JP2020112535A - Device for detecting degree of deterioration and energy accumulation remaining amount of power storage element - Google Patents

Device for detecting degree of deterioration and energy accumulation remaining amount of power storage element Download PDF

Info

Publication number
JP2020112535A
JP2020112535A JP2019112412A JP2019112412A JP2020112535A JP 2020112535 A JP2020112535 A JP 2020112535A JP 2019112412 A JP2019112412 A JP 2019112412A JP 2019112412 A JP2019112412 A JP 2019112412A JP 2020112535 A JP2020112535 A JP 2020112535A
Authority
JP
Japan
Prior art keywords
battery
voltage
storage element
power storage
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019112412A
Other languages
Japanese (ja)
Other versions
JP6589080B1 (en
Inventor
高岡 浩実
Hiromi Takaoka
浩実 高岡
竹村 理
Osamu Takemura
理 竹村
英志 田畑
Eiji Tabata
英志 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goiku Battery Co Ltd
Original Assignee
Goiku Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goiku Battery Co Ltd filed Critical Goiku Battery Co Ltd
Application granted granted Critical
Publication of JP6589080B1 publication Critical patent/JP6589080B1/en
Priority to US17/421,729 priority Critical patent/US20220082630A1/en
Priority to CN202080005369.5A priority patent/CN112771708B/en
Priority to PCT/JP2020/001003 priority patent/WO2020149288A1/en
Priority to EP20742049.8A priority patent/EP3913726A4/en
Publication of JP2020112535A publication Critical patent/JP2020112535A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a device for detecting a degree of deterioration and an energy accumulation remaining amount of a power storage element capable of recognizing a battery state by precisely and instantly detecting a degree of deterioration SOH and an energy accumulation remaining amount SOC of a power storage element.SOLUTION: A device 1 for detecting a degree of deterioration and an energy accumulation remaining amount of a secondary battery 10 for detecting a degree of deterioration SOH and an energy accumulation remaining amount SOC of the secondary battery 10 includes measurement means for measuring voltage and current of the secondary battery 10 and a control part having computation means for executing a predetermined computation. The control part 14 obtains an overvoltage δ in operation of the secondary battery by computation by using a battery equation shown in the following expression 1 on the basis of measurement values of a rising voltage and current when starting charging of the secondary battery.SELECTED DRAWING: Figure 5

Description

本発明は、二次電池等の蓄電素子のエネルギー残量を示す蓄電残量(SOC)、及び蓄電性能が初期に比べて、どの程度劣化あるいは熟成しているかを示す蓄電性能の劣化度(SOH)を検出する蓄電素子の劣化度及び蓄電残量検出装置に関する。 The present invention relates to a state of charge (SOC) indicating the remaining amount of energy of a storage element such as a secondary battery, and a degree of deterioration of the storage performance (SOH) indicating how much the storage performance has deteriorated or matured compared to the initial stage. ) Of the storage element and a remaining storage amount detection device.

二次電池は、電子機器、電動機器や車両などに広く用いられている。二次電池としては鉛電池、ニッケル水素電池、リチウムイオン電池等が挙げられる。二次電池は、放電と充電を繰り返して使用できる電池である。このような二次電池を利用するにあたり、二次電池の劣化度(SOH;State Of Health、初期を100%としたときの現在性能)、二次電池の蓄電残量(SOC;State Of Charge、充電深度とも呼ばれる。“空”を0%、“満”を100%とする。)を知って初めて二次電池の適切な利用は可能となる。 Secondary batteries are widely used in electronic devices, electric devices, vehicles, and the like. Examples of the secondary battery include a lead battery, a nickel hydrogen battery, a lithium ion battery and the like. The secondary battery is a battery that can be used by repeatedly discharging and charging. When such a secondary battery is used, the degree of deterioration of the secondary battery (SOH; State Of Health, current performance when the initial is taken as 100%), the remaining charge of the secondary battery (SOC; State Of Charge, It is also known as the depth of charge. When "empty" is 0% and "full" is 100%, it is possible to properly use the secondary battery.

二次電池のSOHやSOCを推定する技術としては、従来から種々提案されている(例えば、特許文献1〜3参照)。 Various techniques have been conventionally proposed as a technique for estimating the SOH and SOC of a secondary battery (see, for example, Patent Documents 1 to 3).

また、二次電池が各分野で、幅広く実用されながら二次電池の蓄電残量を精度良く検知する手段がなく、二次電池を電源として機能させる機器の使用者にとって、突然、機器が電気エネルギーの枯渇となって機能不能に陥るトラブルと不安感に付きまとわれているのが現状である。 In addition, while secondary batteries are widely used in various fields, there is no means for accurately detecting the remaining charge of the secondary battery, and for users of devices that use the secondary battery as a power source, the device suddenly becomes It is the current situation that people are stuck with the trouble and anxiety that they become inoperable due to the exhaustion of.

この理由としては、二次電池の端子電圧を計測して、当該端子電圧に関連づけて蓄電残量の推察を行う手法がとられている場合は、図1に示すように、リチウムイオン電池のような高性能な二次電池になるほど残量に対する端子電圧Vが“空(EMPTY)”か“満タン(FULL)”の極限の場合を除きほとんど変化しないため、端子電圧では残量確定が困難であり、必要な検出精度が実用の域を超えているという問題があった。 The reason for this is that if a method of measuring the terminal voltage of the secondary battery and estimating the remaining power storage amount in association with the terminal voltage is adopted, as shown in FIG. The higher the performance of the secondary battery, the terminal voltage V with respect to the remaining amount hardly changes except in the limit of “empty (EMPTY)” or “FULL”, so it is difficult to determine the remaining amount with the terminal voltage. However, there is a problem that the required detection accuracy exceeds the practical range.

また、上記以外の二次電池の蓄電残量の検出方法としては、電流の出入を時間積分して、電池からの電気量増減を基準値から加減算して残量の推察を行う方法がとられている。この場合は、基準値の設定、例えば基準値を満充電とするか残量ゼロにするか等の設定上の困難な課題を伴い、さらに、充電時、放電時の電池内部の損失が蓄電量に反映されないという問題があり、総じて甘い残量認識となってしまう。 In addition, as a method of detecting the remaining charge of the secondary battery other than the above, a method of estimating the remaining charge by time-integrating the input/output of the current and adding/subtracting the increase/decrease in the amount of electricity from the battery from the reference value is used. ing. In this case, there is a problem in setting the reference value, for example, whether the reference value is fully charged or the remaining amount is zero, and further, the loss inside the battery during charging and discharging is caused by the stored amount of electricity. There is a problem that it is not reflected in, and it becomes a sweet residual amount recognition as a whole.

二次電池の蓄電残量を正確に検出する技術は、将来さらに普及するであろう電気自動車はもとより、電池に蓄えられた電気エネルギーで駆動する機器には必要不可欠であり、その技術の確立が急がれている。 The technology for accurately detecting the remaining charge of the secondary battery is indispensable not only for electric vehicles that will become even more popular in the future, but also for devices that are driven by the electric energy stored in the battery, and the establishment of that technology is essential. I'm in a hurry.

二次電池は負極と正極の二つの極を有し、負極の化学的ポテンシャルが正極のそれよりも高いように極を構成する材料が選択されている。さらに、負極に堆積している作動媒体、例えば、リチウムイオン電池ではリチウムイオンが正極に滑り落ちるとき、その化学的ポテンシャルの差とリチウムイオンの数に比例するエネルギーを外部電気回路に放出しエネルギーを与える。これが二次電池の放電過程である。 The secondary battery has two poles, a negative pole and a positive pole, and the material forming the pole is selected so that the chemical potential of the negative pole is higher than that of the positive pole. Further, when the working medium deposited on the negative electrode, for example, a lithium ion battery, slides down to the positive electrode, energy proportional to the difference in chemical potential and the number of lithium ions is released to the external electric circuit to give energy. .. This is the discharging process of the secondary battery.

また、二次電池の充電過程は正極のポテンシャルを負極よりも高くし正極に堆積する作動媒体を負極に落し込む過程となるが、この過程には外部にポテンシャルを高める電源を必要とする。 In addition, the charging process of the secondary battery is a process in which the potential of the positive electrode is made higher than that of the negative electrode and the working medium deposited on the positive electrode is dropped to the negative electrode, but this process requires an external power source for increasing the potential.

このように二次電池内部での動作は、単に正極と負極の作動媒体の移し替えに過ぎない動作とも云えるが、電極内あるいは、電極界面では酸化/還元の電気化学反応が伴い例えば、時間あたりの反応量の定量化あるいは量変化制御等は極めて複雑かつ重要なデバイス構成となる。 As described above, the operation inside the secondary battery can be said to be merely the operation of transferring the working medium between the positive electrode and the negative electrode, but it is accompanied by an electrochemical reaction of oxidation/reduction in the electrode or at the electrode interface. The quantification of the reaction amount per unit or the control of the amount change becomes an extremely complicated and important device configuration.

しかし、二次電池による電気エネルギーの利用に関しては機器回路あるいは電子デバイスは電子の流れだけで構成されているだけであるから、効率よく、しかも即応的な電気化学反応の把握が可能となれば、適切な電池状態の認識と対処法が確立できるはずである。そのため、そのような二次電池における電気化学反応に基づいた電池状態の把握が望まれている。 However, regarding the use of electric energy by the secondary battery, since the device circuit or the electronic device is composed only of the flow of electrons, if it is possible to grasp the electrochemical reaction efficiently and promptly, It should be possible to establish appropriate battery status recognition and remedies. Therefore, it is desired to understand the battery state based on the electrochemical reaction in such a secondary battery.

具体的には、蓄電された二次電池から電気エネルギーを取り出し、例えば電気自動車やハイブリット車等の電動車のように電気エネルギーを動力に変え仕事をさせるシステムにおいて、その過程の途上に蓄電残量を正確かつ短時間に計量化し確認できることが基本性能として望まれる。しかし、現状技術では、極めて曖昧にしか蓄電残量を認識できずユーザにとっては予想に反して想わぬトラブルに巻き込まれたり、あるいは予想通りに電動車の稼動ができなかったりした事例が多々散見される。 Specifically, in a system that takes out electric energy from a stored secondary battery and converts the electric energy into motive power such as an electric vehicle such as an electric vehicle or a hybrid vehicle to perform work, the remaining amount of electric power stored during the process. It is desirable as a basic performance to be able to accurately measure and confirm in a short time. However, in the current technology, there are many cases in which the remaining battery charge can be recognized only in a very vague manner, causing unexpected trouble for the user, or the electric vehicle not being able to operate as expected. It

これらの電動機器・電動車等に使用される電池は鉛電池、ニッケル水素電池、リチウムイオン電池等のいわゆる二次電池であり、放電と充電を繰り返し使用できる電池である。例えば、リチウムイオン電池の充放電は、二次電池中のリチウムイオンが非水電解液を介して正極−負極間を移動し、正極または負極の活物質にリチウムイオンが挿入脱離することにより行われる。 Batteries used in these electric devices, electric vehicles, and the like are so-called secondary batteries such as lead batteries, nickel-hydrogen batteries, and lithium-ion batteries, and batteries that can be repeatedly discharged and charged. For example, charging and discharging of a lithium-ion battery is performed by moving lithium ions in a secondary battery between a positive electrode and a negative electrode through a non-aqueous electrolyte solution, and inserting and desorbing lithium ions into the active material of the positive electrode or the negative electrode. Be seen.

これらの二次電池は、多数回の充電/放電の繰り返し、又は、過充電/過放電に伴い、二次電池の電解液に添加される内部構造体である電解質の劣化や電極板の損傷、状態変化等により蓄電容量が初期に比べて変化し、性能劣化が進行する。最終的にはこの二次電池を使用することができなくなってしまう。 These secondary batteries are repeatedly charged/discharged a large number of times, or are overcharged/overdischarged, resulting in deterioration of the electrolyte, which is an internal structure added to the electrolytic solution of the secondary battery, and damage to the electrode plate. Due to a change in the state, the storage capacity changes compared to the initial state, and the performance deterioration progresses. Eventually, the secondary battery cannot be used.

以上のことから、二次電池等の蓄電素子のSOH及びSOCを精度よく、かつ瞬時に検出可能な技術が求められている。 From the above, there is a demand for a technique capable of accurately and instantaneously detecting SOH and SOC of a storage element such as a secondary battery.

特許第3752249号公報Japanese Patent No. 3752249 米国特許第7075269号明細書US Pat. No. 7,075,269 中国特許第100395939号明細書Chinese Patent No. 100395939

松田他「電気化学概論」(丸善出版)Matsuda et al. "Introduction to Electrochemistry" (Maruzen Publishing) 春山志郎、「表面技術者のための電気化学」(丸善出版)Shiro Haruyama, "Electrochemistry for Surface Engineers" (Maruzen Publishing)

本発明の目的は、二次電池等の蓄電素子の劣化度SOH及び蓄電残量SOCを精度よく瞬時に検出し、電池状態の認識を可能とする蓄電素子の劣化度及び蓄電残量検出装置を提供することである。 An object of the present invention is to provide a degree-of-deterioration and a state-of-charge-remaining detection device for a state-of-charge storage element capable of accurately and instantaneously detecting the degree of deterioration SOH and the state-of-charge SOC of a storage element such as a secondary battery to recognize the battery state. Is to provide.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above, and means for solving the problem will be described below.

即ち、請求項1においては、
蓄電素子の劣化度SOHおよび蓄電残量SOCを検出する蓄電素子の劣化度及び蓄電残量検出装置であって、
所定の演算を実行する演算手段を有する制御部と、
前記蓄電素子の電圧および電流を計測する計測手段と、を備え、
前記制御部は、
前記蓄電素子の充電開始時の立ち上がり電圧および電流の計測値をもとに、以下の[数1]に示す電池方程式を用いて前記蓄電素子の動作時の過電圧δを演算により求めるものである。

Figure 2020112535
但し、[数1]においてΔνは前記蓄電素子の端子電圧v、と起電力ηeq*の差電圧であり、Δνは動作時に電極面での酸化/還元反応に伴い発生する電位差となる。また、定数fはファラディ定数、ボルツマン定数、及び絶対温度からなる物理定数である。 That is, in claim 1,
A deterioration degree of a storage element and a remaining charge level detection device for detecting a deterioration degree SOH and a remaining charge level SOC of a power storage element,
A control unit having a calculation means for executing a predetermined calculation;
Measuring means for measuring the voltage and current of the storage element,
The control unit is
Based on the measured values of the rising voltage and the current at the start of charging of the storage element, the overvoltage δ during operation of the storage element is calculated by using the battery equation shown in [Formula 1] below.
Figure 2020112535
However, in [Equation 1], Δν is a difference voltage between the terminal voltage v of the storage element and the electromotive force ηeq*, and Δν 1 is a potential difference generated due to the oxidation/reduction reaction on the electrode surface during operation. The constant f is a physical constant composed of the Faraday constant, Boltzmann constant, and absolute temperature.

すなわち、請求項1に係る蓄電素子の劣化度及び蓄電残量検出装置は、前記制御部が前記蓄電素子の充電開始時の立ち上がり電圧を計測し、平衡電圧との差から「過電圧δ」と「内部抵抗に伴う電位差」を[数1]で示す「電池方程式」を使用し分離演算し、同時に計測する電流値から電極反応に伴う「動的内部抵抗」を検出するものである。
なお、「電池方程式」の詳細に関しては後述する。
That is, in the degree of deterioration of the electricity storage device and the remaining amount of electricity storage detection device according to claim 1, the control unit measures the rising voltage at the start of charging of the electricity storage device, and determines “overvoltage δ” from the difference from the equilibrium voltage. The "potential difference associated with the internal resistance" is separately calculated using the "battery equation" shown in [Equation 1], and the "dynamic internal resistance" associated with the electrode reaction is detected from the current value simultaneously measured.
The details of the “battery equation” will be described later.

請求項2においては、
前記制御部は、
前記[数1]に記載の2式が等しい条件から前記動作時の過電圧δを確定するものである。
In claim 2,
The control unit is
The overvoltage δ during the operation is determined based on the condition that the two expressions in [Equation 1] are equal.

請求項3においては、
前記制御部は、
前記蓄電素子の充電を遮断した時の立下がり電圧の時間経過を計測し前記蓄電素子の電解質特性を演算算出するものである。
これにより、電極間に充填されている電解質中の作動媒体(例えばリチウムイオン)の動作を正確・緻密に確定することができる。ひいては、電池特性を左右する電池構成部材である電解質の特性の良否を判定するものともなる。
また、電解質特性とは、電解質の電気的特性値として示される拡散抵抗、電気泳動抵抗、イオン間の反発によって形成されるキャパシター成分のそれぞれの数値のことであり、これらの数値が確定されると電気等価回路が作成可能となり、充電中または放電中でも、上記電解質特性を考慮した補正を加えることより、SOC,SOHの正確な同定が可能となる。
In claim 3,
The control unit is
The time course of the fall voltage when the charge of the power storage element is cut off is measured, and the electrolyte characteristic of the power storage element is calculated.
Accordingly, the operation of the working medium (for example, lithium ions) in the electrolyte filled between the electrodes can be accurately and precisely determined. Consequently, the quality of the characteristics of the electrolyte, which is a battery constituent member that influences the battery characteristics, can be determined.
In addition, the electrolyte characteristics are the numerical values of the diffusion resistance, the electrophoretic resistance, and the capacitor component formed by the repulsion between ions, which are shown as the electrical characteristic values of the electrolyte. An electrical equivalent circuit can be created, and the SOC and SOH can be accurately identified by making a correction in consideration of the electrolyte characteristics even during charging or discharging.

請求項4においては、
前記制御部は、
前記電圧の計測値と前記[数1]に示す電池方程式を用いて充電時の動的内部抵抗Dirを求めて、Dirから劣化度SOHを算出するものである。
In claim 4,
The control unit is
The dynamic internal resistance Dir at the time of charging is obtained by using the measured value of the voltage and the battery equation shown in [Equation 1], and the deterioration degree SOH is calculated from the Dir.

具体的には、請求項4に係る蓄電素子の劣化度及び蓄電残量検出装置においては、
前記制御部は、
前記電圧の計測値と前記[数1]に示す電池方程式を用いて充電時の動的内部抵抗Dirを求めて、前記蓄電残量SOCを参照してDir最小値を割り出した最小Dirから該電池の容量を算出するものである。
Specifically, in the degree of deterioration of the electricity storage element and the remaining electricity amount detecting device according to claim 4,
The control unit is
The dynamic internal resistance Dir at the time of charging is obtained by using the measured value of the voltage and the battery equation shown in the above [Formula 1], and the battery is calculated from the minimum Dir obtained by calculating the Dir minimum value with reference to the state of charge SOC. The capacity of is calculated.

請求項5においては、
前記制御部は、
前記電圧の計測値と前記[数1]に示す電池方程式を用いて前記過電圧δに対する電圧−電流特性式である[数2]の電池固有の係数を確定することによって、電池容量を導出するものである。

Figure 2020112535
In claim 5,
The control unit is
A battery capacity is derived by determining a battery-specific coefficient of [Equation 2], which is a voltage-current characteristic expression for the overvoltage δ, using the measured value of the voltage and the battery equation shown in [Equation 1]. Is.
Figure 2020112535

請求項6においては、
蓄電素子の劣化度SOHおよび蓄電残量SOCを検出する蓄電素子の劣化度及び蓄電残量検出装置であって、
前記蓄電素子の電圧および電流を計測する計測手段と、
所定の演算を実行する演算手段を有する制御部と、を備え、
前記制御部は、
前記蓄電素子の充電または放電に関する所定の条件をもとに、以下の[数1]に示す電池方程式を用いて前記二次電池の動作時の過電圧δを演算により求めるものである。

Figure 2020112535
但し、[数1]においてΔνは前記蓄電素子の端子電圧v、と起電力ηeq*の差電圧であり、Δνは動作時に電極面での酸化/還元反応に伴い発生する電位差となる。また、定数fはファラディ定数、ボルツマン定数、及び絶対温度からなる物理定数である。 In claim 6,
A deterioration degree of a storage element and a remaining charge level detection device for detecting a deterioration degree SOH and a remaining charge level SOC of a power storage element,
Measuring means for measuring the voltage and current of the storage element,
A control unit having a calculation means for executing a predetermined calculation,
The control unit is
The overvoltage δ during operation of the secondary battery is calculated by using the battery equation shown in the following [Equation 1] based on a predetermined condition for charging or discharging the storage element.
Figure 2020112535
However, in [Equation 1], Δν is a difference voltage between the terminal voltage v of the storage element and the electromotive force ηeq*, and Δν 1 is a potential difference generated due to the oxidation/reduction reaction on the electrode surface during operation. The constant f is a physical constant composed of the Faraday constant, Boltzmann constant, and absolute temperature.

請求項7においては、
前記所定の条件は、放電開始時の立下り電圧の時間経過であるものである。
In claim 7,
The predetermined condition is a lapse of time of the falling voltage at the start of discharge.

請求項8においては、
前記所定の条件は、放電遮断時の立ち上がり電圧の計測値であるものである。
In claim 8,
The predetermined condition is a measured value of the rising voltage when the discharge is cut off.

請求項9においては、
前記所定の条件は、充電電流を増加させた時または放電電流を減少させた時の立ち上がり電圧の計測値であるものである。
In claim 9,
The predetermined condition is a measured value of the rising voltage when the charging current is increased or when the discharging current is decreased.

請求項10においては、
前記所定の条件は、充電電流を減少させた時または放電電流を増加させた時の立下り電圧の時間経過であるものである。
In claim 10,
The predetermined condition is a lapse of time of the falling voltage when the charging current is decreased or the discharging current is increased.

請求項11においては、
前記所定の条件は、充電から放電へ移行させた時の立下り電圧の時間経過であるものである。
In claim 11,
The predetermined condition is a lapse of time of the falling voltage when the charging is changed to the discharging.

請求項12においては、
前記所定の条件は、放電から充電へ移行させた時の立ち上がり電圧の計測値であるものである。
In claim 12,
The predetermined condition is a measured value of the rising voltage when the discharge is changed to the charge.

本発明によれば、二次電池等の蓄電素子の劣化度SOH及び蓄電残量SOCを精度良くかつ瞬時に検出することができる。 According to the present invention, it is possible to accurately and instantaneously detect the deterioration degree SOH and the remaining charge SOC of a storage element such as a secondary battery.

電池種の違いによるSOCに対する起電力の変化を示す図。The figure which shows the change of the electromotive force with respect to SOC by the difference in a battery type. 本発明の一実施形態に係る二次電池の劣化度及び蓄電残量検出装置の基本的構成を示すブロック図。FIG. 3 is a block diagram showing a basic configuration of a degree of deterioration of a secondary battery and a remaining power storage amount detection device according to an embodiment of the present invention. 充電時の電池動作を示す電池方程式の解を求める特性図。The characteristic diagram which asks for the solution of the battery equation which shows the battery operation at the time of charge. 充電時の電池内部の電気回路等価回路を示す図。The figure which shows the electric circuit equivalent circuit inside a battery at the time of charge. 長期静止状態から電流印加直後の特性図。A characteristic diagram immediately after applying a current from a long-term stationary state. 電池方程式と電流−電圧特性を複合した線図。The diagram which combined the battery equation and the current-voltage characteristic. 電圧-電流の立ち上がり/立下りの時間特性を示す図。The figure which shows the time characteristic of the rise/fall of voltage-current.

次に、本発明に係る二次電池等の蓄電素子の劣化度SOH及び蓄電残量SOCを計測するための計測原理について図面を参照しながら説明する。以下においては、蓄電素子の一例として二次電池を挙げて本発明を具体的に説明する。なお、以下においては、二次電池のことを単に電池と呼ぶ場合もある。 Next, a measurement principle for measuring the deterioration degree SOH and the remaining charge SOC of a storage element such as a secondary battery according to the present invention will be described with reference to the drawings. In the following, the present invention will be specifically described by taking a secondary battery as an example of a power storage element. In the following, the secondary battery may be simply referred to as a battery.

[計測原理]
二次電池の正確な蓄電残量の検出のためには、起電力(Electro Motive Force)の増減と蓄電残量の増減の関係を正確に計量化しておき、起電力を計測し蓄電残量を計数化することが一つの手法となる。しかし、元の蓄電残量が正確に分かっていれば、計量しながら元の蓄電残量から使用分を抜き取り、その差し引き勘定から現在の蓄電残量は得られるが、元の蓄電残量を正確に計測することが出来なければ、その後の残量数値は信頼性の乏しいものとなる。特に、充電時の電気量の注入、放電時の電気量の取り出しは電池内部の電気的抵抗(内部抵抗)による熱損失が伴い差し引き勘定に誤差が伴うため正確な蓄電残量の計測は不可能に近い。
[Measurement principle]
In order to accurately detect the remaining charge of the secondary battery, the relationship between the increase/decrease in electromotive force (Electro Motive Force) and the increase/decrease in the remaining charge is accurately quantified, and the electromotive force is measured to determine the remaining charge. Digitization is one method. However, if the original remaining charge amount is accurately known, the used amount is extracted from the original remaining charge amount while weighing, and the current remaining charge amount is obtained from the deduction account, but the original remaining charge amount is calculated accurately. If it cannot be measured, the remaining amount after that becomes unreliable. In particular, the injection of the amount of electricity during charging and the extraction of the amount of electricity during discharging are accompanied by heat loss due to the internal electrical resistance (internal resistance) inside the battery, which causes errors in the deduction amount, making it impossible to accurately measure the remaining charge Close to.

二次電池の蓄電残量を正確に計量する他の手法として、電池の起電力の計測がある。しかし、動作中の電圧は起電力を示すものでなく、動作を止めると非常に緩慢に計測値は変動する。例えば、充電を遮断した場合は、電圧値は徐々に低下し長時間かけ一定値に落ち着く。また放電を遮断すれば電圧は徐々に上昇し、これも長時間かけ一定値に収斂する。 Another method of accurately measuring the remaining charge of the secondary battery is to measure the electromotive force of the battery. However, the voltage during operation does not show an electromotive force, and when the operation is stopped, the measured value fluctuates very slowly. For example, when the charge is cut off, the voltage value gradually decreases and stabilizes at a constant value over a long period of time. When the discharge is cut off, the voltage gradually rises and also converges to a constant value over a long period of time.

この収斂した電圧が電池の起電力であり、電池の蓄電残量(SOC)の指標となる。すなわち起電力の計測は極めて長時間を要し、いったん充電なり放電するとその後何時間も放置しておかないと起電力は計測不可能であり、電池に存在する蓄電残量、即ち引出し得る電気量(パワー)は時々刻々には計測計量することはできず、したがって電池を適用した機器の制御を難しくし、また電池使用の扱いを厄介なものとしていた。 This converged voltage is the electromotive force of the battery and serves as an index of the state of charge (SOC) of the battery. That is, it takes an extremely long time to measure the electromotive force, and once the battery is charged and discharged, the electromotive force cannot be measured unless it is left for many hours after that. (Power) cannot be measured and measured moment by moment, which makes it difficult to control the equipment to which the battery is applied and makes the use of the battery cumbersome.

図1は、二次電池の蓄電残量に対する電池電圧の変化を示す図である。すなわち、図1は、電池の種類(リチウムイオン電池、鉛電池)による蓄電残量x(SOC)と起電力Vの関係を示したものである。図1において収斂した電圧が電池の起電力であり、電池の蓄電残量(SOC)の指標となる。
図1に示すように、鉛電池は蓄電残量x(SOC)に対する起電力Vの変化幅は大きいが、リチウムイオン電池では微小な変化であることから、リチウムイオン電池の起電力Vから残量x(SOC)を同定することは困難となる。
FIG. 1 is a diagram showing changes in the battery voltage with respect to the remaining charge of the secondary battery. That is, FIG. 1 shows the relationship between the remaining charge x (SOC) and the electromotive force V depending on the type of battery (lithium ion battery, lead battery). The converged voltage in FIG. 1 is the electromotive force of the battery and serves as an index of the state of charge (SOC) of the battery.
As shown in FIG. 1, the lead battery has a large variation range of the electromotive force V with respect to the remaining storage amount x (SOC), but the lithium ion battery has a small change. It becomes difficult to identify x(SOC).

本発明の二次電池の劣化度及び蓄電残量検出装置に係る計測原理は、二次電池における、瞬時且つ正確な残量等の計量を目的に、電池反応論の帰結により得られた「電池方程式」を応用するものである。
なお、「電池方程式」とは、具体的には二次電池に関する電池反応の理論から導かれる方程式であり、酸化/還元反応に伴う過電圧と反応抵抗による回路方程式のことである。
The measurement principle relating to the deterioration degree of the secondary battery and the remaining charge detection device of the present invention is based on the result of the battery reaction theory for the purpose of instantaneous and accurate measurement of the remaining charge in the secondary battery. The equation is applied.
The “battery equation” is specifically an equation derived from the theory of a battery reaction relating to a secondary battery, and is a circuit equation based on an overvoltage and a reaction resistance associated with an oxidation/reduction reaction.

本発明は、二次電池の電池容量を特定する際に同じく電池方程式から動的内部抵抗Dir(Dynamic Internal Resistance)を瞬時に計量し、電池種による固有の定数を使用して、二次電池の現在容量である蓄電残量(SOC)あるいは劣化度(SOH、健全度とも呼ばれる)を算出するものである。 The present invention also instantaneously measures the dynamic internal resistance Dir (Dynamic Internal Resistance) from the battery equation when specifying the battery capacity of the secondary battery, and uses the constants specific to the secondary battery to measure the dynamic internal resistance Dir (Dynamic Internal Resistance). The remaining capacity (SOC) or deterioration degree (also called SOH or soundness), which is the current capacity, is calculated.

また、本発明は、上記とは異なる他の手法として、電池方程式と電圧−電流式を併用し電流特性係数を瞬時に計量し、この係数に比例する容量を即座に計量化して、電池の現在容量である蓄電残量(SOC)あるいは劣化度(SOH)を算出するものである。 In addition, as another method different from the above, the present invention uses a battery equation and a voltage-current formula in combination to instantly measure the current characteristic coefficient, and immediately measures the capacity proportional to this coefficient to obtain the current battery. The amount of remaining electricity (SOC) or the degree of deterioration (SOH), which is the capacity, is calculated.

ここで、電池反応に関する論理の概要を述べ、本願発明者らが確立した「電池方程式」に関し説明を加えておく。
なお、以下では、便宜上リチウムイオン電池の構成に基づいて説明するが、特に電池種を限定するものではない。
Here, an outline of the logic regarding the battery reaction will be described, and a description will be added regarding the “battery equation” established by the inventors of the present application.
It should be noted that the description below is based on the configuration of the lithium-ion battery for convenience, but the battery type is not particularly limited.

まず、負極の電池反応を反応速度の律速とし過電圧と電流に関し考察する。尚、ここで律速に関し説明を加えておく。電池は正極、負極、その間のイオン電導を司る電解質が主たる構成部材であるが、それぞれを通過する時間当たりの電子の量、あるいは、イオンの量は連続の論理から等しい。従って、一番流れ難い部材を流れる量が全体の流れを律することから律速と称す。 First, the battery reaction of the negative electrode is set as the rate-determining reaction rate, and the overvoltage and current are considered. In addition, here, a description will be added regarding rate limiting. A battery is mainly composed of a positive electrode, a negative electrode, and an electrolyte that controls ionic conduction between them, but the amount of electrons or the amount of ions passing through each of them is equal from the continuous logic. Therefore, it is called rate-determining because the amount of flow through the most difficult member controls the overall flow.

酸化/還元反応はアレニウスの理論に基づき、次のように数式化され、式中の各符号を定義したとき、電流密度は次式で与えられる。 The oxidation/reduction reaction is mathematically expressed as follows based on the Arrhenius theory, and when each sign in the formula is defined, the current density is given by the following formula.

Figure 2020112535
Figure 2020112535

平衡時は電流がゼロであるから、[数1]から平衡電圧ηeqは容易に算出される。 Since the current is zero at equilibrium, the equilibrium voltage ηeq can be easily calculated from [Equation 1].

Figure 2020112535
Figure 2020112535

即ち、平衡電圧ηeqは、濃度比c(0,t)/cr(0,t)によって異なった数値をとる。 That is, the equilibrium voltage ηeq takes different values depending on the concentration ratio c 0 (0,t)/cr(0,t).

反応界面の濃度は時間tが無限に経過したとき、ある一定値をとる。これを次式で表現する。 The concentration at the reaction interface has a certain constant value when the time t elapses infinitely. This is expressed by the following equation.

Figure 2020112535
Figure 2020112535

従って、これらを[数2]に代入すると次のネルンスト(Nernst)の式が得られる。 Therefore, by substituting these into [Equation 2], the following Nernst equation is obtained.

Figure 2020112535
Figure 2020112535

ここで、上記Ec´は次のように表される。 Here, the Ec 0 ′ is represented as follows.

Figure 2020112535
Figure 2020112535

時間を十分にとったときの平衡状態の電圧を基準に、過度状態の平衡電圧を表現する。時間t0−までは、充電電流は流れており、したがって、界面での酸化材濃度は、時刻t0+で電流が遮断された直後はこの濃度を保っていると考える(図7参照)。
この時の平衡電圧は[数3]で示され、長期放置後の平衡過電圧は、[数4]で表される。その差をとると次式となる。
The balanced voltage in the transient state is expressed based on the voltage in the balanced state when sufficient time is taken. It is considered that the charging current is flowing until time t 0− , and therefore the concentration of the oxidant at the interface is maintained at this concentration immediately after the current is cut off at time t 0+ (see FIG. 7).
The equilibrium voltage at this time is represented by [Equation 3], and the equilibrium overvoltage after being left for a long time is represented by [Equation 4]. Taking the difference gives the following formula.

Figure 2020112535
Figure 2020112535

このΔηeq(t)は、電極から遠い沖合での溶融和形態での電解質中のリチウムイオン、及び、電極の極近辺での、酸化/還元場でのリチウムイオンの拡散、あるいは、電界場での電気泳動によって電気等価回路的にコンデンサーと抵抗のタンク回路を形成することによって現れる電位であり(図4参照)、定常充電中に、ある時点で充電遮断し、その後の時々刻々の電圧の変化を計測することによって、電解質中のリチウムイオンの導電率、電気二重層としてのキャパシター成分が同定できることを以下に示す手順で解明した。
なお、電気二重層とは、電極と電解液の界面で正の電荷及び負の電荷が非常に短い間隔を隔てて対向し、配列する層のことである。
This Δη eq (t) is the lithium ion in the electrolyte in the melted form offshore far from the electrode, and the diffusion of the lithium ion in the oxidation/reduction field in the vicinity of the electrode, or in the electric field. It is a potential that appears by forming a tank circuit of a capacitor and a resistance in an electrical equivalent circuit by electrophoresis (see Fig. 4). During steady charging, the charge is cut off at a certain point, and the change in voltage every moment thereafter is changed. It was clarified by the following procedure that the conductivity of lithium ion in the electrolyte and the capacitor component as the electric double layer can be identified by measuring.
The electric double layer is a layer in which positive charges and negative charges are opposed to each other and are arranged at a very short distance at the interface between the electrode and the electrolytic solution.

[Δηeq(t)の形成過程に関して]
長期静止状態から充電電流Iの立ち上げに際し、たとえば負極の還元反応は反応面に存在する酸化材濃度c(0,t)でt=0に相当し、長期静止状態であるからこの値はc*に等しい。負極反応によって、この濃度は消費され還元されてc*に変わり格納される。
前記消費分を補充するためには沖合からの酸化材の補充流入を要し、初期のc*と補充中のc(0,t)の比の自然対数に物理定数を掛けたものがΔηeq(t)となる。
このΔηeq(t)は、勇み反応面に到達したイオンが先客イオンに反発されイオン対抗ゾーンが、所謂、電気二重層として形成され、同時に拡散によって安定したタンク回路となる。この形成過程は次式で表現される。
[Regarding the formation process of Δηeq(t)]
When the charging current I is raised from the long-term stationary state, for example, the reduction reaction of the negative electrode corresponds to t=0 at the concentration of the oxidant c 0 (0,t) existing on the reaction surface, and this value is the long-term stationary state. Equal to c 0 *. By the negative electrode reaction, this concentration is consumed, reduced, converted into cr *, and stored.
In order to replenish the above-mentioned consumption, replenishment inflow of oxidant from the offshore is required, and the natural logarithm of the ratio of initial c 0 * and replenishing c 0 (0,t) is multiplied by a physical constant. Δηeq(t).
In this Δηeq(t), the ions that have reached the brave reaction surface are repelled by the guest ions, the ion counter zone is formed as a so-called electric double layer, and at the same time, it becomes a stable tank circuit by diffusion. This formation process is expressed by the following equation.

Figure 2020112535
Figure 2020112535

時間(τ=t)充電後、遮断したとすると遮断直後のタンク回路の電位差は次式となる。 If the battery is cut off after being charged for a time (τ=t ° C. ), the potential difference of the tank circuit immediately after the cutoff is given by the following equation.

Figure 2020112535
Figure 2020112535

遮断以降の電圧ν(t)は、次式の一般式で与えられる。 The voltage ν(t) after the interruption is given by the following general formula.

Figure 2020112535
Figure 2020112535

この式は、未知数としてΔηeq(0)、T、ηeq*,があり、3つの、連立方程式からこの未知定数が固定される。 This equation has Δηeq(0), T, ηeq*, 1 as unknowns, and this unknown constant is fixed from three simultaneous equations.

Figure 2020112535
Figure 2020112535

ここで、t=2tと置き、時間等間隔で3点電圧計測し、さらに、e−t1/T=xと置くと、上記3式は次の代数方程式になる。 Here, if t 2 =2t 1 is set, voltage at three points is measured at equal time intervals, and further, e −t1/T =x is set, the above three equations become the following algebraic equations.

Figure 2020112535
この方程式の解は次のように求まる。
Figure 2020112535
The solution of this equation is found as follows.

Figure 2020112535
Figure 2020112535

この関係を使えば、遮断後の電圧ν(0)、ν(t)、ν(2t)を計測すれば、充電電流に応じタンク回路電圧Δηeq(0)、該タンク回路が完全放電した時に相当する起電力ηeq*,、それにタンク回路時定数Tが確定し、電解質の特性が定量化される。 Using this relationship, if the voltages ν(0), ν(t 1 ), and ν(2t 1 ) after interruption are measured, the tank circuit voltage Δηeq(0) is completely discharged according to the charging current. The electromotive force ηeq*, 1 corresponding to time and the tank circuit time constant T are determined, and the characteristics of the electrolyte are quantified.

図7に示すように、充電遮断した時点でΔηeq(0)が存在し、その後、タンク回路中の荷電量は並列抵抗で時間とともに消失、時間経過後Δηeq(∞)=0となる。 As shown in FIG. 7, Δηeq(0) exists at the time of charging interruption, and thereafter, the charge amount in the tank circuit disappears with time due to the parallel resistance, and Δηeq(∞)=0 after the lapse of time.

[電極反応による電荷移動過程に関して]
次に、負極の電池反応を反応速度の律速とし過電圧と電流に関し考察する。
電流は、平衡電圧(Δηeq+η*eq)を超えた過電圧δが加算されて、初めて流れる。[数1]でη=δ+Δηeq+η*eqの関係を導入して変形すると次式となる。

Figure 2020112535
ここで、[数1]、[数2]、[数3]、[数4]の関係式、及び、移動度α=1/2、荷電子数n=1と置いて演算した。 [Regarding charge transfer process by electrode reaction]
Next, the battery reaction of the negative electrode is set as the rate-determining reaction rate, and the overvoltage and current are considered.
The current flows only after the overvoltage δ exceeding the equilibrium voltage (Δηeq+η*eq) is added. When the relation of η=δ+Δηeq+η*eq is introduced and transformed in [Equation 1], the following equation is obtained.
Figure 2020112535
Here, the relational expressions of [Equation 1], [Equation 2], [Equation 3], and [Equation 4], the mobility α c =1/2, and the number of charged electrons n=1 were used for the calculation.

[数13]は任意の平衡電圧からの変位δに関し成立する電流密度を与える関係式である。電流Iに関しては、この式に有効電極面積Sを乗じたもの、になるから電流−電位関係式は次式となる。 [Equation 13] is a relational expression that gives a current density that holds for displacement δ from an arbitrary equilibrium voltage. The current I is obtained by multiplying this formula by the effective electrode area S, and therefore the current-potential relational expression is as follows.

Figure 2020112535
ここで、[数14]のKxは以下のように表せる。
Figure 2020112535
Here, Kx in [Equation 14] can be expressed as follows.

Figure 2020112535
Figure 2020112535

δは、仮想平衡(平衡電圧;η*eq+Δηeq)を超えた過電圧値となる。ただし、電流値は、平衡電圧η*eqを超えたδ+Δηeqによって決まる。
η*eqは、安定期の電極界面での酸化材と還元材の濃度比によって決まる電位で、Δηeqは動作反応時、動作電流に応じて必要となる反応界面での濃度の過剰分に相当し平衡電位に変化を与える(図3参照)。
δ is an overvoltage value that exceeds the virtual equilibrium (equilibrium voltage; η*eq+Δηeq). However, the current value is determined by δ+Δηeq which exceeds the balanced voltage η*eq.
η*eq is a potential determined by the concentration ratio of the oxidizing agent and the reducing agent at the electrode interface in the stable period, and Δηeq corresponds to the excess concentration at the reaction interface required according to the operating current during the operation reaction. The equilibrium potential is changed (see Fig. 3).

電流Iの微小な過電圧δに対する依存性は動作点でのコンダクタンスとなり、その逆数は動作点での抵抗すなわち動的内部抵抗Dirとなる。これを表記すると以下の式となる。

Figure 2020112535
The dependence of the current I on the minute overvoltage δ is the conductance at the operating point, and the reciprocal thereof is the resistance at the operating point, that is, the dynamic internal resistance Dir. When this is written, it becomes the following formula.
Figure 2020112535

また、Kは、[数6]を使い、次のように変形される。 Also, K X is transformed as follows using [Equation 6].

Figure 2020112535
Figure 2020112535

[数16]により導出される動的内部抵抗Dirと[数14]による電流Iの積は次式[数18]に示すように電池に関わらず動作過電圧δだけに従属する関数となる。 The product of the dynamic internal resistance Dir derived from [Equation 16] and the current I obtained from [Equation 14] is a function dependent only on the operating overvoltage δ regardless of the battery, as shown in the following Equation [18].

Figure 2020112535
Figure 2020112535

電圧−電流特性を確定する諸要素(δ,Δηeq,Dir,I)が上記で確定できたので特性の概略図(図3参照)及び電池の等価回路(図4参照)が描ける。 Since the elements (δ, Δηeq, Dir, I) that determine the voltage-current characteristics can be determined as described above, a schematic diagram of the characteristics (see FIG. 3) and an equivalent circuit of the battery (see FIG. 4) can be drawn.

[電池方程式(一般式)]
動作中には電解質中のイオンの流れにより、電極界面に上述した電気二重層が形成されて、図3、図4で示すΔηeqの平衡電位の加算が起きる。
図3は、充電時の電圧−電流の特性図である。
図3より、起動時の端子電圧Δvは次式を満たす。
[Battery equation (general formula)]
During operation, the electric double layer described above is formed at the electrode interface due to the flow of ions in the electrolyte, and the addition of the equilibrium potential of Δηeq shown in FIGS. 3 and 4 occurs.
FIG. 3 is a voltage-current characteristic diagram during charging.
From FIG. 3, the terminal voltage Δv at startup satisfies the following equation.

Figure 2020112535
Figure 2020112535

ここで、電流式は次式となる。 Here, the current equation is as follows.

Figure 2020112535
Figure 2020112535

また、動作点でのDirは次式で求まる。 Further, Dir at the operating point is obtained by the following equation.

Figure 2020112535
Figure 2020112535

従って、次式が導ける。 Therefore, the following equation can be derived.

Figure 2020112535
Figure 2020112535

これを、[数19]に代入して、次式“電池方程式”が樹立される。 Substituting this into [Equation 19], the following equation "battery equation" is established.

Figure 2020112535
Figure 2020112535

過電圧δに関する図表示をすると図3となる。 FIG. 3 is a diagram showing the overvoltage δ.

[電池方程式(特殊解)]
静止状態からの立ち上がり時には電流式は次式となる。電極表面には、電界質中の電気二重層がまだ形成されていないから一般式でΔηeq=0と置いた式となる。
[Battery equation (special solution)]
When rising from the stationary state, the current equation is as follows. Since the electric double layer in the electrolyte is not yet formed on the surface of the electrode, the general formula is Δηeq=0.

Figure 2020112535
Figure 2020112535

図5は、静止状態からの立ち上がり充電時の電圧−電流の特性図である。
図5より、起動時の端子電圧Δvは次式を満たす。
FIG. 5 is a voltage-current characteristic diagram at the time of rising and charging from a stationary state.
From FIG. 5, the terminal voltage Δv at startup satisfies the following equation.

Figure 2020112535
Figure 2020112535

静止状態からの動的内部抵抗Dirは次式のように表せる。 The dynamic internal resistance Dir from the stationary state can be expressed by the following equation.

Figure 2020112535
Figure 2020112535

Figure 2020112535
Figure 2020112535

DirとIの積は、次のように示すことができる。

Figure 2020112535
The product of Dir and I can be shown as:
Figure 2020112535

以上、纏めると、次の3つの式になる。

Figure 2020112535
The above can be summarized into the following three expressions.
Figure 2020112535

[数29]を使用して、過電圧δを変数として、過電圧δに関する数値計算を行いグラフに描くと図6となる。なお、図6のグラフは、電池の種類、大きさ等にかかわらず成立する。
ここで、図6における横軸は過電圧δである。図6における上段グラフの縦軸はΔvであり、下段グラフの縦軸は後述するI/Kである。
Using [Equation 29], the overvoltage δ is used as a variable to perform a numerical calculation regarding the overvoltage δ, and the result is shown in FIG. The graph of FIG. 6 holds regardless of the type and size of the battery.
Here, the horizontal axis in FIG. 6 is the overvoltage δ. The vertical axis of the upper graph in FIG. 6 is Δv, and the vertical axis of the lower graph is I/K 0 described later.

具体的には、図6のグラフは、電池の電圧(起電力)すなわち、その時点の平衡電圧(ηeq*)より高い電圧を電池に印加すると、電池は電池の種類にかかわらず、このΔv(=ν−ηeq*)だけで動作点δを決定することを意味している。即ち、電池反応は、どんな電池でもその動作が同一の式によって表現され、電池の種類、性能の違いは、この動作点δによって、電流、および電池内部抵抗が決定されることを示唆するものである。
なお、図6のようなグラフデータ(マップデータ)は、後述する検出装置1の計測制御器14に記憶される。
Specifically, the graph of FIG. 6 shows that when a voltage higher than the battery voltage (electromotive force), that is, the equilibrium voltage (ηeq*) at that time, is applied to the battery, the Δv( =ν-ηeq*) alone means that the operating point δ is determined. That is, the battery reaction is expressed by the same formula for any battery, and the difference in battery type and performance suggests that the operating point δ determines the current and the battery internal resistance. is there.
The graph data (map data) as shown in FIG. 6 is stored in the measurement controller 14 of the detection device 1 described later.

[解の誘導例(図6の適用例)]
実際には、検出装置1(計測制御器14)の内部に装着しているマイコンがすべて演算することになるが、マイコンがどのような演算過程を踏まえ演算結果を提示するのかを以下説明を加えておく。
二次電池の充電時において、
1)電流印加する。
2)Δvを実測し、図6を用いてΔvの曲線グラフとの交点を求める。この交点に対応するδ値が確定する。
3)δに関する電流関数はSOCよって異なる係数を持ち図6に示すようにSOCに対応した特性曲線となる。何故なら、係数式を変形して次のように表せる。
[Example of solution guidance (application example of FIG. 6)]
Actually, all of the microcomputers installed inside the detection device 1 (measurement controller 14) will calculate, but the following description will be added regarding what kind of calculation process the microcomputer presents the calculation result. Keep it.
When charging the secondary battery,
1) Apply current.
2) Measure Δv and find the intersection of Δv 1 and the curve graph using FIG. The δ value corresponding to this intersection is determined.
3) The current function with respect to δ has different coefficients depending on the SOC, and becomes a characteristic curve corresponding to the SOC as shown in FIG. This is because the coefficient equation can be modified and expressed as follows.

Figure 2020112535
この式から以下の式が導かれる。
Figure 2020112535
The following equation is derived from this equation.

Figure 2020112535
この式が図6の電流式である。
Figure 2020112535
This equation is the current equation in FIG.

従って、動作時のSOCが既知であれば、その交点から電極の種類による(I/K00Sc)の交点を通る点(δ,I/K00Sc)が決定し、この点はSOCに対応した動作点となる。
[数31]の式で、その右辺が確定すれば、左辺の計測電流Iを導入すれば、電池種固有の特性値K00及び有効電極面積Scが確定する。
Therefore, if the SOC during operation is known, the point (δ, I/K 00 Sc) passing through the intersection (I/K 00 Sc) depending on the electrode type is determined, and this point corresponds to the SOC. It becomes the operating point.
When the right side of the equation (31) is determined, and the measured current I on the left side is introduced, the characteristic value K 00 and the effective electrode area Sc specific to the battery type are determined.

図6に示す特性図で、過電圧δに対する電流値Iはチャージング状態(即ちSOC)によって大きく異なる。すなわち、SOCの小さいときには一定の電流値を得るには、大きなδ値が、また充電が進み、SOC;50%近辺で、過電圧δは最小となり、さらに、充電が進むと再びδは大きくなる。電池が"空"から"満"までの充電過程は図6に示す矢印に沿って動作点が変わる。SOC;50%を何らかの手法で固定でき、図6でSOC=0.5曲線から電流I及びδが固定されると[数12]は次式となる。 In the characteristic diagram shown in FIG. 6, the current value I with respect to the overvoltage δ greatly differs depending on the charging state (that is, SOC). That is, in order to obtain a constant current value when the SOC is small, a large δ value is charged again, and the overvoltage δ is minimized when the SOC is around 50%, and δ is increased again when the charging is further advanced. During the charging process from "empty" to "full" of the battery, the operating point changes along the arrow shown in FIG. SOC; 50% can be fixed by some method, and if the currents I and δ are fixed from the SOC=0.5 curve in FIG. 6, [Equation 12] becomes the following equation.

Figure 2020112535
Figure 2020112535

この式から電池の現在の性能を示す電池性能指数となるSOHが確定し、図6に示す線図から電池性能指数であるSOHが確定される。
以上が上記「電池方程式」に基づいて二次電池の劣化度及び蓄電残量を検出するための原理である。
From this equation, SOH which is the battery performance index indicating the current performance of the battery is determined, and SOH which is the battery performance index is determined from the diagram shown in FIG.
The above is the principle for detecting the degree of deterioration and the remaining charge of the secondary battery based on the "battery equation".

ここで、前記数式解析と定性的現象論との連関に関し、説明を加えておく。
[電池起電力と動的内部抵抗について]
図4には、充電の概念を示す電気等価回路を示す。
次に、図4に示す電池(本実施形態では二次電池10)の等価回路を用いて、電池起電力Vemfと動的内部抵抗Dirについて説明する。
電池を等価回路で表すと単純な電気回路となる。すなわち、電気エネルギーであるチャージ量(蓄電容量)Q(単位はクーロン)を持つ電池素子と、この電池に直結した純抵抗(コンダクタンス)の直列接続で表される。具体的には、以下に示すように、電池端子間(A−B)の電圧をV、電池端子間(A−B)に流れる電流をI、動的内部抵抗をDir、電池起電力をVemfとすると、図4に示すように、電池を等価回路で表すことができる。
V;電池端子間(A−B)の電圧
I;電池端子間(A−B)に流れる電流
Dir;動的内部抵抗(Dynamic Internal Resistance)
Vemf(=ηeq*);電池起電力(静止時の正極・負極間電位差)
Here, the relation between the mathematical expression analysis and the qualitative phenomenology will be explained.
[Battery electromotive force and dynamic internal resistance]
FIG. 4 shows an electrical equivalent circuit showing the concept of charging.
Next, the battery electromotive force Vemf and the dynamic internal resistance Dir will be described using the equivalent circuit of the battery (secondary battery 10 in this embodiment) shown in FIG.
If a battery is represented by an equivalent circuit, it becomes a simple electric circuit. That is, it is represented by a series connection of a battery element having a charge amount (storage capacity) Q (unit is Coulomb), which is electric energy, and a pure resistance (conductance) directly connected to the battery. Specifically, as shown below, the voltage between the battery terminals (A-B) is V, the current flowing between the battery terminals (A-B) is I, the dynamic internal resistance is Dir, and the battery electromotive force is Vemf. Then, as shown in FIG. 4, the battery can be represented by an equivalent circuit.
V: Voltage between battery terminals (A-B) I: Current flowing between battery terminals (AB) Dir: Dynamic internal resistance (Dynamic Internal Resistance)
Vemf (=ηeq*); Battery electromotive force (potential difference between positive and negative electrodes at rest)

電池起電力Vemfとは電池が外部の回路と接続しておらず、電流が流れていない状態(静止時)での電池端子間(A−B)の電圧を意味する。例えば二次電池の一例であるリチウムイオン電池の場合、前記電池起電力Vemfは、リチウムイオンLiや電子eの流れではなく、陰極と陽極のイオンポテンシャル差となる。したがって、イオンポテンシャル差は陰極と陽極の間のリチウムイオンLiのサイトの占有率の差によって表される。 The battery electromotive force Vemf means the voltage between the battery terminals (AB) when the battery is not connected to an external circuit and no current is flowing (at rest). For example, in the case of a lithium ion battery, which is an example of a secondary battery, the battery electromotive force Vemf is not the flow of lithium ions Li + or electrons e , but the difference in ion potential between the cathode and the anode. Therefore, the difference in ion potential is represented by the difference in the site occupancy of lithium ions Li + between the cathode and the anode.

蓄電容量Qとは、例えばリチウムイオン電池の場合、リチウムイオンLiが陰極に蓄えられる空間の大きさを意味する。すなわち、蓄電容量Qが大きいとは、陰極及び陽極の体積が大きい(サイト数が大きい)ことであり([数32]のK値が大きい)、また、作用面が大きく([数32]のSc値が大きい)、両極へのリチウムイオンLiの浸透が早く、多いことを意味する。
蓄電容量Qは、二次電池10の劣化に伴い減少する。前記二次電池10の劣化とは、動的内部抵抗Dirが増加して、リチウムイオンが電池電極に接触せず機能しないことを意味する。動的内部抵抗Dirが増加する原因としては、リチウムイオンの電気泳動における抵抗の増加、反応速度の低下、拡散速度の低下、陽極及び陰極におけるリチウムイオンのサイト数の低下などが考えられる。前記動的内部抵抗Dirは充電及び放電を重ねることにより増加し、その結果二次電池10の劣化が進行する。
In the case of a lithium ion battery, for example, the storage capacity Q means the size of the space where the lithium ion Li + is stored in the cathode. That is, the large storage capacity Q means that the cathode and the anode have large volumes (the number of sites is large) (the K 0 value of [Equation 32] is large), and the action surface is large ([Equation 32]). Has a large Sc value), which means that the penetration of lithium ions Li + into both electrodes is rapid and large.
The storage capacity Q decreases as the secondary battery 10 deteriorates. The deterioration of the secondary battery 10 means that the dynamic internal resistance Dir increases and lithium ions do not contact the battery electrodes and do not function. The cause of the increase in the dynamic internal resistance Dir is considered to be an increase in the resistance of the lithium ion during electrophoresis, a decrease in the reaction rate, a decrease in the diffusion rate, a decrease in the number of lithium ion sites in the anode and the cathode, and the like. The dynamic internal resistance Dir increases due to repeated charging and discharging, resulting in deterioration of the secondary battery 10.

動的内部抵抗Dirは電池反応に起因するが、反応面積が大きいほど小さくなる。また、電池容量Qは、反応面積が大きいほど大きくなる。以下に蓄電容量Qと動的内部抵抗Dirの関係について具体的に説明する。 Although the dynamic internal resistance Dir is caused by the battery reaction, it decreases as the reaction area increases. In addition, the battery capacity Q increases as the reaction area increases. The relationship between the storage capacity Q and the dynamic internal resistance Dir will be specifically described below.

<蓄電容量と動的内部抵抗の関係>
次に蓄電容量Qと動的内部抵抗Dirの関係について単純モデル化した概念を説明しておく。
負極と正極の対となる微小作用面要素をdSとすると、このdSによって電池素子を等価回路で表すことができる。
ここで単位作用面積あたりの回路における電流の流れやすさを意味するコンダクタンスρは、単位面積あたりの抵抗をrとすると、
ρ=1/r
で表され、有効作用面積(反応面積)をSとすると動的内部抵抗Dirは、
Dir=1/∫ρdS=1/ρS=r/S・・・(a)
で表される。また、全面積の蓄電容量Qは単位面積あたりの電気容量をqとすると、
Q=∫qdS=qS・・・(b)
で表される。以上(a)(b)の式より、
Dir×Q=qr=K・・・(c)
の関係が得られる。ここでKは二次電池の種類によって決定される定数(一定値)である。
<Relationship between storage capacity and dynamic internal resistance>
Next, a simple modeled concept of the relationship between the storage capacity Q and the dynamic internal resistance Dir will be described.
Letting dS be a minute acting surface element that constitutes a pair of a negative electrode and a positive electrode, the dS allows the battery element to be represented by an equivalent circuit.
Here, the conductance ρ, which means the ease of current flow in the circuit per unit area of action, is
ρ=1/r
And the effective area (reaction area) is S, the dynamic internal resistance Dir is
Dir=1/∫ρdS=1/ρS=r/S (a)
It is represented by. Further, the storage capacity Q of the whole area is q, where q is the electric capacity per unit area.
Q=∫qdS=qS...(b)
It is represented by. From the above equations (a) and (b),
Dir×Q=qr=K...(c)
Can be obtained. Here, K is a constant (constant value) determined by the type of secondary battery.

すなわち、蓄電容量Qの異なる同一種類の二次電池では、その蓄電容量Qと動的内部抵抗Dirを掛け合わせた数値は上記(c)式の如く一定だから、蓄電容量Qが大きな電池は動的内部抵抗Dirが反比例して小さく、また、動的内部抵抗Dirが増すと蓄電容量Qはそれに反比例して減少することとなる。また、有効作用面積Sが小さくなると蓄電容量Qは減少し、一方動的内部抵抗Dirは増大する。よって、動的内部抵抗Dirを算出することにより、Kの値を用いて蓄電容量Qを算出することができる。
ここで、動的内部抵抗は本実施形態に係る電池方程式から得られるDirを指す。
That is, in the same type of secondary battery having a different storage capacity Q, the value obtained by multiplying the storage capacity Q and the dynamic internal resistance Dir is constant as shown in the above equation (c). The internal resistance Dir decreases in inverse proportion, and when the dynamic internal resistance Dir increases, the storage capacity Q decreases in inverse proportion to it. Further, when the effective acting area S becomes smaller, the storage capacity Q decreases, while the dynamic internal resistance Dir increases. Therefore, the storage capacity Q can be calculated using the value of K by calculating the dynamic internal resistance Dir.
Here, the dynamic internal resistance refers to Dir obtained from the battery equation according to the present embodiment.

[二次電池の劣化度及び蓄電残量検出装置の具体的態様]
次に、本発明の一実施形態である二次電池10の劣化度及び蓄電残量検出装置1(以下、単に検出装置1ともいう)について図面を参照しながら説明する。ここで、二次電池10とは、充放電を繰り返し行うことができる電池をいい、電気エネルギーを化学エネルギーに変換して蓄え、また逆に、蓄えた化学エネルギーを電気エネルギーに変換して使用することができる電池をいう。例えば、ニッケル−カドミウム電池、ニッケル−水素金属電池、リチウムイオン電池等がある。
[Specific Embodiment of Degradation Degree of Secondary Battery and Remaining Amount of Residual Power Detection Device]
Next, the deterioration degree of the secondary battery 10 and the remaining battery charge detection device 1 (hereinafter, also simply referred to as the detection device 1), which is an embodiment of the present invention, will be described with reference to the drawings. Here, the secondary battery 10 refers to a battery that can be repeatedly charged and discharged, and converts electric energy into chemical energy for storage and, conversely, converts the stored chemical energy into electric energy for use. A battery that can be used. For example, there are nickel-cadmium batteries, nickel-hydrogen metal batteries, lithium-ion batteries and the like.

図2に検出装置1の基本的構成を示す。検出装置1は、二次電池10に充電電圧を供給する電源部11と、充電電流計測手段である電流検知器12と、電圧計測手段である電圧検知器13と、計測制御器14と、表示手段15と、操作スイッチ16等を主に備える。計測制御器14は、電源部11、電流検知回路12、電圧検知器13、表示手段15、操作手段16等と電気的に接続されている。
なお、本実施形態で説明する検出装置1の構成は、本実施形態で説明する機能を実現可能な構成であれば良く、適宜変更可能であるものとする。二次電池10は、電流検知器12を介して電源部11に接続される。
FIG. 2 shows the basic configuration of the detection device 1. The detection device 1 includes a power supply unit 11 that supplies a charging voltage to the secondary battery 10, a current detector 12 that is a charging current measuring unit, a voltage detector 13 that is a voltage measuring unit, a measurement controller 14, and a display. Means 15 and operation switch 16 are mainly provided. The measurement controller 14 is electrically connected to the power supply unit 11, the current detection circuit 12, the voltage detector 13, the display unit 15, the operation unit 16, and the like.
Note that the configuration of the detection device 1 described in the present embodiment may be any configuration that can realize the functions described in the present embodiment, and can be appropriately changed. The secondary battery 10 is connected to the power supply unit 11 via the current detector 12.

電源部11は、商用交流電力を直流に変換する変圧、整流回路を有している。電源部11は、二次電池10の定格電圧に対し、例えば1.2倍程度の出力電圧であって電池容量の0.1C程度以上の電流が得られる電源である。電源部11は、外部電圧制御端子(図示せず)を有し、該外部電圧制御端子を介して二次電池10に接続される。 The power supply unit 11 has a transformer/rectifier circuit that converts commercial AC power into DC. The power supply unit 11 is a power supply that provides an output voltage of, for example, about 1.2 times the rated voltage of the secondary battery 10 and a current of about 0.1 C or more of the battery capacity. The power supply unit 11 has an external voltage control terminal (not shown), and is connected to the secondary battery 10 via the external voltage control terminal.

電圧検知器13は、二次電池10の電圧計測するものであり、二次電池10の正極(+)と負極(−)の端子間電圧(端子電圧ともいう)を検知する。
電流検知器12と電圧検知器13は、二次電池の電圧および電流を計測する計測手段を構成する。
The voltage detector 13 measures the voltage of the secondary battery 10, and detects the voltage between terminals (also referred to as terminal voltage) between the positive electrode (+) and the negative electrode (−) of the secondary battery 10.
The current detector 12 and the voltage detector 13 form a measuring unit that measures the voltage and current of the secondary battery.

計測制御器14は、中央演算装置、記憶手段(ROM、RAM、HDD等)、各種I/Fなどで構成されるPC(パーソナルコンピュータ)もしくはマイクロコンピュータを有し、本実施形態で説明する計測原理や演算をプログラムとして格納し、かつ該プログラムを実行することができる。すなわち、計測制御器14は、所定の演算を実行する演算手段を有している。具体的には、計測制御器14は、二次電池10に通電されている電流値を電流検知器12を介して検出する電流検出部と、二次電池10の端子間の電圧値を電圧検知器13を介して検出する電圧検出部と、電流検出部及び電圧検出部により検出されたアナログ信号をデジタル信号に変換するAD変換部等を備えている。ROM等の記憶手段には、検出装置1内で処理される各種処理プログラム(例えば、本実施形態で説明するSOH及びSOCの検出方法の計測原理に基づくとともに、検知された電圧・電流データを用いて所定の演算を行うプログラム)等が格納される。 The measurement controller 14 has a central processing unit, storage means (ROM, RAM, HDD, etc.), a PC (personal computer) or a microcomputer configured with various I/Fs, and the measurement principle described in this embodiment. It is possible to store the or calculation as a program and execute the program. That is, the measurement controller 14 has a calculation unit that executes a predetermined calculation. Specifically, the measurement controller 14 detects the voltage value between the terminals of the secondary battery 10 and the current detection unit that detects the current value of the current flowing in the secondary battery 10 via the current detector 12. It includes a voltage detection unit that detects the voltage via the device 13, an AD conversion unit that converts the analog signal detected by the current detection unit and the voltage detection unit into a digital signal, and the like. Various processing programs processed in the detection device 1 (for example, based on the measurement principle of the SOH and SOC detection methods described in the present embodiment and detected voltage/current data are used as storage means such as a ROM). And a program for performing a predetermined calculation) are stored.

表示手段15は、二次電池10の充電状態を示す情報(例えば、劣化状態等)を表示するものである。表示手段15は、LCD等で構成される。表示手段15は、二次電池10の充電状態を示す情報としては、例えば、電池起電力Vemf、動的内部抵抗Dir、劣化度SOH(State Of Health)、蓄電残量SOC(State Of Charge)などを表示することができる。 The display unit 15 displays information indicating the charge state of the secondary battery 10 (for example, deterioration state). The display means 15 is composed of an LCD or the like. As the information indicating the state of charge of the secondary battery 10, the display unit 15 may be, for example, a battery electromotive force Vemf, a dynamic internal resistance Dir, a deterioration degree SOH (State Of Health), and a state of charge SOC (State Of Charge). Can be displayed.

操作手段16は、ユーザがSOH及びSOCの検出を実行するために操作等を行う手段である。操作手段16は、例えば、操作スイッチ、液晶等のタッチパネル、キーボート等である。 The operation unit 16 is a unit that a user performs an operation or the like to execute the detection of SOH and SOC. The operation unit 16 is, for example, an operation switch, a touch panel such as a liquid crystal, a keyboard, or the like.

図2に示すように、二次電池10を電源11に電流検知器12を介して接続する。二次電池10の電圧計測のための電圧検知器13及び充電電流計測のための電流検知器12のそれぞれで計測された電圧及び電流信号を計測制御器14に送信する。計測制御器14は、該信号を受け演算し、電源11の出力電圧および電流を適正値に制御すると同時に演算結果としてSOCおよびSOHの数値を出力、すなわち表示手段15により表示を行う。 As shown in FIG. 2, the secondary battery 10 is connected to the power supply 11 via the current detector 12. The voltage and current signals measured by the voltage detector 13 for measuring the voltage of the secondary battery 10 and the current detector 12 for measuring the charging current are transmitted to the measurement controller 14. The measurement controller 14 receives and operates the signal, controls the output voltage and current of the power supply 11 to appropriate values, and at the same time outputs the numerical values of SOC and SOH as the calculation result, that is, displays them by the display means 15.

図7は、電圧−電流の立ち上がり/立下りの時間特性を示す図である。
図7は定電流制御としたとき、t=0に充電動作開始した後の電圧−電流の時間変化を描いた図である。起電力(平衡電圧)より高い過電圧δを印加すれば一定値の電流はIとなり、電池端子電圧はvとなる。
FIG. 7 is a diagram showing time characteristics of rising/falling of voltage-current.
FIG. 7 is a diagram illustrating a change with time in voltage-current after the charging operation is started at t=0 when the constant current control is performed. If an overvoltage δ higher than the electromotive force (equilibrium voltage) is applied, the constant current becomes I and the battery terminal voltage becomes v.

電流の設定値Iに対して得られる計測値Δvから、[数23]の式、あるいは[数25]の式を使い、過電圧δ、動的内部抵抗Dirが算出され、あらかじめ“空”から“満”まで計測した動的内部抵抗Dirと容量Q、SOCとηeq*(=Vemf)のデータを使用しDir比から、同種新規電池セルの容量を確定する。この所要時間は、上述した計測原理に基づいて演算される時間であるため、僅か1秒もかからずに、即刻、電池の性能判定を下すことができる。 From the measured value Δv obtained for the current set value I, the overvoltage δ and the dynamic internal resistance Dir are calculated by using the formula of [Equation 23] or the formula of [Equation 25], and from “empty” to “ The capacity of the new battery cell of the same type is determined from the Dir ratio by using the data of the dynamic internal resistance Dir and the capacity Q, SOC, and ηeq*(=Vemf) measured up to full. Since this required time is a time calculated based on the above-described measurement principle, it is possible to make a battery performance judgment immediately, in less than 1 second.

[SOH(劣化度)の算出]
次に二次電池10の劣化の進行状況を示す指標である劣化度SOHについて説明する。
本実施形態の検出装置1は、計測制御器14にて二次電池1の充放電サイクルに対する劣化状態を示す劣化度であるSOHが算出される。前記SOHは、電池の劣化の進行状況を示す指標であり、現在の蓄電容量の初期蓄電容量に対する比で表され、初期蓄電容量をQとすると、SOH=(Q/Q)×100で算出することができる。
[Calculation of SOH (degree of deterioration)]
Next, the deterioration degree SOH, which is an index indicating the progress of deterioration of the secondary battery 10, will be described.
In the detection device 1 of the present embodiment, the measurement controller 14 calculates SOH, which is the deterioration degree indicating the deterioration state of the secondary battery 1 with respect to the charge/discharge cycle. The SOH is an index showing the progress of deterioration of the battery, and is represented by the ratio of the current storage capacity to the initial storage capacity. When the initial storage capacity is Q 0 , SOH=(Q/Q 0 )×100 It can be calculated.

蓄電残量SOCについては、上述した計測原理等により電池起電力Vemfを正確に取得することができれば、該取得された電池起電力を二次電池10の充電率が100%となる電圧と定義すればよい。
検出装置1は、前記計測制御器14において、二次電池10の現在の蓄電容量Q、SOH及びSOCを算出して、これらを表示手段15に出力して表示することができる。
Regarding the remaining charge SOC, if the battery electromotive force Vemf can be accurately acquired by the above-described measurement principle or the like, the acquired battery electromotive force is defined as a voltage at which the charging rate of the secondary battery 10 becomes 100%. Good.
The detection device 1 can calculate the current storage capacities Q, SOH, and SOC of the secondary battery 10 in the measurement controller 14, and output them to the display unit 15 to display them.

[手法1]
以上のように、本実施形態の検出装置1によれば、制御部の一例である計測制御器14は、二次電池10の充電開始時の立ち上がり電圧および電流の計測値をもとに[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池10の動作時の過電圧δと、Dirを演算により求めることができる。さらに、このDirと、新品の二次電池のDirとの対比によって前記劣化度SOHを検出することができる。これにより、二次電池10のSOHが精度良くかつ瞬時に検出することができる。したがって、二次電池10の電池状態(例えば充電状態)の認識がいつでも可能となる。
[Method 1]
As described above, according to the detection device 1 of the present embodiment, the measurement controller 14, which is an example of the control unit, uses the measured values of the rising voltage and the current at the start of charging the secondary battery 10 25] and the equation of [Equation 28], the overvoltage δ during operation of the secondary battery 10 and Dir can be calculated. Furthermore, the deterioration degree SOH can be detected by comparing this Dir with the Dir of a new secondary battery. As a result, the SOH of the secondary battery 10 can be detected accurately and instantaneously. Therefore, the battery state (eg, charge state) of the secondary battery 10 can be recognized at any time.

[手法2]
また、本実施形態の検出装置1によれば、計測制御器14は、二次電池10の充電を遮断した時の立下がり電圧の計測値と[数9]〜[数11]とから求められるΔηeq及びηeq*と「電池方程式」を用いて静止時の正確な起電力の変化を求め、その起電力があらかじめ計測された対比テーブルとの照合により蓄電残量SOCを確定する。これにより、二次電池10が長期間使用により容量低下となっても、その時点の蓄電残量が比率としても、絶対値としても取得され、ユーザのエネルギー枯渇による不安感が払拭される。
[Method 2]
Further, according to the detection apparatus 1 of the present embodiment, the measurement controller 14 is obtained from the measured value of the falling voltage when the charging of the secondary battery 10 is cut off and [Equation 9] to [Equation 11]. An accurate change in electromotive force at rest is obtained using Δηeq and ηeq* and the “battery equation”, and the remaining charge SOC is determined by collation with a comparison table in which the electromotive force is measured in advance. As a result, even if the capacity of the secondary battery 10 is reduced due to long-term use, the remaining power storage amount at that time is acquired as a ratio and an absolute value, and the user's anxiety due to energy depletion is eliminated.

また、本実施形態の検出装置1によれば、計測制御器14は、電圧検知器13による電圧の計測値と前記[数23]に示す電池方程式を用いて充電時の動的内部抵抗Dirを求めて、前記蓄電残量SOCを参照してDir最小値を割り出した最小Dirから劣化度SOHを算出する。これにより、二次電池10のSOHを精度良くかつ瞬時に検出することができる。したがって、二次電池10の電池状態(例えば劣化状態)の認識がいつでも可能となる。 Further, according to the detection device 1 of the present embodiment, the measurement controller 14 uses the measured value of the voltage by the voltage detector 13 and the battery equation shown in [Equation 23] to calculate the dynamic internal resistance Dir during charging. Then, the deterioration degree SOH is calculated from the minimum Dir obtained by calculating the Dir minimum value with reference to the remaining charge SOC. As a result, the SOH of the secondary battery 10 can be detected accurately and instantaneously. Therefore, the battery state (for example, deterioration state) of the secondary battery 10 can be recognized at any time.

また、本実施形態の検出装置1によれば、計測制御器14は、電圧検知器13による電圧の計測値と[数23]に示す電池方程式を用いて過電圧δに対する電圧−電流特性を決定する電池固有の係数([数31]参照)を確定することによって、二次電池10の電池容量を導出する。
すなわち、このように導出する具体策として、図6を応用して、電流−電圧カーブの係数Kを確定し、酸化還元の化学反応を原理とする電池反応の蓄電素子容量Q=0.55(当該数値は、電気化学反応論から最適充電条件で算出される)をこのK値に乗じた値を容量Qとして決定することができる。すなわち、上述した検出装置1では、これらを演算処理するため、その所要時間は、僅か1秒もかからない即刻性能判定が下せる。なお、蓄電素子容量は±10%程度の誤差がある欠点を持つが、上記の[手法1]でこの誤差を極小化することは可能である。
Further, according to the detection apparatus 1 of the present embodiment, the measurement controller 14 determines the voltage-current characteristic with respect to the overvoltage δ using the voltage measurement value by the voltage detector 13 and the battery equation shown in [Equation 23]. The battery capacity of the secondary battery 10 is derived by determining the coefficient specific to the battery (see [Equation 31]).
That is, as a concrete measure to derive in this way, by applying FIG. 6, the coefficient K 0 of the current-voltage curve is determined, and the storage element capacity Q 0 =0. A value obtained by multiplying the K value by 55 (the numerical value is calculated from the electrochemical reaction theory under the optimum charging condition) can be determined as the capacity Q. That is, in the above-described detection device 1, since these are arithmetically processed, it is possible to make an instant performance determination that requires a time of only 1 second. It should be noted that although the capacity of the storage element has an error of about ±10%, it is possible to minimize this error by the above [Method 1].

[本発明の実用的展開に関して]
また、本発明の二次電池の劣化度及び蓄電残量検出装置は、以下のような効用が期待される。
1)電池の性能は、酸化・還元反応を司る電極(負極及び正極)の性能によって決まる。この電極性能を本発明により電池外部から印加する電圧、電流値を計測し、その演算によって短時間で確定することで電池使用の安全・信頼の確信となる。
2)電池内部は一般に作動媒体(例えばリチウムイオン電池ではリチウムイオン)がその媒体を高分子誘電体中に溶融和形態で存在し、充電/放電過程で流れが形成される。この流れの度合いも電池性能に大きく関わる。これも上記1)と同様に外部電圧・電流の計測から数値化し、その良否の判断を可能とする。
3)電池には劣化を伴う寿命をもつ。本発明の二次電池の劣化度及び蓄電残量検出装置により、計測結果の経年データ分析からその予測が可能となる。これは迅速かつ正確に本発明によってデータ取得が可能となったことによる。
[Regarding Practical Development of the Present Invention]
In addition, the deterioration degree of the secondary battery and the remaining charge detection device of the present invention are expected to have the following effects.
1) Battery performance is determined by the performance of the electrodes (negative electrode and positive electrode) that control the oxidation/reduction reaction. According to the present invention, the electrode performance is measured by measuring the voltage and the current value applied from the outside of the battery, and the calculation is performed to determine the value in a short time, thereby ensuring the safety and reliability of battery use.
2) Inside the battery, a working medium (for example, lithium ions in a lithium ion battery) is generally present in the polymer dielectric material in a melted form, and a flow is formed during the charging/discharging process. The degree of this flow also greatly affects the battery performance. As in the case of 1) above, this is also converted into a numerical value from the measurement of the external voltage/current, and it is possible to judge the quality.
3) The battery has a life with deterioration. The deterioration degree of the secondary battery and the remaining charge detection device according to the present invention make it possible to predict the deterioration result by analyzing the aged data of the measurement result. This is due to the fact that the present invention enables data acquisition quickly and accurately.

二次電池を使用するうえで、現在の蓄電残量(SOC)、劣化度(SOH、蓄電性能)が常に把握できることが必要不可欠である。しかし、従来技術では、即座にこれら電池状態の検知が不可能であり、思わぬ“電気枯渇”あるいは“過充電”を招き、種々のトラブルあるいはハザードを惹起する事例が多々見られる。
本発明の二次電池の劣化度及び蓄電残量検出装置は、複雑な機構を持つ電池内部の化学的反応と外部回路を流れる電子の流れの連続性に関し、電極での酸化/還元時の電子の流れを化学反応論のむしろ古典的手法に基づき解析し、上述した普遍的な「電池方程式」に集約し、その応用・適応の開発をもとに電池の良否、性能が1秒足らずで正確に計測可能の"電池分析器"として創出したものである。
本発明による技術の応用によって、電池開発時の迅速な評価、電池生産時の品質管理、組電池生産時の個々のセル性能調整、電池システムの稼働状況把握、リユース時の性能分類、等々、電池利用・応用のすべてのステージにおいて利用可能である。
When using the secondary battery, it is essential to be able to always grasp the current remaining charge amount (SOC) and deterioration degree (SOH, power storage performance). However, in the prior art, it is impossible to detect these battery states immediately, and there are many cases in which unexpected "electrical depletion" or "overcharge" is caused and various troubles or hazards are caused.
The degree of deterioration of a secondary battery and the remaining battery level detection device of the present invention relates to the chemical reaction inside the battery having a complicated mechanism and the continuity of the flow of electrons flowing through the external circuit. Is analyzed based on the classical method of chemical reaction theory and summarized in the universal “battery equation” described above. Based on the development of its application and adaptation, the quality of the battery and the performance are accurate in less than 1 second. It was created as a measurable "battery analyzer".
By applying the technology according to the present invention, quick evaluation during battery development, quality control during battery production, individual cell performance adjustment during battery assembly production, operation status grasp of battery system, performance classification during reuse, etc. It can be used at all stages of use and application.

上述した手法1では、検出装置1が二次電池10の「充電開始時の立ち上がり電圧および電流の計測値」をもとに[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池10の動作時の過電圧δと、Dirを演算により求めている。ここで、上記「充電開始時の立ち上がり電圧および電流の計測値」は、計測制御器14が各種計測手段を介して取得する二次電池の「充電または放電に関する所定の条件」の一例である。 In the method 1 described above, the detection device 1 uses the “measured values of the rising voltage and current at the start of charging” of the secondary battery 10 as the battery equation in [Equation 25] and the equation in [Equation 28]. Is used to calculate the overvoltage δ during operation of the secondary battery 10 and Dir. Here, the “measured value of the rising voltage and current at the start of charging” is an example of the “predetermined condition regarding charging or discharging” of the secondary battery acquired by the measurement controller 14 via various measuring means.

上記「充電または放電に関する所定の条件」としては、例えば、以下のものが挙げられる。
(1)放電開始時の立下り電圧の時間経過
(2)放電遮断時の立ち上がり電圧の計測値
(3)充電電流を増加させた時または放電電流を減少させた時の立ち上がり電圧の計測値
(4)充電電流を減少させた時または放電電流を増加させた時の立下り電圧の時間経過
(5)充電から放電へ移行させた時の立下り電圧の時間経過
(6)放電から充電へ移行させた時の立ち上がり電圧の計測値
検出装置1は、これらの各条件に基づいて、[数25]に記載の電池方程式及び[数28]に記載の式を使って、二次電池10の動作時の過電圧δと、Dirを演算により求めることができる。よって、本発明と同様の効果を奏する。
Examples of the above-mentioned “predetermined condition regarding charging or discharging” include the following.
(1) Elapsed time of falling voltage at the start of discharge (2) Measured value of rising voltage at discharge interruption (3) Measured value of rising voltage when increasing charging current or decreasing discharging current ( 4) Time course of falling voltage when charging current is decreased or discharge current is increased (5) Time course of falling voltage when shifting from charging to discharging (6) Transition from discharging to charging Measured value of rising voltage at the time of detection The detection device 1 operates the secondary battery 10 using the battery equation described in [Equation 25] and the equation described in [Equation 28] based on each of these conditions. The overvoltage δ at the time and Dir can be calculated. Therefore, the same effect as the present invention is achieved.

本実施形態では、二次電池を用いた場合の充放電について説明したが、本発明は二次電池に限定するものではなく、蓄電素子に広く適用することができる。
ここで、蓄電素子とは、蓄電機能を有する素子全般を指し、例えば、一対の電極と、電解質を少なくとも有し、蓄電することができる機能を有する素子のことである。なお、蓄電素子を蓄電装置としてもよい。
In the present embodiment, the charging/discharging in the case of using the secondary battery has been described, but the present invention is not limited to the secondary battery and can be widely applied to a storage element.
Here, the electricity storage element refers to all elements having an electricity storage function, for example, an element having at least a pair of electrodes and an electrolyte and having a function capable of electricity storage. The power storage element may be a power storage device.

蓄電素子としては、例えばリチウムイオン二次電池、鉛蓄電池、リチウムイオンポリマー二次電池、ニッケル水素蓄電池、ニッケルカドミウム蓄電池、ニッケル鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池等の二次電池、レドックス・フロー電池、亜鉛・塩素電池、亜鉛臭素電池等の液循環型の二次電池、アルミニウム・空気電池、空気亜鉛電池、ナトリウム・硫黄電池、リチウム・硫化鉄電池等の高温動作型の二次電池などを用いることができる。なお、これらに限定されず、例えばリチウムイオンキャパシタ、電気二重層キャパシタなどを用いて蓄電素子を構成してもよい。 As the storage element, for example, a lithium ion secondary battery, a lead storage battery, a lithium ion polymer secondary battery, a nickel hydrogen storage battery, a nickel cadmium storage battery, a nickel iron storage battery, a nickel/zinc storage battery, a secondary battery such as a silver oxide/zinc storage battery, Liquid circulation type secondary batteries such as redox flow batteries, zinc/chlorine batteries, zinc bromine batteries, aluminum/air batteries, zinc-air batteries, sodium/sulfur batteries, lithium/iron sulfide batteries, etc. A battery or the like can be used. Note that the present invention is not limited to these, and the storage element may be configured using, for example, a lithium ion capacitor, an electric double layer capacitor, or the like.

1 検出装置
10 二次電池(蓄電素子)
12 電流検知器(電流計測手段)
13 電圧検知器(電圧計測手段)
14 計測制御器(制御部)
1 Detection device 10 Secondary battery (electric storage element)
12 Current detector (current measuring means)
13 Voltage detector (voltage measuring means)
14 Measurement controller (control unit)

Claims (12)

蓄電素子の劣化度SOHおよび蓄電残量SOCを検出する蓄電素子の劣化度及び蓄電残量検出装置であって、
前記蓄電素子の電圧および電流を計測する計測手段と、
所定の演算を実行する演算手段を有する制御部と、を備え、
前記制御部は、
前記蓄電素子の充電開始時の立ち上がり電圧および電流の計測値をもとに、以下の[数1]に示す電池方程式を用いて前記蓄電素子の動作時の過電圧δを演算により求めることを特徴とする蓄電素子の劣化度及び蓄電残量検出装置。
Figure 2020112535
但し、[数1]においてΔνは前記蓄電素子の端子電圧v、と起電力ηeq*の差電圧であり、Δνは動作時に電極面での酸化/還元反応に伴い発生する電位差となる。また、定数fはファラディ定数、ボルツマン定数、及び絶対温度からなる物理定数である。
A deterioration degree of a storage element and a remaining charge level detection device for detecting a deterioration degree SOH and a remaining charge level SOC of a power storage element,
Measuring means for measuring the voltage and current of the storage element,
A control unit having a calculation means for executing a predetermined calculation,
The control unit is
The overvoltage δ during operation of the storage element is calculated by using the battery equation shown in the following [Equation 1] based on the measured values of the rising voltage and current at the start of charging the storage element. Deterioration degree of power storage element and remaining power storage level detection device.
Figure 2020112535
However, in [Equation 1], Δν is a difference voltage between the terminal voltage v of the storage element and the electromotive force ηeq*, and Δν 1 is a potential difference generated due to the oxidation/reduction reaction on the electrode surface during operation. The constant f is a physical constant composed of the Faraday constant, Boltzmann constant, and absolute temperature.
前記制御部は、
前記[数1]に記載の2式が等しい条件から前記動作時の過電圧δを確定する、請求項1に記載の蓄電素子の劣化度及び蓄電残量検出装置。
The control unit is
The deterioration degree of a power storage element and a power storage residual amount detection device according to claim 1, wherein the overvoltage δ during the operation is determined from the condition that the two expressions described in [Equation 1] are equal.
前記制御部は、
前記蓄電素子の充電を遮断した時の立下がり電圧の時間経過を計測し前記蓄電素子の電解質特性を演算算出する、請求項1または請求項2に記載の蓄電素子の劣化度及び蓄電残量検出装置。
The control unit is
The degree of deterioration of a power storage device and the remaining power storage amount detection according to claim 1 or 2, wherein a time lapse of a falling voltage when the charge of the power storage device is cut off is measured to calculate an electrolyte characteristic of the power storage device. apparatus.
前記制御部は、
前記電圧の計測値と前記[数1]に示す電池方程式を用いて充電時の動的内部抵抗Dirを求めて、Dirから劣化度SOHを算出する、請求項1から請求項3の何れか一項に記載の蓄電素子の劣化度及び蓄電残量検出装置。
The control unit is
The deterioration degree SOH is calculated from the Dir by calculating the dynamic internal resistance Dir during charging using the measured value of the voltage and the battery equation shown in [Formula 1]. Item 6. A deterioration degree of a power storage element and a remaining power storage level detection device according to the item.
前記制御部は、
前記電圧の計測値と前記[数1]に示す電池方程式を用いて前記過電圧δに対する電圧−電流特性式である[数2]の電池固有の係数を確定することによって、電池容量を導出する、請求項1から請求項4の何れか一項に記載の蓄電素子の劣化度及び蓄電残量検出装置。
Figure 2020112535
The control unit is
The battery capacity is derived by determining the battery-specific coefficient of [Equation 2], which is the voltage-current characteristic equation for the overvoltage δ, using the measured value of the voltage and the battery equation shown in [Equation 1]. The degree-of-deterioration of the electricity storage element and the remaining electricity storage device according to any one of claims 1 to 4.
Figure 2020112535
蓄電素子の劣化度SOHおよび蓄電残量SOCを検出する蓄電素子の劣化度及び蓄電残量検出装置であって、
前記蓄電素子の電圧および電流を計測する計測手段と、
所定の演算を実行する演算手段を有する制御部と、を備え、
前記制御部は、
前記蓄電素子の充電または放電に関する所定の条件をもとに、以下の[数1]に示す電池方程式を用いて前記蓄電素子の動作時の過電圧δを演算により求めることを特徴とする蓄電素子の劣化度及び蓄電残量検出装置。
Figure 2020112535
但し、[数1]においてΔνは前記蓄電素子の端子電圧v、と起電力ηeq*の差電圧であり、Δνは動作時に電極面での酸化/還元反応に伴い発生する電位差となる。また、定数fはファラディ定数、ボルツマン定数、及び絶対温度からなる物理定数である。
A deterioration degree of a storage element and a remaining charge level detection device for detecting a deterioration degree SOH and a remaining charge level SOC of a power storage element,
Measuring means for measuring the voltage and current of the storage element,
A control unit having a calculation means for executing a predetermined calculation,
The control unit is
Based on a predetermined condition for charging or discharging the storage element, an overvoltage δ during operation of the storage element is calculated by using a battery equation shown in the following [Equation 1]. Deterioration level and remaining battery level detection device.
Figure 2020112535
However, in [Equation 1], Δν is a difference voltage between the terminal voltage v of the storage element and the electromotive force ηeq*, and Δν 1 is a potential difference generated due to the oxidation/reduction reaction on the electrode surface during operation. The constant f is a physical constant composed of the Faraday constant, Boltzmann constant, and absolute temperature.
前記所定の条件は、放電開始時の立下り電圧の時間経過であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 The degree of deterioration of a power storage element and a power storage remaining amount detection device according to claim 6, wherein the predetermined condition is a lapse of time of a falling voltage at the start of discharge. 前記所定の条件は、放電遮断時の立ち上がり電圧の計測値であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 7. The deterioration degree of a power storage element and a power storage remaining amount detection device according to claim 6, wherein the predetermined condition is a measured value of a rising voltage at the time of discharge interruption. 前記所定の条件は、充電電流を増加させた時または放電電流を減少させた時の立ち上がり電圧の計測値であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 7. The degree of deterioration of a power storage element and the remaining power storage level detection according to claim 6, wherein the predetermined condition is a measured value of a rising voltage when the charging current is increased or when the discharging current is decreased. apparatus. 前記所定の条件は、充電電流を減少させた時または放電電流を増加させた時の立下り電圧の時間経過であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 7. The degree of deterioration of a storage element and the remaining storage amount according to claim 6, wherein the predetermined condition is a lapse of time of the falling voltage when the charging current is decreased or the discharging current is increased. Detection device. 前記所定の条件は、充電から放電へ移行させた時の立下り電圧の時間経過であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 The deterioration level of a power storage element and a remaining power level detection device according to claim 6, wherein the predetermined condition is a lapse of time of a falling voltage when the charging is changed to the discharging. 前記所定の条件は、放電から充電へ移行させた時の立ち上がり電圧の計測値であることを特徴とする請求項6に記載の蓄電素子の劣化度及び蓄電残量検出装置。 7. The deterioration degree of a power storage element and a power storage remaining amount detection apparatus according to claim 6, wherein the predetermined condition is a measured value of a rising voltage at the time of shifting from discharging to charging.
JP2019112412A 2019-01-15 2019-06-17 Deterioration degree of storage element and remaining storage capacity detection device Active JP6589080B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/421,729 US20220082630A1 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit
CN202080005369.5A CN112771708B (en) 2019-01-15 2020-01-15 Degradation degree of power storage element, power storage remaining amount detection device, and power storage element management unit
PCT/JP2020/001003 WO2020149288A1 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit
EP20742049.8A EP3913726A4 (en) 2019-01-15 2020-01-15 Soh/soc detecting device for power storage element, and power storage element managing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004769 2019-01-15
JP2019004769 2019-01-15

Publications (2)

Publication Number Publication Date
JP6589080B1 JP6589080B1 (en) 2019-10-09
JP2020112535A true JP2020112535A (en) 2020-07-27

Family

ID=68159725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112412A Active JP6589080B1 (en) 2019-01-15 2019-06-17 Deterioration degree of storage element and remaining storage capacity detection device

Country Status (1)

Country Link
JP (1) JP6589080B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722808B1 (en) * 2019-07-10 2020-07-15 ゴイク電池株式会社 Storage element management unit
JP6839883B1 (en) * 2020-09-30 2021-03-10 ゴイク電池株式会社 Instant measurement method of battery performance
CN113805061B (en) * 2021-08-28 2023-09-01 西北工业大学 SOC prediction method for lithium primary battery of lithium thionyl chloride system

Also Published As

Publication number Publication date
JP6589080B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2020149288A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
US10094882B2 (en) Apparatus for predicting power parameter of secondary battery
Barcellona et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge
JP4061965B2 (en) Battery capacity calculation method
JP6589080B1 (en) Deterioration degree of storage element and remaining storage capacity detection device
KR102156404B1 (en) Apparatus and method for testing performance of battery cell
EP4130767A1 (en) Lithium plating detection method and apparatus, and polarization proportion acquisition method and apparatus
EP4019321B1 (en) Battery managing method and device, and vehicle
JP2010139260A (en) System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JP5878088B2 (en) Battery module and state estimation method thereof
JP6337233B2 (en) Battery evaluation method and battery characteristic evaluation apparatus
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP6749080B2 (en) Power storage system, secondary battery control system, and secondary battery control method
KR20180023632A (en) Apparatus and method for performance testing of a battery cell
JP2017090426A (en) Battery life diagnosis and diagnostic circuit
TWI579575B (en) Battery health detection method and its circuit
CN112526350A (en) Lithium ion battery peak power prediction method considering thermal effect influence
Křivík et al. Effect of ageing on the impedance of the lead-acid battery
JP4833788B2 (en) Battery voltage prediction method, program, state monitoring device, and power supply system
JP4511162B2 (en) Fuel cell evaluation system
JP7235792B2 (en) Capacity deterioration prediction method
KR20220094464A (en) Battery diagnosis system, battery diagnosis method, battery pack, and electric vehicle
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
JPH11204149A (en) Lithium battery remaining capacity measuring method
JP6722808B1 (en) Storage element management unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190620

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6589080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250