・・・(8b)
0.10<skd/f<0.60 ・・・(9b)
Furthermore, it is preferable that the numerical ranges of the conditional expressions (2) to (9) are set as follows.
0.60<|Hbi/Hgi|<1.35 (2b)
0.03<|(1-βm 2 )βr 2 |<2,10 (3b)
0.40<|fm/f|<30 (4b)
−3.0<βc<−0.60 (5b)
-5.00<PI/f<-1.50 (6b)
−3.50<PO/f<−0.35 (7b)
-0.15<Di/TTD<0.16 (8b)
0.10<skd/f<0.60 (9b)

このように上記条件式の少なくとも1つを満たすことで、最光学系CLの小型化、像面湾曲収差以外の収差の補正の容易性の少なくとも1つを確保できる。 By satisfying at least one of the above conditional expressions, it is possible to secure at least one of miniaturization of the maximum optical system CL and ease of correction of aberrations other than field curvature aberration.

本実施例にかかる再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLに含まれる屈折力を有するレンズのうち最も物体側に配置されたレンズを含むことが好ましい。再結像光学系CL最も物体側に配置されたレンズは、軸上光束と軸外光束が光軸直交方向に分離した位置に配置されることが多く、他の収差に比べて像面湾曲収差を大きく変化させることが容易となる。 In the re-imaging optical system CL according to the present embodiment, it is preferable that the field curvature adjustment group VL includes a lens that is arranged closest to the object side among the lenses having the refractive power included in the re-imaging optical system CL. .. The lens disposed closest to the object side of the re-imaging optical system CL is often disposed at a position where the on-axis light flux and the off-axis light flux are separated in the direction orthogonal to the optical axis, and thus the field curvature aberration is larger than that of other aberrations. It becomes easy to greatly change.

さらに、像面湾曲調整群VLは正の屈折力を有することが好ましい。これにより、再結像光学系CLの1次結像面IP1側または2次結像面IP2側の正の屈折力を強めることが容易となり、再結像光学系CLの径を小型化でき、コンバータ装置300の鏡筒系を小型化することができる。 Further, it is preferable that the field curvature adjustment group VL has a positive refractive power. This makes it easy to increase the positive refracting power of the re-imaging optical system CL on the primary imaging surface IP1 side or the secondary imaging surface IP2 side, and the diameter of the re-imaging optical system CL can be reduced. The lens barrel system of the converter device 300 can be downsized.

次に、実施例の主光学系MLと、実施例の再結像光学系CLについて説明する。 Next, the main optical system ML of the example and the re-imaging optical system CL of the example will be described.

[主光学系の実施例]
まず、再結像光学系CLの物体側に配置される主光学系MLの実施例A〜Cについて説明する。
[Example of main optical system]
First, Examples A to C of the main optical system ML arranged on the object side of the re-imaging optical system CL will be described.

(実施例A)
図1は、実施例Aの主光学系MLの広角端における断面図である。図2(A)、図2(B)は、実施例Bの主光学系MLの広角端と望遠端における物体距離無限遠の収差図である。実施例Aの主光学系MLは、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有する、ズーム比2.35、Fナンバー2.06のズームレンズである。
(Example A)
FIG. 1 is a sectional view of a main optical system ML of Example A at a wide-angle end. 2A and 2B are aberration diagrams of the object distance infinity at the wide-angle end and the telephoto end of the main optical system ML of Example B. The main optical system ML of Example A includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are sequentially arranged from the object side to the image side. , A zoom lens having a fourth lens group having a positive refractive power and a zoom ratio of 2.35 and an F number of 2.06.

(実施例B)
図3は、実施例Bの主光学系MLの広角端における断面図である。図4(A)、図4(B)は、実施例Bの主光学系MLの広角端と望遠端における物体距離無限遠の収差図である。実施例Bの主光学系MLは、物体側から像側へ順に配置された、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有する、ズーム比2.75、Fナンバー2.91のズームレンズである。
(Example B)
FIG. 3 is a sectional view of the main optical system ML of Example B at the wide-angle end. FIG. 4A and FIG. 4B are aberration diagrams of the object distance infinity at the wide-angle end and the telephoto end of the main optical system ML of Example B. The main optical system ML of Example B includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are sequentially arranged from the object side to the image side. , A zoom lens having a fourth lens group having a positive refractive power and a zoom ratio of 2.75 and an F number of 2.91.

(実施例C)
図5は、実施例Cの主光学系MLの広角端における断面図である。図6は、実施例Cの主光学系MLの収差図である。実施例Cの主光学系MLは、焦点距離39mm、Fナンバー2.86の単焦点レンズである。
(Example C)
FIG. 5 is a sectional view of the main optical system ML of Example C at the wide-angle end. FIG. 6 is an aberration diagram of the main optical system ML of Example C. The main optical system ML of Example C is a single focus lens having a focal length of 39 mm and an F number of 2.86.

[再結像光学系の実施例]
次に実施例1〜5の再結像光学系CLについて説明する。実施例毎に、前述の主光学系MLのいずれかを用いた場合の断面図および収差図も示している。
[Example of re-imaging optical system]
Next, the re-imaging optical system CL of Examples 1 to 5 will be described. A cross-sectional view and an aberration diagram in the case of using any of the main optical systems ML described above are also shown for each example.

[実施例1]
図7は、実施例1の再結像光学系CLの断面図である。
[Example 1]
FIG. 7 is a sectional view of the re-imaging optical system CL of the first embodiment.

図8(A)、図8(B)、図8(C)は、それぞれ、実施例1の再結像光学系CLの、通常撮影時の収差図、像面湾曲収差をオーバー側に設定したときの収差図、像面湾曲収差をアンダー側に設定したときの収差図である。 図9は、実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置したときの広角端における断面図である。 8(A), 8(B), and 8(C) are aberration diagrams of the reimaging optical system CL of Example 1 at the time of normal shooting and the field curvature aberration are set to the over side, respectively. FIG. 6A is an aberration diagram when, and FIG. 8B is an aberration diagram when the field curvature aberration is set to the under side. FIG. 9 is a cross-sectional view at the wide-angle end when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A.

図10(A)、図10(B)は、それぞれ、実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置したときの、通常撮影時の、広角端と望遠端における収差図である。図11(A)、図11(B)は、それぞれ、実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置したときの、像面湾曲収差オーバー側設定時の、広角端と望遠端における収差図である。図12(A)、図12(B)は、それぞれ、実施例Aの主光学系MLの像側に実施例1の再結像光学系CLを配置したときの、像面湾曲収差アンダー側設定時の、広角端と望遠端における収差図である。 FIGS. 10A and 10B show the wide-angle end at the time of normal shooting when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A, respectively. FIG. 3 is an aberration diagram at a telephoto end. 11(A) and 11(B), respectively, when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A, the field curvature aberration over-side setting is shown. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time. 12(A) and 12(B) are respectively set to the underside of the field curvature aberration when the re-imaging optical system CL of Example 1 is arranged on the image side of the main optical system ML of Example A. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

実施例1の再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLの最も物体側の正レンズと該正レンズの像側に隣接して配置された負レンズからなる。像面湾曲調整群VLが、通常撮影時の位置から光軸方向に沿って2次結像面IP2に向かって移動することで像面湾曲収差がオーバーになり、通常撮影時の位置から光軸方向に沿って1次結像面IP1に向かって移動することで像面湾曲収差がアンダーになる。 In the re-imaging optical system CL of the first embodiment, the field curvature adjustment group VL is composed of a positive lens closest to the object side of the re-imaging optical system CL and a negative lens arranged adjacent to the image side of the positive lens. Become. The field curvature adjustment group VL moves from the position at the time of normal shooting toward the secondary imaging plane IP2 along the optical axis direction, so that the field curvature aberration becomes excessive, and the optical axis moves from the position at the time of normal shooting to the optical axis. By moving along the direction toward the primary imaging plane IP1, the field curvature aberration becomes under.

実施例1の再結像光学系CLにおいて、通常撮影時の再結像光学系CLの最も物体側の面の位置は、1次結像面IP1から2次結像面IP2側に3mm離れた位置である。実施例1の再結像光学系CLは、横倍率(撮影倍率)−2.0倍、Fナンバー4.12である。 In the re-imaging optical system CL of the first embodiment, the position of the most object-side surface of the re-imaging optical system CL during normal shooting is 3 mm away from the primary imaging plane IP1 to the secondary imaging plane IP2 side. The position. The re-imaging optical system CL of Example 1 has a lateral magnification (shooting magnification) of −2.0 times and an F number of 4.12.

[実施例2]
図13は、実施例2の再結像光学系CLの断面図である。
[Example 2]
FIG. 13 is a sectional view of the re-imaging optical system CL of the second embodiment.

図14(A)、図14(B)、図14(C)は、それぞれ、実施例2の再結像光学系CLの、通常撮影時の収差図、像面湾曲収差をオーバー側に設定したときの収差図、像面湾曲収差をアンダー側に設定したときの収差図である。 14(A), 14(B), and 14(C) are aberration diagrams of the re-imaging optical system CL of Example 2 at the time of normal shooting and the field curvature aberration are set to the over side, respectively. FIG. 6A is an aberration diagram when, and FIG. 8B is an aberration diagram when the field curvature aberration is set to the under side.

図15は、実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの広角端における断面図である。 FIG. 15 is a cross-sectional view at the wide-angle end when the re-imaging optical system CL of Example 2 is arranged on the image side of the main optical system ML of Example B.

図16(A)、図16(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの、通常撮影時の、広角端と望遠端における収差図である。 16A and 16B show the wide-angle end at the time of normal shooting when the re-imaging optical system CL of Example 2 is arranged on the image side of the main optical system ML of Example B, respectively. FIG. 3 is an aberration diagram at a telephoto end.

図17(A)、図17(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの、像面湾曲収差オーバー側設定時の、広角端と望遠端における収差図である。 17(A) and 17(B), respectively, when the re-imaging optical system CL of Example 2 is arranged on the image side of the main optical system ML of Example B, the field curvature aberration over-side setting is shown. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

図18(A)、図18(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例2の再結像光学系CLを配置したときの、像面湾曲収差アンダー側設定時の、広角端と望遠端における収差図である。 18(A) and 18(B) respectively show the setting of the field curvature aberration under side when the re-imaging optical system CL of Example 2 is arranged on the image side of the main optical system ML of Example B. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

実施例2の再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLの最も物体側に配置された1枚の正レンズからなる。当該正レンズは、1次結像面IP1に最も近い位置に配置されている。像面湾曲調整群VLが、通常撮影時の位置から光軸方向に沿って2次結像面IP2に向かって移動することで像面湾曲収差がオーバーになり、通常撮影時の位置から光軸方向に沿って1次結像面IP1に向かって移動することで像面湾曲収差がアンダーになる。 In the re-imaging optical system CL of the second embodiment, the field curvature adjustment group VL is composed of one positive lens arranged on the most object side of the re-imaging optical system CL. The positive lens is arranged at a position closest to the primary image plane IP1. The field curvature adjustment group VL moves from the position at the time of normal shooting toward the secondary imaging plane IP2 along the optical axis direction, so that the field curvature aberration becomes excessive, and the optical axis moves from the position at the time of normal shooting to the optical axis. By moving along the direction toward the primary imaging plane IP1, the field curvature aberration becomes under.

実施例2の再結像光学系CLにおいて、通常撮影時の再結像光学系CLの最も物体側の面の位置は、1次結像面IP1から2次結像面IP2側に16.72mm離れた位置である。実施例2の再結像光学系CLは、横倍率(撮影倍率)−2.0倍、Fナンバー5.65である。 In the re-imaging optical system CL of the second embodiment, the position of the most object-side surface of the re-imaging optical system CL during normal shooting is 16.72 mm from the primary imaging plane IP1 to the secondary imaging plane IP2 side. It is a distant position. The re-imaging optical system CL of Example 2 has a lateral magnification (shooting magnification) of −2.0 and an F number of 5.65.

[実施例3]
図19は、実施例3の再結像光学系CLの断面図である。
[Example 3]
FIG. 19 is a sectional view of the re-imaging optical system CL of the third embodiment.

図20(A)、図20(B)、図20(C)は、それぞれ、実施例3の再結像光学系CLの、通常撮影時の収差図、像面湾曲収差をオーバー側に設定したときの収差図、像面湾曲収差をアンダー側に設定したときの収差図である。 20(A), 20(B), and 20(C) are aberration diagrams of the reimaging optical system CL of Example 3 at the time of normal photographing and the field curvature aberration are set to the over side, respectively. FIG. 6A is an aberration diagram when, and FIG. 8B is an aberration diagram when the field curvature aberration is set to the under side.

図21は、実施例Bの主光学系MLの像側に実施例3の再結像光学系CLを配置したときの広角端における断面図である。 FIG. 21 is a sectional view at the wide-angle end when the re-imaging optical system CL of Example 3 is arranged on the image side of the main optical system ML of Example B.

図22(A)、図16(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例3の再結像光学系CLを配置したときの、通常撮影時の、広角端と望遠端における収差図である。図23(A)、図23(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例3の再結像光学系CLを配置したときの、像面湾曲収差オーバー側設定時の、広角端と望遠端における収差図である。図24(A)、図24(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例3の再結像光学系CLを配置したときの、像面湾曲収差アンダー側設定時の、広角端と望遠端における収差図である。 22(A) and 16(B) respectively show the wide-angle end at the time of normal shooting when the re-imaging optical system CL of Example 3 is arranged on the image side of the main optical system ML of Example B. FIG. 3 is an aberration diagram at a telephoto end. 23A and 23B respectively show the setting of the over-field curvature aberration side when the re-imaging optical system CL of Example 3 is arranged on the image side of the main optical system ML of Example B. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time. 24A and 24B respectively show the setting of the field curvature aberration under side when the re-imaging optical system CL of Example 3 is arranged on the image side of the main optical system ML of Example B. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

実施例3の再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLの最も像側に配置された1枚の正レンズからなる。当該正レンズは、2次結像面IP2に最も近い位置に配置されている。像面湾曲調整群VLが、通常撮影時の位置から光軸方向に沿って1次結像面IP1に向かって移動することで像面湾曲収差がオーバーになり、通常撮影時の位置から光軸方向に沿って2次結像面IP2に向かって移動することで像面湾曲収差がアンダーになる。 In the re-imaging optical system CL of the third embodiment, the field curvature adjustment group VL is composed of one positive lens arranged closest to the image side of the re-imaging optical system CL. The positive lens is arranged at a position closest to the secondary image plane IP2. The field curvature adjustment group VL moves from the position at the time of normal shooting toward the primary imaging plane IP1 along the optical axis direction, so that the field curvature aberration becomes excessive, and the optical axis moves from the position at the time of normal shooting to the optical axis. By moving along the direction toward the secondary image plane IP2, the field curvature aberration becomes under.

実施例3の再結像光学系CLにおいて、通常撮影時の再結像光学系CLの最も物体側の面の位置は、1次結像面IP1から2次結像面IP2側に4.03mm離れた位置である。実施例3の再結像光学系CLは、横倍率(撮影倍率)−1.0倍、Fナンバー5.65である。横倍率(撮影倍率)が−1.0倍なので、像の大きさを主光学系MLによって形成される像と揃えることができ、ユーザーが主光学系MLを有する交換レンズ200のみを用いた場合の画角を維持しながら、像面湾曲収差量を変更することができる。 In the re-imaging optical system CL of the third embodiment, the position of the most object-side surface of the re-imaging optical system CL during normal shooting is 4.03 mm from the primary imaging plane IP1 to the secondary imaging plane IP2 side. It is a distant position. The re-imaging optical system CL of Example 3 has a lateral magnification (shooting magnification) of 1.0 times and an F number of 5.65. Since the lateral magnification (shooting magnification) is -1.0 times, the size of the image can be aligned with the image formed by the main optical system ML, and the user uses only the interchangeable lens 200 having the main optical system ML. The field curvature aberration amount can be changed while maintaining the angle of view of.

[実施例4]
図25は、実施例4の再結像光学系CLの断面図である。
[Example 4]
FIG. 25 is a sectional view of the re-imaging optical system CL of the fourth embodiment.

図26(A)、図26(B)、図26(C)は、それぞれ、実施例4の再結像光学系CLの、通常撮影時の収差図、像面湾曲収差をオーバー側に設定したときの収差図、像面湾曲収差をアンダー側に設定したときの収差図である。 26(A), 26(B), and 26(C) are aberration diagrams of the reimaging optical system CL of Example 4 at the time of normal photographing and the field curvature aberration are set to the over side, respectively. FIG. 6A is an aberration diagram when the field curvature aberration is set to the under side and FIG.

図27は、実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの広角端における断面図である。 27 is a cross-sectional view at the wide-angle end when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B.

図28(A)、図28(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの、通常撮影時の、広角端と望遠端における収差図である。図29(A)、図29(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの、像面湾曲収差オーバー側設定時の、広角端と望遠端における収差図である。図30(A)、図30(B)は、それぞれ、実施例Bの主光学系MLの像側に実施例4の再結像光学系CLを配置したときの、像面湾曲収差アンダー側設定時の、広角端と望遠端における収差図である。 28A and 28B respectively show the wide-angle end at the time of normal shooting when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B. FIG. 3 is an aberration diagram at a telephoto end. 29(A) and 29(B) are respectively set to the over-field curvature aberration side when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time. 30(A) and 30(B) respectively show the setting of the field curvature aberration under side when the re-imaging optical system CL of Example 4 is arranged on the image side of the main optical system ML of Example B. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

実施例4の再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLの最も物体側に配置された1枚の正レンズからなる。当該正レンズは、1次結像面IP1に最も近い位置に配置されている。像面湾曲調整群VLが、通常撮影時の位置から光軸方向に沿って1次結像面IP1に向かって移動することで像面湾曲収差がアンダーになり、通常撮影時の位置から光軸方向に沿って2次結像面IP1に向かって移動することで像面湾曲収差がオーバーになる。 In the re-imaging optical system CL of Example 4, the field curvature adjustment group VL is composed of one positive lens arranged closest to the object side of the re-imaging optical system CL. The positive lens is arranged at a position closest to the primary image plane IP1. The field curvature adjustment group VL moves from the position at the time of normal shooting toward the primary imaging plane IP1 along the optical axis direction, so that the field curvature aberration becomes under, and the optical axis from the position at the time of normal shooting becomes the optical axis. By moving along the direction toward the secondary image plane IP1, the field curvature aberration becomes excessive.

実施例4の再結像光学系CLにおいて、通常撮影時の再結像光学系CLの最も物体側の面の位置は、1次結像面IP1から2次結像面IP2側に3.00mm離れた位置である。実施例4の再結像光学系CLは、横倍率(撮影倍率)−0.63倍、Fナンバー5.65である。 In the re-imaging optical system CL of Example 4, the position of the most object-side surface of the re-imaging optical system CL during normal shooting is 3.00 mm from the primary imaging plane IP1 to the secondary imaging plane IP2 side. It is a distant position. The re-imaging optical system CL of Example 4 has a lateral magnification (shooting magnification) of −0.63 and an F number of 5.65.

[実施例5]
図31は、実施例4の再結像光学系CLの断面図である。
[Example 5]
FIG. 31 is a sectional view of the re-imaging optical system CL of the fourth embodiment.

図32(A)、図32(B)、図32(C)は、それぞれ、実施例5の再結像光学系CLの、通常撮影時の収差図、像面湾曲収差をオーバー側に設定したときの収差図、像面湾曲収差をアンダー側に設定したときの収差図である。 32A, 32B, and 32C are aberration diagrams of the reimaging optical system CL of the fifth embodiment at the time of normal shooting and the field curvature aberration are set to the over side, respectively. FIG. 6A is an aberration diagram when, and FIG. 8B is an aberration diagram when the field curvature aberration is set to the under side.

図33は、実施例Cの主光学系MLの像側に実施例5の再結像光学系CLを配置したときの断面図である。 FIG. 33 is a sectional view when the re-imaging optical system CL of Example 5 is arranged on the image side of the main optical system ML of Example C.

図34(A)、図34(B)は、それぞれ、実施例Cの主光学系MLの像側に実施例5の再結像光学系CLを配置したときの、像面湾曲収差オーバー側設定時の、広角端と望遠端における収差図である。 34(A) and 34(B) respectively show the setting of the over-field curvature aberration side when the re-imaging optical system CL of Example 5 is arranged on the image side of the main optical system ML of Example C. FIG. 7 is an aberration diagram at a wide-angle end and a telephoto end at the time.

実施例5の再結像光学系CLにおいて、像面湾曲調整群VLは、再結像光学系CLの最も物体側から2番目に配置された1枚の正レンズからなる。像面湾曲調整群VLが、通常撮影時の位置から光軸方向に沿って1次結像面IP1に向かって移動することで像面湾曲収差がアンダーになり、通常撮影時の位置から光軸方向に沿って2次結像面IP1に向かって移動することで像面湾曲収差がオーバーになる。 In the re-imaging optical system CL of the fifth embodiment, the field curvature adjustment group VL is composed of one positive lens arranged second from the object side of the re-imaging optical system CL. The field curvature adjustment group VL moves from the position at the time of normal shooting toward the primary imaging plane IP1 along the optical axis direction, so that the field curvature aberration becomes under, and the optical axis from the position at the time of normal shooting becomes the optical axis. By moving along the direction toward the secondary image plane IP1, the field curvature aberration becomes excessive.

実施例5の再結像光学系CLにおいて、通常撮影時の再結像光学系CLの最も物体側の面の位置は、1次結像面IP1から2次結像面IP2側に3.14mm離れた位置である。実施例5の再結像光学系CLは、横倍率(撮影倍率)−1.0倍、Fナンバー5.65である。 In the re-imaging optical system CL of the fifth embodiment, the position of the most object-side surface of the re-imaging optical system CL during normal shooting is 3.14 mm from the primary imaging plane IP1 to the secondary imaging plane IP2 side. It is a distant position. The re-imaging optical system CL of Example 5 has a lateral magnification (shooting magnification) of 1.0 and an F number of 5.65.

[数値実施例]
前述の主光学系MLの数値実施例と、実施例1〜5の再結像光学系CLのそれぞれに対応する数値実施例1〜5を示す。
[Numerical example]
Numerical Examples of the main optical system ML and Numerical Examples 1 to 5 corresponding to the re-imaging optical systems CL of Examples 1 to 5 will be shown.

また、各数値実施例において、面番号は、物体側からの光学面の順序を示す。rは光学面の曲率半径(mm)、面番号iにおけるdは、第i番目の光学面と第i+1番目の光学面の間隔(mm)、ndはd線における光学部材の材料の屈折率、νdはd線を基準とした光学部材の材料のアッベ数である。ある材料のアッベ数νdは、フラウンホーファ線のd線(587.56nm)、F線(486.13nm)、C線(656.27nm)、g線(波長435.84nm)における屈折率をNd、NF、NCとするとき、
νd=(Nd−1)/(NF−NC)
で表される。
Further, in each numerical example, the surface number indicates the order of the optical surface from the object side. r is the radius of curvature of the optical surface (mm), d at the surface number i is the distance (mm) between the i-th optical surface and the (i+1)th optical surface, and nd is the refractive index of the material of the optical member at the d-line, νd is the Abbe number of the material of the optical member based on the d line. The Abbe number νd of a certain material is the refractive index of d-line (587.56 nm), F-line (486.13 nm), C-line (656.27 nm) and g-line (wavelength 435.84 nm) of Fraunhofer line. , NC,
νd=(Nd-1)/(NF-NC)
It is represented by.

BFはバックフォーカスを示す。なお、主光学系MLの数値実施例におけるバックフォーカスは、主光学系MLの最も像側の面から主光学系MLにより形成される像の結像面までの光軸上の距離を空気換算長により表記したものとする。再結像光学系CLの数値実施例におけるバックフォーカスは、再結像光学系CLの最も像側の面から2次結像面IP2までの光軸上の距離を空気換算長により表記したものとする。 BF indicates back focus. The back focus in the numerical example of the main optical system ML is the distance on the optical axis from the most image-side surface of the main optical system ML to the image forming surface of the image formed by the main optical system ML, which is the air-equivalent length. Shall be indicated by. The back focus in the numerical example of the re-imaging optical system CL is expressed as the distance on the optical axis from the most image-side surface of the re-imaging optical system CL to the secondary imaging plane IP2 in terms of air-converted length. To do.

主光学系MLにおけるレンズ全長は、主光学系MLの最も物体側の面(第1レンズ面)から主光学系MLの最も像側の面(最終レンズ面)までの光軸上の距離にバックフォーカスを加えた長さである。再結像光学系CLのレンズ全長(TTD)は、前述のとおりである。 The total lens length in the main optical system ML is back to the distance on the optical axis from the most object side surface (first lens surface) of the main optical system ML to the most image side surface (final lens surface) of the main optical system ML. It is the length with focus added. The total lens length (TTD) of the re-imaging optical system CL is as described above.

像高は半画角を規定する最大像高である。横倍率は、1次像と2次像の像高の比である。 The image height is the maximum image height that defines the half angle of view. The lateral magnification is the ratio of the image heights of the primary image and the secondary image.

また、光学面が非球面の場合は、面番号の右側に、*の符号を付している。非球面形状は、Xを光軸方向の面頂点からの変位量、Hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、Kを円錐定数、A4、A6、A8、A10、A12を各次数の非球面係数とするとき、 When the optical surface is an aspherical surface, the symbol * is added to the right of the surface number. As for the aspherical shape, X is the amount of displacement from the surface vertex in the optical axis direction, H is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, K is the conic constant, A4, A6, When A8, A10, and A12 are aspherical coefficients of each order,

Figure 2020118807
Figure 2020118807

で表している。なお、各非球面係数において「e±x」は「10±x」を意味する。 It is represented by. In each aspherical surface coefficient, “e±x” means “10 ±x ”.

主光学系MLの数値実施例において各光学面の間隔dが(可変)と表記されている部分は、ズーミングに際して変化する間隔であることを示している。 In the numerical examples of the main optical system ML, the part where the distance d between the optical surfaces is described as (variable) indicates that the distance changes during zooming.

再結像光学系CLの数値実施例において各光学面の間隔dが(可変)となっている部分は、像面湾曲調整に際して変化する間隔であることを示している。各数値実施例中に、通常撮影時、像面湾曲収差オーバー側設定時、像面湾曲収差アンダー側設定時のそれぞれの面間隔を記している。 In the numerical example of the re-imaging optical system CL, the part where the distance d between the optical surfaces is (variable) indicates that the distance changes when the field curvature is adjusted. In each of the numerical examples, the surface distances are set for normal shooting, when the field curvature aberration is set to the over side and when the field curvature aberration is set to the under side.

その他、特に断りが無い場合、ズーム比、焦点距離、Fナンバー、半画角、像高、レンズ全長、BFなどの値は通常撮影時の値を示している。 In addition, unless otherwise specified, values such as zoom ratio, focal length, F number, half angle of view, image height, total lens length, and BF indicate values at the time of normal shooting.

数値実施例1〜5のそれぞれにおける、前述の各条件式に用いられている物理量および前述の各条件式に対応する値を[表1]に示す。 [Table 1] shows the physical quantities used in the conditional expressions described above and the values corresponding to the conditional expressions described above in each of Numerical Examples 1 to 5.

[主光学系の数値実施例]
(実施例Aの主光学系)
単位 mm

面データ
面番号 r d nd vd
1 187.418 2.20 1.80810 22.8
2 76.661 8.55 1.72916 54.7
3 335.605 0.15
4 58.970 8.05 1.77250 49.6
5 158.730 (可変)
6* 167.209 1.55 1.76902 49.3
7 20.639 9.56
8 -49.152 1.00 1.76385 48.5
9 26.487 8.15 1.85478 24.8
10 -51.463 1.45
11 -42.283 5.85 1.48749 70.2
12 -19.110 1.20 1.88300 40.8
13* -64.186 (可変)
14(絞り) ∞ 0.30
15 55.781 5.05 1.72916 54.7
16 ∞ 0.15
17 42.901 9.50 1.80400 46.6
18* -87.269 3.80
19 -50.369 1.50 1.73800 32.3
20 24.706 7.70 1.49700 81.5
21 166.989 (可変)
22 ∞ -2.59
23 30.373 7.30 1.43875 94.7
24 -664.868 0.15
25 48.839 5.50 1.59522 67.7
26 -100.131 0.57
27 66.531 4.55 1.49700 81.5
28 -115.190 1.20 1.80610 33.3
29 51.069 3.84
30* -1000.000 3.00 1.85400 40.4
31* 119.129 3.42
32 -39.992 1.30 1.48749 70.2
33 50.003 6.30 2.00100 29.1
34 -131.617 (可変)
35 ∞ 1.96 1.51633 64.1
36 ∞ (可変)
像面 ∞

非球面データ
第6面
K = 0.00000e+000 A 4= 4.38428e-006 A 6=-2.70954e-009 A 8= 4.53124e-012
A10=-5.11345e-016 A12= 2.85627e-018

第13面
K = 0.00000e+000 A 4=-2.04866e-006 A 6=-6.82741e-010 A 8=-2.06847e-011
A10= 9.28973e-014 A12=-1.47499e-016

第18面
K = 0.00000e+000 A 4= 2.64029e-006 A 6=-2.43625e-009 A 8=-1.84031e-012
A10=-2.30946e-017 A12= 4.15861e-018

第30面
K = 0.00000e+000 A 4=-4.43289e-005 A 6=-1.56326e-008 A 8= 3.31996e-010
A10=-1.13489e-012 A12= 2.02156e-015

第31面
K = 0.00000e+000 A 4=-2.52968e-005 A 6= 2.32789e-008 A 8= 3.09529e-010
A10=-9.01793e-013 A12= 1.19241e-015

各種データ
ズーム比 2.35
広角 中間 望遠
焦点距離 28.90 50.00 67.90
Fナンバー 2.06 2.06 2.06
半画角(度) 36.82 23.40 17.67
像高 21.64 21.64 21.64
レンズ全長 157.51 170.61 179.07
BF 2.75 2.75 2.75

d 5 3.93 20.98 29.21
d13 15.61 6.51 2.27
d21 8.67 4.59 3.61
d34 15.00 24.22 29.66
d36 2.75 2.75 2.75

ズームレンズ群データ
群 始面 焦点距離
1 1 104.99
2 6 -19.17
3 14 47.05
4 22 44.67
CG 35 ∞
[Numerical Examples of Main Optical System]
(Main optical system of Example A)
Unit mm

Surface data Surface number rd nd vd
1 187.418 2.20 1.80810 22.8
2 76.661 8.55 1.72916 54.7
3 335.605 0.15
4 58.970 8.05 1.77250 49.6
5 158.730 (variable)
6* 167.209 1.55 1.76902 49.3
7 20.639 9.56
8 -49.152 1.00 1.76385 48.5
9 26.487 8.15 1.85478 24.8
10 -51.463 1.45
11 -42.283 5.85 1.48749 70.2
12 -19.110 1.20 1.88300 40.8
13* -64.186 (variable)
14 (aperture) ∞ 0.30
15 55.781 5.05 1.72916 54.7
16 ∞ 0.15
17 42.901 9.50 1.80400 46.6
18* -87.269 3.80
19 -50.369 1.50 1.73800 32.3
20 24.706 7.70 1.49700 81.5
21 166.989 (variable)
22 ∞ -2.59
23 30.373 7.30 1.43875 94.7
24 -664.868 0.15
25 48.839 5.50 1.59522 67.7
26 -100.131 0.57
27 66.531 4.55 1.49700 81.5
28 -115.190 1.20 1.80610 33.3
29 51.069 3.84
30* -1000.000 3.00 1.85400 40.4
31* 119.129 3.42
32 -39.992 1.30 1.48749 70.2
33 50.003 6.30 2.00 100 29.1
34 -131.617 (variable)
35 ∞ 1.96 1.51633 64.1
36 ∞ (variable)
Image plane ∞

Aspheric surface data 6th surface
K = 0.00000e+000 A 4= 4.38428e-006 A 6=-2.70954e-009 A 8= 4.53124e-012
A10=-5.11345e-016 A12= 2.85627e-018

Surface 13
K = 0.00000e+000 A 4=-2.04866e-006 A 6=-6.82741e-010 A 8=-2.06847e-011
A10= 9.28973e-014 A12=-1.47499e-016

Surface 18
K = 0.00000e+000 A 4= 2.64029e-006 A 6=-2.43625e-009 A 8=-1.84031e-012
A10=-2.30946e-017 A12= 4.15861e-018

30th side
K = 0.00000e+000 A 4=-4.43289e-005 A 6=-1.56326e-008 A 8= 3.31996e-010
A10=-1.13489e-012 A12= 2.02156e-015

Surface 31
K = 0.00000e+000 A 4=-2.52968e-005 A 6= 2.32789e-008 A 8= 3.09529e-010
A10=-9.01793e-013 A12= 1.19241e-015

Various data zoom ratio 2.35
Wide-angle mid-telephoto focal length 28.90 50.00 67.90
F number 2.06 2.06 2.06
Half angle of view 36.82 23.40 17.67
Image height 21.64 21.64 21.64
Total lens length 157.51 170.61 179.07
BF 2.75 2.75 2.75

d 5 3.93 20.98 29.21
d13 15.61 6.51 2.27
d21 8.67 4.59 3.61
d34 15.00 24.22 29.66
d36 2.75 2.75 2.75

Zoom lens group Data group Start surface Focal length
1 1 104.99
2 6 -19.17
3 14 47.05
4 22 44.67
CG 35 ∞

(実施例Bの主光学系)
単位 mm

面データ
面番号 r d nd vd
1 204.560 2.10 1.84666 23.9
2 72.156 7.40 1.77250 49.6
3 333.009 0.15
4 56.551 6.70 1.77250 49.6
5 147.768 (可変)
6* 107.703 1.60 1.88300 40.8
7 16.578 7.87
8 -46.474 1.15 1.59522 67.7
9 21.417 4.45 1.88300 40.8
10 67.901 1.27
11 129.834 3.48 1.59270 35.3
12 -49.739 1.61
13 -23.347 1.15 1.72916 54.7
14 404.189 2.69 1.84666 23.9
15 -57.801 (可変)
16 ∞ 1.90
17(絞り) ∞ 0.00
18 27.563 1.45 1.88300 40.8
19 21.253 11.00 1.49700 81.5
20 -64.876 0.20
21 43.054 2.70 1.58313 59.4
22* 63.670 4.61
23 -44.565 1.40 1.72047 34.7
24 -153.891 (可変)
25 31.112 7.13 1.43875 94.9
26 -203.991 0.20
27 47.466 5.85 1.49700 81.5
28 -71.666 1.96
29* -205.992 2.10 1.85006 40.2
30* 88.343 2.63
31 -442.074 1.40 1.83400 37.2
32 61.478 5.17 1.51633 64.1
33 -61.478 (可変)
34 ∞ 1.96 1.51633 64.1
35 ∞ (可変)
像面 ∞

非球面データ
第6面
K = 0.00000e+000 A 4= 7.12736e-006 A 6=-9.11631e-009 A 8= 2.35269e-011
A10=-5.05824e-014 A12= 7.73415e-017

第22面
K = 0.00000e+000 A 4= 5.39187e-006 A 6= 5.52428e-009 A 8=-8.87533e-012
A10= 1.15050e-013 A12=-9.43064e-017

第29面
K = 0.00000e+000 A 4= 2.73309e-005 A 6=-1.56548e-007 A 8= 3.98764e-010
A10=-7.46700e-013 A12= 6.95925e-016

第30面
K = 0.00000e+000 A 4= 4.43162e-005 A 6=-1.34466e-007 A 8= 3.25418e-010
A10=-4.48417e-013 A12= 2.53228e-016

各種データ
ズーム比 2.75
広角 中間 望遠
焦点距離 24.70 34.91 67.88
Fナンバー 2.91 2.91 2.91
半画角(度) 41.22 31.79 17.68
像高 21.64 21.64 21.64
レンズ全長 154.68 162.21 186.04
BF 1.79 1.79 1.79

d 5 2.75 11.74 30.36
d15 13.71 7.72 0.23
d24 8.82 4.84 0.74
d33 35.00 43.51 60.31
d35 1.79 1.79 1.79

ズームレンズ群データ
群 始面 焦点距離
1 1 106.37
2 6 -16.39
3 16 57.88
4 25 46.04
CG 34 ∞
(Main optical system of Example B)
Unit mm

Surface data Surface number rd nd vd
1 204.560 2.10 1.84666 23.9
2 72.156 7.40 1.77250 49.6
3 333.009 0.15
4 56.551 6.70 1.77250 49.6
5 147.768 (variable)
6* 107.703 1.60 1.88300 40.8
7 16.578 7.87
8 -46.474 1.15 1.59522 67.7
9 21.417 4.45 1.88300 40.8
10 67.901 1.27
11 129.834 3.48 1.59270 35.3
12 -49.739 1.61
13 -23.347 1.15 1.72916 54.7
14 404.189 2.69 1.84666 23.9
15 -57.801 (variable)
16 ∞ 1.90
17 (Aperture) ∞ 0.00
18 27.563 1.45 1.88300 40.8
19 21.253 11.00 1.49700 81.5
20 -64.876 0.20
21 43.054 2.70 1.58313 59.4
22* 63.670 4.61
23 -44.565 1.40 1.72047 34.7
24 -153.891 (variable)
25 31.112 7.13 1.43875 94.9
26 -203.991 0.20
27 47.466 5.85 1.49700 81.5
28 -71.666 1.96
29* -205.992 2.10 1.85006 40.2
30* 88.343 2.63
31 -442.074 1.40 1.83400 37.2
32 61.478 5.17 1.51633 64.1
33 -61.478 (variable)
34 ∞ 1.96 1.51633 64.1
35 ∞ (variable)
Image plane ∞

Aspheric surface data 6th surface
K = 0.00000e+000 A 4= 7.12736e-006 A 6=-9.11631e-009 A 8= 2.35269e-011
A10=-5.05824e-014 A12= 7.73415e-017

22nd surface
K = 0.00000e+000 A 4= 5.39187e-006 A 6= 5.52428e-009 A 8=-8.87533e-012
A10= 1.15050e-013 A12=-9.43064e-017

Surface 29
K = 0.00000e+000 A 4= 2.73309e-005 A 6=-1.56548e-007 A 8= 3.98764e-010
A10=-7.46700e-013 A12= 6.95925e-016

30th side
K = 0.00000e+000 A 4= 4.43162e-005 A 6=-1.34466e-007 A 8= 3.25418e-010
A10=-4.48417e-013 A12= 2.53228e-016

Various data zoom ratio 2.75
Wide-angle mid-telephoto focal length 24.70 34.91 67.88
F number 2.91 2.91 2.91
Half angle of view (degrees) 41.22 31.79 17.68
Image height 21.64 21.64 21.64
Total lens length 154.68 162.21 186.04
BF 1.79 1.79 1.79

d 5 2.75 11.74 30.36
d15 13.71 7.72 0.23
d24 8.82 4.84 0.74
d33 35.00 43.51 60.31
d35 1.79 1.79 1.79

Zoom lens group Data group Start surface Focal length
1 1 106.37
2 6 -16.39
3 16 57.88
4 25 46.04
CG 34 ∞

(実施例Cの主光学系)
単位 mm

面データ
面番号 r d nd vd
1 38.100 3.13 1.80400 46.6
2 -86.125 1.00 1.51742 52.4
3 11.970 1.40
4 14.745 2.40 1.72916 54.7
5 28.138 2.87
6(絞り) ∞ 5.48
7 -12.440 1.00 1.69895 30.1
8 77.467 3.39 1.83481 42.7
9 -19.410 0.15
10* -41.813 3.19 1.58313 59.4
11 -15.394 35.00
12 ∞ 1.96 1.51633 64.1
13 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-3.07394e-005 A 6= 3.02780e-008 A 8=-1.34249e-009
A10= 7.69227e-012

各種データ
ズーム比 1.00
焦点距離 39.00
Fナンバー 2.86
画角 29.02
像高 21.64
レンズ全長 62.50
BF 2.21

d13 2.21

レンズ群データ
1 1 39.00
CG 34 ∞
(Main optical system of Example C)
Unit mm

Surface data Surface number rd nd vd
1 38.100 3.13 1.80400 46.6
2 -86.125 1.00 1.51742 52.4
3 11.970 1.40
4 14.745 2.40 1.72916 54.7
5 28.138 2.87
6 (Aperture) ∞ 5.48
7 -12.440 1.00 1.69895 30.1
8 77.467 3.39 1.83481 42.7
9 -19.410 0.15
10* -41.813 3.19 1.58313 59.4
11 -15.394 35.00
12 ∞ 1.96 1.51633 64.1
13 ∞ (variable)
Image plane ∞

Aspheric surface data surface 10
K = 0.00000e+000 A 4=-3.07394e-005 A 6= 3.02780e-008 A 8=-1.34249e-009
A10= 7.69227e-012

Various data zoom ratio 1.00
Focal length 39.00
F number 2.86
Angle of view 29.02
Image height 21.64
Total lens length 62.50
BF 2.21

d13 2.21

Lens group data
1 1 39.00
CG 34 ∞

[再結像光学系の数値実施例]
(数値実施例1)
単位 mm

面データ
面番号 r d nd vd
1 ∞ (可変) ※1次結像面
2 ∞ 4.10 1.85400 40.4
3* -33.449 0.19
4 -61.897 1.25 1.49700 81.5
5 30.560 (可変)
6 46.985 7.10 2.05090 26.9
7 -36.782 15.37
8 -20.485 0.85 1.85478 24.8
9 13.732 5.62 1.72916 54.7
10 -18.674 1.00
11 -17.043 1.00 1.56732 42.8
12 12.696 4.70 1.49700 81.5
13 -1094.747 0.15
14* 27.499 5.64 1.58313 59.4
15* -30.069 0.50
16(絞り) ∞ 7.98
17 40.599 3.30 1.92286 20.9
18 -57.620 0.15
19 16.521 6.35 1.77250 49.6
20 -27.288 1.00 1.85478 24.8
21 11.156 12.81
22 -11.499 1.20 1.77250 49.6
23 5483.287 5.33
24 172.144 6.94 1.95375 32.3
25 -41.567 13.51
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4= 2.02638e-005 A 6=-2.12398e-007 A 8= 2.64274e-009
A10=-1.41470e-011 A12= 3.07301e-014

第14面
K = 0.00000e+000 A 4=-1.88989e-005 A 6= 2.06612e-007 A 8=-5.71987e-010
A10= 2.25515e-011 A12= 1.02091e-014

第15面
K = 0.00000e+000 A 4= 1.05246e-005 A 6= 1.08203e-007 A 8= 5.45766e-010
A10=-2.77310e-012 A12= 2.06681e-013


焦点距離 29.32
Fナンバー 4.12
半画角(度) 36.42
像高 21.64
レンズ全長 98.49
BF 13.51
横倍率 -2.00

可変間隔(通常使用時)
d 1 3.00
d 5 2.96

可変間隔(オーバーの像面湾曲収差発生時)
d 1 5.00
d 5 0.96

可変間隔(アンダーの像面湾曲収差発生時)
d 1 1.00
d 5 4.96

レンズ群データ
群 始面 焦点距離
1 2 626.21 ※像面湾曲調整群
2 6 28.37
[Numerical Examples of Reimaging Optical System]
(Numerical Example 1)
Unit mm

Surface data Surface number rd nd vd
1 ∞ (variable) * Primary image plane
2 ∞ 4.10 1.85 400 40.4
3* -33.449 0.19
4 -61.897 1.25 1.49700 81.5
5 30.560 (variable)
6 46.985 7.10 2.05090 26.9
7 -36.782 15.37
8 -20.485 0.85 1.85478 24.8
9 13.732 5.62 1.72916 54.7
10 -18.674 1.00
11 -17.043 1.00 1.56732 42.8
12 12.696 4.70 1.49700 81.5
13 -1094.747 0.15
14* 27.499 5.64 1.58313 59.4
15* -30.069 0.50
16 (aperture) ∞ 7.98
17 40.599 3.30 1.92286 20.9
18 -57.620 0.15
19 16.521 6.35 1.77250 49.6
20 -27.288 1.00 1.85478 24.8
21 11.156 12.81
22 -11.499 1.20 1.77250 49.6
23 5483.287 5.33
24 172.144 6.94 1.95375 32.3
25 -41.567 13.51
Image plane ∞

Aspherical data Third surface
K = 0.00000e+000 A 4= 2.02638e-005 A 6=-2.12398e-007 A 8= 2.64274e-009
A10=-1.41470e-011 A12= 3.07301e-014

14th surface
K = 0.00000e+000 A 4=-1.88989e-005 A 6= 2.06612e-007 A 8=-5.71987e-010
A10= 2.25515e-011 A12= 1.02091e-014

Surface 15
K = 0.00000e+000 A 4= 1.05246e-005 A 6= 1.08203e-007 A 8= 5.45766e-010
A10=-2.77310e-012 A12= 2.06681e-013


Focal length 29.32
F number 4.12
Half angle of view (degree) 36.42
Image height 21.64
Total lens length 98.49
BF 13.51
Lateral magnification -2.00

Variable interval (during normal use)
d 1 3.00
d 5 2.96

Variable spacing (when over field curvature aberration occurs)
d 1 5.00
d 5 0.96

Variable spacing (when under field curvature aberration occurs)
d 1 1.00
d 5 4.96

Lens group Data group Start surface Focal length
1 2 626.21 *Field curvature adjustment group
2 6 28.37

(数値実施例2)
単位 mm

面データ
面番号 r d nd vd
1 ∞ (可変) ※1次結像面
2* 286.485 4.20 1.85400 40.4
3* -62.450 (可変)
4 40.336 1.25 1.84692 23.8
5 32.115 6.60 2.05090 26.9
6 -205.332 15.37
7 -27.921 0.85 1.85478 24.8
8 11.063 5.62 1.72916 54.7
9 -18.232 1.00
10 -19.511 1.00 1.56732 42.8
11 9.145 4.70 1.49700 81.5
12 40.178 0.15
13* 19.260 4.76 1.58313 59.4
14* -246.551 0.50
15(絞り) ∞ 13.08
16 48.045 3.30 1.92286 20.9
17 -45.019 0.15
18 14.753 6.35 1.77250 49.6
19 -45.707 1.00 1.85478 24.8
20 10.480 10.35
21 -12.253 1.20 1.77250 49.6
22 -1567.932 5.93
23 155.067 6.94 1.95375 32.3
24 -42.394 16.39
像面 ∞

非球面データ
第2面
K = 0.00000e+000 A 4=-1.00971e-006 A 6=-1.79522e-008

第3面
K = 0.00000e+000 A 4= 3.28277e-006 A 6=-2.30664e-008 A 8= 9.73080e-011
A10=-4.06922e-013 A12= 6.20236e-016

第13面
K = 0.00000e+000 A 4= 3.65860e-006 A 6= 1.58109e-007 A 8= 2.44995e-008
A10=-4.06642e-010 A12= 2.22209e-012

第14面
K = 0.00000e+000 A 4= 2.81052e-005 A 6= 6.05280e-008 A 8= 2.55900e-008
A10=-5.15021e-010 A12= 5.24451e-012


焦点距離 39.04
Fナンバー 5.65
半画角(度) 28.99
像高 21.64
レンズ全長 52.27
BF 16.39
横倍率 -2.00


可変間隔(通常使用時)
d 1 16.72
d 3 2.90

可変間隔(オーバーの像面湾曲収差発生時)
d 1 17.72
d 3 1.90

可変間隔(アンダーの像面湾曲収差発生時)
d 1 15.72
d 3 3.90

レンズ群データ
群 始面 焦点距離
1 2 60.37 ※調整群
2 4 38.45
(Numerical example 2)
Unit mm

Surface data Surface number rd nd vd
1 ∞ (variable) * Primary image plane
2* 286.485 4.20 1.85400 40.4
3* -62.450 (variable)
4 40.336 1.25 1.84692 23.8
5 32.115 6.60 2.05090 26.9
6 -205.332 15.37
7 -27.921 0.85 1.85478 24.8
8 11.063 5.62 1.72916 54.7
9 -18.232 1.00
10 -19.511 1.00 1.56732 42.8
11 9.145 4.70 1.49700 81.5
12 40.178 0.15
13* 19.260 4.76 1.58313 59.4
14* -246.551 0.50
15 (aperture) ∞ 13.08
16 48.045 3.30 1.92286 20.9
17 -45.019 0.15
18 14.753 6.35 1.77250 49.6
19 -45.707 1.00 1.85478 24.8
20 10.480 10.35
21 -12.253 1.20 1.77250 49.6
22 -1567.932 5.93
23 155.067 6.94 1.95375 32.3
24 -42.394 16.39
Image plane ∞

Aspherical data 2nd surface
K = 0.00000e+000 A 4=-1.00971e-006 A 6=-1.79522e-008

Third side
K = 0.00000e+000 A 4= 3.28277e-006 A 6=-2.30664e-008 A 8= 9.73080e-011
A10=-4.06922e-013 A12= 6.20236e-016

Surface 13
K = 0.00000e+000 A 4= 3.65860e-006 A 6= 1.58109e-007 A 8= 2.44995e-008
A10=-4.06642e-010 A12= 2.22209e-012

14th surface
K = 0.00000e+000 A 4= 2.81052e-005 A 6= 6.05280e-008 A 8= 2.55900e-008
A10=-5.15021e-010 A12= 5.24451e-012


Focal length 39.04
F number 5.65
Half angle of view (degree) 28.99
Image height 21.64
Total lens length 52.27
BF 16.39
Lateral magnification -2.00


Variable interval (during normal use)
d 1 16.72
d 3 2.90

Variable spacing (when over field curvature aberration occurs)
d 1 17.72
d 3 1.90

Variable spacing (when under field curvature aberration occurs)
d 1 15.72
d 3 3.90

Lens group Data group Start surface Focal length
1 2 60.37 * Adjustment group
2 4 38.45

(数値実施例3)
単位 mm

面データ
面番号 r d nd vd
1 ∞ -8.26 ※1次結像面
2 41.678 10.18 1.85400 40.4
3* -71.663 10.06
4 -39.311 1.25 1.49700 81.5
5 165.878 3.68 2.05090 26.9
6 -76.376 16.98
7 -15.826 0.85 1.85478 24.8
8 6.511 3.82 1.77250 49.6
9 75.163 0.49
10 11.334 1.00 1.80810 22.8
11 9.681 3.66 1.49700 81.5
12 15.620 0.15
13* 9.428 2.05 1.85400 40.4
14* 16.348 1.29
15(絞り) ∞ 0.18
16 26.842 2.78 1.89286 20.4
17 -20.234 0.15
18 20.418 7.49 1.80400 46.6
19 -6.220 1.00 1.85478 24.8
20 13.576 7.05
21 -6.032 1.20 1.84666 23.8
22 -13.292 (可変)
23 105.719 6.94 1.77250 49.6
24 -53.809 (可変)
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4= 2.47081e-005 A 6=-2.83737e-007 A 8= 1.44448e-009
A10=-3.20040e-012 A12= 2.57263e-015

第13面
K = 0.00000e+000 A 4=-1.19840e-004 A 6= 6.86316e-008 A 8=-4.75239e-008
A10= 2.29146e-009 A12=-4.48752e-011

第14面
K = 0.00000e+000 A 4= 1.94545e-004 A 6= 1.08293e-006 A 8=-7.04018e-008
A10= 3.70892e-009 A12=-6.90821e-011

焦点距離 39.13
Fナンバー 5.65
半画角(度) 28.94
像高 21.64
レンズ全長 48.61
BF 10.00
横倍率 -1.00

レンズ群データ
群 始面 焦点距離
1 1 24.51
2 23 47.05 ※像面湾曲調整群


可変間隔(通常使用時)
d 22 4.03

可変間隔(オーバーの像面湾曲収差発生時)
d 22 3.03

可変間隔(アンダーの像面湾曲収差発生時)
d 22 5.03
(Numerical Example 3)
Unit mm

Surface data Surface number rd nd vd
1 ∞ -8.26 * Primary image plane
2 41.678 10.18 1.85400 40.4
3* -71.663 10.06
4 -39.311 1.25 1.49700 81.5
5 165.878 3.68 2.05090 26.9
6 -76.376 16.98
7 -15.826 0.85 1.85478 24.8
8 6.511 3.82 1.77250 49.6
9 75.163 0.49
10 11.334 1.00 1.80810 22.8
11 9.681 3.66 1.49700 81.5
12 15.620 0.15
13* 9.428 2.05 1.85400 40.4
14* 16.348 1.29
15 (aperture) ∞ 0.18
16 26.842 2.78 1.89286 20.4
17 -20.234 0.15
18 20.418 7.49 1.80400 46.6
19 -6.220 1.00 1.85478 24.8
20 13.576 7.05
21 -6.032 1.20 1.84666 23.8
22 -13.292 (variable)
23 105.719 6.94 1.77250 49.6
24 -53.809 (variable)
Image plane ∞

Aspherical data Third surface
K = 0.00000e+000 A 4= 2.47081e-005 A 6=-2.83737e-007 A 8= 1.44448e-009
A10=-3.20040e-012 A12= 2.57263e-015

Surface 13
K = 0.00000e+000 A 4=-1.19840e-004 A 6= 6.86316e-008 A 8=-4.75239e-008
A10= 2.29146e-009 A12=-4.48752e-011

14th surface
K = 0.00000e+000 A 4= 1.94545e-004 A 6= 1.08293e-006 A 8=-7.04018e-008
A10= 3.70892e-009 A12=-6.90821e-011

Focal length 39.13
F number 5.65
Half angle of view (degree) 28.94
Image height 21.64
Total lens length 48.61
BF 10.00
Lateral magnification -1.00

Lens group Data group Start surface Focal length
1 1 24.51
2 23 47.05 *Field curvature adjustment group


Variable interval (during normal use)
d 22 4.03

Variable spacing (when over field curvature aberration occurs)
d 22 3.03

Variable spacing (when under field curvature aberration occurs)
d 22 5.03

(数値実施例4)
単位 mm

面データ
面番号 r d nd vd
1 ∞ (可変) ※1次結像面
2 46.047 13.89 1.85400 40.4
3* -54.959 (可変)
4 32.206 1.25 1.49700 81.5
5 12.990 14.60
6 858.480 0.85 1.91650 31.6
7 7.519 2.99 1.76182 26.5
8 19.256 0.50
9 10.111 1.00 1.80810 22.8
10 6.099 4.63 1.49700 81.5
11 -31.946 0.15
12* 13.487 1.63 1.85400 40.4
13* 16.814 3.56
14(絞り) ∞ 0.87
15 27.854 2.54 1.89286 20.4
16 -17.617 0.15
17 11.146 2.84 1.77250 49.6
18 -10.542 1.00 1.85478 24.8
19 7.323 7.48
20 -6.743 1.20 1.72342 38.0
21 -72.392 1.25
22 254.289 3.43 1.88300 40.8
23 -22.352 26.60
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4= 8.03279e-006 A 6=-2.38055e-008 A 8= 7.83615e-011
A10=-1.12226e-013 A12= 5.97591e-017

第12面
K = 0.00000e+000 A 4=-6.06559e-006 A 6=-1.32350e-007 A 8= 5.37547e-008
A10= 1.05411e-008 A12=-3.22508e-010

第13面
K = 0.00000e+000 A 4= 6.17090e-005 A 6= 1.66296e-006 A 8=-4.52122e-007
A10= 6.49853e-008 A12=-2.28762e-009

各種データ
ズーム比 1.00

焦点距離 58.54
Fナンバー 3.64
半画角(度) 13.13
像高 13.66
レンズ全長 58.09
BF 26.60
横倍率 -0.63

レンズ群データ
群 始面 焦点距離
1 1 ∞
2 2 31.32 ※像面湾曲調整群
3 4 15.62


可変間隔(通常使用時)
d 1 3.00
d 3 15.87

可変間隔(オーバーの像面湾曲収差発生時)
d 1 4.00
d 3 14.87

可変間隔(アンダーの像面湾曲収差発生時)
d 1 2.00
d 3 16.87
(Numerical Example 4)
Unit mm

Surface data Surface number rd nd vd
1 ∞ (variable) * Primary image plane
2 46.047 13.89 1.85400 40.4
3* -54.959 (variable)
4 32.206 1.25 1.49700 81.5
5 12.990 14.60
6 858.480 0.85 1.91650 31.6
7 7.519 2.99 1.76182 26.5
8 19.256 0.50
9 10.111 1.00 1.80810 22.8
10 6.099 4.63 1.49 700 81.5
11 -31.946 0.15
12* 13.487 1.63 1.85400 40.4
13* 16.814 3.56
14 (aperture) ∞ 0.87
15 27.854 2.54 1.89286 20.4
16 -17.617 0.15
17 11.146 2.84 1.77250 49.6
18 -10.542 1.00 1.85478 24.8
19 7.323 7.48
20 -6.743 1.20 1.72342 38.0
21 -72.392 1.25
22 254.289 3.43 1.88300 40.8
23 -22.352 26.60
Image plane ∞

Aspherical data Third surface
K = 0.00000e+000 A 4= 8.03279e-006 A 6=-2.38055e-008 A 8= 7.83615e-011
A10=-1.12226e-013 A12= 5.97591e-017

Surface 12
K = 0.00000e+000 A 4=-6.06559e-006 A 6=-1.32350e-007 A 8= 5.37547e-008
A10= 1.05411e-008 A12=-3.22508e-010

Surface 13
K = 0.00000e+000 A 4= 6.17090e-005 A 6= 1.66296e-006 A 8=-4.52122e-007
A10= 6.49853e-008 A12=-2.28762e-009

Various data zoom ratio 1.00

Focal length 58.54
F number 3.64
Half angle of view (degree) 13.13
Image height 13.66
Total lens length 58.09
BF 26.60
Lateral magnification -0.63

Lens group Data group Start surface Focal length
1 1 ∞
2 2 31.32 *Field curvature adjustment group
3 4 15.62


Variable interval (during normal use)
d 1 3.00
d 3 15.87

Variable spacing (when over field curvature aberration occurs)
d 1 4.00
d 3 14.87

Variable spacing (when under field curvature aberration occurs)
d 1 2.00
d 3 16.87

(数値実施例5)
単位 mm

面データ
面番号 r d nd vd
1 ∞ -0.94 ※1次結像面
2 ∞ 3.75 1.81600 46.6
3* -199.466 (可変)
4 78.117 10.74 1.80400 46.6
5 -64.098 (可変)
6 -17.334 0.85 1.72825 28.5
7 9.633 6.41 1.59522 67.7
8 -25.910 0.15
9* 14.605 3.63 1.73800 32.3
10* 20.967 3.92
11(絞り) ∞ 0.60
12 32.832 2.70 1.89286 20.4
13 -27.513 0.15
14 17.355 4.13 1.80400 46.6
15 -12.717 1.00 1.85478 24.8
16 12.016 12.84
17 -9.075 1.20 1.84666 23.8
18 -41.476 2.78
19 -25.583 1.91 1.49700 81.5
20 -23.229 2.00
21 -271.779 6.94 2.05090 26.9
22 -34.012 12.32
像面 ∞

非球面データ
第3面
K = 0.00000e+000 A 4= 1.41579e-005 A 6=-8.38900e-008 A 8= 2.13861e-010
A10=-1.74101e-013 A12=-4.68480e-018

第9面
K = 0.00000e+000 A 4= 1.07997e-005 A 6= 3.67521e-007 A 8=-5.62550e-009
A10= 7.60776e-011 A12= 8.17137e-013

第10面
K = 0.00000e+000 A 4= 8.04343e-005 A 6= 6.81723e-007 A 8=-1.66052e-008
A10= 3.57675e-010 A12=-8.77217e-014


焦点距離 80.20
Fナンバー 5.60
半画角(度) 15.10
像高 21.64
レンズ全長 39.81
BF 12.32
横倍率 -1.00


レンズ群データ
群 始面 焦点距離
1 1 244.44
2 4 45.32 ※像面湾曲調整群
3 6 27.87


可変間隔(通常使用時)
d 3 3.14
d 5 39.80

可変間隔(オーバーの像面湾曲収差発生時)
d 3 4.14
d 5 38.80

可変間隔(アンダーの像面湾曲収差発生時)
d 3 2.14
d 5 40.80
(Numerical Example 5)
Unit mm

Surface data Surface number rd nd vd
1 ∞ -0.94 * Primary image plane
2 ∞ 3.75 1.81600 46.6
3* -199.466 (variable)
4 78.117 10.74 1.80400 46.6
5-64.098 (variable)
6 -17.334 0.85 1.72825 28.5
7 9.633 6.41 1.59522 67.7
8 -25.910 0.15
9* 14.605 3.63 1.73800 32.3
10* 20.967 3.92
11 (aperture) ∞ 0.60
12 32.832 2.70 1.89286 20.4
13 -27.513 0.15
14 17.355 4.13 1.80400 46.6
15 -12.717 1.00 1.85478 24.8
16 12.016 12.84
17 -9.075 1.20 1.84666 23.8
18 -41.476 2.78
19 -25.583 1.91 1.49700 81.5
20 -23.229 2.00
21 -271.779 6.94 2.05090 26.9
22 -34.012 12.32
Image plane ∞

Aspherical data Third surface
K = 0.00000e+000 A 4= 1.41579e-005 A 6=-8.38900e-008 A 8= 2.13861e-010
A10=-1.74101e-013 A12=-4.68480e-018

Side 9
K = 0.00000e+000 A 4= 1.07997e-005 A 6= 3.67521e-007 A 8=-5.62550e-009
A10= 7.60776e-011 A12= 8.17137e-013

Surface 10
K = 0.00000e+000 A 4= 8.04343e-005 A 6= 6.81723e-007 A 8=-1.66052e-008
A10= 3.57675e-010 A12=-8.77217e-014


Focal length 80.20
F number 5.60
Half angle of view (degree) 15.10
Image height 21.64
Total lens length 39.81
BF 12.32
Lateral magnification -1.00


Lens group Data group Start surface Focal length
1 1 244.44
2 4 45.32 *Field curvature adjustment group
3 6 27.87


Variable interval (during normal use)
d 3 3.14
d 5 39.80

Variable spacing (when over field curvature aberration occurs)
d 3 4.14
d 5 38.80

Variable spacing (when under field curvature aberration occurs)
d 3 2.14
d 5 40.80

Figure 2020118807
Figure 2020118807

[交換レンズの実施例]
本発明は、主光学系MLと再結像光学系CLが同一の鏡筒内に構成され、撮像装置100に対して着脱可能な交換レンズにも適用されうる。当該交換レンズは、単焦点レンズでもよいし、ズームレンズでもよい。この場合、再結像光学系CLは光軸上に挿脱可能に構成される。操作部材やユーザインターフェースを介してユーザから指示されることに応じて、再結像光学系CLが光軸上または光軸外に配置される。再結像光学系CLが光軸上に配置された場合において、像面湾曲調整群VLが移動することによって、像面湾曲収差を他の収差成分に比べて調整可能な交換レンズを得ることができる。
[Example of interchangeable lens]
The present invention can be applied to an interchangeable lens in which the main optical system ML and the re-imaging optical system CL are configured in the same lens barrel and can be attached to and detached from the image pickup apparatus 100. The interchangeable lens may be a single focus lens or a zoom lens. In this case, the re-imaging optical system CL is configured to be insertable into and removable from the optical axis. The re-imaging optical system CL is arranged on or off the optical axis according to an instruction from the user via the operation member or the user interface. When the re-imaging optical system CL is arranged on the optical axis, the field curvature adjustment group VL moves, so that an interchangeable lens whose field curvature aberration can be adjusted compared with other aberration components can be obtained. it can.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments and examples, and various combinations, modifications and changes are possible within the scope of the gist thereof.

ML 主光学系
CL 再結像光学系
VL 像面湾曲調整群
IP1 1次結像面
IP2 2次結像面
100 撮像装置
200 交換レンズ
300 コンバータ装置
ML Main optical system CL Re-imaging optical system VL Field curvature adjustment group IP1 Primary imaging surface IP2 Secondary imaging surface 100 Imaging device 200 Interchangeable lens 300 Converter device

Claims (17)

撮像装置に対して着脱可能なレンズ装置と前記撮像装置との間に装着されるコンバータ装置であって、
前記コンバータ装置が備える光学系は、前記レンズ装置によって形成された1次像を2次像として像面に再結像する再結像光学系であり、
前記再結像光学系は、光軸に沿って移動可能な移動群を有し、
前記移動群は、通常撮影時における前記1次像の結像面から前記移動群の最も物体側の面までの距離および通常撮影時における前記移動群の最も像側の面から像面までの距離のうち小さいほうをDm、前記再結像光学系のレンズ全長をTTDとするとき、
|Dm|/TTD<0.40
なる条件式を満たすことを特徴とするコンバータ装置。
A converter device mounted between a lens device detachable from an imaging device and the imaging device,
The optical system included in the converter device is a re-imaging optical system that re-images the primary image formed by the lens device as a secondary image on an image plane,
The re-imaging optical system has a movable group movable along the optical axis,
The moving group has a distance from the image plane of the primary image at the time of normal shooting to the most object-side surface of the moving group and a distance from the most image-side surface of the moving group at the time of normal shooting to the image plane. When the smaller one of them is Dm and the total lens length of the re-imaging optical system is TTD,
|Dm|/TTD<0.40
A converter device satisfying the following conditional expression.
通常撮影時における前記移動群の最も物体側の面に入射する最軸外光束の主光線の高さをHbi、通常撮影時における前記1次像の最大像高をHgiとするとき、
0.50<|Hbi/Hgi|<2.00
なる条件式を満たすことを特徴とする請求項1に記載のコンバータ装置。
When the height of the chief ray of the most off-axis light flux incident on the most object-side surface of the moving group during normal shooting is Hbi, and the maximum image height of the primary image during normal shooting is Hgi,
0.50<|Hbi/Hgi|<2.00
The converter device according to claim 1, wherein the following conditional expression is satisfied.
通常撮影時における前記移動群の横倍率をβm、前記移動群より像側に配置される全てのレンズの通常撮影時における合成横倍率をβrとするとき、
0.01<|(1−βm)βr|<1.50
なる条件式を満たすことを特徴とする請求項1または2に記載のコンバータ装置。
When the lateral magnification of the moving group at the time of normal shooting is βm and the combined lateral magnification of all the lenses arranged on the image side of the moving group at the time of normal shooting is βr,
0.01<|(1-βm 2 )βr 2 |<1.50
The converter device according to claim 1 or 2, wherein the following conditional expression is satisfied.
通常撮影時における前記移動群の焦点距離をfm、通常撮影時における前記再結像光学系の焦点距離をfとするとき、
0.10<|fm/f|<50
なる条件式を満たす請求項1乃至3のいずれか1項に記載のコンバータ装置。
When the focal length of the moving group during normal shooting is fm and the focal length of the re-imaging optical system during normal shooting is f,
0.10<|fm/f|<50
The converter device according to any one of claims 1 to 3, which satisfies the following conditional expression.
通常撮影時における前記再結像光学系の横倍率をβcとするとき、
−10.0<βc<−0.45
なる条件式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載のコンバータ装置。
When the lateral magnification of the re-imaging optical system during normal photography is βc,
-10.0<βc<-0.45
5. The converter device according to claim 1, wherein the following conditional expression is satisfied.
通常撮影時における前記1次像の結像面から前記再結像光学系の入射瞳位置までの光軸上の距離をPI、通常撮影時における前記再結像光学系の焦点距離をfとするとき、
−10.0<PI/f<−1.00
なる条件式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載のコンバータ装置。
Let PI be the distance on the optical axis from the image plane of the primary image to the entrance pupil position of the re-imaging optical system during normal shooting, and f be the focal length of the re-imaging optical system during normal shooting. When
-10.0<PI/f<-1.00
6. The converter device according to claim 1, wherein the following conditional expression is satisfied.
通常撮影時における前記1次像の結像面から前記再結像光学系の射出瞳位置までの光軸上の距離をPO、通常撮影時における前記再結像光学系の焦点距離をfとするとき、
−10.0<PO/f<−0.10
なる条件式を満たすことを特徴とする請求項1乃至6のいずれか1項に記載のコンバータ装置。
Let PO be the distance on the optical axis from the image plane of the primary image to the exit pupil position of the re-imaging optical system during normal shooting, and f be the focal length of the re-imaging optical system during normal shooting. When
-10.0<PO/f<-0.10.
7. The converter device according to claim 1, wherein the following conditional expression is satisfied.
通常撮影時における、前記1次像の結像面から、前記再結像光学系の最も物体側の面までの光軸上の距離をDiとするとき、
−0.30<Di/TTD<0.30
なる条件式を満たすことを特徴とする請求項1乃至7のいずれか1項に記載のコンバータ装置。
When the distance on the optical axis from the image forming plane of the primary image to the most object side surface of the re-imaging optical system during normal photographing is Di,
-0.30<Di/TTD<0.30
8. The converter device according to claim 1, wherein the following conditional expression is satisfied.
通常撮影時における前記再結像光学系の最も物体側の面から像面までの光軸上の距離をskd、通常撮影時における前記再結像光学系の焦点距離をfとするとき、
0.01<skd/f<1.00
なる条件式を満たすことを特徴とする請求項1乃至8のいずれか1項に記載のコンバータ装置。
When the distance on the optical axis from the most object-side surface of the re-imaging optical system to the image plane during normal shooting is skd and the focal length of the re-imaging optical system during normal shooting is f,
0.01<skd/f<1.00
9. The converter device according to claim 1, wherein the following conditional expression is satisfied.
前記移動群は、前記再結像光学系に含まれる屈折力を有するレンズのうち最も物体側に配置されたレンズを含むことを特徴とする請求項1乃至9のいずれか1項に記載のコンバータ装置。 10. The converter according to claim 1, wherein the moving group includes a lens disposed closest to the object side out of lenses having a refractive power included in the re-imaging optical system. apparatus. 前記移動群は正の屈折力を有することを特徴とする請求項1乃至10のいずれか1項に記載のコンバータ装置。 The converter device according to any one of claims 1 to 10, wherein the movable group has a positive refractive power. 撮像装置に対して着脱可能なレンズ装置と前記撮像装置との間に装着されるコンバータ装置であって、
前記コンバータ装置が備える光学系は、前記レンズ装置によって形成された1次像を2次像として像面に再結像する再結像光学系であり、
前記再結像光学系は、光軸に沿って移動可能な移動群を有し、
前記移動群は、前記再結像光学系に含まれる屈折力を有するレンズのうち最も物体側のレンズ、当該最も物体側のレンズの像側に隣接して配置されたレンズ、最も像側のレンズ、当該最も像側のレンズの物体側に隣接して配置されたレンズのいずれかを含むことを特徴とするコンバータ装置。
A converter device mounted between a lens device detachable from an imaging device and the imaging device,
The optical system included in the converter device is a re-imaging optical system that re-images the primary image formed by the lens device as a secondary image on an image plane,
The re-imaging optical system has a movable group movable along the optical axis,
The moving group includes the most object-side lens among the lenses having a refractive power included in the re-imaging optical system, the lens disposed adjacent to the image side of the most object-side lens, and the most image-side lens. A converter device including any one of lenses disposed adjacent to the object side of the most image side lens.
像面湾曲収差の調整の指示に用いられる操作部材を有し、
前記操作部材の操作に応じて前記移動群を移動させることを特徴とする請求項1乃至12のいずれか1項に記載のコンバータ装置。
Having an operation member used for instructing adjustment of field curvature aberration,
The converter device according to any one of claims 1 to 12, wherein the moving group is moved according to an operation of the operation member.
請求項1乃至13のいずれか1項に記載のコンバータ装置を介して、前記レンズ装置が取り外し可能に装着され、前記再結像光学系によって形成される前記2次像を受光する撮像素子を有することを特徴とする撮像装置。 The lens device is detachably mounted via the converter device according to any one of claims 1 to 13, and has an image sensor for receiving the secondary image formed by the re-imaging optical system. An imaging device characterized by the above. 像面湾曲収差の調整の指示に用いられる操作部材を有し、
前記操作部材の操作に応じて前記移動群を移動させることを特徴とする請求項14に記載の撮像装置。
Having an operation member used for instructing adjustment of field curvature aberration,
The image pickup apparatus according to claim 14, wherein the moving group is moved according to an operation of the operation member.
前記移動群の移動に応じて、前記主光学系を構成するレンズのうちフォーカシングに際して移動するレンズが移動することを特徴とする請求項14または15に記載の撮像装置。 16. The image pickup apparatus according to claim 14, wherein a lens that moves during focusing among the lenses that form the main optical system moves according to the movement of the moving group. 主光学系と、該主光学系によって形成された1次像を2次像として像面に再結像する再結像光学系とを有し、撮像装置に対して着脱可能な交換レンズであり、
前記再結像光学系は、光軸に沿って移動可能な移動群を有し、
前記移動群は、通常撮影時における前記1次像の結像面から前記移動群の最も物体側の面までの距離および通常撮影時における前記移動群の最も像側の面から像面までの距離のうち小さいほうをDm、前記再結像光学系CLのレンズ全長をTTDとするとき、
|Dm|/TTD<0.40
なる条件式を満たすことを特徴とする交換レンズ。
An interchangeable lens that has a main optical system and a re-imaging optical system that re-images a primary image formed by the main optical system as a secondary image on an image plane, and is detachable from an imaging device. ,
The re-imaging optical system has a movable group movable along the optical axis,
The moving group has a distance from the image plane of the primary image at the time of normal shooting to the most object-side surface of the moving group and a distance from the most image-side surface of the moving group at the time of normal shooting to the image plane. When the smaller one is Dm and the total lens length of the re-imaging optical system CL is TTD,
|Dm|/TTD<0.40
An interchangeable lens characterized by satisfying the following conditional expression.
JP2019008713A 2019-01-22 2019-01-22 Converter device, interchangeable lens, and image capturing device Pending JP2020118807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008713A JP2020118807A (en) 2019-01-22 2019-01-22 Converter device, interchangeable lens, and image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008713A JP2020118807A (en) 2019-01-22 2019-01-22 Converter device, interchangeable lens, and image capturing device

Publications (1)

Publication Number Publication Date
JP2020118807A true JP2020118807A (en) 2020-08-06

Family

ID=71890668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008713A Pending JP2020118807A (en) 2019-01-22 2019-01-22 Converter device, interchangeable lens, and image capturing device

Country Status (1)

Country Link
JP (1) JP2020118807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140021A (en) * 2019-02-27 2020-09-03 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2022125242A (en) * 2019-02-27 2022-08-26 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2022173543A (en) * 2022-07-06 2022-11-18 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140021A (en) * 2019-02-27 2020-09-03 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP2022125242A (en) * 2019-02-27 2022-08-26 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP7159499B2 (en) 2019-02-27 2022-10-24 キヤノン株式会社 converter lens, interchangeable lens, and imaging device
JP2022173543A (en) * 2022-07-06 2022-11-18 キヤノン株式会社 Converter lens, interchangeable lens, and image capturing device
JP7218469B2 (en) 2022-07-06 2023-02-06 キヤノン株式会社 converter lens, interchangeable lens, and imaging device

Similar Documents

Publication Publication Date Title
JP6818429B2 (en) Zoom lens and imaging device with it
JP5173260B2 (en) Zoom lens and imaging apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP5500382B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5582706B2 (en) Optical system and imaging apparatus having the same
JP6391315B2 (en) Zoom lens and imaging apparatus having the same
US9557543B2 (en) Zoom lens and image pickup apparatus including the same
JP2006343552A (en) Zoom lens and imaging apparatus having the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP6758976B2 (en) Zoom lens and imaging device with it
JP4921044B2 (en) Zoom lens and imaging apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP2005331641A (en) Zoom lens and imaging apparatus having same
JP5465018B2 (en) Zoom lens and optical apparatus having the same
JP2020118807A (en) Converter device, interchangeable lens, and image capturing device
CN107407795B (en) Variable magnification optical system and optical apparatus
JP3566698B2 (en) Viewfinder and optical device using the same
JP2017219649A (en) Imaging optical system and optical apparatus including the same
JP6797597B2 (en) Rear converter optical system and imaging device with it
JP6099983B2 (en) Zoom lens and imaging apparatus having the same
JP7263122B2 (en) Zoom lens and imaging device
JP2009186570A (en) Zoom lens and imaging apparatus having the same
JP2011170371A (en) Zoom lens and imaging apparatus with the same
JP2009103790A (en) Zoom lens and imaging apparatus having the same