JP2020112753A - Liquid crystal cell - Google Patents

Liquid crystal cell Download PDF

Info

Publication number
JP2020112753A
JP2020112753A JP2019005355A JP2019005355A JP2020112753A JP 2020112753 A JP2020112753 A JP 2020112753A JP 2019005355 A JP2019005355 A JP 2019005355A JP 2019005355 A JP2019005355 A JP 2019005355A JP 2020112753 A JP2020112753 A JP 2020112753A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
electric field
salt
imogolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019005355A
Other languages
Japanese (ja)
Inventor
一洋 敷中
Kazuhiro Shikinaka
一洋 敷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019005355A priority Critical patent/JP2020112753A/en
Publication of JP2020112753A publication Critical patent/JP2020112753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

To provide a planar liquid crystal cell for liquid crystal display devices, which uses an electric field-responsive ferromagnetic liquid crystal preferably with a surface that has been stabilized without using a substrate alignment treatment.SOLUTION: A planar liquid crystal cell for liquid crystal display devices is provided, comprising two substrates and a liquid crystal layer sandwiched between the two substrate, the liquid crystal layer consisting of an electric field-responsive ferromagnetic liquid crystal made of a composition containing imogolite.SELECTED DRAWING: Figure 2

Description

本発明は、液晶セルに関し、さらに詳しくは好適には電場応答性表面安定化強誘電性液晶を液晶層とする平面状液晶セルに関する。 TECHNICAL FIELD The present invention relates to a liquid crystal cell, and more particularly to a planar liquid crystal cell having a liquid crystal layer of a field-responsive surface-stabilized ferroelectric liquid crystal.

自発分極を有する強誘電性液晶を配向膜で安定化することにより、一般的に高速応答を示す液晶である表面安定化強誘電性液晶が得られる(非特許文献1)。具体的には、強誘電性液晶をらせんの周期(ピッチ)よりも小さいセルギャップ(セル厚)に充填するとねじれ配向が解消し、基板面内で2つの安定配向を生じる。この状態で電圧を印加すると、液晶分子の向きが基板面内で高速にスイッチする。これは光の偏光方向を90度回転させるため、平行または垂直な偏光板間(クロスニコル状態)で高速な透過光変調を引き起こすためである。 By stabilizing a ferroelectric liquid crystal having spontaneous polarization with an alignment film, a surface-stabilized ferroelectric liquid crystal that is a liquid crystal that generally exhibits a fast response can be obtained (Non-Patent Document 1). Specifically, when a ferroelectric liquid crystal is filled in a cell gap (cell thickness) smaller than the spiral period (pitch), the twisted orientation is eliminated, and two stable orientations occur in the plane of the substrate. When a voltage is applied in this state, the orientation of liquid crystal molecules is switched at high speed within the plane of the substrate. This is because the polarization direction of light is rotated by 90 degrees, which causes high-speed transmitted light modulation between parallel or vertical polarizing plates (crossed Nicols state).

一方、本発明者は、先般、イモゴライトを含む重合用組成物(特許文献1)、およびイモゴライトを含むイオン導電性を有する組成物(特許文献2)について検討した経緯がある。 On the other hand, the present inventor has recently studied the composition for polymerization containing imogolite (Patent Document 1) and the composition having ionic conductivity containing imogolite (Patent Document 2).

特開2013−213086号公報JP, 2013-213086, A 特開2016−199428号公報JP, 2016-199428, A

N. A. Clark et al., Appl. Phys. Lett., 1980, 36,1899N. A. Clark et al., Appl. Phys. Lett., 1980, 36,1899

通常、強誘電性液晶を表面安定化強誘電性液晶に導くためには、配向膜などの基板による配向処理を必要とする。そこで、本発明は、上記の課題を解決して、基板配向処理を行わないでも電場応答性強誘電性液晶、好適には表面安定化した電場応答性強誘電性液晶が得られ得ること、を見出し、これらを用いた液晶表示装置用の平面状液晶セルを提供することを目的とする。 Usually, in order to introduce the ferroelectric liquid crystal into the surface-stabilized ferroelectric liquid crystal, alignment treatment with a substrate such as an alignment film is required. Therefore, the present invention solves the above-mentioned problems, and it is possible to obtain an electric field responsive ferroelectric liquid crystal, preferably a surface-stabilized electric field responsive ferroelectric liquid crystal, without performing a substrate alignment treatment. It is an object of the present invention to provide a flat liquid crystal cell for a liquid crystal display device using the above headings.

本発明は、イモゴライト組成物が液晶として機能することを見出し、さらに上記の問題を解決するために、以下の発明を提供するものである。
(1)2枚の基板とその間に挟持された液晶層とを含んで構成される液晶表示装置用の平面状液晶セルにおいて、該液晶層はイモゴライトを含む組成物からなる電場応答性強誘電性液晶であることを特徴とする液晶セル。
(2)イモゴライトを含む組成物がさらに多官能性化合物を含む上記(1)に記載の液晶セル。
(3)多官能性化合物が、キラル多官能性化合物またはキラルのない多官能性化合物である上記(2)に記載の液晶セル。
(4)キラル多官能性化合物がリンゴ酸、酒石酸、シトラマル酸またはビス(4-メトキシベンゾイル)-酒石酸である上記(3)に記載の液晶セル。
(5)イモゴライトを含む組成物がさらにイオン液体を含む上記(1)〜(4)のいずれかに記載の液晶セル。
(6)イオン液体は、アンモニウム塩、イミダゾリウム塩、スルホニウム塩、ピリジニウム塩、ピロリジニウム塩、ホスホニウム塩、ピペリジニウム塩、またはモルホリニウム塩である上記(5)に記載の液晶セル。
(7)イモゴライトが全組成物100質量部に対して2〜10質量部含まれる上記(1)〜(6)のいずれかに記載の液晶セル。
(8)平板状セルのセル厚が1〜700μmである上記(1)〜(7)のいずれかに記載の液晶セル。
(9)電場応答性強誘電性液晶が表面安定化された電場応答性強誘電性液晶である、上記(1)〜(8)のいずれかに記載の液晶セル。
The present invention has found that the imogolite composition functions as a liquid crystal, and further provides the following invention in order to solve the above problems.
(1) In a planar liquid crystal cell for a liquid crystal display device, which includes two substrates and a liquid crystal layer sandwiched between the two substrates, the liquid crystal layer is composed of a composition containing imogolite, and has electric field responsive ferroelectricity. A liquid crystal cell characterized by being a liquid crystal.
(2) The liquid crystal cell according to (1), wherein the composition containing imogolite further contains a polyfunctional compound.
(3) The liquid crystal cell according to (2) above, wherein the polyfunctional compound is a chiral polyfunctional compound or a non-chiral polyfunctional compound.
(4) The liquid crystal cell according to the above (3), wherein the chiral polyfunctional compound is malic acid, tartaric acid, citramalic acid or bis(4-methoxybenzoyl)-tartaric acid.
(5) The liquid crystal cell according to any one of the above (1) to (4), wherein the composition containing imogolite further contains an ionic liquid.
(6) The liquid crystal cell according to the above (5), wherein the ionic liquid is an ammonium salt, an imidazolium salt, a sulfonium salt, a pyridinium salt, a pyrrolidinium salt, a phosphonium salt, a piperidinium salt, or a morpholinium salt.
(7) The liquid crystal cell according to any one of (1) to (6) above, which contains 2 to 10 parts by mass of imogolite with respect to 100 parts by mass of the total composition.
(8) The liquid crystal cell according to any one of (1) to (7) above, wherein the flat plate cell has a cell thickness of 1 to 700 μm.
(9) The liquid crystal cell according to any one of (1) to (8) above, wherein the electric field-responsive ferroelectric liquid crystal is a surface-stabilized electric field-responsive ferroelectric liquid crystal.

本発明によれば、基板配向処理を行わないでも電場応答性強誘電性液晶、好適には表面安定化した電場応答性強誘電性液晶、を用いた液晶表示装置用の平面状液晶セルを提供し得る。 According to the present invention, there is provided a planar liquid crystal cell for a liquid crystal display device using an electric field responsive ferroelectric liquid crystal, preferably a surface-stabilized electric field responsive ferroelectric liquid crystal without substrate alignment treatment. You can

電場応答評価用液晶セルの一例を示す図。The figure which shows an example of the liquid crystal cell for electric field response evaluation. イモゴライト分散液の電場応答性の評価結果を示す。The evaluation result of the electric field response of the imogolite dispersion liquid is shown. イモゴライト−マレイン酸複合ゲルの電場応答性の評価結果を示す。The evaluation result of the electric field response of the imogolite-maleic acid composite gel is shown. イモゴライト−リンゴ酸複合ゲルの電場応答性の評価結果を示す。The evaluation result of the electric field response of the imogolite-malic acid composite gel is shown. イモゴライトーキラル多官能性化合物―イオン液体複合ゲルの電場応答性の評価結果を示す。The evaluation result of the electric field response of the imogolite-chiral polyfunctional compound-ionic liquid composite gel is shown. 配向したイモゴライト−リンゴ酸複合ゲルの電場応答性の評価結果を示す。The evaluation result of the electric field response of the oriented imogolite-malic acid composite gel is shown. スペーサーが厚い液晶セル内におけるイモゴライト−リンゴ酸複合ゲルの電場応答性の評価結果を示す。The evaluation result of the electric field responsiveness of the imogolite-malic acid composite gel in the liquid crystal cell with a thick spacer is shown.

本発明の液晶セルは、2枚の基板とその間に挟持された液晶層とを含んで構成される液晶表示装置用の平面状液晶セルにおいて、該液晶層はイモゴライトを含む組成物からなる電場応答性強誘電性液晶であることを特徴とする。 The liquid crystal cell of the present invention is a planar liquid crystal cell for a liquid crystal display device including two substrates and a liquid crystal layer sandwiched between the two substrates, wherein the liquid crystal layer is an electric field response made of a composition containing imogolite. It is characterized by being a ferroelectric liquid crystal.

平面状液晶セルは、液晶表示装置用であり、通常、たとえば2枚の基板とその間に挟持された液晶層とを含んで構成される。液晶表示装置の構造は、各構成要素が層状に形成され、例えば1つの態様において、出入りする光をコントロールする偏光フィルター、液晶層を挟持する2枚の基板、液晶表示装置を駆動するための透明電極、液晶の分子を一定方向に並べるための配向膜、液晶層、液晶層を挟む基板に均一なスペースを確保するスペーサー、色を表示するカラーフィルタ、および背後から光を当てて画面を明るくするためのバックライトから構成される。 The flat liquid crystal cell is for a liquid crystal display device, and is usually composed of, for example, two substrates and a liquid crystal layer sandwiched between them. In the structure of the liquid crystal display device, each constituent element is formed in layers, and in one aspect, for example, a polarizing filter that controls light entering and exiting, two substrates that sandwich the liquid crystal layer, and a transparent film for driving the liquid crystal display device. Electrodes, alignment films for arranging liquid crystal molecules in a certain direction, liquid crystal layers, spacers that secure a uniform space between substrates sandwiching liquid crystal layers, color filters that display colors, and light from behind to brighten the screen. It is composed of a backlight for.

液晶層を挟持する2枚の基板としては、ガラス基板が好適に使用され、その表面に構築される電極や回路の処理工程の最高温度によって、ソーダガラス、石英ガラス、無アルカリガラス等が使用される。ガラス厚は.目的により0.3〜1mm程度から選択される。透明電極としては、電気抵抗が低く、パターン加工の容易なインジウムとスズの酸化物であるITOが広く用いられている。これらの構成および作製手順は、従来知られている構成および作製手順をいずれも採用し得る。 A glass substrate is preferably used as the two substrates sandwiching the liquid crystal layer, and soda glass, quartz glass, alkali-free glass or the like is used depending on the maximum temperature of the processing steps of the electrodes and circuits constructed on the surface. It The glass thickness is selected from about 0.3 to 1 mm depending on the purpose. As the transparent electrode, ITO, which is an oxide of indium and tin and which has low electric resistance and is easily patterned, is widely used. As these configurations and manufacturing procedures, any conventionally known configurations and manufacturing procedures can be adopted.

本発明の液晶セルにおいて、液晶層は、イモゴライトを含む組成物からなる電場応答性強誘電性液晶、好適には表面安定化した電場応答性強誘電性液晶である。強誘電性は、自発分極を持つ誘電性であり、外場を印加しなくても分極を生じている。 In the liquid crystal cell of the present invention, the liquid crystal layer is an electric field responsive ferroelectric liquid crystal composed of a composition containing imogolite, preferably a surface-stabilized electric field responsive ferroelectric liquid crystal. Ferroelectricity is dielectric with spontaneous polarization, and polarization is generated without applying an external field.

イモゴライト(芋子石, いもごせき、Imogolite)は、ケイ酸塩鉱物の一種であり、化学組成は、Al2SiO3(OH)4であり、擬六方晶系の粘土鉱物である。イモゴライト(以下、IGということがある)は、アルミニウムとケイ素からなるナノチューブ状無機高分子であり、天然品および合成品のいずれも使用され得るが、純度、入手しやすさの点から合成品が好適である。IGの外形形状は、長さが数十nm〜数μm、外径が2nm〜3nmと、高いアスペクト比を有している。また、IGの表面には、多数の水酸基が存在するため、水を始めとした溶媒に容易に分散することができる。 Imogolite is a kind of silicate mineral, its chemical composition is Al 2 SiO 3 (OH) 4 , and it is a pseudo-hexagonal clay mineral. Imogolite (hereinafter sometimes referred to as IG) is a nanotube-shaped inorganic polymer composed of aluminum and silicon, and both natural products and synthetic products can be used. However, synthetic products are not available because of their purity and availability. It is suitable. The outer shape of the IG has a high aspect ratio with a length of several tens nm to several μm and an outer diameter of 2 nm to 3 nm. Further, since many hydroxyl groups are present on the surface of IG, it can be easily dispersed in a solvent such as water.

このようなIGは、水等の媒体中で分散された場合に、可逆的な網目構造を取ることができる。そのため、液体中で網目構造を取る場合には、粘度を上昇させたり、擬塑性(チクソトロピー性)を付与することができ、例えば、流動時の流動性を確保したまま、静置時の液体の流動性を低下させることを期待できる。 Such an IG can have a reversible network structure when dispersed in a medium such as water. Therefore, when taking a network structure in the liquid, it is possible to increase the viscosity or impart pseudoplasticity (thixotropic property), for example, while maintaining the fluidity at the time of flowing, the It can be expected to reduce liquidity.

本発明において、IGは水等の媒体中に分散させた分散液として用いられ、組成物全体に対するIGの添加量は、全組成物100質量部に対して、例えば、2〜10質量部、好適には5〜10質量部である。 In the present invention, IG is used as a dispersion liquid dispersed in a medium such as water, and the amount of IG added to the entire composition is, for example, 2 to 10 parts by mass, preferably 100 parts by mass of the total composition. 5 to 10 parts by mass.

本発明の液晶セルにおいて、IGを含む組成物はさらに多官能性化合物を含むことにより、IG表面にらせん状に並ぶアルミノール基が多官能性化合物により架橋されることで、チクソトロピー性ゲルが得られる。このとき、ゲル内部のIGが前記表面アルミノール基配列を反映したらせん構造を形成すると考えられ、そのらせん構造がセル厚(セルギャップ、すなわち、2枚の基板間の距離)の小さい平板状のセル内に閉じ込められると、電場応答性表面安定化強誘電性液晶として機能する。多官能性化合物としては、キラル多官能性化合物およびキラルのない多官能性化合物から選ばれる1種以上が用いられるが、IG表面の架橋性の点からキラル多官能性化合物が好適である。 In the liquid crystal cell of the present invention, the composition containing IG further contains a polyfunctional compound, whereby the aluminol groups arranged in a spiral on the IG surface are crosslinked by the polyfunctional compound to obtain a thixotropic gel. To be At this time, it is considered that the IG inside the gel forms a spiral structure that reflects the surface aluminol group arrangement, and the spiral structure is a flat plate shape with a small cell thickness (cell gap, that is, the distance between two substrates). When confined in the cell, it functions as an electric field responsive surface-stabilized ferroelectric liquid crystal. As the polyfunctional compound, one or more kinds selected from a chiral polyfunctional compound and a non-chiral polyfunctional compound are used, and the chiral polyfunctional compound is preferable from the viewpoint of crosslinkability of the IG surface.

キラル多官能性化合物としては、リンゴ酸、酒石酸、シトラマル酸、ビス(4-メトキシベンゾイル)-酒石酸、ベンジルこはく酸、ジベンゾイル-酒石酸、ジ-p-トルオイル-酒石酸、ジアセチル-酒石酸、グアニジノグルタル酸、メチルこはく酸、フェニルこはく酸、1-メチルブタン-1,2,4-トリカルボン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、3-ヒドロキシ-1-プロペン-1,2,3-トリカルボン酸、1-ヒドロキシ-2-ペンテン-1,2,5-トリカルボン酸等が挙げられるが、入手しやすさ、架橋の強さ等の点から、2官能性のキラル化合物が好適であり、リンゴ酸、酒石酸などが挙げられる。 As the chiral polyfunctional compound, malic acid, tartaric acid, citramalic acid, bis(4-methoxybenzoyl)-tartaric acid, benzyl succinic acid, dibenzoyl-tartaric acid, di-p-toluoyl-tartaric acid, diacetyl-tartaric acid, guanidinoglutaric acid, Methyl succinic acid, phenyl succinic acid, 1-methylbutane-1,2,4-tricarboxylic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, 3-hydroxy-1-propene-1,2,3-tricarboxylic acid , 1-hydroxy-2-pentene-1,2,5-tricarboxylic acid, etc., but a bifunctional chiral compound is preferable from the viewpoints of availability, strength of cross-linking, etc., and malic acid , Tartaric acid and the like.

キラルのない多官能性化合物としては、2官能性であるのが好適であり、マレイン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ホスホノブタン酸等のカルボキシル基を有するものが挙げられる。 The polyfunctional compound having no chiral compound is preferably bifunctional, and examples thereof include those having a carboxyl group such as maleic acid, succinic acid, fumaric acid, glutaric acid, adipic acid and phosphonobutanoic acid.

キラル多官能性化合物等の多官能性化合物を用いる場合、組成物全体に対する添加量は、特に限定されないが、例えば、イモゴライトに対して0.1〜2質量部、好適には0.5〜1質量部である。 When a polyfunctional compound such as a chiral polyfunctional compound is used, the amount added to the entire composition is not particularly limited, but is, for example, 0.1 to 2 parts by mass, preferably 0.5 to 1 with respect to imogolite. Parts by mass.

さらに、IGはアスペクト比の高い剛直ナノチューブであるため、振とう刺激によるゲルの液化に続くずり流動により配向し、ずり流動を止めて静置すると配向構造を維持したままゲルが固化する。このとき、らせん構造は長周期に配向し、配向したらせん構造は協同的な分子構造変化を引き起こすため、より素早い電場応答を示す表面安定化強誘電性液晶をもたらす。 Furthermore, since the IG is a rigid nanotube with a high aspect ratio, it is oriented by shear flow following liquefaction of the gel by shaking stimulus, and when the shear flow is stopped and left standing, the gel solidifies while maintaining the oriented structure. At this time, the helical structure is oriented in a long period, and the oriented helical structure causes a cooperative molecular structure change, resulting in a surface-stabilized ferroelectric liquid crystal exhibiting a faster electric field response.

本発明の液晶セルにおいて、IGおよび多官能性化合物に加えて、さらにイオン液体を付加することにより、電気伝導率や熱安定性を向上した電場応答性強誘電性液晶、好適には電場応答性表面安定化強誘電性液晶を得ることができる。 In the liquid crystal cell of the present invention, by adding an ionic liquid in addition to the IG and the polyfunctional compound, an electric field responsive ferroelectric liquid crystal having improved electric conductivity and thermal stability, preferably an electric field responsiveness A surface-stabilized ferroelectric liquid crystal can be obtained.

イオン液体としては、たとえばアンモニウム塩、イミダゾリウム塩、スルホニウム塩、ピリジニウム塩、ピロリジニウム塩、ホスホニウム塩、ピペリジニウム塩、またはモルホリニウム塩の1種以上から選択され得る。これらの塩のアニオン種も特に限定されず、例えば、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、PF 、ClO 、SbF 、CFCOO、CFSO 、CSO 、等が挙げられる。 The ionic liquid may be selected from, for example, one or more of ammonium salt, imidazolium salt, sulfonium salt, pyridinium salt, pyrrolidinium salt, phosphonium salt, piperidinium salt, and morpholinium salt. The anion species of these salts is not particularly limited, and examples thereof include halide ions (I , Cl , Br −, etc.), SCN , BF 4 , PF 6 , ClO 4 , SbF 6 , CF 3 COO , CF 3 SO 3 , C 6 F 5 SO 3 , and the like.

アンモニウム塩のイオン液体としては、メチルトリオクチルアンモニウムトリフルオロアセテート、メチルトリオクチルアンモニウムトリフルオロメタンスルホネート、メチルトリオクチルアンモニウムビス(トリフルオロメチルスルホニル)イミド、等が挙げられる。 Examples of ionic liquids of ammonium salts include methyltrioctylammonium trifluoroacetate, methyltrioctylammonium trifluoromethanesulfonate, methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, and the like.

イミダゾリウム塩のイオン液体としては、1,3−ジメチルイミダゾリウムトリフルオロメタンスルホネート、1−エチル−3−メチルイミダゾリウムビス[オキサレート(2−)]ボレート、1−エチル−3−メチルイミダゾリウムテトラフルオロボレート、等が挙げられる。 Ionic liquids of imidazolium salts include 1,3-dimethylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium bis[oxalate(2-)]borate, 1-ethyl-3-methylimidazolium tetrafluoro. Examples include borate and the like.

ピリジニウム塩のイオン液体としては、N−エチルピリジニウムクロリド、N−エチルピリジニウムブロミド、N−ブチルピリジニウムクロリド、N−ブチルピリジニウムテトラフルオロボレート、N−ブチルピリジニウムヘキサフルオロフォスフェイト、N−ブチルピリジニウムトリフルオロメタンスルホネート、等が挙げられる。 Ionic liquids of pyridinium salts include N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-butylpyridinium chloride, N-butylpyridinium tetrafluoroborate, N-butylpyridinium hexafluorophosphate, N-butylpyridinium trifluoromethanesulfonate. , And the like.

ピロリジニウム塩のイオン液体としては、1−ブチル−1−メチルピロリジニウムクロリド、1−ブチル−1−メチルピロリジニウムトリフルオロメタンスルホネート、1−ブチル−1−メチルピロリジニウムビス(トリフルオロメチルスルホニル)イミド、1−ブチル−1−メチルピロリジニウムテトラフルオロボレート、1−ブチル−1−メチルピロリジニウムヘキサフルオロフォスフェイト、等が挙げられる。 The ionic liquid of the pyrrolidinium salt includes 1-butyl-1-methylpyrrolidinium chloride, 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl). ) Imido, 1-butyl-1-methylpyrrolidinium tetrafluoroborate, 1-butyl-1-methylpyrrolidinium hexafluorophosphate, and the like.

ホスホニウム塩のイオン液体としては、トリヘキシル(テトラデシル)ホスホニウムクロリド、トリヘキシル(テトラデシル)ホスホニウムトリス(ペンタフルオロエチル)トリフルオロフォスフェイト、トリヘキシル(テトラデシル)ホスホニウムテトラフルオロボレート、トリヘキシル(テトラデシル)ホスホニウムビス(トリフルオロメチルスルホニル)イミド、等が挙げられる。 The ionic liquid of the phosphonium salt includes trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate, trihexyl(tetradecyl)phosphonium tetrafluoroborate, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl). ) Imido and the like.

イオン液体を用いる場合、組成物全体に対する添加量は、特に限定されないが、全組成物100質量部に対して、例えば、1〜97質量部、好適には50〜90質量部である。IGの分散媒体として、水の一部または全部に代えてイオン液体を用いることもできる。 When an ionic liquid is used, the amount added to the entire composition is not particularly limited, but is, for example, 1 to 97 parts by mass, and preferably 50 to 90 parts by mass, relative to 100 parts by mass of the total composition. As the dispersion medium for the IG, an ionic liquid may be used instead of part or all of water.

平板状セルのセル厚は、目的に応じて、通常1〜700μm程度から選ばれるが、イモゴライトのらせん構造のピッチ(数十μm程度)以下のセル厚を用いると、イモゴライトが2つの方向に規制された安定配向を生じる。これにより、印加した交流電場の向きに従った分子配列の切り替わりを示し、高速な分子応答=光学特性変化を引き起こす(たとえば、複屈折の強度)。 The cell thickness of the flat plate cell is usually selected from about 1 to 700 μm according to the purpose, but if the cell thickness is equal to or smaller than the pitch of the spiral structure of imogolite (about several tens of μm), imogolite is regulated in two directions. Resulting in a stable orientation. As a result, the molecular arrangement is switched according to the direction of the applied AC electric field, which causes a rapid molecular response=optical property change (for example, the intensity of birefringence).

以下、実施例に基づいて本発明をさらに具体的に説明する。ただし、本発明は、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples. However, the present invention is not limited to the following examples.

<イモゴライトの合成>
Farmer V. V. et al., J. Chem. Soc. Chem. Commun. 13, 462-763 (1977)に従いイモゴライト (以下、IGと称する) を合成した。このIGをShikinaka K. et al., J. Appl. Polym. Sci. 132, 41691 (2015)に従い洗浄・精製し、IG白色粉末を得た。
<Synthesis of imogolite>
Imogolite (hereinafter referred to as IG) was synthesized according to Farmer VV et al., J. Chem. Soc. Chem. Commun. 13, 462-763 (1977). This IG was washed and purified according to Shikinaka K. et al., J. Appl. Polym. Sci. 132, 41691 (2015) to obtain IG white powder.

<イモゴライト水分散液の調製>
IG白色粉末を表面Al-OHユニットとして0.16 mol/L (6.4 wt/v%)となるように超純水 (Milli-Q(登録商標) Advantage A10(登録商標)を用いて調製)と混合し、自転・超音波ナノ分散機 分散ナノ太郎PR-1(シンキー社製)を用いて130〜170 Wの条件で4時間超音波照射処理し、分散液(以下、IG分散液と称する)を得た。
<Preparation of imogolite aqueous dispersion>
IG white powder was mixed with ultrapure water (prepared using Milli-Q (registered trademark) Advantage A10 (registered trademark)) so as to be 0.16 mol/L (6.4 wt/v%) as a surface Al-OH unit. Rotation/Ultrasonic Nano Disperser Dispersion Nanotaro PR-1 (manufactured by Sinky) was subjected to ultrasonic irradiation for 4 hours under the condition of 130 to 170 W to obtain a dispersion (hereinafter, referred to as IG dispersion). It was

<イモゴライト−多官能性化合物複合ゲルの調製>
IG分散液に等量の0.16 mol/Lのマレイン酸 (東京化成[TCI]製;以下、MAと称する)水溶液を加え、攪拌後静置した。約1時間の静置で混合物はゲル化した。ゲル状混合物(以下、IG−MAと称する)は、振とう刺激による液化に続き、10秒以内に固化するチクソトロピー性を示した。
<Preparation of Imogolite-Multifunctional Compound Composite Gel>
An equal amount of 0.16 mol/L aqueous solution of maleic acid (manufactured by Tokyo Kasei [TCI]; hereinafter referred to as MA) was added to the IG dispersion liquid, and the mixture was stirred and then left to stand. The mixture gelled after standing for about 1 hour. The gel-like mixture (hereinafter referred to as IG-MA) showed thixotropic property of solidifying within 10 seconds following liquefaction by shaking stimulation.

<イモゴライトーキラル多官能性化合物複合ゲルの調製>
IG分散液に等量の0.16 mol/Lのリンゴ酸 (TCI製;以下、MaAと称する)水溶液を加え、攪拌後静置した。約20分の静置で混合物はゲル化した。ゲル状混合物(以下、IG−MaAと称する)は、振とう刺激による液化に続き、10秒以内に固化するチクソトロピー性を示した。
<Preparation of imogolite-chiral polyfunctional compound composite gel>
An equal amount of a 0.16 mol/L aqueous solution of malic acid (manufactured by TCI; hereinafter referred to as MaA) was added to the IG dispersion liquid, and the mixture was stirred and allowed to stand. The mixture gelled after standing for about 20 minutes. The gel-like mixture (hereinafter referred to as IG-MaA) showed thixotropic property of solidifying within 10 seconds following liquefaction by shaking stimulation.

<イモゴライトーキラル多官能性化合物―イオン液体複合ゲルの調製>
IG分散液に等量の0.16 mol/LのMaA水溶液を加え、IG−MaA混合液と等量のイオン液体1-エチル-3-メチルイミダゾリウム2-(2-メトキシエトキシ)エチルサルフェート(TCI製;以下ILと称する)を混合した。混合物より水を除去するために60℃で3時間エバポレーションし、更に60℃で12時間乾燥した。その結果、均一なゲル状混合物(以下、IG−MaA−ILと称する)を得た。IG−MaA−ILは、振とう刺激による液化に続き、30秒以内に固化するチクソトロピー性を示した。
<Preparation of imogolite-chiral polyfunctional compound-ionic liquid composite gel>
An equal amount of 0.16 mol/L MaA aqueous solution was added to the IG dispersion liquid, and an ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy)ethylsulfate (manufactured by TCI) in the same amount as the IG-MaA mixed liquid. Hereinafter referred to as IL). The mixture was evaporated at 60° C. for 3 hours to remove water, and further dried at 60° C. for 12 hours. As a result, a uniform gel-like mixture (hereinafter referred to as IG-MaA-IL) was obtained. IG-MaA-IL showed thixotropic property of solidifying within 30 seconds following liquefaction by shaking stimulation.

<電場応答評価用液晶セルの作成>
電場応答を評価する試料(IG分散液、IG−MA、IG−MaAまたはIG−MaA−IL)10μLを、両面テープ(3Mまたは積水化学工業(株)製)をスペーサーとしITOコートスライドガラス(ITO glass;NANOCSTM製)で挟み込み、図1のような液晶セルを作成した。
<Creation of liquid crystal cell for evaluation of electric field response>
A sample (IG dispersion, IG-MA, IG-MaA or IG-MaA-IL) for evaluating the electric field response, 10 μL, a double-sided tape (3M or Sekisui Chemical Co., Ltd.) as a spacer, ITO coated slide glass (ITO glass; manufactured by NANOCS ) to produce a liquid crystal cell as shown in FIG.

<IG−MaAに配向構造を持たせた電場応答評価用液晶セルの作成>
IG−MaA10μLを2枚のITOガラスで挟んで、一方向にすり合わせてずりを与えた後、ITOガラスを両面テープ(スペーサーを兼ねる)にて張り合わせ、図1のような配向液晶セルを作成した。
<Preparation of liquid crystal cell for evaluating electric field response in which IG-MaA has an alignment structure>
10 μL of IG-MaA was sandwiched between two pieces of ITO glass, rubbed in one direction to give a slip, and then the ITO glass was stuck with a double-sided tape (also serving as a spacer) to prepare an oriented liquid crystal cell as shown in FIG.

<電場応答性評価>
図1にオレンジで示した金線 (田中貴金属製) を介し、ファンクションジェネレータAFG1022型(Tektronix社製)を用いて、正弦波/1 kHz〜25 MHz/1〜5 Vp-pの条件で液晶セルに交流電場を印加した。試料の複屈折変化を偏光顕微鏡 (Olympus BX51)にて観察し、CMOSカメラ (Olympus DP74)を通じ、画像/動画としてデータを取得した。電場を印加ないし停止(OFF)した後から複屈折の明暗反転が完了する時間を評価した。
<Evaluation of electric field response>
Using the function generator AFG1022 (made by Tektronix) through the gold wire (made by Tanaka Kikinzoku) shown in orange in Fig. 1 to form a liquid crystal cell under the conditions of sine wave/1 kHz to 25 MHz/1 to 5 V pp. An alternating electric field was applied. The birefringence change of the sample was observed with a polarization microscope (Olympus BX51), and data was acquired as an image/moving image through a CMOS camera (Olympus DP74). The time to complete the light-dark reversal of birefringence after applying or stopping (OFF) the electric field was evaluated.

<IG分散液の電場応答性>
段落〔0038〕に従い、スペーサー厚み30μmの液晶セルに交流電場を印加し、IG分散液の電場応答性を評価したところ、10 kHz〜1 MHz・5 Vp-pの条件で図2の様に複屈折の明暗反転が確認された。電場印加後から85秒での、電場OFF後から105秒での複屈折明暗反転の完了を確認した。
<Electric field response of IG dispersion>
According to paragraph [0038], when an AC electric field was applied to a liquid crystal cell with a spacer thickness of 30 μm and the electric field response of the IG dispersion liquid was evaluated, the birefringence was as shown in Fig. 2 under the conditions of 10 kHz to 1 MHz·5 V pp . It was confirmed that the light and dark were reversed. It was confirmed that the birefringence light-dark reversal was completed 85 seconds after the electric field was applied and 105 seconds after the electric field was turned off.

<IG−MAの電場応答性>
段落〔0038〕に従い、スペーサー厚み30μmの液晶セルに交流電場を印加し、IG−MAの電場応答性を評価したところ、10 kHz〜1 MHz・3〜5 Vp-pの条件で図3の様に複屈折の明暗反転が確認された。電場印加後から17秒での、電場OFF後から32秒での複屈折明暗反転の完了を確認した。
<Electric field response of IG-MA>
According to paragraph [0038], an AC electric field was applied to a liquid crystal cell with a spacer thickness of 30 μm and the electric field response of IG-MA was evaluated. As shown in FIG. 3, under the conditions of 10 kHz to 1 MHz and 3 to 5 V pp . A bright/dark reversal of birefringence was confirmed. It was confirmed that the birefringence light/dark reversal was completed 17 seconds after the electric field was applied and 32 seconds after the electric field was turned off.

<IG−MaAの電場応答性>
段落〔0038〕に従い、スペーサー厚み30μmの液晶セルに交流電場を印加し、IG−MaAの電場応答性を評価したところ、1 kHz〜1 MHz・3〜5 Vp-pの条件で図4の様に複屈折の明暗反転が確認された。電場印加後から16秒での、電場OFF後から23秒での複屈折明暗反転の完了を確認した。
<Electric field response of IG-MaA>
According to paragraph [0038], an AC electric field was applied to a liquid crystal cell with a spacer thickness of 30 μm, and the electric field response of IG-MaA was evaluated. As shown in FIG. 4, under the conditions of 1 kHz to 1 MHz and 3 to 5 V pp . A bright/dark reversal of birefringence was confirmed. It was confirmed that the birefringence light-dark reversal was completed 16 seconds after the electric field was applied and 23 seconds after the electric field was turned off.

<IG−MaA−ILの電場応答性>
段落〔0038〕に従いスペーサー厚み30μmの液晶セルに交流電場を印加し、IG−MaA−ILの電場応答性を評価したところ、1 kHz〜1 MHz・3〜5 Vp-pの条件で図5の様に複屈折の明暗反転が確認された。電場印加後から4秒での、電場OFF後から6秒での複屈折明暗反転の完了を確認した。
<Electric field response of IG-MaA-IL>
According to paragraph [0038], an AC electric field was applied to a liquid crystal cell with a spacer thickness of 30 μm, and the electric field response of IG-MaA-IL was evaluated. As shown in FIG. 5, under the condition of 1 kHz to 1 MHz·3 to 5 V pp . The light-dark reversal of the birefringence was confirmed. It was confirmed that the birefringence light-dark reversal was completed 4 seconds after the electric field was applied and 6 seconds after the electric field was turned off.

<配向したIG−MaAの電場応答性>
配向液晶セルでは、偏光顕微鏡下において消光位 (0°)・対角位(45°)における複屈折の反転(図6左)が確認され、セル内のIG-MaAが配向構造を形成していることが示唆された。段落〔0038〕に従いスペーサー厚み30μmの配向液晶セルに交流電場を印加し、配向したIG−MaAの電場応答性を評価したところ、1 kHz〜1 MHz・3〜5 Vp-pの条件で図6右の様に複屈折の明暗反転が確認された。電場印加後から5秒での、電場OFF後から8秒での複屈折明暗反転の完了を確認した。
<Electrical field response of oriented IG-MaA>
In the aligned liquid crystal cell, the reversal of birefringence at the extinction position (0°) and the diagonal position (45°) was confirmed under the polarization microscope (Fig. 6, left), and the IG-MaA in the cell formed an alignment structure It was suggested that When an alternating electric field aligned liquid crystal cell of the spacer thickness 30μm was applied according to paragraph [0038], was assessed electroactive of IG-MAA oriented, FIG right under the conditions of 1 kHz~1 MHz · 3~5 V pp The light-dark reversal of birefringence was confirmed as in. It was confirmed that the birefringence light/dark reversal was completed 5 seconds after the electric field was applied and 8 seconds after the electric field was turned off.

<スペーサーが厚い液晶セル内におけるIG−MaAの電場応答性>
段落〔0038〕に従い、スペーサー厚み584μmの液晶セルに交流電場を印加し、IG−MaAの電場応答性を評価したところ、1 kHz〜1 MHz・3〜5 Vp-pの条件で図7の様に複屈折の明暗反転が確認された。電場印加後から52秒での、電場OFF後から40秒での複屈折明暗反転の完了を確認した。
<Electric field response of IG-MaA in liquid crystal cell with thick spacer>
According to paragraph [0038], an AC electric field was applied to a liquid crystal cell with a spacer thickness of 584 μm and the electric field response of IG-MaA was evaluated. As shown in FIG. 7, under the conditions of 1 kHz to 1 MHz and 3 to 5 V pp . A bright/dark reversal of birefringence was confirmed. It was confirmed that the birefringence light/dark reversal was completed 52 seconds after the electric field was applied and 40 seconds after the electric field was turned off.

以上のように、イモゴライト単体水分散液およびイモゴライト−リンゴ酸(キラル多官能性化合物)ゲルの平板状セル内での電場応答の一例によれば、次の結果が得られた。薄いスペーサー(30μm)に挟まれた試料が、電場印加に伴い複屈折変化(写真の明暗変化)を引き起こす。キラル多官能性化合物であるリンゴ酸で架橋されたイモゴライトゲル(IG−MaAゲル)は、イモゴライト単体に比べ約5倍の速度の電場応答を示す。スペーサーが厚い(584μm)場合には、薄いスペーサーの場合に比べIG−MaAゲルは約3倍の時間を、キラルなしの多官能性化合物であるマレイン酸の場合には、IG−MaAゲルに比べ約1.4倍の応答時間を要する。ずりによりゲルを配向させた場合には、応答に要する時間がIG−MaAゲルに比べ約三分の一となり、高速な応答となる。IG−MaAゲルにおいて、分散媒体を水からイオン液体(1-エチル-3-メチルイミダゾリウム2-(2-メトキシエトキシ)エチルサルフェート)にすると、応答に要する時間が約四分の一と高速な応答となる。 As described above, according to an example of the electric field response of the imogolite simple substance aqueous dispersion and the imogolite-malic acid (chiral polyfunctional compound) gel in the flat cell, the following results were obtained. A sample sandwiched between thin spacers (30 μm) causes birefringence change (brightness/darkness change of photograph) with application of an electric field. The imogolite gel (IG-MaA gel) cross-linked with malic acid, which is a chiral polyfunctional compound, exhibits an electric field response at a rate of about 5 times that of imogolite alone. When the spacer is thick (584 μm), the IG-MaA gel takes about 3 times as long as when the spacer is thin, and when the spacer is maleic acid which is a polyfunctional compound without chiral, it is compared with the IG-MaA gel. It requires a response time of about 1.4 times. When the gel is oriented by shearing, the time required for response is about one-third that of the IG-MaA gel, resulting in a high-speed response. In the IG-MaA gel, when the dispersion medium is changed from water to an ionic liquid (1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy)ethylsulfate), the response time is about one-quarter, which is high. It will be a response.

本発明によれば、好適には表面安定化した電場応答性強誘電性液晶を用いた液晶表示装置用の平面状液晶セルを提供し得る。 According to the present invention, it is possible to provide a planar liquid crystal cell for a liquid crystal display device, which preferably uses a surface-stabilized field-responsive ferroelectric liquid crystal.

Claims (9)

2枚の基板とその間に挟持された液晶層とを含んで構成される液晶表示装置用の平面状液晶セルにおいて、該液晶層はイモゴライトを含む組成物からなる電場応答性強誘電性液晶であることを特徴とする液晶セル。 In a planar liquid crystal cell for a liquid crystal display device including two substrates and a liquid crystal layer sandwiched between the two substrates, the liquid crystal layer is an electric field responsive ferroelectric liquid crystal composed of a composition containing imogolite. A liquid crystal cell characterized in that イモゴライトを含む組成物がさらに多官能性化合物を含む請求項1に記載の液晶セル。 The liquid crystal cell according to claim 1, wherein the composition containing imogolite further contains a polyfunctional compound. 多官能性化合物がキラル多官能性化合物またはキラルのない多官能性化合物である請求項2に記載の液晶セル。 The liquid crystal cell according to claim 2, wherein the polyfunctional compound is a chiral polyfunctional compound or a non-chiral polyfunctional compound. キラル多官能性化合物がリンゴ酸、酒石酸、シトラマル酸またはビス(4-メトキシベンゾイル)-酒石酸である請求項3に記載の液晶セル。 The liquid crystal cell according to claim 3, wherein the chiral polyfunctional compound is malic acid, tartaric acid, citramalic acid or bis(4-methoxybenzoyl)-tartaric acid. イモゴライトを含む組成物がさらにイオン液体を含む請求項1〜4のいずれか1項に記載の液晶セル。 The liquid crystal cell according to claim 1, wherein the composition containing imogolite further contains an ionic liquid. イオン液体は、アンモニウム塩、イミダゾリウム塩、スルホニウム塩、ピリジニウム塩、ピロリジニウム塩、ホスホニウム塩、ピペリジニウム塩、またはモルホリニウム塩である請求項5に記載の液晶セル。 The liquid crystal cell according to claim 5, wherein the ionic liquid is an ammonium salt, an imidazolium salt, a sulfonium salt, a pyridinium salt, a pyrrolidinium salt, a phosphonium salt, a piperidinium salt, or a morpholinium salt. イモゴライトが全組成物100質量部に対して2〜10質量部含まれる請求項1〜6のいずれか1項に記載の液晶セル。 The liquid crystal cell according to claim 1, wherein the imogolite is contained in an amount of 2 to 10 parts by mass with respect to 100 parts by mass of the total composition. 平板状セルのセル厚が1〜700μmである請求項1〜7のいずれか1項に記載の液晶セル。 The liquid crystal cell according to claim 1, wherein the flat cell has a cell thickness of 1 to 700 μm. 電場応答性強誘電性液晶が表面安定化された電場応答性強誘電性液晶である、請求項1〜8のいずれか1項に記載の液晶セル。 9. The liquid crystal cell according to claim 1, wherein the field-responsive ferroelectric liquid crystal is a surface-stabilized field-responsive ferroelectric liquid crystal.
JP2019005355A 2019-01-16 2019-01-16 Liquid crystal cell Pending JP2020112753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019005355A JP2020112753A (en) 2019-01-16 2019-01-16 Liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005355A JP2020112753A (en) 2019-01-16 2019-01-16 Liquid crystal cell

Publications (1)

Publication Number Publication Date
JP2020112753A true JP2020112753A (en) 2020-07-27

Family

ID=71666884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005355A Pending JP2020112753A (en) 2019-01-16 2019-01-16 Liquid crystal cell

Country Status (1)

Country Link
JP (1) JP2020112753A (en)

Similar Documents

Publication Publication Date Title
JP4176722B2 (en) Display element and display device
Al‐Zangana et al. Properties of a thermotropic nematic liquid crystal doped with graphene oxide
JP5174857B2 (en) Display device
JP4392186B2 (en) High-speed response liquid crystal device and driving method
JP6632626B2 (en) Liquid crystal display device and driving method thereof
JP2006291016A (en) Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element
JP2005338800A (en) Display element and display device
WO2020238610A1 (en) A bistable light modulating device
Choi et al. Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1, 3, 5-tricarboxamide macrogelators
US5766508A (en) Liquid crystal composition
Haas et al. AC-field-induced Grandjean plane texture in mixtures of room-temperature nematics and cholesterics
JP2010144032A (en) Nanorod formulation for liquid crystal display for polarization control-type electro-optical apparatus
US20130321754A1 (en) Fumed Metal-Oxide Gel-Dispersed Blue-Phase Liquid Crystals and Devices Thereof
JPWO2009081989A1 (en) Projection display
Nayek et al. Effect of the grain size on hysteresis of liquid‐crystalline Blue Phase I
JP2020112753A (en) Liquid crystal cell
CN112015018A (en) Light modulation device and preparation method thereof
JP2002020753A (en) Liquid crystal composition, liquid crystal element using the same and liquid crystal displaying apparatus
CN104479689A (en) Liquid crystal composition
JP4700244B2 (en) High contrast smectic liquid crystal control or display device
TW201312242A (en) Optical device
CN112433403A (en) Light modulation device
Liu et al. Cholesteric flakes in motion driven by the elastic force from nematic liquid crystals
JP2005189299A (en) Electrochemical display device
Hwang et al. Aerosil Gels-Dispersed Blue-Phase Liquid Crystals: A New Technique to Control the Electro-Optical Behavior of a Fast-Switching Display.