JP2020116600A - Joint method, joint device and joint structure of metal plates - Google Patents
Joint method, joint device and joint structure of metal plates Download PDFInfo
- Publication number
- JP2020116600A JP2020116600A JP2019008798A JP2019008798A JP2020116600A JP 2020116600 A JP2020116600 A JP 2020116600A JP 2019008798 A JP2019008798 A JP 2019008798A JP 2019008798 A JP2019008798 A JP 2019008798A JP 2020116600 A JP2020116600 A JP 2020116600A
- Authority
- JP
- Japan
- Prior art keywords
- joining
- joint
- metal plates
- punch
- mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 87
- 239000002184 metal Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005304 joining Methods 0.000 claims abstract description 109
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 11
- 238000003825 pressing Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 11
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Landscapes
- Connection Of Plates (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、複数の金属板の接合方法、接合装置及び接合構造に関する。 The present invention relates to a method of joining a plurality of metal plates, a joining device, and a joining structure.
世界各国の燃費規制は年々厳しくなっており、自動車メーカー各社は、二酸化炭素排出量の規制に伴う燃費向上の要請に対し、組織的な対策の実施を迫られている。
燃費効率の改善には、エンジンや駆動系の改良の他に車体の軽量化が挙げられ、その軽量化の手段として構成部材に非鉄金属が採用されている。具体的には、高強度が要求される自動車のフレーム等には、高張力鋼板等の鉄系金属が用いられ、低強度でもよい天井や足回り等には、アルミニウム合金等の非鉄系金属が用いられる。そのため、これら異種金属板同士の接合が必要となる。
Fuel economy regulations around the world are becoming stricter year by year, and automobile manufacturers are under pressure to implement systematic measures in response to requests for improved fuel economy due to regulations on carbon dioxide emissions.
Improvements in fuel efficiency include weight reduction of the vehicle body in addition to improvement of the engine and drive system, and nonferrous metal is adopted as a constituent member as a means of weight reduction. Specifically, iron-based metals such as high-tensile steel plates are used for automobile frames that require high strength, and non-ferrous metals such as aluminum alloys are used for ceilings and suspensions that may have low strength. Used. Therefore, it is necessary to join these dissimilar metal plates together.
重ね合わせた複数の金属板を接合する方法としては、特許文献1に記載のSPR(Self−Piercing Rivet)や、特許文献2に記載のメカニカルクリンチ接合等、機械的な接合方法が挙げられる。SPRによる接合は、副資材としてリベットを金属板に打ち込んで接合させるため接合強度が高く、高強度が要求される部位に用いられる。メカニカルクリンチ接合は、金属板を塑性変形させて接合させるため副資材は必要ないが接合強度が低く、貼り合わせ等の部位に用いられる。 Examples of a method for joining a plurality of stacked metal plates include mechanical joining methods such as SPR (Self-Piercing Rivet) described in Patent Document 1 and mechanical clinch bonding described in Patent Document 2. The joining by SPR has a high joining strength because a rivet is driven and joined to a metal plate as an auxiliary material, and is used for a portion requiring high strength. Mechanical clinch bonding does not require auxiliary materials because the metal plates are plastically deformed and bonded, but the bonding strength is low, and they are used for bonding and the like.
前述したように、メカニカルクリンチ接合は副資材を必要とせず、コスト面でSPRより有利であるため利用の拡大が望まれるが、接合強度がSPRよりも低い。そのため、かしめ接合の利用の拡大には接合強度の向上が必要である。 As described above, mechanical clinch bonding does not require auxiliary materials and is more advantageous in cost than SPR, so expansion of use is desired, but bonding strength is lower than SPR. Therefore, it is necessary to improve the joining strength in order to expand the use of caulking joining.
従って、本発明は、かしめ接合よりも高い接合強度で、かつ、副資材を用いないで複数の金属板を接合する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method of joining a plurality of metal plates with a joining strength higher than that of caulking joining and without using an auxiliary material.
本発明は、複数の金属板を重ねて凹部を有するダイに配置し、前記凹部における前記複数の金属板をパンチで加圧して塑性変形を与えることにより側壁部及び底部を有する筒状の接合部を形成してメカニカルクリンチ接合する機械的接合工程と、前記機械的接合工程で形成された前記接合部の前記底部に超音波を付与することにより、該底部を冶金的接合する超音波接合工程と、を含む金属板の接合方法に関する。 According to the present invention, a plurality of metal plates are stacked and arranged in a die having a recess, and the plurality of metal plates in the recess are pressed by a punch to give plastic deformation, thereby forming a tubular joint having a side wall and a bottom. A mechanical joining step of forming a mechanical clinch joining, and an ultrasonic joining step of metallurgically joining the bottom portion by applying ultrasonic waves to the bottom portion of the joining portion formed in the mechanical joining step; And a method of joining metal plates including
また、本発明は、凹部を有するダイと、前記凹部に対向して配置されるパンチと、前記パンチを加工方向に進退させるシリンダと、前記パンチに超音波を付与する超音波発振機構と、前記シリンダの動作を制御する制御機構と、を備え、重ねられた複数の金属板を接合するための接合装置であって、前記ダイに配置された前記複数の金属板を、前記パンチで加圧して塑性変形を与えることにより側壁部及び底部を有する筒状の接合部を形成して、メカニカルクリンチ接合し、前記接合部の前記底部に前記パンチにより超音波を付与することにより、該底部を冶金的に接合し、前記制御機構は、前記シリンダの動作を制御することにより、前記パンチの加圧力を塑性変形時と超音波付与時とで異なる値に調節可能である接合装置に関する。 Further, the present invention provides a die having a concave portion, a punch arranged to face the concave portion, a cylinder for advancing and retracting the punch in a processing direction, an ultrasonic oscillating mechanism for applying an ultrasonic wave to the punch, A control device for controlling the operation of the cylinder, and a joining device for joining a plurality of stacked metal plates, wherein the plurality of metal plates arranged in the die are pressed by the punch. A tubular joint having a side wall and a bottom is formed by giving plastic deformation, mechanical clinch joining is performed, and ultrasonic waves are applied to the bottom of the joint by the punch to metallize the bottom. The welding mechanism according to claim 1, wherein the control mechanism controls the operation of the cylinder so that the pressing force of the punch can be adjusted to different values during plastic deformation and during ultrasonic wave application.
前記接合装置における前記パンチの加圧面は、平坦であることが好ましい。 The pressing surface of the punch in the joining device is preferably flat.
また、本発明は、重ねられた複数の金属板の接合部を構成する接合構造であって、前記接合部は、側壁部及び底部を有する筒形状を備え、前記側壁部は、メカニカルクリンチ接合により機械的に接合されており、前記底部は、冶金的に接合されている接合構造に関する。 Further, the present invention is a joining structure that constitutes a joining portion of a plurality of stacked metal plates, wherein the joining portion has a tubular shape having a sidewall portion and a bottom portion, and the sidewall portion is formed by mechanical clinch joining. The joining structure is mechanically joined and the bottom portion is metallurgically joined.
前記複数の金属板は、異なる種類の金属で構成されることが好ましい。 It is preferable that the plurality of metal plates are composed of different kinds of metals.
前記複数の金属板の素材は、鉄系金属及び非鉄系金属で構成されることが好ましい。 The materials of the plurality of metal plates are preferably composed of ferrous metal and non-ferrous metal.
本発明の接合方法によれば、複数の金属板をメカニカルクリンチ接合によって機械的に接合し、更に、超音波を付与することによって冶金的に接合することで、副資材を用いずにかしめ接合よりも接合強度を向上させることができる。 According to the joining method of the present invention, a plurality of metal plates are mechanically joined by mechanical clinch joining, and further, by metallurgically joining by applying ultrasonic waves, caulking joining is performed without using a submaterial. Can also improve the bonding strength.
以下、本発明の金属板の接合方法、接合装置及び接合構造の好ましい実施形態について、図面を参照しながら説明する。 Hereinafter, preferred embodiments of a metal plate joining method, a joining device, and a joining structure of the present invention will be described with reference to the drawings.
<第1実施形態>
図1及び図2を参照して、本発明の第1実施形態に係る接合方法について詳細に説明する。図1は、第1実施形態に係る接合方法の各工程を説明するための図である。第1実施形態の接合方法は、機械的接合工程と、超音波接合工程と、を備える。
<First Embodiment>
A joining method according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a diagram for explaining each step of the joining method according to the first embodiment. The joining method according to the first embodiment includes a mechanical joining step and an ultrasonic joining step.
機械的接合工程においては、図1(a)に示すように、金属板101及び金属板102を、凹部を有するダイ20の上に重ねた状態で配置して押え板30で押さえ、パンチ10で加圧する。このようにして、金属板101及び金属板102を塑性変形させてインターロックを形成してメカニカルクリンチ接合を行い、金属板同士を機械的に接合する。
複数の金属板(101、102)としては、同種金属でも異種金属でもよいが、自動車の製造で本発明の接合方法が用いられる場合には、一例として鉄系金属である高張力鋼板及び非鉄系金属であるアルミニウム系の金属板等の異種金属が用いられる。
尚、ここで、メカニカルクリンチ接合とは、図1(a)に示すように、パンチ10により加圧されて筒形状に変形した接合部110における側壁部111に形成される接合形態をいい、上側に配置された金属板101の側壁部111が、底部112側において径方向外側に膨らむような形状となることで、金属板101と金属板102とが係合(インターロック)した接合形態をいう。
In the mechanical joining step, as shown in FIG. 1A, the metal plate 101 and the metal plate 102 are arranged in a state of being stacked on the die 20 having the recessed portion, pressed by the holding plate 30, and then punched by the punch 10. Pressurize. In this way, the metal plates 101 and 102 are plastically deformed to form an interlock and mechanical clinch bonding is performed to mechanically bond the metal plates to each other.
The plurality of metal plates (101, 102) may be the same kind of metal or different kinds of metal, but when the joining method of the present invention is used in the manufacture of automobiles, as an example, a high strength steel plate and a non-ferrous steel plate which are ferrous metals. A dissimilar metal such as an aluminum-based metal plate that is a metal is used.
Here, the mechanical clinch joining means a joining form formed on the side wall portion 111 of the joining portion 110 deformed into a cylindrical shape by being pressed by the punch 10 as shown in FIG. The side wall portion 111 of the metal plate 101 disposed at the bottom has a shape that bulges outward in the radial direction on the bottom portion 112 side, which is a joining mode in which the metal plate 101 and the metal plate 102 are engaged (interlocked). ..
図2に、接合部110の接合構造を示す。接合部110は、側壁部111及び底部112を有する筒形状に形成される。側壁部111において前述のインターロックが形成される。底部112は、接合部が形成される際に金属板101及び金属板102の元の板厚よりも薄肉となるので、後の超音波接合工程において超音波振動が接合界面に伝達しやすくなる。よって、超音波接合には適さない厚みを有する金属板同士の接合であっても、本発明の接合方法を適用すれば、超音波接合が可能となる。 FIG. 2 shows a joint structure of the joint portion 110. The joint 110 is formed in a tubular shape having a side wall 111 and a bottom 112. The above-mentioned interlock is formed in the side wall portion 111. Since the bottom portion 112 has a thickness smaller than the original thickness of the metal plate 101 and the metal plate 102 when the joint is formed, ultrasonic vibrations are easily transmitted to the joint interface in the subsequent ultrasonic joining step. Therefore, even when joining metal plates having a thickness not suitable for ultrasonic bonding, ultrasonic bonding can be performed by applying the bonding method of the present invention.
超音波接合工程においては、図1(b)に示すように、金属板101及び金属板102に形成された接合部110の底部112を受け冶具であるアンビル50Aに配置し、ホーン40Aを介して接合部110の底部112に超音波を付与する(図2参照)。超音波振動により金属板101及び金属板102の接合界面の酸化被膜や汚れが取り除かれて冶金的に接合する。ホーン40Aの加圧面及びアンビル50Aの受け面は、超音波付与時に底部112(被加工材料)を保持するため、突起が全面に形成される。尚、ホーン40Aは、図示しない超音波発振機構により超音波振動可能である。 In the ultrasonic bonding step, as shown in FIG. 1B, the bottom 112 of the bonding portion 110 formed on the metal plate 101 and the metal plate 102 is placed on the anvil 50A that is a jig, and the horn 40A is used. Ultrasonic waves are applied to the bottom 112 of the joint 110 (see FIG. 2 ). The ultrasonic vibration removes the oxide film and dirt from the bonding interface between the metal plates 101 and 102, and metallurgically bonds them. The pressing surface of the horn 40A and the receiving surface of the anvil 50A hold a bottom 112 (material to be processed) at the time of applying ultrasonic waves, and thus projections are formed on the entire surface. The horn 40A can be ultrasonically vibrated by an ultrasonic oscillation mechanism (not shown).
このように、本実施形態の接合方法によれば、接合部110の接合構造は、側壁部111においてメカニカルクリンチ接合による機械的接合と、底部112において超音波付与による冶金的接合とを備えるので、機械的接合及び超音波接合のいずれか一方のみによる接合部と比べて、高い接合強度を備える。
尚、本実施形態では、複数の金属板として2枚の金属板を用いる例を示したが3枚以上の金属板を接合するように構成してもよい。
As described above, according to the joining method of the present embodiment, the joining structure of the joining portion 110 includes the mechanical joining by mechanical clinch joining at the side wall portion 111 and the metallurgical joining by applying ultrasonic waves at the bottom portion 112. It has a high bonding strength as compared with a bonded portion formed by only one of mechanical bonding and ultrasonic bonding.
In the present embodiment, an example in which two metal plates are used as the plurality of metal plates has been shown, but three or more metal plates may be joined together.
以上説明した第1実施形態の接合方法及び接合構造によれば、以下のような効果を奏する。 According to the joining method and the joining structure of the first embodiment described above, the following effects are obtained.
(1)本発明の接合方法を、複数の金属板101、102を重ねて凹部を有するダイ20に配置し、凹部における複数の金属板101、102をパンチ10で加圧して塑性変形を与えることにより側壁部111及び底部112を有する接合部110を形成してメカニカルクリンチ接合する機械的接合工程と、機械的接合工程において形成された接合部110の底部112に超音波を付与することにより、該底部112を冶金的接合する超音波接合工程と、を含むものとした。これにより、接合部110は、側壁部111において機械的に接合されているだけでなく、底部112において冶金的に接合されているので接合強度を向上させることができる。また、超音波接合には適さない厚みを有する金属板同士の接合であっても、機械的接合工程において接合部110における底部112の厚みが薄くなるので、本発明の接合方法を適用すれば、超音波接合が可能となる。 (1) In the joining method of the present invention, a plurality of metal plates 101, 102 are stacked and arranged on a die 20 having a recess, and the plurality of metal plates 101, 102 in the recess are pressed by a punch 10 to give plastic deformation. By a mechanical joining step of forming a joining portion 110 having a side wall portion 111 and a bottom portion 112 by mechanical clinch joining, and by applying ultrasonic waves to the bottom portion 112 of the joining portion 110 formed in the mechanical joining step, And an ultrasonic bonding step of metallurgically bonding the bottom portion 112. Accordingly, the joint portion 110 is not only mechanically joined at the side wall portion 111 but also metallurgically joined at the bottom portion 112, so that the joint strength can be improved. Further, even in the case of joining metal plates having a thickness not suitable for ultrasonic joining, the thickness of the bottom portion 112 in the joining portion 110 becomes thin in the mechanical joining process. Therefore, if the joining method of the present invention is applied, Ultrasonic bonding becomes possible.
(2)重ねられた複数の金属板101、102の接合部110を構成する接合構造を、接合部110は、側壁部111及び底部112を有する筒形状を備え、側壁部111は、メカニカルクリンチ接合により機械的に接合されており、底部112は、冶金的に接合されているものとした。これにより、本発明の接合部110の接合構造は、機械的接合だけでなく冶金的接合も備えるので接合強度を向上させることができる。 (2) A joining structure that constitutes a joining portion 110 of a plurality of metal plates 101 and 102 that are stacked is provided. And the bottom portion 112 is metallurgically joined. Accordingly, the joint structure of the joint 110 according to the present invention includes not only mechanical joints but also metallurgical joints, so that joint strength can be improved.
<第2実施形態>
次に図3を参照して第2実施形態について説明する。
図3は、第2実施形態に係る接合方法の各工程を説明するための図である。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIG.
FIG. 3 is a diagram for explaining each step of the joining method according to the second embodiment.
図3(a)に示すように、接合装置1は、パンチ10、ダイ20、押え板30、パンチ10を加工方法に進退させるシリンダ60及び超音波発振機構としての超音波発振器70を備える。パンチ10は、超音波発振器70と接続されて超音波振動可能に構成されている。
第2実施形態では、まず、金属板101及び金属板102を、凹部を有するダイ20の上に重ねた状態で配置して押え板30で押さえる。
As shown in FIG. 3A, the bonding apparatus 1 includes a punch 10, a die 20, a holding plate 30, a cylinder 60 for moving the punch 10 back and forth according to a processing method, and an ultrasonic oscillator 70 as an ultrasonic oscillation mechanism. The punch 10 is connected to an ultrasonic oscillator 70 and is configured to vibrate ultrasonically.
In the second embodiment, first, the metal plate 101 and the metal plate 102 are arranged in a state of being stacked on the die 20 having the recessed portion and are pressed by the holding plate 30.
機械的接合工程においては、図3(b)に示すように、シリンダ60を前進させてパンチ10で金属板101及び金属板102を加圧して塑性変形させてインターロックを形成してメカニカルクリンチ接合を行い、金属板同士を機械的に接合する。これにより、図2に示した接合部110と同様に接合構造を得る。 In the mechanical joining process, as shown in FIG. 3B, the cylinder 60 is advanced to press the metal plate 101 and the metal plate 102 with the punch 10 to plastically deform them to form an interlock and mechanical clinch joining. Then, the metal plates are mechanically joined together. As a result, a joint structure is obtained similarly to the joint portion 110 shown in FIG.
図3(c)に示すように、第2実施形態では、超音波を金属板に付与するためのホーン40Bとしてパンチ10を用い、超音波付与時の受け冶具であるアンビル50Bとしてダイ20を用いる。超音波接合工程においては、図3(b)に示すように、金属板101及び金属板102に形成された接合部110の底部112をアンビル50Bとしてのダイ20に配置し、ホーン40Bとしてのパンチ10を介して接合部110の底部112に超音波を付与して(図2参照)、冶金的に接合する。このように、パンチ10を超音波振動可能な構成とすることにより、機械的接合工程に続いて連続的に超音波接合工程を行うことができ、生産性を向上させることができる。
尚、超音波を付与する際には、不図示の制御機構によりパンチ10の接合部110に対する加圧力を小さくするようにシリンダ60を制御する。これは、機械的接合工程におけるパンチ10の加圧力のまま超音波接合を行うと、パンチ10及びダイ20による金属板101及び金属板102の保持力が強すぎて超音波振動が金属板の界面に伝わらないためである。超音波付与時にパンチ10の加圧力を小さくすることで、適切な加圧力で超音波接合が可能となる。
As shown in FIG. 3C, in the second embodiment, the punch 10 is used as the horn 40B for applying ultrasonic waves to the metal plate, and the die 20 is used as the anvil 50B that is a receiving jig for applying ultrasonic waves. .. In the ultrasonic bonding step, as shown in FIG. 3B, the bottom portion 112 of the bonding portion 110 formed on the metal plate 101 and the metal plate 102 is placed on the die 20 serving as the anvil 50B, and the punch serving as the horn 40B is formed. Ultrasonic waves are applied to the bottom portion 112 of the joining portion 110 via 10 (see FIG. 2) to perform metallurgical joining. As described above, by configuring the punch 10 to be capable of ultrasonic vibration, the ultrasonic bonding step can be continuously performed following the mechanical bonding step, and the productivity can be improved.
When applying ultrasonic waves, the cylinder 60 is controlled by a control mechanism (not shown) so as to reduce the pressure applied to the joint 110 of the punch 10. This is because when ultrasonic bonding is performed with the pressure applied by the punch 10 in the mechanical bonding step, the holding force of the metal plate 101 and the metal plate 102 by the punch 10 and the die 20 is too strong, and ultrasonic vibration causes an interface between the metal plates. This is because it is not transmitted to. By reducing the pressure applied to the punch 10 when applying ultrasonic waves, ultrasonic bonding can be performed with an appropriate pressure.
以上説明した第2実施形態の接合方法、接合装置及び接合構造によれば、上述の効果(1)及び(2)に加えて、以下のような効果を奏する。 According to the joining method, the joining device, and the joining structure of the second embodiment described above, the following effects are exhibited in addition to the above effects (1) and (2).
(3)本発明の重ねられた複数の金属板101、102を接合するための接合装置を、凹部を有するダイ20と、凹部に対向して配置されるパンチ10と、パンチ10を加工方向に進退させるシリンダ60と、パンチ10に超音波を付与する超音波発振器70と、シリンダ60の進退を制御する制御機構と、を備えるものとし、ダイ20に配置された複数の金属板101、102を、パンチ10で加圧して塑性変形を与えることにより側壁部及び底部を有する筒状の接合部を形成して、メカニカルクリンチ接合し、接合部110の底部112にパンチ10(40B)により超音波を付与することにより、底部112を冶金的に接合し、制御機構は、シリンダ60の動作を制御することにより、パンチ10(40B)の加圧力を塑性変形時と超音波付与時とで異なる値に調節可能であるものとした。これにより、機械的接合工程から連続的に超音波接合工程を行うことができるので、生産性を向上させることができる。 (3) A joining device for joining a plurality of stacked metal plates 101, 102 of the present invention is provided with a die 20 having a recess, a punch 10 arranged so as to face the recess, and the punch 10 in the processing direction. A cylinder 60 for advancing and retreating, an ultrasonic oscillator 70 for applying ultrasonic waves to the punch 10, and a control mechanism for controlling the advancing and retreating of the cylinder 60 are provided, and a plurality of metal plates 101, 102 arranged on the die 20 are provided. , A cylindrical joint having a side wall and a bottom is formed by applying a plastic deformation by pressurizing with the punch 10, mechanical clinch joining is performed, and ultrasonic waves are applied to the bottom 112 of the joint 110 by the punch 10 (40B). By applying, the bottom part 112 is metallurgically joined, and the control mechanism controls the operation of the cylinder 60 to make the pressing force of the punch 10 (40B) different between plastic deformation and ultrasonic wave application. It should be adjustable. Thereby, since the ultrasonic bonding process can be continuously performed from the mechanical bonding process, the productivity can be improved.
(4)パンチ10(40B)の加圧面は、平坦であるものとした。これにより、超音波振動を付与するためのホーン40Bとして用いられるパンチ10が摩耗したとしても、突起が設けられた一般的なホーンの加圧面に比べて、メンテナンスが容易である。 (4) The pressing surface of the punch 10 (40B) was flat. As a result, even if the punch 10 used as the horn 40B for imparting ultrasonic vibration is worn, maintenance is easier as compared with the pressing surface of a general horn provided with protrusions.
以下に、図4〜図9を参照して、本発明の接合方法で2枚の金属板を接合した実施例、従来の接合方法で接合した比較例及び参考例について説明する。 Examples in which two metal plates are joined by the joining method of the present invention, comparative examples and reference examples joined by the conventional joining method will be described below with reference to FIGS. 4 to 9.
(実施例1)
本発明の第1実施形態で説明した接合方法で2枚の同種の金属板を接合したものを実施例1とし、また、機械的接合工程のみを行い2枚の同種の金属板をかしめ接合したものを比較例2とした。金属板101及び金属板102として表1に示す供試材を用いた。表1は、供試材の寸法と機械的性質を示し、表2は供試材の化学成分(質量%)を示す。
(Example 1)
Example 1 was one in which two metal plates of the same type were bonded by the bonding method described in the first embodiment of the present invention, and two metal plates of the same type were caulked and bonded only by the mechanical bonding process. It was designated as Comparative Example 2. The test materials shown in Table 1 were used as the metal plates 101 and 102. Table 1 shows the dimensions and mechanical properties of the test material, and Table 2 shows the chemical composition (mass %) of the test material.
図4に示すように、直径4.5mmの円柱形状を有し、加圧面側の角部の曲率半径が0.2mmのパンチ10と、凹部の底部までの深さJmが1.3mm及び凹部の底部の直径が7.0mmのダイ20を用いて、機械的接合工程を行った。ダイ20の凹部における底部と側壁部との間には、底部よりも一段下がった段差が形成されている。パンチ10の加圧荷重は45kNで、接合部110の底部112の残存板厚STが1.1mmになるまで、パンチ10を押し込んだ。このようにして、機械的接合工程によってかしめ接合のみを行ったものを比較例1とした。 As shown in FIG. 4, the punch 10 has a cylindrical shape with a diameter of 4.5 mm and the radius of curvature of the corners on the pressure surface side is 0.2 mm, and the depth Jm to the bottom of the recess is 1.3 mm and the recess. The mechanical bonding process was performed using the die 20 having a bottom diameter of 7.0 mm. A step, which is one step lower than the bottom, is formed between the bottom and the side wall of the recess of the die 20. The pressure load of the punch 10 was 45 kN, and the punch 10 was pushed in until the residual plate thickness ST of the bottom 112 of the joint 110 was 1.1 mm. In this way, Comparative Example 1 was obtained by performing only caulking and joining in the mechanical joining process.
続いて図5(a)に示すように、直径3.2mmの円柱形状を有し、図5(b)に示す加圧面を有するホーン40Aと、図5(c)に示す加圧面を有するアンビル50Bとを有し、不図示の超音波発振機構を備える超音波接合装置(日本エマソン株式会社製)を用いて、機械的接合により形成された接合部110の底部112に対して表3に示す条件で超音波振動を付与して冶金的に接合し、実施例1とした。 Subsequently, as shown in FIG. 5A, a horn 40A having a cylindrical shape with a diameter of 3.2 mm and having a pressing surface shown in FIG. 5B and an anvil having a pressing surface shown in FIG. 5C. Table 3 shows the bottom 112 of the joint 110 formed by mechanical joining using an ultrasonic joining device (manufactured by Japan Emerson Co., Ltd.) having an ultrasonic oscillation mechanism (not shown). Ultrasonic vibration was applied under the conditions to perform metallurgical bonding, and the example 1 was obtained.
図6(a)に、比較例1における接合部の断面写真を示し、図6(b)に実施例1における接合部の断面写真を示した。比較例1は、接合界面がはっきりと見て取れるのに対し、実施例1では、接合界面があいまいとなっているのが分かる。このように、実施例1では、接合界面が冶金的に接合されていることが分かった。 FIG. 6A shows a cross-sectional photograph of the joint in Comparative Example 1, and FIG. 6B shows a cross-sectional photograph of the joint in Example 1. In Comparative Example 1, the joint interface can be clearly seen, whereas in Example 1, it can be seen that the joint interface is ambiguous. Thus, in Example 1, it was found that the bonding interface was metallurgically bonded.
実施例1において、超音波の投入エネルギー量を変えて超音波接合を行い、それらのせん断方向についての接合強度(せん断強度)を図7に示す引張試験により測定した。引張試験は、株式会社島津製作所のオートグラフを用いて、引張速度10mm/minで行った。その結果を図8のグラフに示す。図8のグラフには、比較のため比較例1について測定したせん断強度を点線で表示した。
図8に示すように、かしめ接合のみ行った比較例1の接合強度が3kN程度であるのに対して、超音波接合も行った実施例1では接合強度が4kN程度となり、3割程度、接合強度が向上していることが分かった。
In Example 1, ultrasonic joining was performed while changing the amount of ultrasonic energy input, and the joining strength (shear strength) in the shearing direction was measured by the tensile test shown in FIG. 7. The tensile test was performed using an autograph manufactured by Shimadzu Corporation at a tensile speed of 10 mm/min. The result is shown in the graph of FIG. In the graph of FIG. 8, the shear strength measured for Comparative Example 1 is shown by a dotted line for comparison.
As shown in FIG. 8, the bonding strength of Comparative Example 1 in which only caulking bonding was performed was about 3 kN, whereas in Example 1 in which ultrasonic bonding was also performed, the bonding strength was about 4 kN, which was about 30%. It was found that the strength was improved.
(参考例)
次に参考例として、異種金属間において超音波接合が可能か否かを確認する実験を行った。異種金属として表4に示す供試材を用いた。表4は供試材の板厚と機械的特性を示し、表5は供試材の化学成分を示す。
(Reference example)
Next, as a reference example, an experiment was carried out to confirm whether or not ultrasonic bonding was possible between dissimilar metals. The test materials shown in Table 4 were used as the dissimilar metals. Table 4 shows the plate thickness and mechanical properties of the test material, and Table 5 shows the chemical composition of the test material.
日本エマソン株式会社製の超音波接合装置用いて、超音波の投入エネルギーを変えて、異種金属板について超音波接合を行い参考例とした。超音波接合装置のホーンは、図5(a)で示した加圧面の形状と同様の形状を有し、5mm×10mmの加圧面を有する。また、超音波接合装置のアンビルは、図5(b)で示した受け面の形状と同様の受け面を有し、12mm×12mmの受け面を有する。 An ultrasonic welding apparatus manufactured by Nippon Emerson Co., Ltd. was used to change the input energy of ultrasonic waves to perform ultrasonic welding on dissimilar metal plates to obtain a reference example. The horn of the ultrasonic bonding device has a shape similar to the shape of the pressing surface shown in FIG. 5A and has a pressing surface of 5 mm×10 mm. Further, the anvil of the ultrasonic bonding device has a receiving surface similar to the shape of the receiving surface shown in FIG. 5B, and has a receiving surface of 12 mm×12 mm.
参考例の超音波接合部における断面写真を図9に示す。
図9の高倍率の断面写真によれば、Al合金板とめっき鋼板の接合界面は、冶金的に接合していることが確認された。
FIG. 9 shows a cross-sectional photograph of the ultrasonic bonding portion of the reference example.
According to the high-magnification cross-sectional photograph of FIG. 9, it was confirmed that the joint interface between the Al alloy plate and the plated steel plate was metallurgically bonded.
以上、本発明の金属板の接合方法、接合装置及び接合構造の各実施形態及び実施例について説明したが、本発明は、上述した各実施形態及び実施例に制限されるものではなく、適宜変更が可能である。 Although the embodiments and examples of the metal plate joining method, the joining device, and the joining structure of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and is appropriately changed. Is possible.
10 パンチ
20 ダイ
30 押え板
40A、40B ホーン
50A、50B アンビル
60 シリンダ
70 超音波発振器
101、102 金属板
110 接合部
111 側壁部
112 底部
10 punch 20 die
30 Presser plate 40A, 40B Horn 50A, 50B Anvil 60 Cylinder 70 Ultrasonic oscillator 101, 102 Metal plate 110 Bonding part 111 Side wall part 112 Bottom part
Claims (6)
前記機械的接合工程で形成された前記接合部の前記底部に超音波を付与することにより、該底部を冶金的接合する超音波接合工程と、
を含む金属板の接合方法。 A plurality of metal plates are stacked and arranged in a die having a recess, and the plurality of metal plates in the recess are pressed by a punch to give plastic deformation to form a tubular joint having a side wall and a bottom. Mechanical joining process of mechanical clinch joining,
By applying ultrasonic waves to the bottom portion of the joint portion formed in the mechanical joining step, an ultrasonic joining step of metallurgically joining the bottom portion,
A method for joining metal plates, including.
前記凹部に対向して配置されるパンチと、
前記パンチを加工方向に進退させるシリンダと、
前記パンチに超音波を付与する超音波発振機構と、
前記シリンダの動作を制御する制御機構と、を備え、重ねられた複数の金属板を接合する接合装置であって、
前記ダイに配置された前記複数の金属板を、前記パンチで加圧して塑性変形を与えることにより側壁部及び底部を有する筒状の接合部を形成して、メカニカルクリンチ接合し、
前記接合部の前記底部に前記パンチにより超音波を付与することにより、該底部を冶金的に接合し、
前記制御機構は、前記シリンダの動作を制御することにより、前記パンチの加圧力を塑性変形時と超音波付与時とで異なる値に調節可能である接合装置。 A die having a recess,
A punch arranged to face the recess,
A cylinder that advances and retracts the punch in the processing direction,
An ultrasonic oscillating mechanism for applying ultrasonic waves to the punch,
A control device for controlling the operation of the cylinder, and a bonding device for bonding a plurality of stacked metal plates,
The plurality of metal plates arranged on the die are pressed by the punch to give a plastic deformation to form a tubular joint having a side wall and a bottom, and mechanical clinch joining is performed,
By applying ultrasonic waves to the bottom of the joint by the punch, the bottom is metallurgically joined,
The control mechanism can control the operation of the cylinder to adjust the pressing force of the punch to different values during plastic deformation and during ultrasonic wave application.
前記接合部は、側壁部及び底部を有する筒形状を備え、
前記側壁部は、メカニカルクリンチ接合により機械的に接合されており、
前記底部は、冶金的に接合されている接合構造。 A joint structure that constitutes a joint portion of a plurality of stacked metal plates,
The joint portion has a tubular shape having a side wall portion and a bottom portion,
The side wall portion is mechanically joined by mechanical clinch joining,
A joining structure in which the bottom is metallurgically joined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019008798A JP7188121B2 (en) | 2019-01-22 | 2019-01-22 | Welding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019008798A JP7188121B2 (en) | 2019-01-22 | 2019-01-22 | Welding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020116600A true JP2020116600A (en) | 2020-08-06 |
JP7188121B2 JP7188121B2 (en) | 2022-12-13 |
Family
ID=71889558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019008798A Active JP7188121B2 (en) | 2019-01-22 | 2019-01-22 | Welding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7188121B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022115538A (en) * | 2021-01-28 | 2022-08-09 | Jfeスチール株式会社 | Joining method for metal component, manufacturing method for joint component, and joining structure for metal component |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57195541A (en) * | 1981-05-29 | 1982-12-01 | Toshiba Corp | Joining method for plates |
US20060168792A1 (en) * | 2005-02-02 | 2006-08-03 | Larry Reatherford | Apparatus and method for forming a joint between adjacent members |
JP2008068261A (en) * | 2006-09-12 | 2008-03-27 | Sumitomo Light Metal Ind Ltd | Ultrasonic welding method |
JP2009090364A (en) * | 2007-10-12 | 2009-04-30 | Sanko Kikai Kk | Ultrasonic sealing device |
JP2012101261A (en) * | 2010-11-11 | 2012-05-31 | Kobe Steel Ltd | Joined body of metallic material |
JP2013139048A (en) * | 2012-01-05 | 2013-07-18 | Tokyo Institute Of Technology | Method of joining material to be joined |
WO2015014554A1 (en) * | 2013-07-29 | 2015-02-05 | Zf Friedrichshafen Ag | Rolling-element bearing for a gearing |
WO2015145554A1 (en) * | 2014-03-25 | 2015-10-01 | 本田技研工業株式会社 | Bonded metal product |
JP2016068148A (en) * | 2014-10-01 | 2016-05-09 | 株式会社アドバンストシステムズジャパン | Metal joining device and joining method |
JP2017216148A (en) * | 2016-05-31 | 2017-12-07 | 株式会社Gsユアサ | Power storage element, power storage device, and method of manufacturing power storage element |
-
2019
- 2019-01-22 JP JP2019008798A patent/JP7188121B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57195541A (en) * | 1981-05-29 | 1982-12-01 | Toshiba Corp | Joining method for plates |
US20060168792A1 (en) * | 2005-02-02 | 2006-08-03 | Larry Reatherford | Apparatus and method for forming a joint between adjacent members |
JP2008068261A (en) * | 2006-09-12 | 2008-03-27 | Sumitomo Light Metal Ind Ltd | Ultrasonic welding method |
JP2009090364A (en) * | 2007-10-12 | 2009-04-30 | Sanko Kikai Kk | Ultrasonic sealing device |
JP2012101261A (en) * | 2010-11-11 | 2012-05-31 | Kobe Steel Ltd | Joined body of metallic material |
JP2013139048A (en) * | 2012-01-05 | 2013-07-18 | Tokyo Institute Of Technology | Method of joining material to be joined |
WO2015014554A1 (en) * | 2013-07-29 | 2015-02-05 | Zf Friedrichshafen Ag | Rolling-element bearing for a gearing |
WO2015145554A1 (en) * | 2014-03-25 | 2015-10-01 | 本田技研工業株式会社 | Bonded metal product |
JP2016068148A (en) * | 2014-10-01 | 2016-05-09 | 株式会社アドバンストシステムズジャパン | Metal joining device and joining method |
JP2017216148A (en) * | 2016-05-31 | 2017-12-07 | 株式会社Gsユアサ | Power storage element, power storage device, and method of manufacturing power storage element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022115538A (en) * | 2021-01-28 | 2022-08-09 | Jfeスチール株式会社 | Joining method for metal component, manufacturing method for joint component, and joining structure for metal component |
JP7334749B2 (en) | 2021-01-28 | 2023-08-29 | Jfeスチール株式会社 | METHOD FOR JOINING METAL PARTS, METHOD FOR MANUFACTURING JOINTED PARTS, AND JOINT STRUCTURE FOR METAL PARTS |
Also Published As
Publication number | Publication date |
---|---|
JP7188121B2 (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7698797B2 (en) | Apparatus and method for forming a joint between adjacent members | |
US10399175B2 (en) | Systems and methods for improving weld strength | |
US20190151983A1 (en) | Ultrasonic welding/brazing a steel workpiece over aluminum alloys | |
US20090291322A1 (en) | Joined body and process for manufacturing the same | |
JP2009090354A (en) | Joining device, joining method and metal-joined body | |
US20200101519A1 (en) | Ultrasonically Assisted Self-Piercing Riveting | |
JP7188121B2 (en) | Welding equipment | |
JP2002525208A (en) | Method and apparatus for connecting stacked flat members | |
Lindamood et al. | Ultrasonic welding of metals | |
JP2007054885A (en) | Joining tool, and friction stir joining method | |
JP5395035B2 (en) | Metal joining method | |
Mizushima et al. | Stirring phenomenon of aluminum sheets by ultrasonic vibrations and its application to clinching | |
JP5553732B2 (en) | Metal joint | |
JP7156009B2 (en) | Manufacturing method of composite of coated metal material and resin material | |
JP2002096182A (en) | Bonding method, revolving tool and joining body by friction heating | |
JP4453506B2 (en) | Friction spot welding method | |
JP2005288457A (en) | Ultrasonic joining method for different kinds of metals and ultrasonic joined structure | |
KR20160012607A (en) | Self piercing rivet, and method for joining using the same | |
CN113226588A (en) | Component joint and method for manufacturing the same | |
KR101705691B1 (en) | Partition Pannel for vehicle usin of FSW and 2 Dimension TWB Technics | |
JP7318904B2 (en) | metal joining method | |
JP2003251474A (en) | Method of manufacturing aluminum alloy blank for press forming | |
JP7503263B2 (en) | Cold forging joining method | |
JP6957054B1 (en) | Rivet joining method and joining processing equipment | |
JP2019107686A (en) | Metal joining method, metal joining device, and metal member joining system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20200901 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221114 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7188121 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |