JP2020118644A - Arrival direction estimating device and arrival direction estimating method - Google Patents

Arrival direction estimating device and arrival direction estimating method Download PDF

Info

Publication number
JP2020118644A
JP2020118644A JP2019012290A JP2019012290A JP2020118644A JP 2020118644 A JP2020118644 A JP 2020118644A JP 2019012290 A JP2019012290 A JP 2019012290A JP 2019012290 A JP2019012290 A JP 2019012290A JP 2020118644 A JP2020118644 A JP 2020118644A
Authority
JP
Japan
Prior art keywords
angle
arrival direction
sub
array
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019012290A
Other languages
Japanese (ja)
Other versions
JP7189034B2 (en
Inventor
弘貴 石川
Hiroki Ishikawa
弘貴 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2019012290A priority Critical patent/JP7189034B2/en
Publication of JP2020118644A publication Critical patent/JP2020118644A/en
Application granted granted Critical
Publication of JP7189034B2 publication Critical patent/JP7189034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

To provide arrival direction estimation technology with which it is possible to improve the accuracy of angle of each of a plurality of targets while eliminating a phase-wrap problem.SOLUTION: An arrival direction estimating device comprises an angle calculation unit and an estimation unit. The angle calculation unit calculates a first angle of each of a plurality of targets derived from a received signal obtained by a plurality of first receive antennas arranged at a first internal and a second angle of each of the plurality of targets derived from a received signal obtained by a plurality of second receive antennas arranged at a second internal wider than the first interval. The estimation unit estimates the arrival direction of a radio wave reflected by each of the plurality of targets on the basis of the plurality of first angles, the plurality of second angles and the phase-wrap angle of each of the plurality of second angles, and determines one among the second angles and phase-wrap angles as the arrival direction with respect to each of the plurality of targets.SELECTED DRAWING: Figure 1

Description

本発明は、電波の到来方向を推定する技術に関する。 The present invention relates to a technique of estimating the arrival direction of a radio wave.

レーダ装置は、電波を照射し、物標から反射してきた電波(反射波)を受信することで、反射波の到来方向を推定する。到来方向の推定方法は、反射波を受信する複数の受信アンテナで得られた受信信号の位相差や振幅差の情報から到来方向(角度)を算出する方法である。 The radar device irradiates a radio wave and receives the radio wave (reflected wave) reflected from the target to estimate the arrival direction of the reflected wave. The method of estimating the direction of arrival is a method of calculating the direction of arrival (angle) from the information of the phase difference and the amplitude difference of the received signals obtained by the plurality of receiving antennas that receive the reflected waves.

特開2000−230974号公報JP 2000-230974 A

到来方向(角度)を算出する上で、受信アンテナ間隔は非常に重要であり、角度精度及び位相折り返しに大きく影響する。角度精度と位相折り返しとはトレードオフの関係になる。具体的には、受信アンテナ間隔が広ければ物標の角度精度は良くなるものの位相折り返しが発生し易いのに対し、受信アンテナ間隔が狭ければ位相折り返しは発生し難くなるものの物標の角度精度は悪くなる。 In calculating the direction of arrival (angle), the receiving antenna spacing is very important and greatly affects the angle accuracy and phase folding. There is a trade-off between angle accuracy and phase folding. Specifically, if the receiving antenna spacing is wide, the angular accuracy of the target is good, but phase folding is likely to occur, whereas if the receiving antenna spacing is narrow, phase folding is difficult to occur, but the angular accuracy of the target is Will get worse.

特許文献1で開示されているレーダ装置では、アンテナ間隔が異なる2つの受信アンテナ対でそれぞれ検出される物標の角度(方位)が一致したときの角度を、レーダ装置によって検出された物標の角度として採用することで、位相折り返しの問題を解消しつつ物標の角度精度を高めている。 In the radar device disclosed in Patent Document 1, the angle at which the angles (azimuths) of the targets detected by the two receiving antenna pairs having different antenna intervals are the same as the angle of the target detected by the radar device. By adopting it as an angle, the angle accuracy of the target is improved while solving the problem of phase folding.

しかしながら、特許文献1で開示されているレーダ装置は、レーダ装置との距離及びレーダ装置との相対速度それぞれが互いに類似する複数の物標に対応して到来方向(角度)を算出することができない。 However, the radar device disclosed in Patent Document 1 cannot calculate the arrival direction (angle) corresponding to a plurality of targets whose distance to the radar device and relative speed to the radar device are similar to each other. ..

本発明は、上記課題に鑑みて、位相折り返しの問題を解消しつつ複数の物標それぞれの角度精度を向上できる到来方向推定技術を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a direction-of-arrival estimation technique that can improve the angle accuracy of each of a plurality of targets while solving the problem of phase aliasing.

本発明に係る到来方向推定装置は、第1の間隔で配置された複数の第1の受信アンテナで得られた受信信号から導出された複数の物標それぞれの第1の角度、及び、前記第1の間隔より広い第2の間隔で配置された複数の第2の受信アンテナで得られた受信信号から導出された前記複数の物標それぞれの第2の角度を算出する角度算出部と、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定部と、を備え、前記推定部は、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つを前記到来方向とする構成(第1の構成)である。 The arrival direction estimating apparatus according to the present invention includes a first angle of each of a plurality of targets derived from reception signals obtained by a plurality of first receiving antennas arranged at a first distance, and the first angle. An angle calculation unit that calculates a second angle of each of the plurality of targets derived from reception signals obtained by a plurality of second receiving antennas arranged at a second spacing wider than one spacing; And an estimation unit that estimates the arrival direction of the radio wave reflected from each of the plurality of targets, based on the first angle, the plurality of second angles, and the plurality of second angle return phases. , And the estimation unit is configured to set one of the second angle and the phase turning angle as the arrival direction for each of the plurality of targets (first configuration).

上記第1の構成の到来方向推定装置において、前記複数の第1の受信アンテナの一部と、前記複数の第2の受信アンテナの一部と、が共通の受信アンテナである構成(第2の構成)であってもよい。 In the direction-of-arrival estimation apparatus having the first configuration, some of the plurality of first receiving antennas and some of the plurality of second receiving antennas are common receiving antennas (second Configuration).

本発明に係る他の到来方向推定装置は、複数の受信アンテナの組み合わせである第1のサブアレーで得られた受信信号と、前記第1のサブアレーと同一形状であって前記第1のサブアレーとの間に第1の位相差が生じる第2のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第1の角度、及び、前記第1のサブアレーと同一形状である第3のサブアレーで得られた受信信号と、前記第3のサブアレーと同一形状であって前記第3のサブアレーとの間に前記第1の位相差と異なる第2の位相差が生じる第4のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第2の角度を算出する角度算出部と、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定部と、を備え、前記推定部は、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つを前記到来方向とする構成(第3の構成)である。 Another arrival direction estimating apparatus according to the present invention comprises: a reception signal obtained by a first sub-array which is a combination of a plurality of reception antennas; and a first sub-array having the same shape as the first sub-array. A first angle of each of a plurality of targets derived by using a reception signal obtained by a second sub-array in which a first phase difference is generated, and a first angle having the same shape as the first sub-array. A fourth sub-array having a second phase difference different from the first phase difference between the received signal obtained by the third sub-array and the third sub-array and having the same shape as the third sub-array. An angle calculation unit that calculates a second angle of each of a plurality of targets that is derived using the received signal obtained in step S1, a plurality of the first angles, a plurality of the second angles, and a plurality of the plurality of the angles. An estimation unit that estimates the arrival direction of the radio wave reflected from each of the plurality of targets on the basis of the phase turn-back angle of each of the second angles. It is a configuration (third configuration) in which one of a second angle and the phase folding angle is set as the arrival direction.

上記第1〜第3いずれかの構成の到来方向推定装置において、前記推定部は、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度との組み合わせから、角度差が最小になる1つのペアを見つけ出し、前記1つのペアに基づき前記複数の物標それぞれから反射した電波の到来方向を推定する構成(第4の構成)であってもよい。 In the arrival direction estimation device having any one of the first to third configurations, the estimation unit includes phase folding angles of each of the plurality of first angles, the plurality of second angles, and the plurality of second angles. From the combination with the above, one pair that minimizes the angular difference is found, and the arrival direction of the radio wave reflected from each of the plurality of targets is estimated based on the one pair (fourth configuration). Good.

上記第1〜第3いずれかの構成の到来方向推定装置において、前記推定部は、前記第1の角度と、前記到来方向とする角度との角度差の総和が最小になるように、前記複数の物標それぞれから反射した電波の到来方向を推定する構成(第5の構成)であってもよい。 In the arrival direction estimation device of any one of the first to third configurations, the estimation unit is configured to minimize the sum of angular differences between the first angle and the angle of arrival. The configuration (fifth configuration) may be used to estimate the arrival direction of the radio wave reflected from each target.

本発明に係る到来方向推定方法は、第1の間隔で配置された複数の第1の受信アンテナで得られた受信信号から導出された複数の物標それぞれの第1の角度、及び、前記第1の間隔より広い第2の間隔で配置された複数の第2の受信アンテナで得られた受信信号から導出された前記複数の物標それぞれの第2の角度を算出する角度算出工程と、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定工程と、を備え、前記推定工程において、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つが前記到来方向とされる構成(第6の構成)である。 The arrival direction estimation method according to the present invention includes a first angle of each of a plurality of targets derived from reception signals obtained by a plurality of first reception antennas arranged at a first interval, and the first angle. An angle calculation step of calculating a second angle of each of the plurality of targets derived from reception signals obtained by a plurality of second receiving antennas arranged at a second spacing wider than one spacing; An estimation step of estimating the arrival direction of the radio wave reflected from each of the plurality of targets, based on the first angle, the plurality of second angles, and the phase turn-back angles of each of the plurality of second angles. , And in the estimation step, one of the second angle and the phase turning angle is set as the arrival direction for each of the plurality of targets (sixth configuration).

本発明に係る他の到来方向推定方法は、複数の受信アンテナの組み合わせである第1のサブアレーで得られた受信信号と、前記第1のサブアレーと同一形状であって前記第1のサブアレーとの間に第1の位相差が生じる第2のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第1の角度、及び、前記第1のサブアレーと同一形状である第3のサブアレーで得られた受信信号と、前記第3のサブアレーと同一形状であって前記第3のサブアレーとの間に前記第1の位相差と異なる第2の位相差が生じる第4のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第2の角度を算出する角度算出工程と、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定工程と、を備え、前記推定工程において、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つが前記到来方向とされる構成(第7の構成)である。 Another direction of arrival estimation method according to the present invention is to combine a received signal obtained by a first sub-array, which is a combination of a plurality of receiving antennas, and a first sub-array having the same shape as the first sub-array. A first angle of each of a plurality of targets derived by using a reception signal obtained by a second sub-array in which a first phase difference occurs, and a first angle having the same shape as the first sub-array. A fourth sub-array having a second phase difference different from the first phase difference between the received signal obtained by the third sub-array and the third sub-array and having the same shape as the third sub-array. An angle calculating step of calculating a second angle of each of the plurality of targets derived using the received signal obtained in step 1, a plurality of the first angles, a plurality of the second angles, and a plurality of the plurality of the first angles. An estimation step of estimating the arrival direction of the radio wave reflected from each of the plurality of targets based on the phase turn-back angle of each of the second angles. One of the second angle and the phase turning angle is the direction of arrival (seventh structure).

本発明に係る到来方向推定技術によると、位相折り返しの問題を解消しつつ複数の物標それぞれの角度精度を向上できる。 According to the arrival direction estimation technique according to the present invention, the angle accuracy of each of a plurality of targets can be improved while solving the problem of phase folding.

レーダ装置の一構成例を示す図The figure which shows one structural example of a radar device. レーダ装置と物標との位置関係を示す図Diagram showing the positional relationship between the radar device and the target レーダ装置と物標との位置関係を示す図Diagram showing the positional relationship between the radar device and the target 角度算出処理及び推定処理の第1例の流れを示すフローチャートThe flowchart which shows the flow of the 1st example of an angle calculation process and an estimation process. 角度算出処理及び推定処理の第2例の流れを示すフローチャートThe flowchart which shows the flow of the 2nd example of an angle calculation process and an estimation process. 受信アンテナの配置例を示す図The figure which shows the example of arrangement of the receiving antenna レーダ装置の他の構成例を示す図The figure which shows the other structural example of a radar apparatus.

以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.

<1.レーダ装置の構成>
図1は本実施形態に係るレーダ装置1の構成を示す図である。レーダ装置1は、例えば自動車などの車両に搭載されている。レーダ装置1が自車両の前端に搭載されている場合、レーダ装置1は、送信波を用いて、自車両の前方に存在する物標に係る物標データを取得する。物標データは、物標までの距離、レーダ装置1に対する物標の相対速度等を含む。しかしながら、本実施形態に係るレーダ装置1を到来方向推定装置の一例として説明するため、以下の説明においては到来方向推定に関する部分についてのみ説明を行う。
<1. Configuration of radar device>
FIG. 1 is a diagram showing a configuration of a radar device 1 according to this embodiment. The radar device 1 is mounted on a vehicle such as an automobile. When the radar device 1 is mounted on the front end of the host vehicle, the radar device 1 acquires the target data related to the target existing in front of the host vehicle using the transmitted wave. The target data includes the distance to the target, the relative speed of the target with respect to the radar device 1, and the like. However, since the radar device 1 according to the present embodiment will be described as an example of an arrival direction estimation device, only the part related to the arrival direction estimation will be described in the following description.

図1に示すように、レーダ装置1は、送信部2と、受信部3n及び3wと、信号処理装置4と、を主に備えている。 As shown in FIG. 1, the radar device 1 mainly includes a transmitter 2, receivers 3n and 3w, and a signal processor 4.

受信部3nは、複数の受信アンテナ31nを備える。例えば、受信部3nは、自車両の左右方向に沿って配置され、受信チャンネルch1〜ch4それぞれに対応する4つの受信アンテナ31nを備える。受信部3wは、複数の受信アンテナ31wを備える。例えば、受信部3wは、自車両の左右方向に沿って配置され、受信チャンネルch5〜ch8それぞれに対応する4つの受信アンテナ31wを備える。 The receiving unit 3n includes a plurality of receiving antennas 31n. For example, the reception unit 3n is arranged along the left-right direction of the vehicle and includes four reception antennas 31n corresponding to the reception channels ch1 to ch4. The receiving unit 3w includes a plurality of receiving antennas 31w. For example, the reception unit 3w is arranged along the left-right direction of the vehicle and includes four reception antennas 31w corresponding to the reception channels ch5 to ch8.

隣接する受信アンテナ31nの間隔は第1の間隔d1であり、受信部3wでは、隣接する受信アンテナ31wの間隔は第1の間隔d1より広い第2の間隔d2である。なお、複数の第1の間隔d1は、厳密に同一でなくてもよく、設計上の誤差やばらつきなどを考慮した上で複数の第1の間隔d1が同一とみなすことができればよい。位相折り返しが発生しないように、第1の間隔d1は受信アンテナ31nで得られる受信信号の半波長以下であることが好ましい。ただし、位相折り返しが発生する場合でもレーダ装置1のFOVの設定によってはFOV内で位相折り返しが発生しないようにすることも可能であるため、第1の間隔d1は受信アンテナ31nで得られる受信信号の半波長より大きくてもよい。本実施例では、第1の間隔d1は受信アンテナ31nで得られる受信信号の半波長以下にする。複数の第2の間隔d2は、厳密に同一でなくてもよく、設計上の誤差やばらつきなどを考慮した上で複数の第2の間隔d2が同一とみなすことができればよい。本実施例では、第2の間隔d2は受信アンテナ31wで得られる受信信号の半波長より大きくする。 The interval between the adjacent receiving antennas 31n is the first interval d1, and in the receiving unit 3w, the interval between the adjacent receiving antennas 31w is the second interval d2, which is wider than the first interval d1. Note that the plurality of first intervals d1 do not have to be exactly the same, and it is sufficient that the plurality of first intervals d1 can be considered to be the same in consideration of design errors and variations. It is preferable that the first interval d1 is equal to or less than a half wavelength of the reception signal obtained by the reception antenna 31n so that phase folding does not occur. However, even if phase wrapping occurs, it is possible to prevent the phase wrapping from occurring in the FOV depending on the setting of the FOV of the radar device 1. Therefore, the first interval d1 is the reception signal obtained by the receiving antenna 31n. May be larger than half wavelength. In this embodiment, the first distance d1 is set to be equal to or less than a half wavelength of the reception signal obtained by the reception antenna 31n. The plurality of second intervals d2 do not have to be exactly the same, and it is sufficient that the plurality of second intervals d2 can be considered to be the same in consideration of design errors and variations. In this embodiment, the second interval d2 is set to be larger than the half wavelength of the reception signal obtained by the reception antenna 31w.

上述した通り、受信部3nでは、隣接する受信アンテナ31nの間隔が第1の間隔d1であり、受信部3wでは、隣接する受信アンテナ31wの間隔が第1の間隔d1より広い第2の間隔d2であるが、受信部3nと受信部3wの基本的な構成は同一である。このため、以下の説明では、適宜、受信部3nと受信部3wとを区別せずに受信部3として説明する。 As described above, in the receiving unit 3n, the interval between the adjacent receiving antennas 31n is the first interval d1, and in the receiving unit 3w, the interval between the adjacent receiving antennas 31w is wider than the first interval d1. However, the basic configurations of the receiving unit 3n and the receiving unit 3w are the same. Therefore, in the following description, the receiving unit 3n and the receiving unit 3w will be appropriately described as the receiving unit 3 without making a distinction.

送信部2は、信号生成部21と発信器22とを備えている。発信器22は、信号生成部21で生成された信号を変調して送信信号を生成する。送信アンテナ23は、送信信号を送信波TWに変換して出力する。 The transmitter 2 includes a signal generator 21 and a transmitter 22. The oscillator 22 modulates the signal generated by the signal generator 21 to generate a transmission signal. The transmission antenna 23 converts the transmission signal into a transmission wave TW and outputs it.

受信部3は、複数の受信アンテナ31と、その複数の受信アンテナ31に接続された複数の個別受信部32とを備えている。本実施形態では、受信部3は、例えば、4個の受信アンテナ31と4個の個別受信部32とを備えている。4個の個別受信部32は、4個の受信アンテナ31にそれぞれ対応している。各受信アンテナ31は物体からの反射波RWを受信して受信信号を取得し、各個別受信部32は対応する受信アンテナ31で得られた受信信号を処理する。 The receiving unit 3 includes a plurality of receiving antennas 31 and a plurality of individual receiving units 32 connected to the plurality of receiving antennas 31. In the present embodiment, the receiving unit 3 includes, for example, four receiving antennas 31 and four individual receiving units 32. The four individual receiving units 32 correspond to the four receiving antennas 31, respectively. Each reception antenna 31 receives the reflected wave RW from the object to acquire a reception signal, and each individual reception unit 32 processes the reception signal obtained by the corresponding reception antenna 31.

各個別受信部32は、ミキサ33とA/D変換器34とを備えている。受信アンテナ31で得られた受信信号は、ローノイズアンプ(図示省略)で増幅された後にミキサ33に送られる。ミキサ33には送信部2の発信器22からの送信信号が入力され、ミキサ33において送信信号と受信信号とがミキシングされる。これにより、送信信号の周波数と受信信号の周波数との差となるビート周波数を有するビート信号が生成される。ミキサ33で生成されたビート信号は、A/D変換器34でデジタルの信号に変換された後に、信号処理装置4に出力される。 Each individual receiving unit 32 includes a mixer 33 and an A/D converter 34. The reception signal obtained by the reception antenna 31 is amplified by a low noise amplifier (not shown) and then sent to the mixer 33. The transmission signal from the transmitter 22 of the transmitter 2 is input to the mixer 33, and the transmission signal and the reception signal are mixed in the mixer 33. As a result, a beat signal having a beat frequency that is the difference between the frequency of the transmission signal and the frequency of the reception signal is generated. The beat signal generated by the mixer 33 is converted into a digital signal by the A/D converter 34 and then output to the signal processing device 4.

信号処理装置4は、CPU(Central Processing Unit)及びメモリ41などを含むマイクロコンピュータを備えている。信号処理装置4は、演算の対象とする各種のデータを、記憶装置であるメモリ41に記憶する。メモリ41は、例えばRAM(Random Access Memory)などである。信号処理装置4は、マイクロコンピュータでソフトウェア的に実現される機能として、送信制御部42、フーリエ変換部43、及び、データ処理部44を備えている。送信制御部42は、送信部2の信号生成部21を制御する。データ処理部44は、ピーク抽出部45、角度算出部46、及び推定部47を備えている。 The signal processing device 4 includes a microcomputer including a CPU (Central Processing Unit), a memory 41, and the like. The signal processing device 4 stores various data to be calculated in the memory 41, which is a storage device. The memory 41 is, for example, a RAM (Random Access Memory). The signal processing device 4 includes a transmission control unit 42, a Fourier transform unit 43, and a data processing unit 44, which are functions implemented by software in a microcomputer. The transmission controller 42 controls the signal generator 21 of the transmitter 2. The data processing unit 44 includes a peak extraction unit 45, an angle calculation unit 46, and an estimation unit 47.

フーリエ変換部43は、複数の物標からの反射波が重なり合った状態で受信アンテナ31において受信されるため、受信信号に基づいて生成されたビート信号から、各物標の反射波に基づく周波数成分を分離する処理(例えば、FFT(Fast Fourier Transfer)処理)を行う。FFT処理では、所定の周波数間隔で設定された周波数ポイント(周波数ビンという場合がある)ごとに受信レベルや位相情報が算出される。 In the Fourier transform unit 43, the reflected waves from the plurality of targets are received by the receiving antenna 31 in a state of being overlapped with each other. Therefore, from the beat signal generated based on the received signals, the frequency components based on the reflected waves of the respective targets are received. Is performed (for example, FFT (Fast Fourier Transfer) processing). In the FFT processing, the reception level and the phase information are calculated for each frequency point (sometimes called a frequency bin) set at a predetermined frequency interval.

ピーク抽出部45は、フーリエ変換部43によるFFT処理等の結果からピークを検出する。 The peak extraction unit 45 detects a peak from the result of FFT processing or the like performed by the Fourier transform unit 43.

角度算出部46は、DBF、MUSICなどの周知の方位演算処理を用いて、複数の受信アンテナ31nで得られた受信信号から導出された複数の物標それぞれの第1の角度を算出する。角度算出部46は、DBF、MUSICなどの周知の方位演算処理を用いて、複数の受信アンテナ31wで得られた受信信号から導出された複数の物標それぞれの第2の角度も算出する。 The angle calculation unit 46 calculates the first angle of each of the plurality of targets derived from the reception signals obtained by the plurality of reception antennas 31n, using a well-known azimuth calculation process such as DBF and MUSIC. The angle calculation unit 46 also calculates the second angle of each of the plurality of targets derived from the reception signals obtained by the plurality of reception antennas 31w, using a well-known azimuth calculation process such as DBF or MUSIC.

以下、レーダ装置1との距離及びレーダ装置1との相対速度それぞれが互いに類似する2つの物標が導出された場合について説明する。角度算出部46は、複数の受信アンテナ31nで得られた受信信号から図2に示す2つの物標α1及びα2を導出し、物標α1の第1の角度θα1及び物標α2の第1の角度θα2を算出する。 Hereinafter, a case will be described in which two targets having similar distances to the radar device 1 and relative speeds to the radar device 1 are derived. The angle calculation unit 46 derives the two targets α1 and α2 shown in FIG. 2 from the reception signals obtained by the plurality of reception antennas 31n, and calculates the first angle θ α1 of the target α1 and the first target α2 of the target α2. The angle θ α2 of is calculated.

角度算出部46は、複数の受信アンテナ31wで得られた受信信号から図3に示す2つの物標β1及びβ2を導出し、物標β1の第2の角度θβ1及び物標β2の第2の角度θβ2を算出する。第2の角度θβ1及びθβ2では精度は高いものの位相折り返しが発生するため、物標β1の本来の位置は図3に示す位相折り返し位置β1’又はβ1”の可能性があり、物標β2の本来の位置は図3に示す位相折り返し位置β2’又はβ2”の可能性がある。位相の折り返し数は、上述した第2の間隔d2と、受信アンテナ31wで得られる受信信号の波長との関係によって定まるため、本実施例の個数に限定されない。以下の説明では、第2の角度θβ1の各位相折り返し角度としてθβ1’及びθβ1”を用い、第2の角度θβ2の各位相折り返し角度としてθβ2’及びθβ2”を用いる。位相折り返し角度θβ1’、θβ1”、θβ2’、及びθβ2”はそれぞれ、位相折り返し位置β1’、β1”、β2’、及びβ1”の各角度である。 The angle calculation unit 46 derives the two targets β1 and β2 shown in FIG. 3 from the reception signals obtained by the plurality of reception antennas 31w, and outputs the second angle θ β1 of the target β1 and the second target β2 of the target β2. The angle θ β2 of is calculated. At the second angles θ β1 and θ β2 , although the accuracy is high, phase folding occurs, so that the original position of the target β1 may be the phase folding position β1′ or β1″ shown in FIG. The original position of 1 may be the phase folding position β2′ or β2″ shown in FIG. The number of phase turns is determined by the relationship between the above-described second interval d2 and the wavelength of the reception signal obtained by the reception antenna 31w, and is not limited to the number in this embodiment. In the following description, '' using, theta .beta.2 as the phase folding angle of the second angle theta .beta.2 and theta .beta.1 'and theta .beta.2 "theta .beta.1 as the phase folding angle of the second angle theta .beta.1 used. The phase folding angles θ β1 ′, θ β1 ″, θ β2 ′, and θ β2 ″ are the angles of the phase folding positions β1 ′, β1 ″, β2 ′, and β1 ″, respectively.

推定部47は、第1の角度θα1及びθα2と、第2の角度θβ1及びθβ2並びに位相折り返し角度θβ1’、θβ1”、θβ2’、及びθβ2”とに基づき、2つの物標それぞれから反射した電波の到来方向を推定する。推定部47は、第1の角度θα1及びθα2を用いて、物標β1及びβ2それぞれの位相折り返し問題を解消することができる。 The estimation unit 47 calculates 2 based on the first angles θ α1 and θ α2 , the second angles θ β1 and θ β2 , and the phase folding angles θ β1 ′, θ β1 ″, θ β2 ′, and θ β2 ″. The direction of arrival of the radio waves reflected from each of the two targets is estimated. The estimation unit 47 can solve the phase folding problem of each of the targets β1 and β2 by using the first angles θ α1 and θ α2 .

そして、推定部47は、一方の物標について、第2の角度θβ1並びに位相折り返し角度θβ1’及びθβ1”の中の1つを、一方の物標から反射した電波の到来方向とする。推定部47は、他方の物標について、第2の角度θβ2並びに位相折り返し角度θβ2’及びθβ2”の中の1つを、一方の物標から反射した電波の到来方向とする。これにより、複数の物標それぞれの角度精度を向上できる。 Then, the estimation unit 47 sets one of the second angle θ β1 and the phase folding angles θ β1 ′ and θ β1 ″ for one target as the arrival direction of the radio wave reflected from the one target. The estimation unit 47 sets one of the second angle θ β2 and the phase turning angles θ β2 ′ and θ β2 ″ for the other target as the arrival direction of the radio wave reflected from the one target. Thereby, the angle accuracy of each of the plurality of targets can be improved.

推定部47は、推定した物標の存在する方位(角度)をメモリ41や車両制御ECU5等に出力する。 The estimation unit 47 outputs the estimated azimuth (angle) where the target is present to the memory 41, the vehicle control ECU 5, and the like.

<2.角度算出処理及び推定処理の第1例>
図4は、角度算出部46によって実行される算出処理及び推定部47によって実行される推定処理の第1例の流れを示すフローチャートである。
<2. First example of angle calculation processing and estimation processing>
FIG. 4 is a flowchart showing a flow of a first example of the calculation process executed by the angle calculation unit 46 and the estimation process executed by the estimation unit 47.

角度算出部46は、第1の角度θα1及びθα2を算出する(ステップS1)。次に、角度算出部46は、第2の角度θβ1及びθβ2を算出する(ステップS2)。なお、ステップS1とステップS2は、実行順序を入れ替えてもよく、並列して実行してもよい。 The angle calculation unit 46 calculates the first angles θ α1 and θ α2 (step S1). Next, the angle calculator 46 calculates the second angles θ β1 and θ β2 (step S2). The order of steps S1 and S2 may be exchanged, or the steps may be executed in parallel.

ステップS1及びS2の終了後に、角度算出部46と推定部47のいずれかが、位相折り返し角度θβ1’、θβ1”、θβ2’、及びθβ2”を算出する(ステップS3)。 After completion of steps S1 and S2, either the angle calculation unit 46 or the estimation unit 47 calculates the phase folding angles θ β1 ′, θ β1 ″, θ β2 ′, and θ β2 ″ (step S3 ).

ステップS3に続くステップS4において、推定部47は、12通りの各角度差を算出する。12通りの各角度差は、以下の(1)〜(12)である。なお、各角度差は絶対値である。
(1)第1の角度θα1と位相折り返し角度θβ1’との角度差
(2)第1の角度θα1と位相折り返し角度θβ2’との角度差
(3)第1の角度θα1と第2の角度θβ1との角度差
(4)第1の角度θα1と第2の角度θβ2との角度差
(5)第1の角度θα1と位相折り返し角度θβ1”との角度差
(6)第1の角度θα1と位相折り返し角度θβ2”との角度差
(7)第1の角度θα2と位相折り返し角度θβ1’との角度差
(8)第1の角度θα2と位相折り返し角度θβ2’との角度差
(9)第1の角度θα2と第2の角度θβ1との角度差
(10)第1の角度θα2と第2の角度θβ2との角度差
(11)第1の角度θα2と位相折り返し角度θβ1”との角度差
(12)第1の角度θα2と位相折り返し角度θβ2”との角度差
In step S4 following step S3, the estimation unit 47 calculates twelve different angle differences. The twelve angular differences are (1) to (12) below. Note that each angle difference is an absolute value.
(1) An angle difference between the first angle θ α1 and the phase folding angle θ β1 ′ (2) An angle difference between the first angle θ α1 and the phase folding angle θ β2 ′ (3) A first angle θ α1 Angle difference between second angle θ β1 (4) Angle difference between first angle θ α1 and second angle θ β2 (5) Angle difference between first angle θ α1 and phase folding angle θ β1 ″ (6) Angle difference between the first angle θ α1 and the phase folding angle θ β2 ″ (7) Angle difference between the first angle θ α2 and phase folding angle θ β1 ′ (8) First angle θ α2 Angle difference between phase turnaround angle θ β2 ′ (9) Angle difference between first angle θ α2 and second angle θ β1 (10) Angle difference between first angle θ α2 and second angle θ β2 (11) Angle difference between the first angle θ α2 and the phase folding angle θ β1 ″ (12) Angle difference between the first angle θ α2 and the phase folding angle θ β2

ステップS4に続くステップS5において、推定部47は、12通りの中から角度差が最小になる1つのペアを見つけ出し(特定し)、特定したペアに属する第2の角度又は位相折り返し角度を、一方の物標から反射した電波の到来方向とする。以下、角度差が最小になる1つのペアが上記の(1)である場合を例に挙げて説明を続ける。 In step S5 subsequent to step S4, the estimation unit 47 finds (identifies) one pair having the smallest angular difference from the 12 ways, and determines the second angle or the phase folding angle belonging to the identified pair as one of The arrival direction of the radio wave reflected from the target. Hereinafter, the description will be continued by exemplifying the case where the one pair with the smallest angle difference is (1) described above.

ステップS5に続くステップS6において、推定部47は、他方の物標に関する3通りの各角度差を算出する。角度差が最小になる1つのペアが上記の(1)である場合、ステップS6における3通りの各角度差は、上記の(8)、(10)、及び(12)である。 In step S6 subsequent to step S5, the estimation unit 47 calculates three types of angle differences regarding the other target. When one pair with the smallest angle difference is (1) above, the three angle differences in step S6 are (8), (10), and (12) above.

ステップS6に続くステップS7において、推定部47は、上記の3通りの中から角度差が最小になる1つのペアを見つけ出し(特定し)、特定したペアに属する第2の角度又は位相折り返し角度を、他方の物標から反射した電波の到来方向とする。 In step S7 following step S6, the estimation unit 47 finds (identifies) one pair having the smallest angle difference from the above three ways, and determines the second angle or the phase folding angle belonging to the identified pair. , The arrival direction of the radio wave reflected from the other target.

<3.角度算出処理及び推定処理の第2例>
図5は、角度算出部46によって実行される算出処理及び推定部47によって実行される推定処理の第2例の流れを示すフローチャートである。なお、図5において図4と同一のステップには同一の符号を付し、詳細な説明を省略する。
<3. Second example of angle calculation processing and estimation processing>
FIG. 5 is a flowchart showing a flow of a second example of the calculation process executed by the angle calculation unit 46 and the estimation process executed by the estimation unit 47. In FIG. 5, the same steps as those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

ステップS3の終了後、推定部47はステップ8の処理を実行する。推定部47は、物標α1と物標β1が一方の物標であり、物標α2と物標β2が他方の物標であるという第1の仮定を行い、上記の(1)、(3)、(5)の中から角度差が最小になる1つのペアを見つけ出し(特定し)、上記の(8)、(10)、(12)の中から角度差が最小になる1つのペアを見つけ出し(特定し)、特定した2つのペアの角度差の総和を算出する(ステップS8)。次に、物標α1と物標β2が一方の物標であり、物標α2と物標β1が他方の物標であるという第2の仮定を行い、上記の(2)、(4)、(6)の中から角度差が最小になる1つのペアを見つけ出し(特定し)、上記の(7)、(9)、(11)の中から角度差が最小になる1つのペアを見つけ出し(特定し)、特定した2つのペアの角度差の総和を算出する(ステップS9)。なお、ステップS8とステップS9は、実行順序を入れ替えてもよく、並列して実行してもよい。 After the end of step S3, the estimation unit 47 executes the process of step 8. The estimation unit 47 makes the first assumption that the target α1 and the target β1 are one target, and the target α2 and the target β2 are the other targets, and the above (1) and (3 ), (5) find one pair with the smallest angle difference (identify), and select one pair with the smallest angle difference from (8), (10) and (12) above. After finding (specifying), the sum of the angular differences of the two specified pairs is calculated (step S8). Next, the second assumption is made that the target α1 and the target β2 are one target, and the target α2 and the target β1 are the other target, and the above (2), (4), Find (specify) one pair with the smallest angle difference from (6), and find one pair with the smallest angle difference from (7), (9), and (11) above. Then, the sum of the angular differences of the two specified pairs is calculated (step S9). In addition, the execution order of steps S8 and S9 may be exchanged, or the steps may be executed in parallel.

ステップS8及びS9の終了後に、推定部47は、ステップS8で算出した総和がステップS9で算出した総和より小さい場合には上記の第1の仮定を採用し、ステップS9で算出した総和がステップS8で算出した総和より小さい場合には上記の第2の仮定を採用する(ステップS10)。そして、推定部47は、上記の第1の仮定を採用した場合にはステップS8で特定したペアに属する第2の角度又は位相折り返し角度を物標から反射した電波の到来方向とし、上記の第2の仮定を採用した場合にはステップS9で特定したペアに属する第2の角度又は位相折り返し角度を物標から反射した電波の到来方向とする(ステップS10)。 After completion of steps S8 and S9, the estimation unit 47 adopts the above-mentioned first assumption when the total sum calculated in step S8 is smaller than the total sum calculated in step S9, and the total sum calculated in step S9 is calculated in step S8. If the sum is smaller than the sum calculated in step 2, the above second assumption is adopted (step S10). Then, when adopting the above-mentioned first assumption, the estimating unit 47 sets the second angle or the phase turning angle belonging to the pair identified in step S8 as the arrival direction of the radio wave reflected from the target, and the above-described first angle. When the assumption 2 is adopted, the second angle or the phase turning angle belonging to the pair identified in step S9 is set as the arrival direction of the radio wave reflected from the target (step S10).

上述した「角度算出処理及び推定処理の第1例」と「角度算出処理及び推定処理の第2例」のどちらが優れているかは一概にいえない。このため、例えば、想定される複数の物標の配置、想定されるレーダ装置1の仕様等を考慮したシミュレーション或いは実験の結果を考慮して、どちらを採用するかを決定すればよい。 Which of the above-mentioned “first example of angle calculation processing and estimation processing” and “second example of angle calculation processing and estimation processing” that is superior is uncertain. Therefore, for example, it may be determined which of the plurality of targets is to be adopted in consideration of the result of the simulation or the experiment in which the assumed arrangement of the plurality of targets and the assumed specifications of the radar device 1 are considered.

<4.その他>
本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。また、本明細書中に示される複数の実施形態及び変形例は可能な範囲で組み合わせて実施されてよい。
<4. Other>
Various technical features disclosed in this specification can be variously modified in addition to the above-described embodiment without departing from the spirit of the technical creation. In addition, a plurality of embodiments and modifications shown in the present specification may be combined and implemented within a possible range.

上述した実施形態では、レーダ装置1が4つの受信アンテナ31n及び4つの受信アンテナ31wを備える構成であったが、例えば、4つの受信アンテナ31n及び4つの受信アンテナ31wの代わりに、図6に示す6つの受信アンテナ31を設けてもよい。図6に示す受信チャンネルch11は図1に示す受信チャンネルch1及びCH5の代わりに用いられ、図6に示す受信チャンネルch12は図1に示す受信チャンネルch2の代わりに用いられ、図6に示す受信チャンネルch13は図1に示す受信チャンネルch3及びCH6の代わりに用いられ、図6に示す受信チャンネルch14〜Ch16はそれぞれ図1に示す受信チャンネルch4、CH7、及びCH8の代わりに用いられる。 In the above-described embodiment, the radar device 1 is configured to include the four receiving antennas 31n and the four receiving antennas 31w, but for example, the four receiving antennas 31n and the four receiving antennas 31w are shown in FIG. Six receiving antennas 31 may be provided. The receiving channel ch11 shown in FIG. 6 is used instead of the receiving channels ch1 and CH5 shown in FIG. 1, the receiving channel ch12 shown in FIG. 6 is used instead of the receiving channel ch2 shown in FIG. 1, and the receiving channel shown in FIG. ch13 is used instead of the reception channels ch3 and CH6 shown in FIG. 1, and the reception channels ch14 to Ch16 shown in FIG. 6 are used instead of the reception channels ch4, CH7, and CH8 shown in FIG. 1, respectively.

そして、図6に示す6つの受信アンテナ31を設ける場合、アンテナ間隔が第1の間隔d1である複数の受信アンテナの一部と、アンテナ間隔が第2の間隔d2である複数の受信アンテナの一部と、が共通の受信アンテナになる。したがって、図6に示す6つの受信アンテナ31を設ける場合、受信アンテナ31の個数を減らすことができ、それに伴い個別受信部32の個数も減らすことができる。 When the six receiving antennas 31 shown in FIG. 6 are provided, a part of the plurality of receiving antennas having an antenna interval of the first interval d1 and one of the plurality of receiving antennas having the antenna interval of the second interval d2 are provided. The unit and the unit become a common receiving antenna. Therefore, when the six receiving antennas 31 shown in FIG. 6 are provided, the number of receiving antennas 31 can be reduced, and the number of individual receiving units 32 can be reduced accordingly.

また上述した実施形態で説明したレーダ装置1は、受信アンテナ間隔に応じた角度精度と位相折り返しとのトレードオフの関係に起因する課題を解決するレーダ装置であった。ここで、例えばESPRIT、DoA-matrix等のようにサブアレー間の位相差から角度を算出する方位演算処理を用いる場合、位相差に応じた角度精度と位相折り返しとのトレードオフの関係に起因する課題を解決する必要がある。位相差に応じた角度精度と位相折り返しとのトレードオフの関係では、サブアレー間の移動量が大きければ物標の角度精度は良くなるものの位相折り返しが発生し易いのに対し、サブアレー間の移動量が小さければ位相折り返しは発生し難くなるものの物標の角度精度は悪くなる。 Further, the radar device 1 described in the above-described embodiment is a radar device that solves the problem caused by the trade-off relationship between the angle accuracy according to the reception antenna interval and the phase folding. Here, for example, when using an azimuth calculation process that calculates an angle from the phase difference between the sub-arrays such as ESPRIT and DoA-matrix, a problem resulting from the trade-off relationship between the angle accuracy and the phase folding according to the phase difference Need to be resolved. In the trade-off relationship between the angle accuracy according to the phase difference and the phase folding, the larger the movement amount between the sub-arrays, the better the angular accuracy of the target, but the more likely the phase folding is to occur. If is smaller, phase folding is less likely to occur, but the angular accuracy of the target is worse.

そこで、図1に示すレーダ装置1を図7に示す構成に変更し、角度算出部46が以下のように角度算出を行ってもよい。それ以外の構成及び動作については、基本的に上述した実施形態と同様であるので、説明を省略する。 Therefore, the radar device 1 shown in FIG. 1 may be changed to the configuration shown in FIG. 7, and the angle calculation unit 46 may calculate the angle as follows. The other configurations and operations are basically the same as those of the above-described embodiment, and thus the description thereof will be omitted.

角度算出部46は、1chの受信アンテナ31と2chの受信アンテナ31の組み合わせである第1のサブアレーで得られた受信信号と、2chの受信アンテナ31と3chの受信アンテナ31の組み合わせである第2のサブアレーで得られた受信信号とから、図2に示す2つの物標α1及びα2を導出し、物標α1の第1の角度θα1及び物標α2の第1の角度θα2を算出する。 The angle calculation unit 46 includes a reception signal obtained by the first sub-array that is a combination of the 1ch reception antenna 31 and the 2ch reception antenna 31, and a second combination that is the combination of the 2ch reception antenna 31 and the 3ch reception antenna 31. 2 is derived from the received signals obtained by the sub-array of FIG. 2 to calculate the first angle θ α1 of the target α1 and the first angle θ α2 of the target α2. ..

角度算出部46は、1chの受信アンテナ31と2chの受信アンテナ31の組み合わせである第3のサブアレーで得られた受信信号と、3chの受信アンテナ31と4chの受信アンテナ31の組み合わせである第4のサブアレーで得られた受信信号とから、図3に示す2つの物標β1及びβ2を導出し、物標β1の第2の角度θβ1及び物標β2の第2の角度θβ2を算出する。 The angle calculation unit 46 includes a reception signal obtained by the third sub-array which is a combination of the reception antenna 31 of 1ch and a reception antenna 31 of 2ch, and a fourth combination which is a combination of the reception antenna 31 of 3ch and the reception antenna 31 of 4ch. The two targets β1 and β2 shown in FIG. 3 are derived from the received signal obtained by the sub-array and the second angle θ β1 of the target β1 and the second angle θ β2 of the target β2 are calculated. ..

図7に示すレーダ装置1は、位相差に応じた角度精度と位相折り返しとのトレードオフの関係に起因する課題を解決することができる。したがって、位相折り返しの問題を解消しつつ複数の物標それぞれの角度精度を向上できる。 The radar device 1 illustrated in FIG. 7 can solve the problem caused by the trade-off relationship between the angle accuracy according to the phase difference and the phase folding. Therefore, the angle accuracy of each of the plurality of targets can be improved while solving the problem of phase folding.

また上述した実施形態では車載レーダ装置について説明したが、本発明は、道路等に設置されるインフラレーダ装置、航空機監視レーダ装置等にも適用可能である。 Further, although the in-vehicle radar device has been described in the above-described embodiment, the present invention is also applicable to an infra-radar device installed on a road or the like, an aircraft surveillance radar device, and the like.

1 レーダ装置
2 送信部
3 受信部
31、31n、31w 受信アンテナ
4 信号処理装置
46 角度算出部
47 推定部
DESCRIPTION OF SYMBOLS 1 radar device 2 transmitter 3 receiver 31, 31n, 31w receiving antenna 4 signal processor 46 angle calculator 47 estimator

Claims (7)

第1の間隔で配置された複数の第1の受信アンテナで得られた受信信号から導出された複数の物標それぞれの第1の角度、及び、前記第1の間隔より広い第2の間隔で配置された複数の第2の受信アンテナで得られた受信信号から導出された前記複数の物標それぞれの第2の角度を算出する角度算出部と、
複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定部と、
を備え、
前記推定部は、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つを前記到来方向とする、到来方向推定装置。
At a first angle of each of a plurality of targets derived from reception signals obtained by a plurality of first receiving antennas arranged at a first interval, and at a second interval wider than the first interval. An angle calculation unit that calculates a second angle of each of the plurality of targets derived from the reception signals obtained by the plurality of second reception antennas arranged,
An estimation unit that estimates the arrival direction of the radio wave reflected from each of the plurality of targets, based on the plurality of first angles, each of the plurality of second angles, and each of the plurality of second angle return phases. When,
Equipped with
The said estimation part is an arrival direction estimation apparatus which makes one of the said 2nd angle and the said phase folding|turning angle the said arrival direction about each of said some target.
前記複数の第1の受信アンテナの一部と、前記複数の第2の受信アンテナの一部と、が共通の受信アンテナである、請求項1に記載の到来方向推定装置。 The arrival direction estimation apparatus according to claim 1, wherein a part of the plurality of first receiving antennas and a part of the plurality of second receiving antennas are common receiving antennas. 複数の受信アンテナの組み合わせである第1のサブアレーで得られた受信信号と、前記第1のサブアレーと同一形状であって前記第1のサブアレーとの間に第1の位相差が生じる第2のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第1の角度、及び、前記第1のサブアレーと同一形状である第3のサブアレーで得られた受信信号と、前記第3のサブアレーと同一形状であって前記第3のサブアレーとの間に前記第1の位相差と異なる第2の位相差が生じる第4のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第2の角度を算出する角度算出部と、
複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定部と、
を備え、
前記推定部は、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つを前記到来方向とする、到来方向推定装置。
A second received signal obtained by the first sub-array that is a combination of a plurality of receiving antennas and a second sub-array having the same shape as the first sub-array and having the first phase difference are generated. A first angle of each of a plurality of targets derived using a received signal obtained by the sub-array, and a received signal obtained by a third sub-array having the same shape as the first sub-array; And a received signal obtained by a fourth sub-array having the same shape as the third sub-array and having a second phase difference different from the first phase difference between the third sub-array and the third sub-array. An angle calculation unit that calculates a second angle of each of the plurality of targets,
An estimation unit that estimates the arrival direction of the radio wave reflected from each of the plurality of targets, based on the plurality of first angles, each of the plurality of second angles, and each of the plurality of second angle return phases. When,
Equipped with
The said estimation part is an arrival direction estimation apparatus which makes one of the said 2nd angle and the said phase folding|turning angle the said arrival direction about each of said some target.
前記推定部は、複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度との組み合わせから、角度差が最小になる1つのペアを見つけ出し、前記1つのペアに基づき前記複数の物標それぞれから反射した電波の到来方向を推定する、請求項1〜3のいずれか一項に記載の到来方向推定装置。 The estimation unit finds one pair with the smallest angle difference from a combination of a plurality of the first angles, a plurality of the second angles, and a plurality of the phase folding angles of the second angles, The arrival direction estimation apparatus according to any one of claims 1 to 3, which estimates an arrival direction of a radio wave reflected from each of the plurality of targets based on the one pair. 前記推定部は、前記第1の角度と、前記到来方向とする角度との角度差の総和が最小になるように、前記複数の物標それぞれから反射した電波の到来方向を推定する、請求項1〜3のいずれか一項に記載の到来方向推定装置。 The estimation unit estimates the arrival direction of the radio wave reflected from each of the plurality of targets so that the total sum of the angle differences between the first angle and the angle of the arrival direction is minimized. The arrival direction estimation device according to any one of 1 to 3. 第1の間隔で配置された複数の第1の受信アンテナで得られた受信信号から導出された複数の物標それぞれの第1の角度、及び、前記第1の間隔より広い第2の間隔で配置された複数の第2の受信アンテナで得られた受信信号から導出された前記複数の物標それぞれの第2の角度を算出する角度算出工程と、
複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定工程と、
を備え、
前記推定工程において、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つが前記到来方向とされる、到来方向推定方法。
At a first angle of each of a plurality of targets derived from reception signals obtained by a plurality of first receiving antennas arranged at a first interval, and at a second interval wider than the first interval. An angle calculation step of calculating a second angle of each of the plurality of targets derived from the reception signals obtained by the plurality of arranged second reception antennas,
An estimation step of estimating the arrival direction of the radio wave reflected from each of the plurality of targets, based on the plurality of first angles, the plurality of second angles, and the plurality of second angle return phases. When,
Equipped with
The arrival direction estimation method in which, in the estimation step, one of the second angle and the phase turning angle is set as the arrival direction for each of the plurality of targets.
複数の受信アンテナの組み合わせである第1のサブアレーで得られた受信信号と、前記第1のサブアレーと同一形状であって前記第1のサブアレーとの間に第1の位相差が生じる第2のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第1の角度、及び、前記第1のサブアレーと同一形状である第3のサブアレーで得られた受信信号と、前記第3のサブアレーと同一形状であって前記第3のサブアレーとの間に前記第1の位相差と異なる第2の位相差が生じる第4のサブアレーで得られた受信信号とを用いて導出された複数の物標それぞれの第2の角度を算出する角度算出工程と、
複数の前記第1の角度と複数の前記第2の角度及び複数の前記第2の角度それぞれの位相折り返し角度とに基づき、前記複数の物標それぞれから反射した電波の到来方向を推定する推定工程と、
を備え、
前記推定工程において、前記複数の物標それぞれについて、前記第2の角度及び前記位相折り返し角度の中の1つが前記到来方向とされる、到来方向推定方法。
A second received signal obtained by the first sub-array that is a combination of a plurality of receiving antennas and a second sub-array having the same shape as the first sub-array and having the first phase difference are generated. A first angle of each of a plurality of targets derived using a received signal obtained by the sub-array, and a received signal obtained by a third sub-array having the same shape as the first sub-array; And a received signal obtained by a fourth sub-array having the same shape as the third sub-array and having a second phase difference different from the first phase difference between the third sub-array and the third sub-array. An angle calculation step of calculating a second angle of each of the plurality of targets,
An estimation step of estimating the arrival direction of the radio wave reflected from each of the plurality of targets, based on the plurality of first angles, the plurality of second angles, and the plurality of second angle return phases. When,
Equipped with
The arrival direction estimation method in which, in the estimation step, one of the second angle and the phase turning angle is set as the arrival direction for each of the plurality of targets.
JP2019012290A 2019-01-28 2019-01-28 Direction-of-arrival estimation device and direction-of-arrival estimation method Active JP7189034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012290A JP7189034B2 (en) 2019-01-28 2019-01-28 Direction-of-arrival estimation device and direction-of-arrival estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012290A JP7189034B2 (en) 2019-01-28 2019-01-28 Direction-of-arrival estimation device and direction-of-arrival estimation method

Publications (2)

Publication Number Publication Date
JP2020118644A true JP2020118644A (en) 2020-08-06
JP7189034B2 JP7189034B2 (en) 2022-12-13

Family

ID=71890638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012290A Active JP7189034B2 (en) 2019-01-28 2019-01-28 Direction-of-arrival estimation device and direction-of-arrival estimation method

Country Status (1)

Country Link
JP (1) JP7189034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186974A (en) * 2019-05-13 2020-11-19 株式会社デンソーテン Signal processing device, radar device, and signal processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230974A (en) * 1999-02-09 2000-08-22 Toyota Motor Corp Radar apparatus
JP2011226794A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Radar device
JP2014002053A (en) * 2012-06-19 2014-01-09 Honda Elesys Co Ltd On-vehicle rader system, on-vehicle radar method and on-vehicle radar program
JP2014139536A (en) * 2013-01-21 2014-07-31 Denso Corp Radar device
JP2016161282A (en) * 2015-02-26 2016-09-05 三菱重工メカトロシステムズ株式会社 Angle detection device, wireless communication system, angle detection method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230974A (en) * 1999-02-09 2000-08-22 Toyota Motor Corp Radar apparatus
JP2011226794A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Radar device
JP2014002053A (en) * 2012-06-19 2014-01-09 Honda Elesys Co Ltd On-vehicle rader system, on-vehicle radar method and on-vehicle radar program
JP2014139536A (en) * 2013-01-21 2014-07-31 Denso Corp Radar device
JP2016161282A (en) * 2015-02-26 2016-09-05 三菱重工メカトロシステムズ株式会社 Angle detection device, wireless communication system, angle detection method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186974A (en) * 2019-05-13 2020-11-19 株式会社デンソーテン Signal processing device, radar device, and signal processing method
JP7335092B2 (en) 2019-05-13 2023-08-29 株式会社デンソーテン Radar device and signal processing method

Also Published As

Publication number Publication date
JP7189034B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US10389421B2 (en) Apparatus for estimating arrival-angle and apparatus for beam-forming
JP6192910B2 (en) Radar apparatus and altitude calculation method
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
US10690743B2 (en) Doppler measurements to resolve angle of arrival ambiguity of wide aperture radar
US20150035697A1 (en) Radar calibration system for vehicles
US20210364622A1 (en) Processing radar signals
JP5701083B2 (en) Radar device and method for calculating received power in the radar device
JP5701106B2 (en) Radar device and method of calculating angle of arrival of radar device
US11422251B2 (en) Angle-resolving broadband radar sensor for motor vehicles
JP7027579B2 (en) MIMO radar sensor for automobiles
US20200088867A1 (en) Method, Apparatus and Device for Doppler Compensation in a Time Switched MIMO Radar System
JP2009168452A (en) Radar system
US20210364599A1 (en) Radar receiving system and method for compensating a phase error between radar receiving circuits
US11940554B2 (en) Automotive radar arrangement and method for object detection by vehicle radar
US20130229300A1 (en) On-board radar apparatus, object detection method, and object detection program
US20140028493A1 (en) On-board radar apparatus, object detection method, and object detection program
JP7154494B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
JP2019113481A (en) Antenna device
JP7248970B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
JP2020118644A (en) Arrival direction estimating device and arrival direction estimating method
CN110515066B (en) Vehicle-mounted millimeter wave radar and target height measuring method thereof
JP7160561B2 (en) Azimuth calculation device and azimuth calculation method
JP7140568B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
KR20200135432A (en) Radar sensor head for radar systems
KR20150055380A (en) Radar for vehicle and method for improving detection performance thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221201

R150 Certificate of patent or registration of utility model

Ref document number: 7189034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150