JP2020117801A - Hydrogen storage alloy, method for preparation the same, hydrogen storage alloy electrode and nickel-hydrogen battery - Google Patents
Hydrogen storage alloy, method for preparation the same, hydrogen storage alloy electrode and nickel-hydrogen battery Download PDFInfo
- Publication number
- JP2020117801A JP2020117801A JP2020004258A JP2020004258A JP2020117801A JP 2020117801 A JP2020117801 A JP 2020117801A JP 2020004258 A JP2020004258 A JP 2020004258A JP 2020004258 A JP2020004258 A JP 2020004258A JP 2020117801 A JP2020117801 A JP 2020117801A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- alloy
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明はニッケル水素電池の技術分野に関し、特に水素吸蔵合金およびその調製方法、水素吸蔵合金電極、ならびにニッケル水素電池に関する。 The present invention relates to the technical field of nickel-hydrogen batteries, and more particularly to a hydrogen storage alloy and a method for preparing the same, a hydrogen storage alloy electrode, and a nickel-hydrogen battery.
地球規模での環境汚染問題に対処するために、人々はクリーンかつ無公害の新エネルギー車の分野に注目している。新エネルギー車について、ハイブリッド車および純粋な電気自動車は人々の研究のホットスポットである。ハイブリッド車および純粋な電気自動車の開発プロセスにおいて、高効率、低コスト、長寿命、および環境に優しい二次駆動用バッテリーの入手方法は人々が直面する大きな課題である。 To address global pollution problems, people are paying attention to the field of clean and pollution-free new energy vehicles. For new energy vehicles, hybrid vehicles and pure electric vehicles are people's research hotspots. In the development process of hybrid vehicles and pure electric vehicles, how to obtain high efficiency, low cost, long life, and environmentally friendly secondary drive battery is a big problem facing people.
ニッケル水素電池は、高パワー、安定した充放電性能、安全性、環境保護等の利点を有するため、新エネルギー車にとって重要な選択肢になる。それに対応して、ニッケル水素電池の負極活性物質として人々に引き続き研究される対象にもなった従来の水素吸蔵合金は、CaCu5構造のAB5型希土類元素水素吸蔵合金である。このような合金は活性化が容易で、水素の吸収/脱着の反応速度が優れているが、電気化学容量が低いため、ニッケル水素(Ni/MH)電池の商業用途が制限される。希土類元素、Mg、およびNiを主成分とするRE−Mg−Ni系水素吸蔵合金は、AB5型希土類元素水素吸蔵合金よりも容量が大きく、かつ高エネルギー、高パワーであり、最も有望なNi/MHバッテリーの負極材料として考えられる。 The nickel-hydrogen battery has advantages such as high power, stable charge/discharge performance, safety, and environmental protection, and is an important option for new energy vehicles. Correspondingly, the conventional hydrogen storage alloy that has been the subject of continuous research by people as a negative electrode active material for nickel-hydrogen batteries is the AB 5 type rare earth element hydrogen storage alloy having a CaCu 5 structure. Although such alloys are easy to activate and have excellent hydrogen absorption/desorption kinetics, their low electrochemical capacity limits the commercial use of nickel hydrogen (Ni/MH) batteries. The RE-Mg-Ni-based hydrogen storage alloy containing a rare earth element, Mg, and Ni as main components has a larger capacity, higher energy, and higher power than the AB 5 type rare earth element hydrogen storage alloy, and is the most promising Ni. / Considered as a negative electrode material for MH batteries.
しかし、現在の問題は、RE−Mg−Ni系水素吸蔵合金が、c軸方向に沿って異なる比率でAB5サブユニットとA2B4サブユニットとを積み重ねることによって形成される超積層結晶構造を持ち、[AB5]/[A2B4]の比率が増加すると、水素吸蔵合金は非積層相構造AB5相を簡単に生成し、合金容量およびサイクル寿命が短縮することである。 However, the present problem is that a RE-Mg-Ni-based hydrogen storage alloy is formed by stacking AB 5 subunits and A 2 B 4 subunits at different ratios along the c-axis direction to form a super-laminated crystal structure. When the ratio of [AB 5 ]/[A 2 B 4 ] is increased, the hydrogen storage alloy easily forms the non-laminated phase structure AB 5 phase, and the alloy capacity and cycle life are shortened.
本発明は、電気化学容量が高く、サイクル寿命が優れている水素吸蔵合金およびその調製方法、ならびに水素吸蔵合金を活性物質として用いた水素吸蔵合金電極およびニッケル水素電池を提供することを目的とする。 It is an object of the present invention to provide a hydrogen storage alloy having a high electrochemical capacity and an excellent cycle life, a method for preparing the same, and a hydrogen storage alloy electrode and a nickel-hydrogen battery using the hydrogen storage alloy as an active substance. ..
上記発明の目的を達成するために、本発明は、以下の技術的解決手段を提供する。 In order to achieve the above-mentioned object, the present invention provides the following technical solutions.
本発明は、水素吸蔵合金を提供し、
化学式は、(LaaRb)1−mMgmNixMyであり、
ここで、Rは、希土類元素、Ca、Ti、Zr、Hf、およびNbの一種または数種であり、
Mは、Al、Fe、Co、Mn、Zn、V、Cr、Cu、Mo、およびWの一種または数種であり、
a、b、m、x、およびyは、
a>0、b≧0、0<m≦0.3、0≦y≦1.6、かつ3.0≦x+y≦4.15、という条件を満たす。
The present invention provides a hydrogen storage alloy,
Chemical formula, (La a R b) is 1-m Mg m Ni x M y,
Here, R is one or several kinds of rare earth elements, Ca, Ti, Zr, Hf, and Nb,
M is one or several of Al, Fe, Co, Mn, Zn, V, Cr, Cu, Mo, and W, and
a, b, m, x, and y are
The conditions of a>0, b≧0, 0<m≦0.3, 0≦y≦1.6, and 3.0≦x+y≦4.15 are satisfied.
前記水素吸蔵合金は、Cu−Kα線をX線源としてX線回折測定を行った際に、2θ=24°〜35°の範囲内に現れる最も強いピークの強度(IA)と、2θ=38°〜45°の範囲内に現れる最も強いピークの強度(IB)と、の強度比(IA/IB)は、0.5以下である。 The hydrogen storage alloy, when subjected to X-ray diffraction measurement of Cu-K [alpha ray as an X-ray source, the strongest peak intensity appearing in the range of 2θ = 24 ° ~35 ° (I A), 2θ = strongest peak intensity appearing in the range of 38 ° ~45 ° (I B) and the intensity ratio of (I a / I B) is 0.5 or less.
好ましくは、a>bであり、x≧3.0である。 Preferably, a>b and x≧3.0.
好ましくは、前記希土類元素は、Ce、Pr、Nd、Sm、Gd、Eu、Tb、Dy、Ho、Er、Y、Sc、Tm、Yb、またはLuである。 Preferably, the rare earth element is Ce, Pr, Nd, Sm, Gd, Eu, Tb, Dy, Ho, Er, Y, Sc, Tm, Yb, or Lu.
本発明はさらに、上記技術的解決手段に記載の水素吸蔵合金の調製方法を提供し、それは、水素吸蔵合金の配合比率に応じて金属元素の単体を混合し、順次真空誘導溶解および熱処理を行い、水素吸蔵合金を得る、というステップを含む。 The present invention further provides a method for preparing a hydrogen storage alloy as described in the above technical solution, which mixes a simple substance of a metal element according to the blending ratio of the hydrogen storage alloy and sequentially performs vacuum induction melting and heat treatment. , Obtaining a hydrogen storage alloy.
好ましくは、前記真空誘導溶解の温度は、1000〜1400℃であり、前記真空誘導溶解の時間は、1〜30分間である。 Preferably, the vacuum induction melting temperature is 1000 to 1400° C., and the vacuum induction melting time is 1 to 30 minutes.
好ましくは、前記熱処理の温度は、850〜1100℃であり、保温時間は、8〜36時間である。 Preferably, the temperature of the heat treatment is 850 to 1100°C, and the heat retention time is 8 to 36 hours.
本発明はさらに、水素吸蔵合金電極を提供し、それは、上記技術的解決手段に記載の水素吸蔵合金または上記技術的解決手段に記載の調製方法で調製して得られた水素吸蔵合金を、活性物質として調製して得られる。 The present invention further provides a hydrogen storage alloy electrode, which comprises a hydrogen storage alloy according to the above technical solution or a hydrogen storage alloy obtained by the preparation method according to the above technical solution. It is prepared and obtained as a substance.
本発明はさらに、ニッケル水素電池を提供し、それは、負極、正極、および電解液を含み、前記負極は上記技術的解決手段に記載の水素吸蔵合金電極である。 The present invention further provides a nickel-hydrogen battery, which includes a negative electrode, a positive electrode, and an electrolytic solution, and the negative electrode is the hydrogen storage alloy electrode described in the above technical solution.
本発明は、水素吸蔵合金を提供し、その化学式は(LaaRb)1−mMgmNixMyであり、ここで、Rは、希土類元素、Ca、Ti、Zr、Hf、およびNbの一種または数種であり、Mは、Al、Fe、Co、Mn、Zn、V、Cr、Cu、Mo、およびWの一種または数種であり、a、b、m、x、およびyは、a>0、b≧0、0<m≦0.3、0≦y≦1.6、3.0≦x+y≦4.15、という条件を満たす。前記水素吸蔵合金はCu−Kα線をX線源としてX線回折測定を行った際に、2θ=24°〜35°の範囲内に現れる最も強いピークの強度(IA)と、2θ=38°〜45°の範囲内に現れる最も強いピークの強度(IB)と、の強度比(IA/IB)は、0.5以下である。本発明の水素吸蔵合金は、放電容量が大きく、また、La、Mg、Ni以外の合金元素を添加することにより、合金の水素吸蔵性能および放出性能が向上し、水素吸蔵合金の動的特性が優れている。実施例の記載によれば、本発明の前記水素吸蔵合金は、充放電容量が大きく、パワー性能が優れている。 The present invention provides a hydrogen storage alloy, whose chemical formula is (La a R b) 1- m Mg m Ni x M y, wherein, R represents a rare earth element, Ca, Ti, Zr, Hf, and One or several kinds of Nb, M is one or several kinds of Al, Fe, Co, Mn, Zn, V, Cr, Cu, Mo, and W, and a, b, m, x, and y. Satisfies the conditions of a>0, b≧0, 0<m≦0.3, 0≦y≦1.6, 3.0≦x+y≦4.15. When the hydrogen storage alloy was subjected to X-ray diffraction measurement of Cu-K [alpha ray as an X-ray source, the strongest peak intensity appearing in the range of 2θ = 24 ° ~35 ° (I A), 2θ = 38 ° strongest peak intensity appearing in the range of to 45 ° (I B) and the intensity ratio of (I a / I B) is 0.5 or less. The hydrogen storage alloy of the present invention has a large discharge capacity, and by adding alloy elements other than La, Mg, and Ni, the hydrogen storage performance and release performance of the alloy are improved, and the dynamic characteristics of the hydrogen storage alloy are improved. Are better. According to the description of the examples, the hydrogen storage alloy of the present invention has a large charge/discharge capacity and excellent power performance.
本発明は水素吸蔵合金を提供し、
前記水素吸蔵合金の化学式は、(LaaRb)1−mMgmNixMyであり、
ここで、
Rは、希土類元素、Ca、Ti、Zr、Hf、およびNbの一種または数種であり、
Mは、Al、Fe、Co、Mn、Zn、V、Cr、Cu、Mo、およびWの一種または数種であり、
a、b、m、x、およびyは、a>0、b≧0、0<m≦0.3、0≦y≦1.6、かつ3.0≦x+y≦4.15、という条件を満たす。
The present invention provides a hydrogen storage alloy,
Formula of the hydrogen storage alloy is a (La a R b) 1- m Mg m Ni x M y,
here,
R is one or several kinds of rare earth elements, Ca, Ti, Zr, Hf, and Nb,
M is one or several of Al, Fe, Co, Mn, Zn, V, Cr, Cu, Mo, and W, and
a, b, m, x, and y satisfy the conditions of a>0, b≧0, 0<m≦0.3, 0≦y≦1.6, and 3.0≦x+y≦4.15. Fulfill.
前記水素吸蔵合金は、Cu−Kα線をX線源としてX線回折測定を行った際に、2θ=24°〜35°の範囲内に現れる最も強いピークの強度(IA)と、2θ=38°〜45°の範囲内に現れる最も強いピークの強度(IB)と、の強度比(IA/IB)は0.5以下である。 The hydrogen storage alloy, when subjected to X-ray diffraction measurement of Cu-K [alpha ray as an X-ray source, the strongest peak intensity appearing in the range of 2θ = 24 ° ~35 ° (I A), 2θ = strongest peak intensity appearing in the range of 38 ° to 45 ° and (I B), the intensity ratio of (I a / I B) is 0.5 or less.
本発明において、前記水素吸蔵合金の化学式は、a>bかつx≧3.0という関係を満たすことが好ましい。 In the present invention, the chemical formula of the hydrogen storage alloy preferably satisfies the relations of a>b and x≧3.0.
本発明において、前記希土類元素は、Ce、Pr、Nd、Sm、Gd、Eu、Tb、Dy、Ho、Er、Y、Sc、Tm、Yb、またはLuであることが好ましい。 In the present invention, the rare earth element is preferably Ce, Pr, Nd, Sm, Gd, Eu, Tb, Dy, Ho, Er, Y, Sc, Tm, Yb, or Lu.
本発明において、前記化学式のRは、上記具体的な選択肢の二つ以上である時、前記具体的な元素の配合比率に対していかなる特別な限定はなく、前記Rの含有量の合計が上記化学式の範囲内であれば任意の比率でありうる。本発明において、前記Mが上記具体的な選択肢の二つ以上であるとき、前記具体的な元素の配合比率に対していかなる特別な限定はなく、混合された前記Mの量の合計は、上記の化学式の範囲内であれば任意の比率でありうる。 In the present invention, when R of the chemical formula is two or more of the specific options, there is no particular limitation on the mixing ratio of the specific elements, and the total content of R is the above. Any ratio can be used within the range of the chemical formula. In the present invention, when M is two or more of the above specific options, there is no particular limitation on the mixing ratio of the specific elements, and the total amount of the mixed M is the above. Any ratio may be used within the range of the chemical formula.
本発明において、超格子La−Mg−Ni系水素吸蔵合金の電気化学的性能は合金の構造と密接に関連しているため、合金の計量比、元素組成、およびLa/Mgは、合金の構造に影響を与える要因である。合金の計量比を変更することは、合金相の組成を最適化しかつ合金の全体的な電気化学的性能を改善するための重要な方法である。上記合金元素の組成および配合比率の調整により、水素吸蔵合金の構造および水素吸蔵合金の性能を改善できる。 In the present invention, since the electrochemical performance of the superlattice La-Mg-Ni-based hydrogen storage alloy is closely related to the structure of the alloy, the quantitative ratio of the alloy, the elemental composition, and La/Mg are the structures of the alloy. Is a factor that affects the. Changing the metering ratio of an alloy is an important way to optimize the composition of the alloy phase and improve the overall electrochemical performance of the alloy. The structure of the hydrogen storage alloy and the performance of the hydrogen storage alloy can be improved by adjusting the composition and blending ratio of the above alloy elements.
本発明はさらに、上記技術的解決手段に記載の水素吸蔵合金の調製方法を提供し、それは、上記水素吸蔵合金の配合比率に応じて金属元素の単体を混合し、真空誘導溶解および熱処理を順次行い、水素吸蔵合金を得る、というステップを含む。 The present invention further provides a method for preparing a hydrogen storage alloy as described in the above technical solution, which mixes a simple substance of a metal element according to the blending ratio of the hydrogen storage alloy, and successively performs vacuum induction melting and heat treatment. And obtaining a hydrogen storage alloy.
本発明において、特別な説明がない限り、すべての原料成分はいずれも当業者に知られている市販製品である。 In the present invention, all raw material ingredients are commercial products known to those skilled in the art unless otherwise specified.
本発明において、上記水素吸蔵合金の配合比率に応じて金属元素の単体を混合し、真空誘導溶解および熱処理を順次行い、水素吸蔵合金を得る。本発明において、前記金属元素の純度は、独立して、好ましくは≧99.99%である。 In the present invention, a simple substance of a metal element is mixed according to the blending ratio of the above hydrogen storage alloy, and vacuum induction melting and heat treatment are sequentially performed to obtain a hydrogen storage alloy. In the present invention, the purity of the metal elements is independently preferably ≧99.99%.
本発明において、好ましくは、調製中の金属元素の損失を無視する。 In the present invention, the loss of metallic elements during preparation is preferably ignored.
本発明において、前記真空誘導溶解の真空度は、5〜200Paが好ましく、より好ましくは8〜100Paである。前記真空誘導溶解の温度は、900〜1400℃が好ましく、より好ましくは1000〜1200℃である。前記真空誘導溶解の時間は、1〜30分間が好ましく、より好ましくは3〜20分間である。 In the present invention, the vacuum degree of the vacuum induction melting is preferably 5 to 200 Pa, more preferably 8 to 100 Pa. The temperature of the vacuum induction melting is preferably 900 to 1400°C, more preferably 1000 to 1200°C. The vacuum induction melting time is preferably 1 to 30 minutes, more preferably 3 to 20 minutes.
本発明において、前記真空誘導溶解は、揮発性微量元素を含む合金成分を正確に制御でき、低融点の有害な不純物、微量元素、およびガスなどを除去し、元素の偏析現象を減らし、均一な成分の合金を得ることができる。 In the present invention, the vacuum induction melting can accurately control alloy components containing volatile trace elements, removes low melting point harmful impurities, trace elements, gas, etc., reduces segregation phenomenon of elements, and makes uniform. An alloy of the components can be obtained.
本発明において、前記熱処理の温度は、好ましくは850〜1100℃であり、より好ましくは950〜1050℃である。前記熱処理の保温時間は、好ましくは8〜36時間であり、より好ましくは12〜24時間である。前記熱処理の昇温速度は、好ましくは1〜10℃/分であり、より好ましくは1〜6℃/分である。 In the present invention, the temperature of the heat treatment is preferably 850 to 1100°C, more preferably 950 to 1050°C. The heat retention time of the heat treatment is preferably 8 to 36 hours, more preferably 12 to 24 hours. The rate of temperature rise in the heat treatment is preferably 1 to 10°C/minute, more preferably 1 to 6°C/minute.
本発明において、前記熱処理は、さらに好ましくは二つの昇温段階を含み、第一昇温段階において、好ましくは、5〜10℃/分の昇温速度で室温から580〜620℃まで昇温し、第二昇温段階において、好ましくは、1〜5℃/分の昇温速度で580〜620℃から950〜1050℃まで昇温する。 In the present invention, the heat treatment further preferably includes two heating steps, and in the first heating step, preferably, the temperature is raised from room temperature to 580 to 620°C at a heating rate of 5 to 10°C/min. In the second heating step, the temperature is preferably raised from 580 to 620°C to 950 to 1050°C at a heating rate of 1 to 5°C/minute.
本発明において、前記熱処理は、合金内部のマイクロ構造をさらに改善できる。これによって、前記水素吸蔵合金についてCu−Kα線をX線源としてX線回折測定を行った際に、2θ=24°〜35°の範囲内に現われる最も強いピークの強度(IA)と、2θ=38°〜45°の範囲内に現われる最も強いピークの強度(IB)と、の強度比(IA/IB)を、0.5以下に保証することができる。 In the present invention, the heat treatment can further improve the microstructure inside the alloy. Thus, when a Cu-K [alpha line for the hydrogen-absorbing alloy was subjected to X-ray diffraction measurement as X-ray source, the strongest peak intensity appearing in the range of 2θ = 24 ° ~35 ° (I A), and 2θ = 38 ° ~45 ° strongest peak intensity appearing in the range of (I B), the intensity ratio of the (I a / I B), can be guaranteed to 0.5 or less.
本発明において、好ましくは、熱処理が完了した後、得られた合金を冷却する。前記冷却は、好ましくは自然冷却である。 In the present invention, preferably, the obtained alloy is cooled after the heat treatment is completed. The cooling is preferably natural cooling.
本発明はさらに、水素吸蔵合金電極を提供し、前記水素吸蔵合金電極は、上記技術的解決手段に記載の水素吸蔵合金または上記技術的解決手段に記載の調製方法で調製して得られた水素吸蔵合金を、活性物質として調製して得られる。 The present invention further provides a hydrogen storage alloy electrode, wherein the hydrogen storage alloy electrode is hydrogen prepared by the hydrogen storage alloy described in the above technical solution or the preparation method described in the above technical solution. It is obtained by preparing a storage alloy as an active substance.
本発明において、前記水素吸蔵合金電極の調製原料は、好ましくは、さらにバインダーおよび導電剤を含む。本発明は、前記バインダーおよび導電剤の種類および使用量にいかなる特別な限定もなく、当業者によく知られている種類および使用量を用いうる。 In the present invention, the raw material for preparing the hydrogen storage alloy electrode preferably further contains a binder and a conductive agent. The present invention can use the types and amounts used well known to those skilled in the art without any particular limitation on the types and amounts used of the binder and the conductive agent.
本発明において、前記水素吸蔵合金電極の調製は、好ましくは当業者に知られている調製方法で行われうる。 In the present invention, the hydrogen storage alloy electrode may be preferably prepared by a preparation method known to those skilled in the art.
本発明はさらに、ニッケル水素電池を提供し、それは、負極、正極、および電解液を含み、前記負極は上記技術的解決手段に記載の水素吸蔵合金電極である。 The present invention further provides a nickel-hydrogen battery, which includes a negative electrode, a positive electrode, and an electrolytic solution, and the negative electrode is the hydrogen storage alloy electrode described in the above technical solution.
本発明において、前記ニッケル水素電池は、さらに正極を含み、前記正極の活性物質は、好ましくは、水酸化ニッケルまたは改質処理、元素ドーピング、添加剤、またはバインダーの添加により得られた正極合剤である。本発明は、前記改質処理または元素ドーピングにいかなる特別な限定がなく、当業者によく知られている改質処理または元素ドーピングを用いて行いうる。本発明は、前記添加剤またはバインダーの種類および使用量にいかなる特別な限定もなく、当業者によく知られている種類および使用量を用いうる。 In the present invention, the nickel-hydrogen battery further includes a positive electrode, and the positive electrode active material is preferably nickel hydroxide or a positive electrode mixture obtained by a modification treatment, elemental doping, an additive, or a binder. Is. The present invention does not have any particular limitation on the modification treatment or elemental doping, and may be performed using modification treatment or elemental doping well known to those skilled in the art. The present invention can use the types and amounts of additives or binders well known to those skilled in the art without any particular limitation on the types and amounts.
本発明において、前記ニッケル水素電池は、さらに電解質を含み、前記電解質は、好ましくはアルカリ電解質である。本発明において、前記アルカリ電解質は、好ましくは水酸化ナトリウム水溶液、水酸化リチウム水溶液、および水酸化カリウム水溶液の一種または数種である。本発明は、前記アルカリ電解質の濃度にいかなる特別な限定もなく、当業者によく知られている濃度を用いうる。 In the present invention, the nickel hydrogen battery further includes an electrolyte, and the electrolyte is preferably an alkaline electrolyte. In the present invention, the alkaline electrolyte is preferably one or more of sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, and potassium hydroxide aqueous solution. The present invention can use the concentration well known to those skilled in the art without any particular limitation on the concentration of the alkaline electrolyte.
本発明は、前記ニッケル水素電池の調製方法にいかなる特別な限定がなく、当業者によく知られている調製方法を用いて行いうる。 The present invention has no particular limitation on the method for preparing the nickel-hydrogen battery, and may be carried out using a method well known to those skilled in the art.
以下に実施例を参照しながら本発明によって提供される水素吸蔵合金およびその調製方法、水素吸蔵合金電極およびニッケル水素電池を詳しく説明するが、それらは本発明の保護範囲を限定しない。 Hereinafter, the hydrogen storage alloy and the method for preparing the same, the hydrogen storage alloy electrode, and the nickel-hydrogen battery provided by the present invention will be described in detail with reference to Examples, but they do not limit the protection scope of the present invention.
〔実施例1〕
La:Mg:Ni=0.75:0.25:3.60のモル配合比率に応じて、純度がいずれも99.99%を超える金属La、Mg、およびNiを混合した後、1100℃、5×100Paの真空度条件下で真空誘導溶解を3分間行い、鋳造合金を得た。
[Example 1]
According to the molar mixing ratio of La:Mg:Ni=0.75:0.25:3.60, the metals La, Mg, and Ni each having a purity higher than 99.99% are mixed, and then 1100° C., Vacuum induction melting was performed for 3 minutes under a vacuum degree of 5×10 0 Pa to obtain a cast alloy.
前記鋳造合金を、アニール炉において950℃で熱処理し、第一昇温段階では室温から10℃/分の昇温速度で600℃まで昇温し、第二昇温段階では600℃から1℃/分の昇温速度で950℃まで昇温し、12時間保温し、降温段階では950℃から室温まで降温し、La0.75Mg0.25Ni3.60を得た。 The cast alloy is heat-treated at 950° C. in an annealing furnace, heated from room temperature to 600° C. at a heating rate of 10° C./min in the first heating step, and from 600° C. to 1° C./in the second heating step. The temperature was raised to 950° C. at a heating rate of 1 minute and kept at that temperature for 12 hours. At the temperature lowering stage, the temperature was lowered from 950° C. to room temperature to obtain La 0.75 Mg 0.25 Ni 3.60 .
前記La0.75Mg0.25Ni3.60を機械的に粉砕し、400メッシュでふるいにかけた後、アンダーサイズをXRD試験に供した。図1は、前記La0.75Mg0.25Ni3.60のXRD図である。図から分かるように、上記合金は、2θ=24°〜35°の範囲内に現われる最も強いピークの強度と、2θ=38°〜45°の範囲内に現われる最も強いピークとの強度比が0.45である。また、2θ=24°〜35°の範囲内に少なくとも3つのピークが現われており、3つのピークの強度はいずれも2θ=38°〜45°の範囲内に現われる最も強いピークの強度の45%よりも低い。以上の結果は、前記合金が純粋なAB4型構造を含有することを意味する。 The La 0.75 Mg 0.25 Ni 3.60 was mechanically crushed and sieved with 400 mesh, and then the undersize was subjected to an XRD test. FIG. 1 is an XRD diagram of the La 0.75 Mg 0.25 Ni 3.60 . As can be seen from the figure, in the above alloy, the intensity ratio of the strongest peak appearing in the range of 2θ=24° to 35° to the strongest peak appearing in the range of 2θ=38° to 45° is 0. .45. Further, at least three peaks appear within the range of 2θ=24° to 35°, and the intensities of the three peaks are 45% of the intensity of the strongest peak appearing within the range of 2θ=38° to 45°. Lower than. The above results imply that the alloy contains a pure AB 4 type structure.
〔実施例2〕
La:Mg:Ni:Al=0.70:0.30:3.70:0.10のモル配合比率に応じて、純度がいずれも99.99%を超える金属La、Mg、Ni、およびAlを混合した後、1150℃、6×100Paの真空度条件下で真空誘導溶解を6分間行い、鋳造合金を得た。
[Example 2]
La:Mg:Ni:Al=0.70:0.30:3.70:Depending on the molar composition ratio of 0.70, the metals La, Mg, Ni, and Al each having a purity of more than 99.99%. Was mixed, and vacuum induction melting was performed for 6 minutes under a vacuum degree condition of 1150° C. and 6×10 0 Pa to obtain a cast alloy.
前記鋳造合金を、アニール炉において990℃で熱処理し、第一昇温段階では室温から8℃/分の昇温速度で600℃まで昇温し、第二昇温段階では600℃から2℃/分の昇温速度で990℃まで昇温し、16時間保温し、降温段階では990℃から室温まで降温し、La0.70Mg0.30Ni3.70Al0.10を得た。 The cast alloy is heat-treated at 990° C. in an annealing furnace, heated from room temperature to 600° C. at a heating rate of 8° C./min in the first heating step, and from 600° C. to 2° C./in the second heating step. The temperature was raised to 990° C. at a heating rate of 1 minute and kept at the temperature for 16 hours. At the temperature lowering stage, the temperature was lowered from 990° C. to room temperature to obtain La 0.70 Mg 0.30 Ni 3.70 Al 0.10 .
前記La0.70Mg0.30Ni3.70Al0.10を機械的に粉砕し、400メッシュでふるいにかけた後、アンダーサイズをXRD試験に供した。図1は、前記La0.70Mg0.30Ni3.70Al0.10のXRD図である。図から分かるように、上記合金は、2θ=24°〜35°の範囲内に現われる最も強いピークの強度と、2θ=38°〜45°の範囲内に現われる最も強いピークの強度と、の強度比が0.4である。また、2θ=24°〜35°の範囲内に少なくとも3つのピークが現われており、3つのピークの強度はいずれも2θ=38°〜45°の範囲内に現われた最も強いピークの強度の40%よりも低い。以上の結果は、前記合金が純粋なAB4構造を含有することを意味する。 The La 0.70 Mg 0.30 Ni 3.70 Al 0.10 was mechanically crushed and sieved with 400 mesh, and then the undersize was subjected to an XRD test. FIG. 1 is an XRD diagram of La 0.70 Mg 0.30 Ni 3.70 Al 0.10 . As can be seen from the figure, the above alloy has the strength of the strongest peak appearing in the range of 2θ=24° to 35° and the strength of the strongest peak appearing in the range of 2θ=38° to 45°. The ratio is 0.4. In addition, at least three peaks appear in the range of 2θ=24° to 35°, and the intensities of the three peaks are 40, which is the intensity of the strongest peak appearing in the range of 2θ=38° to 45°. Lower than %. The above results imply that the alloy contains a pure AB 4 structure.
〔実施例3〕
La:Sm:Mg:Ni:Al=0.54:0.22:0.24:3.80:0.20の配合比率に応じて、純度がいずれも99.99%を超える金属La、Sm、Mg、Ni、およびAlを混合した後、1180℃、7.5×100Pa真空度の条件下で真空誘導溶解を10分間行い、鋳造合金を得た。
[Example 3]
Depending on the blending ratio of La:Sm:Mg:Ni:Al=0.54:0.22:0.24:3.80:0.20, metals La and Sm each of which purity exceeds 99.99%. , Mg, Ni, and Al were mixed, and vacuum induction melting was performed for 10 minutes under the conditions of 1180° C. and 7.5×10 0 Pa vacuum degree to obtain a cast alloy.
前記鋳造合金を、アニール炉において1020℃で熱処理し、第一昇温段階では室温から6℃/分の昇温速度に応じて600℃まで昇温し、第二昇温段階では600℃から3℃/分の昇温速度で1020℃まで昇温し、18時間保温し、降温段階では1020℃から室温まで降温し、La0.54Sm0.22Mg0.24Ni3.80Al0.20を得る。 The casting alloy is heat-treated at 1020° C. in an annealing furnace, heated from room temperature to 600° C. at a heating rate of 6° C./min in the first heating stage, and from 600° C. to 3° C. in the second heating stage. The temperature was raised to 1020° C. at a temperature rising rate of 10° C./min and kept for 18 hours. In the temperature lowering stage, the temperature was lowered from 1020° C. to room temperature, and La 0.54 Sm 0.22 Mg 0.24 Ni 3.80 Al 0. Get 20 .
前記La0.54Sm0.22Mg0.24Ni3.80Al0.20を機械的に粉砕し、400メッシュでふるいにかけた後、アンダーサイズをXRD試験に供した。2θ=24°〜35°の範囲内に現われる最も強いピークの強度と、2θ=38°〜45°の範囲内に現われる最も強いピークの強度と、の強度比は0.22である。また、2θ=24°〜35°の範囲内に少なくとも3つのピークが現われており、3つのピークの強度はいずれも2θ=38°〜45°の範囲内に現われた最も強いピークの強度の22%よりも低かった。XRDスペクトルの特性ピークの2θと強度とを分析することにより、前記合金が、AB4型、A5B19型の超積層相構造を含む多相水素吸蔵合金であることがわかった。 The La 0.54 Sm 0.22 Mg 0.24 Ni 3.80 Al 0.20 was mechanically crushed and sieved with 400 mesh, and then undersize was subjected to an XRD test. The intensity ratio between the intensity of the strongest peak appearing in the range of 2θ=24° to 35° and the intensity of the strongest peak appearing in the range of 2θ=38° to 45° is 0.22. In addition, at least three peaks appear in the range of 2θ=24° to 35°, and the intensities of the three peaks are all 22 of the strongest peak intensities that appear in the range of 2θ=38° to 45°. It was lower than %. By analyzing the characteristic peak 2θ and the intensity of the XRD spectrum, it was found that the alloy was a multiphase hydrogen storage alloy containing a super laminated phase structure of AB 4 type and A 5 B 19 type.
〔実施例4〕
La:Sm:Nd:Mg:Ni:Al=0.75:0.20:0.10:0.25:4.0:0.10の配合比率に応じて、純度がいずれも99.99%を超える金属La、Sm、Nd、Mg、Ni、およびAlを混合した後、1200℃、7.5×100Pa真空度の条件下で真空誘導溶解を12分間行い、鋳造合金を得た。
[Example 4]
According to the compounding ratio of La:Sm:Nd:Mg:Ni:Al=0.75:0.20:0.10:0.25:4.0:0.10, the purity is 99.99% in all cases. After mixing the metals La, Sm, Nd, Mg, Ni, and Al exceeding the above, vacuum induction melting was performed for 12 minutes under conditions of 1200° C. and 7.5×10 0 Pa vacuum to obtain a cast alloy.
前記鋳造合金を、アニール炉において1040℃で熱処理し、第一昇温段階では室温から5℃/分の速度に応じて600℃まで昇温し、第二昇温段階では600℃から2℃/分の昇温速度で1040℃まで昇温し、20時間保温し、降温段階では1040℃から室温まで降温し、La0.75Sm0.20Nd0.10Mg0.25Ni4.0Al0.10を得た。 The cast alloy is heat-treated at 1040° C. in an annealing furnace, heated from room temperature to 600° C. at a rate of 5° C./min in the first heating stage, and from 600° C. to 2° C./in the second heating stage. The temperature is raised to 1040° C. at a temperature rise rate of 10 minutes and kept at the temperature for 20 hours. In the cooling step, the temperature is lowered from 1040° C. to room temperature, and La 0.75 Sm 0.20 Nd 0.10 Mg 0.25 Ni 4.0 Al. We obtained 0.10 .
前記La0.75Sm0.20Nd0.10Mg0.25Ni4.0Al0.10を機械的に粉砕し、400メッシュでふるいにかけた後、アンダーサイズをXRD試験に供した。2θ=24°〜35°の範囲内に現われる最も強いピークの強度と、2θ=38°〜45°の範囲内に現われる最も強いピークの強度と、の強度比は0.18である。また、2θ=24°〜35°の範囲内に少なくとも3つのピークが現われており、3つのピークの強度はいずれも2θ=38°〜45°の範囲内に現われた最も強いピークの強度の18%よりも低かった。XRDスペクトルの特性ピークの2θと強度とを分析することにより、前記合金が、AB4型、A5B19型の超積層相構造を含む多相水素吸蔵合金であることがわかった。 The La 0.75 Sm 0.20 Nd 0.10 Mg 0.25 Ni 4.0 Al 0.10 was mechanically crushed and sieved with 400 mesh, and then an undersize was subjected to an XRD test. The intensity ratio between the intensity of the strongest peak appearing in the range of 2θ=24° to 35° and the intensity of the strongest peak appearing in the range of 2θ=38° to 45° is 0.18. In addition, at least three peaks appear in the range of 2θ=24° to 35°, and the intensities of the three peaks are all the strongest peaks of 18 in the range of 2θ=38° to 45°. It was lower than %. By analyzing the characteristic peak 2θ and the intensity of the XRD spectrum, it was found that the alloy was a multiphase hydrogen storage alloy containing a super laminated phase structure of AB 4 type and A 5 B 19 type.
〔実施例5〕
実施例1〜4で調製して得られた水素吸蔵合金を電極として調製し(水素吸蔵合金の質量含有量は15%)、かつ、それをハーフバッテリーの負極とした。水酸化ニッケルをハーフバッテリーの正極とした。6mol/LのKOH水溶液をハーフバッテリーの電解質として用いた。DC−5バッテリーテスターおよびCHI660A電気化学ワークステーションを使用して、負極の電気化学性能を試験した。
[Example 5]
The hydrogen storage alloys prepared in Examples 1 to 4 were prepared as electrodes (mass content of the hydrogen storage alloys was 15%) and used as negative electrodes of half batteries. Nickel hydroxide was used as the positive electrode of the half battery. A 6 mol/L KOH aqueous solution was used as the electrolyte of the half battery. The negative electrode electrochemical performance was tested using a DC-5 battery tester and a CHI660A electrochemical workstation.
(充放電性能試験)
充放電条件
充/放電電流: 9mA
充電時間: 8.0h
放電遮断電圧: 1.0V
(Charge/discharge performance test)
Charge/discharge conditions Charge/discharge current: 9mA
Charging time: 8.0h
Discharge cutoff voltage: 1.0V
実施例1〜4に記載の水素吸蔵合金の最大放電容量は、表1に示すとおりである。 The maximum discharge capacities of the hydrogen storage alloys described in Examples 1 to 4 are as shown in Table 1.
表1:実施例1〜4の水素吸蔵合金の最大放電容量
(倍率性能試験)
水素吸蔵合金電極を活性化した後、300mA・g−1(1C)充電電流密度で1.6時間充電し、10分間静置し、次にそれぞれ60mA・g−1(0.2C)、300mA・g−1(1C)、600mA・g−1(2C)、900mA・g−1(3C)、1200mA・g−1(4C)、および1500mA・g−1(5C)の放電電流密度で1.0V遮断電位まで放電した。異なる放電電流密度下での合金電極の放電容量を記録し、かつ下記の式に応じて、合金電極のHRD値を計算した。
HRD=(Cd/Cmax)×100%
ここで、Cdは、放電電流がdである時の水素吸蔵合金電極の放電容量であり、Cmaxは、水素吸蔵合金電極の最大放電容量である。
(Magnification performance test)
After activating the hydrogen storage alloy electrode, it was charged at a charging current density of 300 mA·g −1 (1 C) for 1.6 hours, left standing for 10 minutes, and then 60 mA·g −1 (0.2 C) and 300 mA, respectively. 1 at a discharge current density of g −1 (1C), 600 mA·g −1 (2C), 900 mA·g −1 (3C), 1200 mA·g −1 (4C), and 1500 mA·g −1 (5C) Discharged to a 0.0 V blocking potential. The discharge capacity of the alloy electrode under different discharge current densities was recorded, and the HRD value of the alloy electrode was calculated according to the following formula.
HRD=(C d /C max )×100%
Here, C d is the discharge capacity of the hydrogen storage alloy electrode when the discharge current is d, and C max is the maximum discharge capacity of the hydrogen storage alloy electrode.
図2は、実施例1〜4で調製して得られた水素吸蔵合金の異なる電流密度下での放電倍率性能である。図2から、実施例1〜4の水素吸蔵合金について1500mA・g−1の電流密度下での放電容量およびHRD1500値を得ることができ、表2に示すとおりである。 FIG. 2 shows the discharge magnification performance under different current densities of the hydrogen storage alloys prepared in Examples 1 to 4. From FIG. 2, it is possible to obtain the discharge capacity and the HRD 1500 value under the current density of 1500 mA·g −1 for the hydrogen storage alloys of Examples 1 to 4, as shown in Table 2.
表2:実施例1〜4の水素吸蔵合金が1500mA・g−1の電流密度下での放電容量およびHRD1500値
(動的特性試験)
水素吸蔵合金電極を50%の放電深度(DOD)まで放電し、30分間静置した後、試験に供した。試験条件は、走査速度は0.1mV/sであり、走査過電圧範囲は−5mV〜+5mVとした。合金電極の分極電流は過電圧と線形関係にあり、その両方をグラフフィッティングすると、合金電極の分極抵抗を取得でき、かつ、フィッティングにより得られた勾配から次の式によって合金電極の交換電流密度(I0)を計算することができる。
I0=RT/FRP
ここで、Rは、気体定数(J/(mol・K))であり、Tは、絶対温度(K)であり、Fは、ファラデー定数(C/mol)であり、RPは、電極表面の分極抵抗である。
(Dynamic property test)
The hydrogen storage alloy electrode was discharged to a depth of discharge (DOD) of 50%, allowed to stand for 30 minutes, and then subjected to a test. As the test conditions, the scanning speed was 0.1 mV/s, and the scanning overvoltage range was −5 mV to +5 mV. The polarization current of the alloy electrode has a linear relationship with the overvoltage. When both of them are graph fitted, the polarization resistance of the alloy electrode can be obtained, and from the gradient obtained by the fitting, the exchange current density (I 0 ) can be calculated.
I 0 =RT/FR P
Here, R is a gas constant (J/(mol·K)), T is an absolute temperature (K), F is a Faraday constant (C/mol), and R P is an electrode surface. Is the polarization resistance of.
図3は、実施例1〜4で調製して得られた水素吸蔵合金の動的特性曲線である。図3から、実施例1〜4の水素吸蔵合金の交換電流密度を得ることができる(表3)。 FIG. 3 is a dynamic characteristic curve of the hydrogen storage alloys prepared and obtained in Examples 1 to 4. From FIG. 3, the exchange current densities of the hydrogen storage alloys of Examples 1 to 4 can be obtained (Table 3).
表3:実施例1〜4に記載の水素吸蔵合金の交換電流密度
以上の内容から分かるように、本発明の前記水素吸蔵合金では、水素貯蔵合金の相構造および電気化学的性能が、さまざまな程度に変化した。 As can be seen from the above contents, in the hydrogen storage alloy of the present invention, the phase structure and electrochemical performance of the hydrogen storage alloy changed to various extents.
上記は、本発明の好ましい実施形態に過ぎず、当業者にとっては、本発明の原理から逸脱することなく、多くの改善および修正が可能であることに留意すべきであり、これらの改善および修正も本発明の保護範囲に入ると見なされるべきである。 It should be noted that the above are only preferred embodiments of the present invention, and that many improvements and modifications can be made to those skilled in the art without departing from the principle of the present invention. Should also be considered to fall within the protection scope of the present invention.
Claims (8)
ここで、
Rは、希土類元素、Ca、Ti、Zr、Hf、およびNbの一種または数種であり、
Mは、Al、Fe、Co、Mn、Zn、V、Cr、Cu、Mo、およびWの一種または数種であり、
a、b、m、x、およびyは、a>0、b≧0、0<m≦0.3、0≦y≦1.6、かつ3.0≦x+y≦4.15、という条件を満たし、
Cu−Kα線をX線源としてX線回折測定を行った際に、2θ=24°〜35°の範囲内に現れる最も強いピークの強度(IA)と、2θ=38°〜45°の範囲内に現れる最も強いピークの強度(IB)の強度と、の強度比(IA/IB)は、0.5以下である水素吸蔵合金。 Chemical formula, (La a R b) is 1-m Mg m Ni x M y,
here,
R is one or several kinds of rare earth elements, Ca, Ti, Zr, Hf, and Nb,
M is one or several of Al, Fe, Co, Mn, Zn, V, Cr, Cu, Mo, and W, and
a, b, m, x, and y satisfy the conditions of a>0, b≧0, 0<m≦0.3, 0≦y≦1.6, and 3.0≦x+y≦4.15. Meet,
The Cu-K [alpha line when subjected to X-ray diffraction measurement as X-ray source, the strongest peak intensity appearing in the range of 2θ = 24 ° ~35 ° (I A), of 2θ = 38 ° ~45 ° the intensity of the strongest peak intensity appearing in the range (I B), the intensity ratio of (I a / I B) is hydrogen absorbing alloy is 0.5 or less.
水素吸蔵合金の配合比率に応じて金属元素の単体を混合し、真空誘導溶解および熱処理を順次行い、水素吸蔵合金を得る、というステップを含む調製方法。 A preparation method for preparing the hydrogen storage alloy according to any one of claims 1 to 3,
A preparation method comprising the steps of mixing a simple substance of a metal element according to a blending ratio of a hydrogen storage alloy, sequentially performing vacuum induction melting and heat treatment to obtain a hydrogen storage alloy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910080365.2 | 2019-01-28 | ||
CN201910080365.2A CN109825740B (en) | 2019-01-28 | 2019-01-28 | Hydrogen storage alloy, preparation method thereof, hydrogen storage alloy electrode and nickel-metal hydride battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020117801A true JP2020117801A (en) | 2020-08-06 |
JP6875759B2 JP6875759B2 (en) | 2021-05-26 |
Family
ID=66862679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020004258A Active JP6875759B2 (en) | 2019-01-28 | 2020-01-15 | Hydrogen storage alloy and its preparation method, hydrogen storage alloy electrode, and nickel-metal hydride battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6875759B2 (en) |
CN (1) | CN109825740B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022009488A1 (en) | 2020-07-08 | 2022-01-13 | アルプスアルパイン株式会社 | Electronic device |
CN114703400A (en) * | 2022-04-24 | 2022-07-05 | 包头稀土研究院 | A5B19Rare earth-yttrium-nickel hydrogen storage alloy, battery and preparation method |
CN116043064A (en) * | 2023-02-03 | 2023-05-02 | 包头中科轩达新能源科技有限公司 | Low-cost long-life pure phase 2H type A 2 B 7 Hydrogen storage alloy electrode material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1253654B1 (en) * | 1999-12-27 | 2018-02-14 | GS Yuasa International Ltd. | Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle |
JP4574783B2 (en) * | 2000-03-07 | 2010-11-04 | 株式会社豊田自動織機 | Hydrogen storage alloy tank |
CN100424923C (en) * | 2004-12-09 | 2008-10-08 | 广州市鹏辉电池有限公司 | Nickle-hydrogen alkaline battery and preparation method thereof |
CN1929170A (en) * | 2006-05-23 | 2007-03-14 | 兰州理工大学 | Hydrogen-storage electrode alloy and method for making same |
-
2019
- 2019-01-28 CN CN201910080365.2A patent/CN109825740B/en active Active
-
2020
- 2020-01-15 JP JP2020004258A patent/JP6875759B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022009488A1 (en) | 2020-07-08 | 2022-01-13 | アルプスアルパイン株式会社 | Electronic device |
CN114703400A (en) * | 2022-04-24 | 2022-07-05 | 包头稀土研究院 | A5B19Rare earth-yttrium-nickel hydrogen storage alloy, battery and preparation method |
CN116043064A (en) * | 2023-02-03 | 2023-05-02 | 包头中科轩达新能源科技有限公司 | Low-cost long-life pure phase 2H type A 2 B 7 Hydrogen storage alloy electrode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6875759B2 (en) | 2021-05-26 |
CN109825740B (en) | 2020-09-04 |
CN109825740A (en) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9219277B2 (en) | Low Co hydrogen storage alloy | |
Lv et al. | Influence of the substitution Ce for La on structural and electrochemical characteristics of La0. 75-xCexMg0. 25Ni3Co0. 5 (x= 0, 0.05, 0.1, 0.15, 0.2 at.%) hydrogen storage alloys | |
CN104195372B (en) | One uses for nickel-hydrogen battery many phase hydrogen storage alloys of RE-Mg-Ni system and preparation method thereof | |
JP6875759B2 (en) | Hydrogen storage alloy and its preparation method, hydrogen storage alloy electrode, and nickel-metal hydride battery | |
EP1998392A1 (en) | Hydrogen storage alloy for alkaline battery and production method thereof, as well as alkaline battery | |
CN111471895B (en) | Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method | |
CN105428627A (en) | Preparation method for hydrogen storage alloy and graphene composite material and application of composite material | |
Zhang et al. | Structures and electrochemical hydrogen storage properties of melt-spun RE-Mg–Ni–Co–Al alloys | |
Wang et al. | Effect of annealing time on the structure and electrochemical properties of La0. 72Nd0. 08Mg0. 2Ni3. 4Al0. 1 hydrogen storage alloys | |
CN105274395A (en) | La-Mg-Ni hydrogen storage material | |
CN100452492C (en) | Hydrogen absorbing alloy, electrode thereof and nickel-metal hydride battery | |
CN101740770A (en) | RE-Fe-B serial hydrogen storage alloy for low-temperature storage battery and storage battery thereof | |
CN114686728A (en) | Low-cobalt high-capacity AB5 type hydrogen storage alloy and preparation method thereof | |
JP2021516845A (en) | Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary rechargeable nickel-metal hydride batteries and a method for producing the same | |
US6773667B2 (en) | Hydrogen-occluding alloy and process for producing the same | |
CN1754972A (en) | High-capacity rare earth-magnesium based multi-phase hydrogen strage alloy for MH-Ni battery and its preparation method | |
Zhang et al. | Structure and electrochemical hydrogen storage characteristics of La0. 8− x Pr x Mg0. 2Ni3. 15Co0. 2Al0. 1Si0. 05 (x= 0–0.4) electrode alloys | |
JP5773878B2 (en) | RE-Fe-B hydrogen storage alloy and use thereof | |
CN111471912B (en) | Doped AB3Hydrogen storage alloy, negative electrode, battery and preparation method | |
CN111411262B (en) | A5B19 type gadolinium-containing hydrogen storage alloy, negative electrode and preparation method | |
CN111118344B (en) | Multi-element gadolinium-containing rare earth hydrogen storage material, cathode, battery and preparation method | |
WEI et al. | Phase structure and electrochemical properties of La1. 7+ xMg1. 3− x (NiCoMn) 9.3 (x= 0–0.4) hydrogen storage alloys | |
US8105715B2 (en) | Hydrogen-absorbing alloy and nickel-metal hydride storage battery | |
Zhang et al. | Effect of rapid quenching on the microstructures and electrochemical characteristics of La0. 7Mg0. 3Ni2. 55− xCo0. 45Alx (x= 0–0.4) electrode alloys | |
JP2004218017A (en) | Hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6875759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE Ref document number: 6875759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |