JP2020115058A - Air conditioner unit and air conditioning system - Google Patents
Air conditioner unit and air conditioning system Download PDFInfo
- Publication number
- JP2020115058A JP2020115058A JP2019006372A JP2019006372A JP2020115058A JP 2020115058 A JP2020115058 A JP 2020115058A JP 2019006372 A JP2019006372 A JP 2019006372A JP 2019006372 A JP2019006372 A JP 2019006372A JP 2020115058 A JP2020115058 A JP 2020115058A
- Authority
- JP
- Japan
- Prior art keywords
- air
- heat exchange
- conditioner unit
- air conditioner
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Central Air Conditioning (AREA)
- Ventilation (AREA)
Abstract
Description
本発明は、病院内の医用室やクリーンルーム等の室の空気調和に使用される空調機ユニットに関する。 The present invention relates to an air conditioner unit used for air conditioning in a room such as a medical room or a clean room in a hospital.
病院内の病室、手術室等の医用室やクリーンルーム等の室の空気調和は、室の床面近傍に設けられた吸い込みダクトから室内空気を吸い込み、温度・湿度の調整を行った後、除塵し、天井に設けられた吹出ダクトから室内へ環流する循環型空気調和が用いられることが多い。このような循環型空気調和による空気調和としては、特許文献1−7に記載のものが公知である。 For air conditioning in hospital rooms, medical rooms such as operating rooms, and clean rooms, the room air is sucked in from the suction duct provided near the floor of the room, the temperature and humidity are adjusted, and then dust is removed. In many cases, a circulating air conditioner is used in which the air is circulated from a blowout duct provided on the ceiling into the room. As air conditioning by such circulation type air conditioning, those described in Patent Documents 1-7 are known.
特許文献1には、手術室(1)の下部側壁に吸気口(3)を設けるとともに天上部に吹出口(4)を設け、送風機(6)を作動させることにより吸気口から吸引した空気を吹出口から手術室(1)内に吹出させる空気循環路(5)を形成し、該空気循環路に空気を冷却または加熱する熱交換器(8)を設け、該熱交換器を迂回して空気を流通させるバイパス路(13)を設けるとともに該バイパス路(13)に風量調整ダンパ(14)を設け、バイパス路(13)を通る空気と熱交換器(8)を通る空気とが所定比率で混合されて手術室(1)内に吹出されるようにした手術室用空調装置が記載されている(仝文献図1、明細書〔0012〕〔0015〕−〔0020〕参照)。 In Patent Document 1, an air inlet (3) is provided on the lower side wall of the operating room (1), an air outlet (4) is provided on the ceiling, and air blown from the air inlet is operated by operating a blower (6). An air circulation path (5) for blowing out from the air outlet into the operating room (1) is formed, and a heat exchanger (8) for cooling or heating air is provided in the air circulation path, bypassing the heat exchanger. A bypass passage (13) for circulating air is provided, and an air flow rate adjustment damper (14) is provided in the bypass passage (13) so that the air passing through the bypass passage (13) and the air passing through the heat exchanger (8) have a predetermined ratio. There is described an air conditioner for an operating room, which is mixed in the above and blown out into the operating room (1) (see FIG. 1, reference [0012][0015]-[0020] in the specification).
特許文献2には、冷熱源装置から冷却・減湿用の冷水が供給される冷水制御弁を備えた冷水コイル(4)と、温熱源装置から加熱・再熱用の温水が供給される温水制御弁を備えた温水コイル(6)を具備してなり、冷水コイル(4)をそれぞれが冷水制御弁によって独立に水量制御可能な2台の冷水コイルユニット(4a)により構成して温水コイル(6)の前段に並設し、ケーシング(11)内に、上流側から下流側にかけて冷水コイル(4)、温水コイル(6)、加湿器(15)、送風機(14)をこの順に直列に組み込み、ケーシング(11)内の吸込口(12)の近傍位置に温湿度センサー(20)を設置し、上記空調機(2)を手術室(1)に面する位置に配置して還気(RA)を吸引し、調製した給気(SA)を手術室(1)に吹き出すとともに、外調機(25)により外気(OA)を処理して手術室に吹き出す空調システムが記載されている(仝文献図1、明細書〔0021〕−〔0022〕参照)。 Patent Document 2 discloses a cold water coil (4) equipped with a cold water control valve to which cold water for cooling/dehumidification is supplied from a cold heat source device, and hot water to which hot water for heating/reheating is supplied from a hot heat source device. A hot water coil (6) having a control valve is provided, and the cold water coil (4) is constituted by two cold water coil units (4a) each of which can independently control the water amount by the cold water control valve. 6) installed in parallel in the previous stage, and the cold water coil (4), the hot water coil (6), the humidifier (15), and the blower (14) are installed in this order in series in the casing (11) from the upstream side to the downstream side. , A temperature/humidity sensor (20) is installed in the casing (11) in the vicinity of the suction port (12), and the air conditioner (2) is placed in a position facing the operating room (1) to return air (RA). ), the prepared air supply (SA) is blown out to the operating room (1), and the outside air (OA) is processed by the air conditioner (25) to be blown out to the operating room. See FIG. 1, specification [0021]-[0022]).
また、特許文献3−8には、手術室の床面近傍に設けられた吸い込みダクトから室内空気を吸い込み、温度の調整を行った後、除塵し、天井に設けられた吹出ダクトから室内へ環流する循環型空気調和システムであって、温水コイル又は冷水コイル、及び送風機をケーシング内に内蔵した空調機ユニットを備えた循環型空調システムが記載されている。 Further, in Patent Document 3-8, indoor air is sucked from a suction duct provided near the floor surface of an operating room to adjust the temperature, dust is removed, and the air is circulated from a blowout duct provided on the ceiling into the room. Which is a circulating air conditioning system, which comprises a hot water coil or a cold water coil, and an air conditioner unit having a blower inside a casing.
病院内の医用室やクリーンルーム等においては、温度が調整された空気(調温空気)を天井に設けた天井吹出口から吹き下ろすとともに、室内空気を床面又は床面近傍から環流又は排気することにより、室内の温度を所定の温度に調整するとともに天井から床面に向かう気流(層流)をできるだけ維持して室内の清浄度を保っている。この際、清浄度を保つために、天井から床面に吹き下ろす気流の最適な流量が決まる。従って、空気調和における空調機の流量は、この清浄度維持に最適な流量によって決定される。一方、空調機から出力される空気の温度は、熱交換器(温水コイル又は冷水コイル)に流す熱媒の温度、及び熱交換器を通過する空気流量によって決まる。 In medical rooms and clean rooms in hospitals, air whose temperature is adjusted (temperature-controlled air) is blown down from the ceiling outlet provided on the ceiling, and indoor air is recirculated or exhausted from the floor surface or near the floor surface. Thus, the temperature inside the room is adjusted to a predetermined temperature and the airflow (laminar flow) from the ceiling to the floor is maintained as much as possible to maintain the cleanliness of the room. At this time, in order to maintain the cleanliness, the optimum flow rate of the airflow blown down from the ceiling to the floor surface is determined. Therefore, the flow rate of the air conditioner in air conditioning is determined by the optimum flow rate for maintaining the cleanliness. On the other hand, the temperature of the air output from the air conditioner is determined by the temperature of the heat medium flowing through the heat exchanger (hot water coil or cold water coil) and the flow rate of air passing through the heat exchanger.
特許文献1に記載の空調機では、温度調整用の熱交換器(8)と並列にバイパス路(13)を設け、熱交換器(8)とバイパス路(13)との並列回路の下流側に送風機(6)を設けてこの送風機(6)によって熱交換器(8)とバイパス路(13)との並列回路に空気を流通させるとともに、バイパス路(13)に設けた風量調整ダンパ(14)によって空気とが所定比率で混合されて手術室(1)内に吹出されるように構成されている(仝文献図1参照)。この場合、清浄度維持に最適な流量を確保するために風量調整ダンパ(14)を大きく開くと、バイパス路(13)の流路抵抗が大きく低下するため、バイパス路(13)を流通する空気流量が増加するとともに、熱交換器(8)を流通する空気流量が大きく低下する。従って、調温空気を要求された温度に調整するためには、熱交換器(8)を流通する空気流量が低下した分だけ熱交換器(温水コイル又は冷水コイル)に流す熱媒の温度を過剰に高温又は低温に振る必要があるため、温度制御性・追随性が低下するとともに熱交換器を含む熱交換系の熱量ロスが大きくなり熱交換系全体のエネルギー効率も低下するという問題がある。 In the air conditioner described in Patent Document 1, a bypass passage (13) is provided in parallel with the heat exchanger (8) for temperature adjustment, and the downstream side of the parallel circuit of the heat exchanger (8) and the bypass passage (13). An air blower (6) is provided in the air passage, and air is circulated in a parallel circuit of the heat exchanger (8) and the bypass passage (13) by the blower (6), and an air volume adjustment damper (14) provided in the bypass passage (13) is provided. ) Is mixed with air at a predetermined ratio and blown out into the operating room (1) (see FIG. 1 of the literature). In this case, if the air flow rate adjustment damper (14) is opened widely to secure the optimum flow rate for maintaining the cleanliness, the flow passage resistance of the bypass passage (13) is greatly reduced, so that the air flowing through the bypass passage (13) is reduced. As the flow rate increases, the flow rate of air flowing through the heat exchanger (8) greatly decreases. Therefore, in order to adjust the temperature-controlled air to the required temperature, the temperature of the heat medium to be flown to the heat exchanger (hot water coil or cold water coil) is reduced by the amount of decrease in the flow rate of the air flowing through the heat exchanger (8). Since it is necessary to shake the temperature excessively high or low, there is a problem that the temperature controllability and the followability are deteriorated, the heat loss of the heat exchange system including the heat exchanger is increased, and the energy efficiency of the entire heat exchange system is also decreased. ..
特許文献2−8の空調システムでは、空調機内にバイパス流路は設けず環流された室内空気を総て空調機内に設けた熱交換器に通過させる構成とし、清浄度維持に最適な流量に対して空調機能力では不足する流量分は、外気又は天井の上部吸込口から取り入れられる室内空気(流量補填空気)を、天井吹出口の手前で混合して室内へ吹き出すように構成している。然し乍ら、実際のケースでは、一般に空調機を通過する調温空気と上部吸込口から取り入れられる流量補填空気との温度差が大きくなり、上部吸込口の手前で両者が合流しても十分には混合されない場合が多く見られ(温度が大きく異なる空気は混ざりにくいため)、天井吹出口から室内に吹き下ろされる空気に温度ムラが生じ易いという問題があった。 In the air conditioning system of Patent Document 2-8, the bypass flow path is not provided in the air conditioner, and all the indoor air that has been circulated is allowed to pass through the heat exchanger provided in the air conditioner, with respect to the optimum flow rate for maintaining cleanliness. For the flow rate which is insufficient with the air conditioning function, indoor air (compensation air for flow rate) taken in from outside air or the upper suction port of the ceiling is mixed before the ceiling outlet and blown out into the room. However, in the actual case, the temperature difference between the temperature-controlled air that passes through the air conditioner and the flow-compensation air that is taken in from the upper suction port generally becomes large, and even if both flow together before the upper suction port, they do not mix sufficiently. There are many cases in which the temperature is not controlled (because it is difficult to mix air with greatly different temperatures), there is a problem that temperature unevenness easily occurs in the air blown down into the room from the ceiling outlet.
そこで、本発明の目的は、医用室やクリーンルーム等の室内空調において、熱交換器を含む熱交換系のエネルギー効率が高く、天井吹出口から室内に吹き下ろされる空気に温度ムラを生じなくすることが可能な空調機ユニット及び空調システムを提供することにある。 Therefore, an object of the present invention is to provide high energy efficiency of a heat exchange system including a heat exchanger in an indoor air conditioner such as a medical room or a clean room, and to prevent temperature unevenness in air blown down into the room from a ceiling outlet. It is to provide an air conditioner unit and an air conditioning system capable of achieving the above.
本発明に係る空調機ユニットの第1の構成は、一端側の側面に吸込口、他端側に吹出口が形成されたケーシングと、
前記ケーシング内に形成された、前記吸込口と前記吹出口を連通する熱交用通気路と、
前記ケーシング内に前記熱交用通気路に並列に形成された、前記吸込口と前記吹出口を連通するバイパス通気路と、
前記吹出口側において前記熱交用通気路と前記バイパス通気路とが合流する混合室と、
前記熱交用通気路内又はその入口に配設された熱交換器と、
前記熱交用通気路内に配設され、前記吸込口側から前記吹出口側へ空気を圧送する熱交用ファンと、
前記混合室内に配設された、前記吹出口側へ空気を混合圧送する混合ファンと、を備えたことを特徴とする。
A first configuration of an air conditioner unit according to the present invention is a casing having a suction port on a side surface on one end side and a blowout port on the other end side,
A heat exchange air passage formed in the casing, which communicates the suction port and the air outlet,
A bypass air passage formed in parallel with the heat exchange air passage in the casing, which connects the suction port and the air outlet,
A mixing chamber in which the heat exchange air passage and the bypass air passage merge on the outlet side,
A heat exchanger arranged in the heat exchange ventilation passage or at the inlet thereof,
A heat exchange fan that is arranged in the heat exchange air passage and that sends air from the suction port side to the air outlet side under pressure,
And a mixing fan that is arranged in the mixing chamber and mix-feeds air to the outlet side.
この構成によれば、熱交用通気路を流通する熱交換器で調温される空気の流量は熱交用ファンによって調整され、また、熱交用通気路及びバイパス通気路を流通する空調機ユニットから吐出される全体の空気流量は混合ファンで調整される。従って、熱交用通気路を流通する空気流量とバイパス通気路を流通する空気流量とはそれぞれ独立に制御が可能であるため、混合ファンによって空調機ユニットから吐出される全体の空気流量を制御しつつ、熱交用ファンによって熱交換器を含む熱交換系全体のエネルギー効率が最適となるように熱交用通気路の空気流量を制御することができる。また、熱交用通気路において調温された空気と、バイパス通気路を通過した調温されていない空気とは、混合ファンを通過することで完全に混合される。そのため、空調機ユニットから吐出される空気に温度ムラを生じなくすることが可能となる。 According to this configuration, the flow rate of the air whose temperature is adjusted by the heat exchanger that flows through the heat exchange ventilation passage is adjusted by the heat exchange fan, and the air conditioner that flows through the heat exchange ventilation passage and the bypass ventilation passage. The total flow rate of air discharged from the unit is adjusted by the mixing fan. Therefore, since the air flow rate flowing through the heat exchange air passage and the air flow rate passing through the bypass air passage can be independently controlled, the total air flow rate discharged from the air conditioner unit is controlled by the mixing fan. At the same time, the heat exchange fan can control the air flow rate in the heat exchange ventilation passage so that the energy efficiency of the entire heat exchange system including the heat exchanger is optimized. Further, the temperature-controlled air in the heat exchange ventilation passage and the non-temperature-controlled air that has passed through the bypass ventilation passage are completely mixed by passing through the mixing fan. Therefore, it is possible to prevent temperature unevenness from occurring in the air discharged from the air conditioner unit.
本発明に係る空調機ユニットの第2の構成は、前記第1の構成において、前記熱交用通気路内の前記熱交換器の前記吹出口側又は前記混合室内に設けられた電気補助ヒータを備えたことを特徴とする。 A second configuration of the air conditioner unit according to the present invention is the air conditioner unit according to the first configuration, further including an electric auxiliary heater provided on the outlet side of the heat exchanger in the heat exchange ventilation passage or in the mixing chamber. It is characterized by having.
この構成によれば、熱交用通気路の熱交換器による加温では、必要熱量に不十分な場合、電気補助ヒータによって不足熱量を補うことにより、空調機ユニットから吐出される空気流量が大きい場合でも、空調機ユニットから吐出される空気の温度を要求される温度に調温することが可能となる。 According to this configuration, when the heating by the heat exchanger of the heat exchange ventilation passage is insufficient for the required amount of heat, the electric auxiliary heater supplements the insufficient amount of heat to increase the air flow rate discharged from the air conditioner unit. Even in this case, the temperature of the air discharged from the air conditioner unit can be adjusted to the required temperature.
本発明に係る空調機ユニットの第3の構成は、前記第1又は2の構成において、前記熱交換器の近傍に設けられた殺菌灯を備えたことを特徴とする。 A third configuration of the air conditioner unit according to the present invention is characterized in that, in the first or second configuration, a sterilizing lamp provided in the vicinity of the heat exchanger is provided.
この構成によれば、熱交換器は、その近傍に設けられた殺菌灯によって殺菌されるので、熱交換器周辺の熱交用通気路内にカビが発生することが防止される。 According to this configuration, since the heat exchanger is sterilized by the sterilizing lamp provided in the vicinity thereof, it is possible to prevent mold from being generated in the heat exchange ventilation passage around the heat exchanger.
本発明に係る空調システムは、室の床面近傍の壁面に形成された下部還気口と、
室の天井面近傍の壁面又は室の壁面近傍の天井面に形成された上部還気口と、
室の天井面に形成された給気口と、
前記下部還気口に前記吸込口が面するように、室の壁の外側に設置された前記第1乃至3の何れか一の構成の空調機ユニットと、
前記上部還気口と前記空調機ユニットの前記混合室の前記混合ファンの吸引口側とを連通する上部還気管と、
前記空調機ユニットの前記吹出口と前記給気口とを連通する給気管と、を備えたことを特徴とする。
The air conditioning system according to the present invention, a lower return port formed in the wall surface near the floor of the room,
An upper return port formed on the wall surface near the ceiling surface of the room or on the ceiling surface near the wall surface of the room,
An air supply port formed on the ceiling surface of the room,
An air conditioner unit of any one of the first to third configurations installed outside the wall of the chamber so that the suction port faces the lower return air port;
An upper return air pipe communicating the upper return air port and the suction port side of the mixing fan of the mixing chamber of the air conditioner unit,
An air supply pipe that connects the air outlet and the air supply port of the air conditioner unit is provided.
この構成によれば、下部還気口から吸入される室内空気は、熱交用通気路及びバイパス通気路の並列回路を通過して混合ファンへ流入する。また、上部還気口から吸入される、室の天井面の壁面近傍の室内空気は、上部還気管を通過して混合ファンへ流入する。そして、これらの空気は混合ファンで完全に混合された後、給気口から室内へ放出される。室の天井面の壁面近傍は、室内が渦を作りやすくこの渦により室内の塵埃が空中に留まりやすい。そこで、このように、室の天井面の壁面近傍の室内空気を上部還気口から混合ファンへ吸引させることで、室の天井面の壁面近傍の空中に塵埃が留まりにくくすることができ、室の空気清浄度を高めることができる。また、上部還気口から吸引した空気を混合ファンで完全に混合し、給気口から室内へ環流することで、給気口から室内へ吹き下ろされる温度ムラをなくすことができる。 According to this configuration, the room air sucked from the lower return port passes through the parallel circuit of the heat exchange ventilation passage and the bypass ventilation passage and flows into the mixing fan. Further, the room air in the vicinity of the wall surface of the ceiling surface of the room, which is sucked in through the upper return air port, passes through the upper return air pipe and flows into the mixing fan. Then, the air is completely mixed by the mixing fan and then discharged into the room from the air supply port. In the vicinity of the wall surface of the ceiling surface of the room, it is easy for the room to form a vortex, and this vortex easily causes dust in the room to stay in the air. Therefore, in this way, by sucking the indoor air near the wall surface of the ceiling surface of the room from the upper return port to the mixing fan, it is possible to make it difficult for dust to remain in the air near the wall surface of the room ceiling surface. The air cleanliness of can be improved. Further, the air sucked from the upper return port is completely mixed by the mixing fan, and is circulated from the air supply port into the room, whereby the temperature unevenness blown down from the air supply port into the room can be eliminated.
以上のように、本発明によれば、熱交用通気路を流通する空気流量とバイパス通気路を流通する空気流量とはそれぞれ独立に制御が可能であるため、混合ファンによって空調機ユニットから吐出される全体の空気流量を制御しつつ、熱交用ファンによって熱交換器を含む熱交換系全体のエネルギー効率が最適となるように熱交用通気路の空気流量を制御することができる。また、熱交用通気路において調温された空気と、バイパス通気路を通過した調温されていない空気とは、混合ファンを通過することで完全に混合される。そのため、空調機ユニットから吐出される空気に温度ムラを生じなくすることが可能となる。 As described above, according to the present invention, since the air flow rate flowing through the heat exchange ventilation passage and the air flow rate flowing through the bypass ventilation passage can be independently controlled, the mixing fan discharges the air from the air conditioning unit. It is possible to control the air flow rate in the heat exchange ventilation passage by the heat exchange fan so that the energy efficiency of the entire heat exchange system including the heat exchanger is optimized while controlling the overall air flow rate. Further, the temperature-controlled air in the heat exchange ventilation passage and the non-temperature-controlled air that has passed through the bypass ventilation passage are completely mixed by passing through the mixing fan. Therefore, it is possible to prevent temperature unevenness from occurring in the air discharged from the air conditioner unit.
また、熱交換器の近傍に殺菌灯を設けたことで、熱交換器は殺菌灯によって殺菌されるので、熱交換器周辺の熱交用通気路内にカビが発生することが防止される。これにより、熱交換器の下流に設けられるフィルタの目詰まりや機能低下を防止し、室内の空気清浄度をより高く保つことが可能となる。 In addition, since the sterilizing lamp is provided near the heat exchanger, the heat exchanger is sterilized by the sterilizing lamp, and thus mold is prevented from being generated in the heat exchange ventilation passage around the heat exchanger. As a result, it is possible to prevent clogging and deterioration of the function of the filter provided downstream of the heat exchanger, and to keep the indoor air cleanliness higher.
以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
図1は、本発明の実施例1に係る空調機ユニットの構成を表す図である。図1(a)は正面図、図1(b)は平面図、図1(c)はケーシング2のフロントパネル2aを取り外した状態のA−A線矢視図、図1(d)はB−B線矢視断面図を其々表している。また、図1(c)において半透明で表示した矢印は、空気が流れる方向を、参考のために示したものである。 1 is a diagram showing a configuration of an air conditioner unit according to a first embodiment of the present invention. 1(a) is a front view, FIG. 1(b) is a plan view, FIG. 1(c) is a view taken along the line AA of the casing 2 with the front panel 2a removed, and FIG. 1(d) is B. Each of the -B line arrow sectional views is shown. Further, the semitransparent arrow in FIG. 1C indicates the direction in which air flows for reference.
本実施例の空調機ユニット1は、空調機ユニット1は、ケーシング2、吸込口3、吹出口4、熱交用通気路5、バイパス通気路6、混合室7、熱交換器8、ドレンパン8a、ドレン配管8b、熱交用ファン9、混合ファン10、電気補助ヒータ11、及び電装ボックス12を備えている。 The air conditioner unit 1 according to the present embodiment includes a casing 2, a suction port 3, a blowout port 4, a heat exchange air passage 5, a bypass air passage 6, a mixing chamber 7, a heat exchanger 8, and a drain pan 8a. , A drain pipe 8b, a heat exchange fan 9, a mixing fan 10, an electric auxiliary heater 11, and an electrical equipment box 12.
ケーシング2は、縦長扁平の略直方体状の中空ケースであり、手術室やクリーンルーム等の室の壁の裏側の床面上に設置される筺体である。ケーシング2の前面は、脱着可能なフロントパネル2aで構成されている。吸込口3は、ケーシング2の前側面の下端側に形成されたスリット状の開口部である。吸込口3の前面には、スリット状の吸込口グリル3aが取り付けられており、吸込口3の中間には塵埃を捕集するためのプレフィルタ3bが設けられている。空調機ユニット1の設置時には、室の壁の床面近傍の開口を通して吸込口3が室内に面するように設置される。吹出口4は、ケーシング2の上端面に形成された開口である。熱交用通気路5は、ケーシング2内に形成された、吸込口3と吹出口4を連通する通気路であり、ケーシング2内の下端部から上部にかけての部分に設けられている。バイパス通気路6は、ケーシング2内に熱交用通気路5に並列に形成された、吸込口3と吹出口4を連通する通気路である。混合室7は、ケーシング2内の吹出口4側において熱交用通気路5とバイパス通気路6とが合流する気室であり、ケーシング2内の上部に設けられている。熱交換器8は、熱交用通気路5の入り口に配設されており、調温された熱媒又は冷媒を循環させることによって熱交用通気路5を流通する空気のとの熱交換を行うモジュールである。尚、熱交換器8は、熱交用通気路5の内部に設置してもよい。熱交用ファン9は、熱交用通気路5内の熱交換器8の上部に設けられた送風機である。熱交用ファン9は熱交用通気路5内の空気を吸込口3側から吹出口4側へ圧送する。混合ファン10は、混合室7内に配設された送風機である。熱交用通気路5及びバイパス通気路6から混合室7へ流入する空気を吹出口4側へ混合圧送する。電気補助ヒータ11は、混合室7内に設けられた電熱器である。尚、電気補助ヒータ11は、熱交用通気路5内の熱交換器8より吹出口7側(下流側)に設けてもよい。電装ボックス12は、ケーシング2内に設けられた、熱交換器8,熱交用ファン9,混合ファン10,及び電気補助ヒータ11を制御する制御回路等が集納されている函状室である。 The casing 2 is a vertically long and flat, substantially rectangular parallelepiped hollow case, and is a housing installed on the floor surface behind the wall of a room such as an operating room or a clean room. The front surface of the casing 2 is composed of a removable front panel 2a. The suction port 3 is a slit-shaped opening formed on the lower end side of the front side surface of the casing 2. A slit-shaped inlet grill 3a is attached to the front surface of the inlet 3, and a pre-filter 3b for collecting dust is provided in the middle of the inlet 3. When the air conditioner unit 1 is installed, it is installed so that the suction port 3 faces the room through an opening near the floor surface of the wall of the room. The air outlet 4 is an opening formed in the upper end surface of the casing 2. The heat exchange ventilation passage 5 is a ventilation passage that is formed in the casing 2 and connects the suction port 3 and the air outlet 4, and is provided in a portion from the lower end portion to the upper portion in the casing 2. The bypass ventilation passage 6 is a ventilation passage that is formed in the casing 2 in parallel with the heat exchange ventilation passage 5 and that connects the suction port 3 and the air outlet 4. The mixing chamber 7 is an air chamber where the heat exchange ventilation passage 5 and the bypass ventilation passage 6 join together on the blower outlet 4 side in the casing 2, and is provided in the upper portion of the casing 2. The heat exchanger 8 is arranged at the entrance of the heat exchange air passage 5, and circulates a heat medium or a refrigerant whose temperature has been adjusted to exchange heat with the air flowing through the heat exchange air passage 5. This is the module to do. The heat exchanger 8 may be installed inside the heat exchange air passage 5. The heat exchange fan 9 is a blower provided above the heat exchanger 8 in the heat exchange air passage 5. The heat exchange fan 9 pumps the air in the heat exchange ventilation passage 5 from the suction port 3 side to the blowout port 4 side. The mixing fan 10 is a blower arranged in the mixing chamber 7. Air flowing into the mixing chamber 7 from the heat exchange air passage 5 and the bypass air passage 6 is mixed and pressure-fed to the outlet 4 side. The electric auxiliary heater 11 is an electric heater provided in the mixing chamber 7. The electric auxiliary heater 11 may be provided on the blower outlet 7 side (downstream side) of the heat exchanger 8 in the heat exchange ventilation passage 5. The electrical equipment box 12 is a box-shaped chamber provided in the casing 2 in which a control circuit for controlling the heat exchanger 8, the heat exchange fan 9, the mixing fan 10, and the electric auxiliary heater 11 are housed. ..
図2は、図1の空調機ユニット1を、手術室やクリーンルーム等の室20に設置した空調システムを表す図である。図2(a)は上部還気口22を室20の壁面近旁の天井面に形成した場合、図2(b)は上部還気口22を室20の天井面近旁の壁面に形成した場合を其々表している。図2において図1の構成部分と対応する構成部分については、同符号を付している。尚、図2では、代表として1機の空調機ユニット1のみを表示しているが、実際には1つの室20に対して複数機の空調機ユニット1を設置し、混合チャンバ27a及びHEPAフィルタ27Bからなる天井吹出ユニット27に接続するように構成することができる。図2において、空調システムは、空調機ユニット1、下部還気口21、上部還気口22、給気口23、上部還気管24、外気導入管25、給気管26、混合チャンバ27a、及びHEPAフィルタ27Bを備えている。尚、図2では、代表として1つの空調機ユニット1のみを記載しているが、実際には、空調機ユニット1は室20の各所に複数設置されており、各空調機ユニット1から延びる給気管26は混合チャンバ27aに連結されている。 FIG. 2 is a diagram showing an air conditioning system in which the air conditioner unit 1 of FIG. 1 is installed in a room 20 such as an operating room or a clean room. 2A shows the case where the upper return air port 22 is formed on the wall surface near the wall of the chamber 20, and FIG. 2B shows the case where the upper return air port 22 is formed on the wall surface near the ceiling of the chamber 20. Each one is represented. In FIG. 2, components corresponding to those in FIG. 1 are designated by the same reference numerals. In FIG. 2, only one air conditioner unit 1 is shown as a representative, but in reality, a plurality of air conditioner units 1 are installed in one room 20, and the mixing chamber 27a and the HEPA filter are installed. It can be configured to be connected to the ceiling blowing unit 27 composed of 27B. 2, the air conditioning system includes an air conditioner unit 1, a lower return air port 21, an upper return air port 22, an air supply port 23, an upper return air pipe 24, an outside air introduction pipe 25, an air supply pipe 26, a mixing chamber 27a, and a HEPA. The filter 27B is provided. Although only one air conditioner unit 1 is shown as a representative in FIG. 2, a plurality of air conditioner units 1 are actually installed in each place of the room 20, and the air conditioner units 1 extending from each air conditioner unit 1 are actually provided. The trachea 26 is connected to the mixing chamber 27a.
下部還気口21は、室の床面近傍の壁面に形成された、還気RAを導入するための開口である。空調機ユニット1は、図1の空調機ユニットであり、下部還気口21に吸込口3が面するように、室20の壁の外側に設置されている。上部還気口22は、室の天井面近傍の壁面又は壁面近傍の天井面に形成された還気RAを導入するための開口である。給気口23は、室の天井面に形成された給気SAを室20内へ放出するための開口である。上部還気管24は、上部還気口22と空調機ユニット1の混合室7の混合ファン10の吸引口側とを連通する流路である。外気導入管25は、下流側が混合室7の混合ファン10の吸引口側に連通された流路であり、上流側からは外気OAが導入される。給気管26は、空調機ユニット1の吹出口4と給気口23とを連通する流路である。混合チャンバ27aは、複数の空調機ユニット1から圧送される調温空気を給気口23から室20内へ吹き出す前に混合するためのチャンバである。HEPAフィルタ27B(High Efficiency Particle Air fliter)は、混合チャンバ27aと給気口23との間に設けられた除塵用のフィルタである。 The lower return air port 21 is an opening for introducing the return air RA formed in the wall surface near the floor surface of the room. The air conditioner unit 1 is the air conditioner unit of FIG. 1, and is installed outside the wall of the chamber 20 so that the lower return air port 21 faces the suction port 3. The upper return air port 22 is an opening for introducing the return air RA formed on the wall surface near the ceiling surface of the room or on the ceiling surface near the wall surface. The air supply port 23 is an opening for discharging the air supply SA formed on the ceiling surface of the room into the room 20. The upper return air pipe 24 is a flow path that connects the upper return air port 22 and the suction port side of the mixing fan 10 of the mixing chamber 7 of the air conditioner unit 1. The outside air introduction pipe 25 is a flow path whose downstream side communicates with the suction port side of the mixing fan 10 of the mixing chamber 7, and outside air OA is introduced from the upstream side. The air supply pipe 26 is a flow path that connects the air outlet 4 of the air conditioner unit 1 and the air supply port 23. The mixing chamber 27a is a chamber for mixing the temperature-controlled air that is pressure-fed from the plurality of air conditioner units 1 before being blown into the chamber 20 from the air supply port 23. The HEPA filter 27B (High Efficiency Particle Air fliter) is a dust removing filter provided between the mixing chamber 27a and the air supply port 23.
以上のように構成された本実施例の空調機ユニット1及び空調システムについて、以下その動作を説明する。空調機ユニット1を使用する場合、熱交用ファン9及び混合ファン10を起動する。このとき、混合ファン10の出力流量は、天井から床面に吹き下ろす気流の最適な流量に設定する。一つの室に対して空調機ユニット1が複数台設置している場合には、各空調機ユニット1から給気口23へ供給される空気流量の合計が、天井から床面に吹き下ろす気流の最適な流量となるように、各空調機ユニット1の混合ファン10の出力流量が設定される。また、熱交用ファン9の出力流量は、設定される温度に対して、熱交換器8を含む熱交換系のエネルギー効率がなるべく高くなるような最適流量に設定する。このとき、熱交用ファン9の出力流量は、必ず混合ファン10の出力流量よりも小さくなるように設定される。熱交用ファン9の出力流量のほうが大きいと、バイパス通気路6や上部還気管24から空気が逆流するからである。 The operation of the air conditioner unit 1 and the air conditioning system of this embodiment configured as described above will be described below. When the air conditioner unit 1 is used, the heat exchange fan 9 and the mixing fan 10 are activated. At this time, the output flow rate of the mixing fan 10 is set to an optimum flow rate of the airflow blown down from the ceiling to the floor surface. When a plurality of air conditioner units 1 are installed in one room, the total air flow rate supplied from each air conditioner unit 1 to the air supply port 23 is equal to the air flow blown down from the ceiling to the floor surface. The output flow rate of the mixing fan 10 of each air conditioner unit 1 is set so that the optimal flow rate is obtained. Further, the output flow rate of the heat exchange fan 9 is set to an optimum flow rate such that the energy efficiency of the heat exchange system including the heat exchanger 8 is as high as possible with respect to the set temperature. At this time, the output flow rate of the heat exchange fan 9 is always set to be smaller than the output flow rate of the mixing fan 10. This is because when the output flow rate of the heat exchange fan 9 is larger, the air flows backward from the bypass ventilation passage 6 and the upper return pipe 24.
下部還気口21から空調機ユニット1の吸込口3に吸入された室内空気は、熱交用通気路5とバイパス通気路6へ分流し、混合室7の混合ファン10の吸い込み側で再び合流する。熱交用通気路5を通過する空気は、熱交換器8で熱交換がされ、必要に応じて電気補助ヒータ11により給熱がされることにより、設置された温度に調温される。一方、混合ファン10の駆動により、上部還気口22から混合ファン10へ、室の天井面の壁面近傍の室内空気が吸入される。このとき、室の天井面の壁面近傍の空中に浮遊する塵埃も室内空気とともに吸入される。また、外気導入が必要な場合、外気導入管25を通して室外空気が混合ファン10の吸い込み側へ供給される。 The room air sucked from the lower return port 21 to the suction port 3 of the air conditioner unit 1 is divided into the heat exchange ventilation passage 5 and the bypass ventilation passage 6, and is rejoined at the suction side of the mixing fan 10 in the mixing chamber 7. To do. The air passing through the heat exchange ventilation passage 5 is heat-exchanged by the heat exchanger 8 and is supplied with heat by the electric auxiliary heater 11 as needed, whereby the temperature is adjusted to the installed temperature. On the other hand, by driving the mixing fan 10, the room air near the wall surface of the ceiling surface of the room is sucked into the mixing fan 10 from the upper return port 22. At this time, dust floating in the air near the wall surface of the ceiling surface of the room is also sucked together with the room air. In addition, when the outside air needs to be introduced, the outside air is supplied to the suction side of the mixing fan 10 through the outside air introduction pipe 25.
熱交用通気路5、バイパス通気路6、上部還気管24、外気導入管25のそれぞれから混合室7へ流入した空気は、混合ファン10により完全に混合された後、混合チャンバ27aへ送風される。混合チャンバ27aでは、各空調機ユニット1から送風される空気がさらに混合される。そして、混合チャンバ27aに流入し混合された空気は、HEPAフィルタ27Bによって除塵された後、給気口23から室内へ放出される。 The air flowing into the mixing chamber 7 from each of the heat exchange ventilation passage 5, the bypass ventilation passage 6, the upper return pipe 24, and the outside air introduction pipe 25 is completely mixed by the mixing fan 10 and then blown into the mixing chamber 27a. It In the mixing chamber 27a, the air blown from each air conditioner unit 1 is further mixed. Then, the air that has flowed into the mixing chamber 27a and is mixed is dedusted by the HEPA filter 27B, and then discharged from the air supply port 23 into the room.
このように、本実施例によれば、熱交用ファン9及び混合ファン10により、熱交換器8で調温される空気流量とバイパス通気路6、上部還気管24、及び外気導入管25から導入される風量調節用の空気流量とはそれぞれ独立に制御が可能であるため、混合ファン10によって空調機ユニット1から吐出される全体の空気流量を制御しつつ、熱交用ファン9によって熱交換器8を含む熱交換系全体(熱交換器8及び熱交換器8に流す熱媒又は冷媒の加熱/冷却系の全体のこと。)のエネルギー効率が最適となるように熱交用通気路5の空気流量を制御することができる。また、熱交用通気路5を流通する調温空気と、バイパス通気路6、上部還気管24、及び外気導入管25を通過した調温されていない空気とは、混合ファン10を通過することで完全に混合されるため、空調機ユニット1から吐出される空気に温度ムラを生じなくすることが可能となる。 As described above, according to the present embodiment, the heat exchange fan 9 and the mixing fan 10 allow the air flow rate controlled by the heat exchanger 8 and the bypass ventilation passage 6, the upper return air pipe 24, and the outside air introduction pipe 25 to Since the flow rate can be controlled independently of the air flow rate for adjusting the introduced air volume, the heat exchange fan 9 can exchange heat while controlling the total air flow rate discharged from the air conditioner unit 1 by the mixing fan 10. Ventilation passage 5 for heat exchange so that the energy efficiency of the entire heat exchange system including the heat exchanger 8 (the entire heat exchanger 8 and the heating/cooling system for the heat medium or refrigerant flowing through the heat exchanger 8) is optimized. The air flow rate can be controlled. Further, the temperature-controlled air flowing through the heat exchange ventilation passage 5 and the non-temperature-controlled air that has passed through the bypass ventilation passage 6, the upper return air pipe 24, and the outside air introduction pipe 25 should pass through the mixing fan 10. As a result, the air discharged from the air conditioner unit 1 can be prevented from being uneven in temperature because it is completely mixed.
図3は、本発明の実施例2に係る空調機ユニットの構成を表す模式断面図である。図3の断面図は図1(d)の断面図に相当する。図3において、実施例1の図1の各構成部分に対応する構成部分には、同符号を付して説明は省略する。実施例1と比較すると、本実施例では、新たに殺菌灯13,13を設けた点が実施例1と相違している。殺菌灯13は、殺菌用の紫外線を照射するUV照射器である。熱交換器8の近傍の熱交換器8周辺に光線が照射される位置に設けられており、本実施例では、熱交換器8の吸込口3側(上流側)に1つと、熱交換器8の熱交用通気路5側(下流側)に1つ設けられている。「UV照射器」としては、紫外線ランプや高出力紫外線LEDが用いられるが、発熱の少なさや寿命の長さ、消費電力の少なさの観点から高出力紫外線LEDを使用するのが好ましい。殺菌灯13の点灯/消灯は電装ボックス12内の制御回路により制御され、空調機ユニット1の起動中に連続的又は間歇的に照射するように制御される。 FIG. 3 is a schematic cross-sectional view showing the configuration of the air conditioner unit according to the second embodiment of the present invention. The sectional view of FIG. 3 corresponds to the sectional view of FIG. In FIG. 3, components corresponding to those in FIG. 1 of the first embodiment are designated by the same reference numerals, and description thereof will be omitted. Compared to the first embodiment, the present embodiment is different from the first embodiment in that sterilization lamps 13 and 13 are newly provided. The sterilization lamp 13 is a UV irradiator that irradiates ultraviolet rays for sterilization. The heat exchanger 8 is provided at a position near the heat exchanger 8 where light rays are irradiated. In the present embodiment, one is provided on the suction port 3 side (upstream side) of the heat exchanger 8 and the heat exchanger 8 is provided. 8 is provided on the heat exchange ventilation passage 5 side (downstream side). As the "UV irradiator", an ultraviolet lamp or a high-power ultraviolet LED is used, but it is preferable to use a high-power ultraviolet LED from the viewpoint of less heat generation, longer life, and lower power consumption. Turning on/off of the germicidal lamp 13 is controlled by a control circuit in the electrical equipment box 12, and is controlled so as to irradiate continuously or intermittently while the air conditioner unit 1 is being activated.
空調機ユニット1を冷房運転で作働させると、熱交換器8周辺には、空気中の水分が凝集して結露を生じる。この結露によって、熱交換器8周辺は、黴が発生しやすい環境となっている。本実施例では、熱交換器8の近傍に殺菌灯13を設け、熱交換器8周辺に殺菌用光線を連続的又は間歇的に照射することで、熱交換器8周辺を殺菌し、黴の発生を防止することで、HEPAフィルタ28の目詰まりや機能低下を防止し、室内の空気清浄度をより高く保つことが可能となっている。 When the air conditioner unit 1 is operated in the cooling operation, moisture in the air is condensed around the heat exchanger 8 to cause dew condensation. Due to this dew condensation, the area around the heat exchanger 8 is in an environment where mold is likely to occur. In this embodiment, a sterilizing lamp 13 is provided in the vicinity of the heat exchanger 8 and the periphery of the heat exchanger 8 is continuously or intermittently irradiated with a sterilizing light beam to sterilize the periphery of the heat exchanger 8 and mold. By preventing the generation, it is possible to prevent the HEPA filter 28 from being clogged or having its function deteriorated, and to keep the indoor air cleanliness higher.
1 空調機ユニット
2 ケーシング
2a フロントパネル
3 吸込口
3a 吸込口グリル
3b プレフィルタ
4 吹出口
5 熱交用通気路
6 バイパス通気路
7 混合室
8 熱交換器
8a ドレンパン
8b ドレン配管
9 熱交用ファン
10 混合ファン
11 電気補助ヒータ
12 電装ボックス
13 殺菌灯
20 室
21 下部還気口
22 上部還気口
23 給気口
24 上部還気管
25 外気導入管
26 給気管
27 天井吹出ユニット
27a 混合チャンバ
27b HEPAフィルタ
1 Air Conditioner Unit 2 Casing 2a Front Panel 3 Suction Port 3a Suction Port Grill 3b Pre-filter 4 Outlet 5 Heat Exchange Vent 6 Bypass Vent 7 Mixing Chamber 8 Heat Exchanger 8a Drain Pan 8b Drain Piping 9 Heat Exchange Fan 10 Mixing fan 11 Electric auxiliary heater 12 Electrical equipment box 13 Sterilization lamp 20 Room 21 Lower return air port 22 Upper return air port 23 Air supply port 24 Upper return air pipe 25 Outside air introduction pipe 26 Air supply pipe 27 Ceiling blowout unit 27a Mixing chamber 27b HEPA filter
Claims (4)
前記ケーシング内に形成された、前記吸込口と前記吹出口を連通する熱交用通気路と、
前記ケーシング内に前記熱交用通気路に並列に形成された、前記吸込口と前記吹出口を連通するバイパス通気路と、
前記ケーシング内の前記吹出口側において前記熱交用通気路と前記バイパス通気路とが合流する混合室と、
前記熱交用通気路内又はその入口に配設された熱交換器と、
前記熱交用通気路内に配設され、前記吸込口側から前記吹出口側へ空気を圧送する熱交用ファンと、
前記混合室内に配設された、前記吹出口側へ空気を混合圧送する混合ファンと、を備えた空調機ユニット。 A casing having a suction port on the side surface on one end side and a blowout port on the other end side,
A heat exchange air passage formed in the casing, which communicates the suction port and the air outlet,
A bypass air passage formed in parallel with the heat exchange air passage in the casing, which connects the suction port and the air outlet,
A mixing chamber in which the heat exchange air passage and the bypass air passage merge on the outlet side in the casing,
A heat exchanger arranged in the heat exchange ventilation passage or at the inlet thereof,
A heat exchange fan that is arranged in the heat exchange air passage and that sends air from the suction port side to the air outlet side under pressure,
An air conditioner unit, comprising: a mixing fan, which is arranged in the mixing chamber and mix-feeds air to the outlet side.
室の天井面近旁の壁面又は室の壁面近旁の天井面に形成された上部還気口と、
室の天井面に形成された給気口と、
前記下部還気口に前記吸込口が面するように、室の壁の外側に設置された請求項1乃至3の何れか一記載の空調機ユニットと、
前記上部還気口と前記空調機ユニットの前記混合室の前記混合ファンの吸引口側とを連通する上部還気管と、
前記空調機ユニットの前記吹出口と前記給気口とを連通する給気管と、を備えた空調システム。 A lower return port formed on the wall near the floor of the room,
An upper return port formed on the wall surface close to the ceiling surface of the room or on the ceiling surface close to the wall surface of the room,
An air supply port formed on the ceiling surface of the room,
The air conditioner unit according to any one of claims 1 to 3, wherein the air conditioner unit is installed outside a wall of a chamber so that the suction port faces the lower return port.
An upper return air pipe communicating the upper return air port and the suction port side of the mixing fan of the mixing chamber of the air conditioner unit,
An air conditioning system, comprising: an air supply pipe that connects the air outlet of the air conditioner unit to the air supply port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019006372A JP2020115058A (en) | 2019-01-17 | 2019-01-17 | Air conditioner unit and air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019006372A JP2020115058A (en) | 2019-01-17 | 2019-01-17 | Air conditioner unit and air conditioning system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020115058A true JP2020115058A (en) | 2020-07-30 |
Family
ID=71778481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019006372A Pending JP2020115058A (en) | 2019-01-17 | 2019-01-17 | Air conditioner unit and air conditioning system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020115058A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125126U (en) * | 1991-05-02 | 1992-11-16 | クボタトレーン株式会社 | Ultra thin air conditioner |
JPH09203541A (en) * | 1996-01-27 | 1997-08-05 | Osaka Gas Co Ltd | Air conditioner indoor apparatus having ventilation function |
JP2001041520A (en) * | 1999-07-29 | 2001-02-16 | Hitachi Plant Eng & Constr Co Ltd | Ceiling structure for clean room facility |
JP2001090974A (en) * | 1999-09-20 | 2001-04-03 | Fujitsu General Ltd | Air-conditioner |
JP2004077002A (en) * | 2002-08-14 | 2004-03-11 | Hitachi Plant Eng & Constr Co Ltd | Air conditioner |
JP2017093608A (en) * | 2015-11-19 | 2017-06-01 | 清水建設株式会社 | Air conditioning system for operation room |
-
2019
- 2019-01-17 JP JP2019006372A patent/JP2020115058A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125126U (en) * | 1991-05-02 | 1992-11-16 | クボタトレーン株式会社 | Ultra thin air conditioner |
JPH09203541A (en) * | 1996-01-27 | 1997-08-05 | Osaka Gas Co Ltd | Air conditioner indoor apparatus having ventilation function |
JP2001041520A (en) * | 1999-07-29 | 2001-02-16 | Hitachi Plant Eng & Constr Co Ltd | Ceiling structure for clean room facility |
JP2001090974A (en) * | 1999-09-20 | 2001-04-03 | Fujitsu General Ltd | Air-conditioner |
JP2004077002A (en) * | 2002-08-14 | 2004-03-11 | Hitachi Plant Eng & Constr Co Ltd | Air conditioner |
JP2017093608A (en) * | 2015-11-19 | 2017-06-01 | 清水建設株式会社 | Air conditioning system for operation room |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101790696B1 (en) | Heat exchange type ventilator having bypass and recirculation function | |
KR101824148B1 (en) | Ventilator | |
US9593859B2 (en) | Clean zone HVAC system | |
KR102109532B1 (en) | Indoor ventilation system photoplasma | |
KR102267172B1 (en) | Integrated Control Air-Circulaiton System and method of Each Room | |
KR101873047B1 (en) | a Waste heat recovery air conditioner of underground facility | |
KR101105995B1 (en) | Heat Recovering Ventilation Apparatus | |
KR101348786B1 (en) | Heating and cooling devices | |
KR102102831B1 (en) | Air conditioning system using indoor garden | |
KR20180014122A (en) | Ventilator | |
CN108302685B (en) | Air circulation system having internal air circulation, discharge and suction functions | |
CN113811720A (en) | PTAC unit with dynamic intelligent air management system | |
KR100730716B1 (en) | An air condition system with connect the ventilator | |
KR20170094982A (en) | Purification type heat exchanger having the part for preventing dew condensation | |
KR101967132B1 (en) | Air conditioning unit with floor suction | |
KR102319066B1 (en) | Integrated system having heating, cooling, and ventilating function in room of building and method thereof | |
WO2022054616A1 (en) | Air purification device and air purifying function-equipped heat exchange-type ventilation device using same | |
KR100886561B1 (en) | Airconditioning system for operating room | |
KR20100005319A (en) | Air conditioner with plasma generator & peltier element | |
KR102305958B1 (en) | Eco-friendly cooling and heating ventilation integrated ceiling condition unit | |
JP2020115058A (en) | Air conditioner unit and air conditioning system | |
KR101379850B1 (en) | heat exchanger using air supply system | |
KR20180130981A (en) | Air conditioning apparatus | |
KR20210154510A (en) | Ventilator | |
KR20220081255A (en) | Ventilation apparatus and integrated airconditioning system having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190122 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200819 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200819 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210624 |