JP2020111867A - Fluorescent substance-containing thermoplastic resin filament - Google Patents

Fluorescent substance-containing thermoplastic resin filament Download PDF

Info

Publication number
JP2020111867A
JP2020111867A JP2020043591A JP2020043591A JP2020111867A JP 2020111867 A JP2020111867 A JP 2020111867A JP 2020043591 A JP2020043591 A JP 2020043591A JP 2020043591 A JP2020043591 A JP 2020043591A JP 2020111867 A JP2020111867 A JP 2020111867A
Authority
JP
Japan
Prior art keywords
phosphor
thermoplastic resin
resin
wavelength conversion
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020043591A
Other languages
Japanese (ja)
Other versions
JP6825734B2 (en
Inventor
津森 俊宏
Toshihiro Tsumori
俊宏 津森
敏彦 塚谷
Toshihiko Tsukatani
敏彦 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020043591A priority Critical patent/JP6825734B2/en
Publication of JP2020111867A publication Critical patent/JP2020111867A/en
Application granted granted Critical
Publication of JP6825734B2 publication Critical patent/JP6825734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

SOLUTION: There is provided a fluorescent substance-containing thermoplastic resin filament which is a raw material filament for producing a wavelength conversion member containing a fluorescent substance converting a wavelength of light emitted from an LED to emit light having a different wavelength by a 3D printer according to a melt lamination method, in which a particulate fluorescent substance containing a manganese-activated complex fluoride fluorescent substance represented by A2(M1-x, Mnx)F6 is dispersed, at a concentration of 30 mass% or less, in a thermoplastic resin selected from an olefin resin, a cyclic polyolefin resin, an acrylic resin, a styrene resin and an acryl-imide resin.EFFECT: A wavelength conversion member used for an LED light-emitting device of a remote phosphor type can efficiently be produced without using a metal die, and a fluorescent substance of the resultant wavelength conversion member has a good dispersibility.SELECTED DRAWING: Figure 1

Description

本発明は、LEDから発光した光の波長を変換して、異なる波長の光を発光する蛍光体を含有する波長変換部材の製造に好適な蛍光体含有熱可塑性樹脂フィラメントに関する。 The present invention relates to a phosphor-containing thermoplastic resin filament suitable for producing a wavelength conversion member containing a phosphor that emits light of different wavelengths by converting the wavelength of light emitted from an LED.

一般的な白色LEDは、青色LED素子と、この素子から発光した光を、より長波長の可視光成分に変換する蛍光体とにより構成されている。このような白色LEDにおいては、蛍光体に入射した励起光である青色光が波長変換されることにより生じた、青色光より長波長の光と、蛍光体に吸収されなかった青色光とが合わさることで、白色光が生成される。白色LEDでは、発光した光の色度、色温度及び発光効率などの特性は、蛍光体の種類及び濃度に大きく依存しており、発光光の特性は、通常、蛍光体の種類と濃度により調整される。 A general white LED includes a blue LED element and a phosphor that converts light emitted from this element into a visible light component having a longer wavelength. In such a white LED, light having a longer wavelength than blue light generated by wavelength conversion of blue light that is excitation light incident on the phosphor is combined with blue light that is not absorbed by the phosphor. As a result, white light is generated. With white LEDs, characteristics such as chromaticity, color temperature, and luminous efficiency of emitted light largely depend on the type and concentration of the phosphor, and the characteristics of the emitted light are usually adjusted by the type and concentration of the phosphor. To be done.

特表2015−520494号公報Japanese Patent Publication No. 2015-520494 特表2015−515734号公報Japanese Patent Publication No. 2015-515734 特表2013−521614号公報Japanese Patent Publication No. 2013-521614

このようなLED発光装置において、発光した光の色度、色温度、発光効率などの発光特性は、波長変換部材の形状や厚みによっても変化する。このような波長変換部材に用いられる蛍光体は、比較的高価なものであるから、その使用量を削減することが求められているが、波長変換部材の形状や厚みによって発光特性を改善して、蛍光体の使用量を低減しようとする場合、LED素子を封止する樹脂などの封止材に蛍光体を分散させたLEDパッケージでは、波長変換部材をなす封止材の形状や厚みを大きく変更することができないため、限界がある。 In such an LED light emitting device, light emission characteristics such as chromaticity, color temperature, and light emission efficiency of emitted light change depending on the shape and thickness of the wavelength conversion member. Since the phosphor used for such a wavelength conversion member is relatively expensive, it is required to reduce the amount used, but it is necessary to improve the light emission characteristics by the shape and thickness of the wavelength conversion member. In order to reduce the usage amount of the phosphor, in the LED package in which the phosphor is dispersed in the sealing material such as the resin that seals the LED element, the shape and thickness of the sealing material forming the wavelength conversion member are increased. There is a limit because it cannot be changed.

これに対して、LED素子又はLED素子が封止材で封止されたLEDパッケージとは別の部材として形成された波長変換部材を用いるリモートフォスファー型のLED発光装置であれば、波長変換部材の形状や厚み、更には、LED素子又はLED素子パッケージに対する波長変換部材の配置を変更して、より少ない量の蛍光体で、より高い発光特性を得ることが可能であり、波長変換部材の態様変更の自由度が高い。 On the other hand, if the LED device is a remote phosphor type LED light emitting device that uses a wavelength conversion member formed as a member different from the LED package in which the LED device is sealed with a sealing material, the wavelength conversion member It is possible to obtain higher emission characteristics with a smaller amount of phosphor by changing the shape and thickness of the LED element or the arrangement of the wavelength conversion member with respect to the LED element or the LED element package. High degree of freedom to change.

しかしながら、様々な形状の波長変換部材を作製してその光学特性を検討するには、通常の金型を用いた製造方法では、多数の金型を用意する必要があり、コストが高くなる。また、波長変換部材の製造方法は、蛍光体が均一に分散された波長変換部材を製造できるものでなければ、波長変換部材に必要とされる十分な光学特性を得ることができない。 However, in order to manufacture wavelength conversion members of various shapes and study the optical characteristics thereof, it is necessary to prepare a large number of molds in the manufacturing method using a normal mold, which increases the cost. Further, in the method of manufacturing the wavelength conversion member, sufficient optical characteristics required for the wavelength conversion member cannot be obtained unless the wavelength conversion member in which the phosphor is uniformly dispersed can be manufactured.

本発明は、上記事情に鑑みなされたものであり、より少ない量の蛍光体で、より高い発光特性、特に、より高い発光効率を与えることができる波長変換部材を、金型を用いることなく、蛍光体の分散性が高い状態、即ち、波長変換部材全体において、蛍光体が均一に分散し、蛍光体濃度のばらつきが抑えられた状態で製造できる蛍光体含有熱可塑性樹脂フィラメントを提供することを目的とする。 The present invention has been made in view of the above circumstances, with a smaller amount of phosphor, higher emission characteristics, in particular, a wavelength conversion member that can give higher emission efficiency, without using a mold, To provide a phosphor-containing thermoplastic resin filament that can be manufactured in a state where the dispersibility of the phosphor is high, that is, the phosphor is uniformly dispersed in the entire wavelength conversion member and the dispersion of the phosphor concentration is suppressed. To aim.

本発明者らは、上記課題を解決するために、リモートフォスファー型のLED発光装置に用いる波長変換部材として、LEDから発光した光の波長を変換して、この波長とは異なる波長の光を発光する蛍光体を含有する波長変換部材の形状、厚み、LEDに対する波長変換部材の配置などについて検討するにあたり、波長変換部材を、金型を用いることなく、効率よく製造できる方法について鋭意検討を重ねた結果、LEDから発光した光の波長を変換して、当該波長とは異なる波長の光を発光する蛍光体を含有する波長変換部材を、粒子状の蛍光体が熱可塑性樹脂中に30質量%以下の濃度で分散している蛍光体含有熱可塑性樹脂フィラメントを用いて、溶融積層法による3Dプリンターにより製造することにより、蛍光体の分散性が高い状態で、波長変換部材を製造できることを見出した。 In order to solve the above-mentioned problems, the present inventors convert a wavelength of light emitted from an LED as a wavelength conversion member used in a remote phosphor type LED light emitting device, and emit light having a wavelength different from this wavelength. In examining the shape and thickness of the wavelength conversion member containing the phosphor that emits light, the arrangement of the wavelength conversion member with respect to the LED, etc., the inventors have earnestly studied how to efficiently manufacture the wavelength conversion member without using a mold. As a result, the wavelength conversion member that converts the wavelength of the light emitted from the LED and contains the phosphor that emits the light of a wavelength different from the wavelength is 30% by mass in the thermoplastic resin with the particulate phosphor in the thermoplastic resin. It has been found that a wavelength conversion member can be manufactured in a state in which the dispersibility of the phosphor is high by using a thermoplastic resin filament containing a phosphor dispersed in the following concentrations to produce it with a 3D printer by the melt lamination method. ..

そして、本発明者らは、蛍光体含有熱可塑性樹脂フィラメントを、粒子状の蛍光体を熱可塑性樹脂に混合して蛍光体含有熱可塑性樹脂を得た後、
(1)蛍光体含有熱可塑性樹脂を、溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)を30以上60以下として押出成形すること、又は
(2)蛍光体含有熱可塑性樹脂を、180℃以上240℃未満の温度で溶融させた状態でオリフィス穴から押出し、かつ溶融した蛍光体含有熱可塑性樹脂の押出の線速度に対して、3倍以上30倍以下の線速度で延伸しながら引取る押出成形すること
により、蛍光体含有熱可塑性樹脂フィラメント中の蛍光体の分散性が高くなり、ひいては、得られた蛍光体含有熱可塑性樹脂フィラメントを用いて、溶融積層法による3Dプリンターにより製造した波長変換部材においても、蛍光体の分散性が高い波長変換部材となることを見出し、本発明をなすに至った。
Then, the present inventors, the phosphor-containing thermoplastic resin filament, after mixing the particulate phosphor into the thermoplastic resin to obtain a phosphor-containing thermoplastic resin,
(1) Extruding the phosphor-containing thermoplastic resin with a ratio (L/D) of the effective screw length L to the melting screw diameter D of 30 or more and 60 or less, or (2) the phosphor-containing thermoplastic resin, While extruding from an orifice hole in a molten state at a temperature of 180°C or higher and lower than 240°C, and stretching at a linear velocity of 3 times or more and 30 times or less with respect to the linear velocity of extrusion of the molten phosphor-containing thermoplastic resin By taking out extrusion molding, the dispersibility of the phosphor in the phosphor-containing thermoplastic resin filament is increased, and thus the phosphor-containing thermoplastic resin filament obtained is used to produce a 3D printer by the melt lamination method. The present invention has been completed by finding that the wavelength conversion member also has a high dispersibility of the phosphor.

従って、本発明は、下記の蛍光体含有熱可塑性樹脂フィラメントを提供する。
請求項1:
LEDから発光した光の波長を変換して、該波長とは異なる波長の光を発光する蛍光体を含有する波長変換部材を、溶融積層法による3Dプリンターにより製造するための原料フィラメントであり、粒子状の上記蛍光体が熱可塑性樹脂中に30質量%以下の濃度で分散しており、
上記蛍光体が、A2(M1-x,Mnx)F6(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素であり、xは0.001〜0.3の範囲の正数である。)で表されるマンガン賦活複フッ化物蛍光体を含み、
上記熱可塑性樹脂が、オレフィン系樹脂、環状ポリオレフィン樹脂、アクリル樹脂、スチレン系樹脂及びアクリルイミド樹脂から選ばれることを特徴とする蛍光体含有熱可塑性樹脂フィラメント。
請求項2:
上記マンガン賦活複フッ化物蛍光体が、K2(Si1-x,Mnx)F6(式中、xは0.001〜0.3の範囲の正数である。)で表されるマンガン賦活ケイフッ化カリウム蛍光体であることを特徴とする請求項1記載の蛍光体含有熱可塑性樹脂フィラメント。
請求項3:
上記熱可塑性樹脂が、アクリル樹脂、ポリスチレン、スチレン共重合体、ポリエチレン、ポリプロピレン及びエチレン−プロピレン共重合体から選ばれることを特徴とする請求項1又は2記載の蛍光体含有熱可塑性樹脂フィラメント。
Therefore, the present invention provides the following phosphor-containing thermoplastic resin filaments.
Claim 1:
A raw material filament for converting a wavelength of light emitted from an LED to produce a wavelength conversion member containing a phosphor that emits light of a wavelength different from the wavelength by a 3D printer by a melt lamination method, and particles. The above-mentioned fluorescent substance is dispersed in a thermoplastic resin at a concentration of 30% by mass or less,
The phosphor is A 2 (M 1-x , Mn x )F 6 (wherein A is selected from Li, Na, K, Rb and Cs, and contains at least Na and/or K. At least one alkali metal, M is at least one tetravalent element selected from Si, Ti, Zr, Hf, Ge and Sn, and x is a positive number in the range of 0.001 to 0.3. A) containing a manganese-activated double-fluoride phosphor represented by
The phosphor-containing thermoplastic resin filament, wherein the thermoplastic resin is selected from an olefin resin, a cyclic polyolefin resin, an acrylic resin, a styrene resin, and an acrylimide resin.
Claim 2:
The manganese-activated double fluoride phosphor is represented by K 2 (Si 1-x , Mn x )F 6 (where x is a positive number in the range of 0.001 to 0.3). The phosphor-containing thermoplastic resin filament according to claim 1, which is an activated potassium fluorosilicate phosphor.
Claim 3:
The phosphor-containing thermoplastic resin filament according to claim 1 or 2, wherein the thermoplastic resin is selected from acrylic resin, polystyrene, styrene copolymer, polyethylene, polypropylene and ethylene-propylene copolymer.

本発明によれば、リモートフォスファー型のLED発光装置に用いられる波長変換部材を、金型を用いることなく、効率よく製造でき、また、得られた波長変換部材の蛍光体の分散性も良好である。 ADVANTAGE OF THE INVENTION According to this invention, the wavelength conversion member used for a remote phosphor type LED light-emitting device can be manufactured efficiently, without using a metal mold|die, and also the dispersibility of the fluorescent substance of the obtained wavelength conversion member is favorable. Is.

実施例1で作製した本発明の波長変換部材(No.1)の一例を示す図であり、(A)は斜視図、(B)は断面図である。It is a figure which shows an example of the wavelength conversion member (No. 1) of this invention produced in Example 1, (A) is a perspective view, (B) is sectional drawing. 実施例1で作製した本発明の波長変換部材(No.2)の一例を示す図であり、(A)は斜視図、(B)は断面図である。It is a figure which shows an example of the wavelength conversion member (No. 2) of this invention produced in Example 1, (A) is a perspective view, (B) is sectional drawing. 実施例1で作製した本発明の波長変換部材(No.3)の一例を示す図であり、(A)は斜視図、(B)は断面図である。It is a figure which shows an example of the wavelength conversion member (No. 3) of this invention produced in Example 1, (A) is a perspective view, (B) is sectional drawing. 実施例1で波長変換部材(No.1)を用いて作製した本発明のリモートフォスファー型のLED発光装置の一例を示す分解斜視図である。1 is an exploded perspective view showing an example of a remote phosphor type LED light emitting device of the present invention manufactured by using a wavelength conversion member (No. 1) in Example 1. FIG.

以下、本発明について、更に詳細に説明する。
本発明の波長変換部材は、LEDから発光した光の波長を変換して、この波長とは異なる波長の光を発光する蛍光体を含有する。本発明において、LEDは、LED素子のみ、即ち、LED半導体チップのみの場合を対象としてもよいが、通常は、LED素子(LED半導体チップ)が基材又は基板の上に設置され、リード線、端子などの配線部材と共に、樹脂などの封止材で封止されたLEDパッケージが用いられる。LEDパッケージとしては、通常、封止材中に、LED素子から発光した光の波長を変換して、この波長とは異なる波長の光を発光する蛍光体を含まないものが用いられるが、封止材中に蛍光体を含むものを用いてもよい。
Hereinafter, the present invention will be described in more detail.
The wavelength conversion member of the present invention contains a phosphor that converts the wavelength of light emitted from an LED and emits light of a wavelength different from this wavelength. In the present invention, the LED may be an LED element only, that is, an LED semiconductor chip only, but normally, the LED element (LED semiconductor chip) is installed on a base material or a substrate, and a lead wire, An LED package sealed with a sealing material such as a resin is used together with a wiring member such as a terminal. As the LED package, a package that does not include a phosphor that converts the wavelength of light emitted from the LED element and emits light having a wavelength different from this wavelength is usually used in the sealing material. A material containing a phosphor may be used.

LEDとしては、発光光が赤色光の赤色LED、発光光が緑色の緑色LED、発光光が青色の青色LED、発光光が黄色の黄色LED、発光光が白色の白色LEDなどの可視光を発光するダイオードや、紫外光を発光する紫外線LEDなどを用いることができるが、青色LED、特に、ピーク波長が440〜470nmの青色光を発光する青色LEDが好適である。 The LED emits visible light such as red LED whose emitted light is red light, green LED whose emitted light is green, blue LED whose emitted light is blue, yellow LED whose emitted light is yellow, and white LED whose emitted light is white. A blue LED, which emits blue light having a peak wavelength of 440 to 470 nm, is preferable.

蛍光体の種類は、LEDが発光する励起光の波長と、LED発光装置から発光させる光の色に応じて、適宜選択することができる。例えば、青色発光ダイオードを用いる場合、青色発光ダイオードを用いて白色を発光するLED発光装置を構成するために用いられる蛍光体が好適である。このような蛍光体としては、励起光である青色光で励起されて、黄色、緑色、橙色、赤色などの光を発光する蛍光体が挙げられる。具体的には、Y3Al512:Ce、(Y,Gd)3(Al,Ga)512、(Y,Gd)3Al512:Ce、Lu3Al512:Ce、(Lu,Y)3Al512:Ce、Y3(Al,Ga)512:Tb、(Sr,Ca,Ba)2SiO4:Eu、β−SiAlON:Euなどの黄色蛍光体又は緑色蛍光体などが挙げられる。 The type of phosphor can be appropriately selected according to the wavelength of the excitation light emitted by the LED and the color of the light emitted from the LED light emitting device. For example, when a blue light emitting diode is used, a phosphor used to configure an LED light emitting device that emits white light using the blue light emitting diode is suitable. Examples of such a phosphor include phosphors that emit yellow, green, orange, red, or other light when excited by blue light that is excitation light. Specifically, Y 3 Al 5 O 12: Ce, (Y, Gd) 3 (Al, Ga) 5 O 12, (Y, Gd) 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: Ce , (Lu,Y) 3 Al 5 O 12 :Ce, Y 3 (Al,Ga) 5 O 12 :Tb, (Sr,Ca,Ba) 2 SiO 4 :Eu, β-SiAlON:Eu, etc. Alternatively, a green phosphor may be used.

また、5000K以下の低い色温度が求められる場合は、黄色蛍光体又は緑色蛍光体と共に、赤色蛍光体を用いることができる。赤色蛍光体としては、CaAlSiN:Eu2+、Sr−CaAlSiN3:Eu3+などが挙げられるが、特に演色性に優れた白色のLED発光装置とする場合には、マンガン賦活複フッ化物蛍光体を用いることが好ましい。 Further, when a low color temperature of 5000 K or less is required, a red phosphor can be used together with a yellow phosphor or a green phosphor. Examples of the red phosphor include CaAlSiN:Eu 2+ , Sr-CaAlSiN 3 :Eu 3+, and the like, and particularly in the case of a white LED light-emitting device having excellent color rendering properties, a manganese-activated double fluoride phosphor. Is preferably used.

マンガン賦活複フッ化物蛍光体は、複フッ化物の構成元素の一部が、賦活元素であるマンガン(Mn)で置換された構造を有し、例えば、A2MF6(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素である。)で表される複フッ化物の構成元素の一部が、賦活元素であるマンガン(Mn)で置換された構造を有するものが挙げられる。このようなものとしては、A2(M1-x,Mnx)F6(式中、A及びMは、上記と同じであり、xは0.001〜0.3の範囲の正数である。)で表されるマンガン賦活複フッ化物蛍光体が好適である。このマンガン賦活複フッ化物蛍光体は、Mで表される4価元素のサイトの一部がマンガンで置換された構造、即ち、4価のマンガン(Mn4+)として置換された構造であることから、A2MF6:Mn4+と表記してもよい。本発明においては、このようなマンガン賦活複フッ化物蛍光体のなかでも、AがK、MがSiであるK2(Si1-x,Mnx)F6(式中、xは上記と同じ。)で表されるマンガン賦活ケイフッ化カリウム蛍光体(一般に、KSF蛍光体と呼ばれる。)が、励起波長域や耐候性の観点から特に好ましい。 The manganese-activated double-fluoride phosphor has a structure in which a part of the constituent elements of the double-fluoride is replaced with manganese (Mn), which is an activating element. For example, A 2 MF 6 (wherein A is Li , Na, K, Rb and Cs, and one or more alkali metals containing at least Na and/or K, M is one selected from Si, Ti, Zr, Hf, Ge and Sn, or A compound having a structure in which a part of the constituent elements of the double fluoride represented by 2 or more kinds of tetravalent elements) is substituted with manganese (Mn) which is an activator element. As such, A 2 (M 1-x , Mn x )F 6 (In the formula, A and M are the same as above, and x is a positive number in the range of 0.001 to 0.3. The manganese-activated double fluoride phosphor represented by The manganese-activated double fluoride phosphor has a structure in which a part of the site of the tetravalent element represented by M is replaced with manganese, that is, a structure in which tetravalent manganese (Mn 4+ ) is replaced. Therefore , it may be expressed as A 2 MF 6 :Mn 4+ . In the present invention, among such manganese-activated double fluoride phosphors, K 2 (Si 1-x , Mn x )F 6 (where x is the same as above) in which A is K and M is Si Manganese activated potassium fluorosilicate phosphor (generally referred to as KSF phosphor) represented by (.

KSF蛍光体は、青色光により励起されて波長600〜660nmの範囲に発光ピーク又は最大発光ピークを有する蛍光を発する。一方、KSF蛍光体の光吸収特性は、上述したCaAlSiN:Eu2+、Sr−CaAlSiN3:Eu3+などの赤色蛍光体とは異なり、波長が460nmより長くなると、吸収率が急激に低下する。そのため、460nm前後にピーク波長を有する青緑色の光を発光する青緑色LEDを補助励起光の励起源として用いる場合に、補助励起光の吸収/減衰を少なくすることができ、特に効果的である。 The KSF phosphor is excited by blue light and emits fluorescence having an emission peak or a maximum emission peak in the wavelength range of 600 to 660 nm. On the other hand, the light absorption characteristics of the KSF phosphor are different from those of the red phosphors such as CaAlSiN:Eu 2+ and Sr-CaAlSiN 3 :Eu 3+ described above, and the absorptance is sharply reduced when the wavelength is longer than 460 nm. .. Therefore, when a blue-green LED that emits a blue-green light having a peak wavelength around 460 nm is used as an excitation source for auxiliary excitation light, absorption/attenuation of auxiliary excitation light can be reduced, which is particularly effective. ..

蛍光体は、通常、粒子状(例えば、平均粒径D50(体積基準)が1μm以上、特に2μm以上で、30μm以下、特に18μm以下)のものを用いることが好ましい。波長変換部材は、蛍光体のみで構成すること(例えば、粒子状の蛍光体を成型して焼結するなどの方法で得ることができる。)も可能であるが、粒子状の蛍光体を、無機又は有機の透明材料又は半透明材料、具体的には、ガラスなどの無機材料や、樹脂、ゴム、エラストマー等の有機高分子材料などの有機材料に分散させたものが好適である。蛍光体は、波長変換部材の基材をなす透明材料又は半透明材料に均一に分散させることが好ましい。 In general, it is preferable to use a phosphor having a particle shape (for example, an average particle diameter D50 (volume basis) of 1 μm or more, particularly 2 μm or more, 30 μm or less, particularly 18 μm or less). The wavelength conversion member can be composed only of the phosphor (for example, it can be obtained by a method of molding and sintering the particulate phosphor). An inorganic or organic transparent material or a semi-transparent material, specifically, an inorganic material such as glass, or an organic material such as an organic polymer material such as resin, rubber, or elastomer, which is dispersed, is preferable. It is preferable that the phosphor is uniformly dispersed in the transparent material or the semitransparent material that forms the base material of the wavelength conversion member.

透明材料又は半透明材料としては、有機高分子材料の中でも、樹脂、特に硬質樹脂を用いることが好ましい。樹脂としては、シリコーン樹脂、エポキシ樹脂などの熱硬化性樹脂又は紫外線硬化性樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、環状ポリオレフィン樹脂、アクリル樹脂、ポリスチレン、AS樹脂、ABS樹脂等のスチレン系樹脂、アクリルイミド樹脂、ポリカーボネート樹脂、PET樹脂等のエステル系樹脂などの熱可塑性樹脂が挙げられ、熱可塑性樹脂、特に硬質の熱可塑性樹脂が好適である。 As the transparent material or the semitransparent material, it is preferable to use a resin, particularly a hard resin, among the organic polymer materials. As the resin, a thermosetting resin such as a silicone resin or an epoxy resin or an ultraviolet curable resin, an olefin resin such as polyethylene or polypropylene, a cyclic polyolefin resin, an acrylic resin, polystyrene, an AS resin or a styrene resin such as an ABS resin, A thermoplastic resin such as an acrylic resin, a polycarbonate resin, or an ester resin such as a PET resin can be used, and a thermoplastic resin, particularly a hard thermoplastic resin is preferable.

特に、蛍光体として、マンガン賦活複フッ化物蛍光体を用いる場合は、上記で例示した熱可塑性樹脂の中でも、エステル系樹脂以外の樹脂が好適である。マンガン賦活複フッ化物蛍光体とエステル系樹脂を用いると、加水分解反応により、樹脂が溶解又は脆化する場合がある。これに対して、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、環状ポリオレフィン樹脂、アクリル樹脂、ポリスチレン、AS樹脂、ABS樹脂等のスチレン系樹脂、アクリルイミド樹脂においては、マンガン賦活複フッ化物蛍光体に対して、上記の問題を引き起こさずに、特に効果的な練り込みと高い分散性が得られる。 In particular, when a manganese-activated double fluoride fluorescent material is used as the fluorescent material, among the thermoplastic resins exemplified above, resins other than ester-based resins are suitable. When a manganese-activated double fluoride phosphor and an ester resin are used, the resin may be dissolved or embrittled due to a hydrolysis reaction. On the other hand, in olefin resins such as polyethylene and polypropylene, cyclic polyolefin resins, acrylic resins, polystyrene, AS resins, styrene resins such as ABS resins, and acrylimide resins, manganese-activated double fluoride phosphors are used. Particularly effective kneading and high dispersibility can be obtained without causing the above problems.

波長変換部材中の蛍光体の濃度は、用いる蛍光体の種類、粒径、透明材料又は半透明材料の種類、LED発光装置としたときに得られる発光の色温度、厚み、LED素子と蛍光部材との配置、その他の諸条件により異なるが、蛍光体の総量として、2質量%以上、特に3質量%以上で、30質量%以下、特に20質量%以下、とりわけ15質量%以下であることが好ましい。 The concentration of the phosphor in the wavelength conversion member is the kind of the phosphor used, the particle size, the kind of the transparent material or the semitransparent material, the color temperature and the thickness of the light emission obtained in the LED light emitting device, the LED element and the phosphor member The total amount of the phosphor is 2% by mass or more, particularly 3% by mass or more, and 30% by mass or less, particularly 20% by mass or less, and particularly 15% by mass or less, although it depends on the arrangement with and other conditions. preferable.

例えば、Y3Al512:Ce蛍光体を樹脂に分散させて、厚み0.5〜5mmの波長変換部材とし、色温度6000Kの白色光を得ようとする場合、Y3Al512:Ce蛍光体の濃度は、概ね2〜8質量%である。より具体的には、厚み2mmの波長変換部材とし、色温度6000Kの白色光を得ようとする場合、Y3Al512:Ce蛍光体の濃度は、概ね4〜6質量%である。 For example, when Y 3 Al 5 O 12 :Ce phosphor is dispersed in a resin to form a wavelength conversion member having a thickness of 0.5 to 5 mm and white light having a color temperature of 6000 K is to be obtained, Y 3 Al 5 O 12 is used. The concentration of :Ce phosphor is approximately 2 to 8% by mass. More specifically, when a wavelength conversion member having a thickness of 2 mm is used and white light having a color temperature of 6000 K is to be obtained, the concentration of the Y 3 Al 5 O 12 :Ce phosphor is approximately 4 to 6 mass %.

また、Y3Al512:Ce蛍光体と共に、マンガン賦活複フッ化物蛍光体を用いる場合、マンガン賦活複フッ化物蛍光体の濃度は、Y3Al512:Ce蛍光体の、概ね2〜4倍である。具体的には、例えば、Y3Al512:Ce蛍光体と、マンガン賦活複フッ化物蛍光体とを樹脂に分散させて、厚み0.5〜5mmの波長変換部材とし、色温度3500Kの白色光を得ようとする場合、Y3Al512:Ce蛍光体の濃度は、概ね2〜5質量%、マンガン賦活複フッ化物蛍光体の濃度は、概ね6〜13質量%である。より具体的には、厚み2mmの波長変換部材とし、色温度3500Kの白色光を得ようとする場合、Y3Al512:Ce蛍光体の濃度は、概ね2〜5質量%、マンガン賦活複フッ化物蛍光体の濃度は、概ね5〜10質量%である。 Further, Y 3 Al 5 O 12: with Ce phosphor, the case of using a manganese-activated double fluoride phosphors, the concentration of manganese activated double fluoride phosphor, Y 3 Al 5 O 12: the Ce phosphor, generally 2 ~4 times. Specifically, for example, a Y 3 Al 5 O 12 :Ce phosphor and a manganese-activated double fluoride phosphor are dispersed in a resin to form a wavelength conversion member having a thickness of 0.5 to 5 mm and a color temperature of 3500K. When it is desired to obtain white light, the concentration of the Y 3 Al 5 O 12 :Ce phosphor is approximately 2 to 5% by mass, and the concentration of the manganese-activated double fluoride phosphor is approximately 6 to 13% by mass. More specifically, when a wavelength conversion member having a thickness of 2 mm is used and white light having a color temperature of 3500 K is to be obtained, the concentration of the Y 3 Al 5 O 12 :Ce phosphor is approximately 2 to 5% by mass and manganese activation is performed. The concentration of the double-fluoride phosphor is approximately 5 to 10% by mass.

リモートフォスファー型のLED発光装置に用いる波長変換部材は、LEDとは別の部材として製造されるため、形状、寸法、LEDに対する配置などを、LED発光装置に求められる光学特性に応じて、波長変換部材側で独自に調整することが可能である。本発明の波長変換部材では、その厚みを0.6mm以上、特に1mm以上で、4mm以下、特に2mm以下とすることが好ましい。これは、波長変換部材の厚みが0.6mmより薄いと、寸法誤差の影響が大きくなり、また、蛍光体の分散のばらつきの影響を大きく受けるため、波長変換部材全体での光学特性の均一化が容易でなくなるおそれがあるからであり、波長変換部材の厚みが4mmを超えると、蛍光体の量が増加するため蛍光体の利用効率が低下するおそれがあるからである。なお、厚みは、通常、実効厚み、即ち、LEDからの励起光が直接入射する位置での厚みを対象とする。 Since the wavelength conversion member used for the remote phosphor type LED light emitting device is manufactured as a member different from the LED, the wavelength, the shape, the size, the arrangement with respect to the LED, etc. are determined according to the optical characteristics required for the LED light emitting device. It is possible to independently adjust the conversion member side. The wavelength conversion member of the present invention preferably has a thickness of 0.6 mm or more, particularly 1 mm or more, and 4 mm or less, particularly 2 mm or less. This is because if the thickness of the wavelength conversion member is smaller than 0.6 mm, the influence of the dimensional error becomes large and the influence of the dispersion of the dispersion of the phosphor is greatly affected, so that the optical characteristics of the entire wavelength conversion member are made uniform. If the thickness of the wavelength conversion member exceeds 4 mm, the amount of the phosphor increases and the utilization efficiency of the phosphor may decrease. It should be noted that the thickness usually refers to the effective thickness, that is, the thickness at the position where the excitation light from the LED directly enters.

波長変換部材の製造には、3Dプリント成形法の代表的な方式である熱溶融積層法(FDM法)を適用する。FDM法は、原料となる熱可塑性樹脂フィラメントを、三軸移動可能な溶融ノズルに給送することで、熱溶融した熱可塑性樹脂を押出して積層し、所望の形状の樹脂成形体を得る成形方法である。FDM法は、金型を用いる成形方法では、離型などに制約があり、製造条件が複雑になる形状の波長変換部材の製造に有利であり、また、金型を用意する必要がないので、波長変換部材の少量多品種の製造に適している。熱溶融した樹脂原料をノズルから吐出させつつ、積層し、硬化させることで、所望の形状の樹脂成形体を得るFDM法は、一般的な金型を用いた射出成形法などに比べて、内面が3次元形状、特に、より深い3次元形状の内面を有する波長変換部材の成形に有利である。 To manufacture the wavelength conversion member, a hot melt lamination method (FDM method), which is a typical method of the 3D print molding method, is applied. The FDM method is a molding method in which a thermoplastic resin filament as a raw material is fed to a triaxially movable melting nozzle to extrude and laminate the thermomelted thermoplastic resin to obtain a resin molded product having a desired shape. Is. The FDM method is advantageous in manufacturing a wavelength conversion member having a shape in which manufacturing conditions are complicated because there is a restriction on mold release in a molding method using a mold, and since it is not necessary to prepare a mold, It is suitable for manufacturing a large number of small quantities of wavelength conversion members. The FDM method of obtaining a resin molded body of a desired shape by stacking and curing the heat-melted resin raw material while ejecting it from a nozzle is more effective than an injection molding method using a general mold. Is advantageous for molding a wavelength conversion member having a three-dimensional shape, especially a deeper three-dimensional inner surface.

FDM法では、熱可塑性樹脂に所定の蛍光体粒子を分散させた細線状のフィラメント(以下、蛍光体含有熱可塑性樹脂フィラメントと称する。)を用いる。蛍光体含有熱可塑性樹脂フィラメントは、例えば、押出成形により製造することができる。蛍光体は、溶融押出成形の過程で、熱可塑性樹脂に所定の濃度に練りこまれるが、蛍光体含有熱可塑性樹脂フィラメント中に蛍光体を均一に分散させるためには、2軸スクリュータイプの押出成形機の使用が好ましい。また、分散した蛍光体粒子による摩耗による蛍光体含有熱可塑性樹脂フィラメントへの鉄分などの混入を防ぐため、超硬合金等の硬質の材料や非鉄材料で形成された内壁やスクリューを用いた押出成形機を用いることも有効である。 In the FDM method, a fine linear filament (hereinafter, referred to as a phosphor-containing thermoplastic resin filament) in which predetermined phosphor particles are dispersed in a thermoplastic resin is used. The phosphor-containing thermoplastic resin filament can be manufactured by, for example, extrusion molding. The phosphor is kneaded into the thermoplastic resin at a predetermined concentration in the process of melt extrusion molding. In order to uniformly disperse the phosphor in the thermoplastic resin filament containing the phosphor, a twin screw type extrusion is used. The use of a molding machine is preferred. In addition, in order to prevent the inclusion of iron, etc. in the phosphor-containing thermoplastic resin filament due to abrasion due to the dispersed phosphor particles, extrusion molding using an inner wall or screw formed of a hard material such as cemented carbide or a non-ferrous material It is also effective to use a machine.

押出成形により蛍光体含有熱可塑性樹脂フィラメントを製造する場合、まず、粒子状の蛍光体を熱可塑性樹脂に混合して蛍光体含有熱可塑性樹脂を得る。その後、押出成形機を用いて蛍光体含有熱可塑性樹脂フィラメントを製造するが、押出成形時、蛍光体含有熱可塑性樹脂を、溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)を30以上60以下として押出成形することが好ましい。 When manufacturing a phosphor-containing thermoplastic resin filament by extrusion molding, first, a particulate phosphor is mixed with a thermoplastic resin to obtain a phosphor-containing thermoplastic resin. After that, a phosphor-containing thermoplastic resin filament is manufactured by using an extrusion molding machine. At the time of extrusion molding, the phosphor-containing thermoplastic resin has a ratio (L/D) of the effective screw length L to the melting screw diameter D of 30. It is preferable to carry out extrusion molding as above 60 or less.

熱可塑性樹脂中に蛍光体粒子を偏在させずに均一に分散しつつ熱可塑性樹脂を溶融する方法として、押出成形機による混練溶融が有効であるが、蛍光体粒子の分散性は、溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)の影響を受ける。L/Dが高いほど、熱可塑性樹脂中の蛍光体粒子の分散性が良くなるものの、L/Dが高すぎると生産性が低下する。蛍光体が分散した熱可塑性樹脂を押出成形する場合、L/Dを30以上、特に40以上とすることで、良好な分散性が得られる。一方、蛍光体粒子の場合、L/Dが高すぎると、蛍光体粒子が押出成形機の内壁やスクリューと強く擦れることで装置が摩耗して、蛍光体含有熱可塑性樹脂フィラメントに、内壁やスクリューの材質の成分が混入するおそれがあるため60以下、特に50以下とすることが好ましい。 As a method for melting the thermoplastic resin while uniformly dispersing the phosphor particles in the thermoplastic resin without uneven distribution, kneading and melting with an extruder is effective, but the dispersibility of the phosphor particles is the melting screw diameter. It is affected by the ratio of the effective screw length L to D (L/D). The higher the L/D, the better the dispersibility of the phosphor particles in the thermoplastic resin, but if the L/D is too high, the productivity decreases. When extrusion molding a thermoplastic resin in which the phosphor is dispersed, good dispersibility can be obtained by setting L/D to 30 or more, particularly 40 or more. On the other hand, in the case of phosphor particles, if L/D is too high, the phosphor particles are strongly rubbed with the inner wall of the extrusion machine or the screw, and the device is worn, and the phosphor-containing thermoplastic resin filament has inner walls or screws. Since the component of the material may mix, it is preferably 60 or less, more preferably 50 or less.

また、押出成形時、蛍光体含有熱可塑性樹脂を、180℃以上、特に200℃以上で、240℃未満、特に235℃以下の温度で溶融させた状態でオリフィス孔から押出すことが好ましい。光体含有熱可塑性樹脂の温度を上記範囲とすることにより、線材である蛍光体含有熱可塑性樹脂フィラメントの径寸法が安定する。この温度は、通常、装置運転温度、即ち、バレルの溶融領域の平均温度より10〜40℃程度低い温度である。 Further, during extrusion molding, it is preferable to extrude the phosphor-containing thermoplastic resin from the orifice hole in a state of being melted at a temperature of 180° C. or higher, particularly 200° C. or higher, and lower than 240° C., particularly 235° C. or lower. By setting the temperature of the photoconductor-containing thermoplastic resin within the above range, the diameter dimension of the phosphor-containing thermoplastic resin filament, which is the wire, is stabilized. This temperature is usually about 10 to 40° C. lower than the operating temperature of the apparatus, that is, the average temperature of the melting region of the barrel.

更に、押出成形時、溶融した蛍光体含有熱可塑性樹脂の押出の線速度(蛍光体含有熱可塑性樹脂フィラメントの吐出の線速度)、即ち、オリフィス部での線速度に対して、3倍以上、特に5倍以上で、30倍以下、特に10倍以下の線速度で延伸しながら引取ることも好ましい。蛍光体含有熱可塑性樹脂の押出の線速度と、蛍光体含有熱可塑性樹脂フィラメント引取りの線速度との比を、上記範囲とすることにより、吐出直後に、蛍光体の分散が部分的に不均一になっている部分があっても、十分な延伸によりその部分が広がり、平均化されて、蛍光体の分散が均質化され、蛍光体含有熱可塑性樹脂フィラメント中の蛍光体の濃度のばらつきを抑えることができる。蛍光体含有熱可塑性樹脂の押出の線速度と、蛍光体含有熱可塑性樹脂フィラメント引取りの線速度との比が高すぎると、相対的に細い部分が急速な延伸を受けてより細くなり、太さの不均一、フィラメントの破断を生じるおそれがある。 Furthermore, during extrusion molding, the linear velocity of extrusion of the molten phosphor-containing thermoplastic resin (the linear velocity of discharge of the phosphor-containing thermoplastic resin filament), that is, three times or more the linear velocity at the orifice, It is also preferable to draw while drawing at a linear velocity of 5 times or more and 30 times or less, particularly 10 times or less. By setting the ratio of the linear velocity of the extrusion of the phosphor-containing thermoplastic resin to the linear velocity of the phosphor-containing thermoplastic resin filament withdrawing within the above range, the dispersion of the phosphor is partially unsatisfactory immediately after discharge. Even if there is a uniform part, the part is expanded and averaged by sufficient stretching, and the dispersion of the phosphor is homogenized, and the dispersion of the concentration of the phosphor in the phosphor-containing thermoplastic resin filament is suppressed. Can be suppressed. If the ratio of the linear velocity of the extrusion of the phosphor-containing thermoplastic resin and the linear velocity of the phosphor-containing thermoplastic resin filament take-up is too high, the relatively thin portion undergoes rapid drawing and becomes thinner, resulting in a thicker portion. Unevenness and filament breakage may occur.

FDM法により波長変換部材を製造する場合、上述した熱可塑性樹脂を用いることが可能ではあるが、成形時における熱可塑性樹脂に対する蛍光体の良好な分散性に加え、所定の加熱で速やかな溶融、積層後の速やかな硬化、積層時の層間の溶接特性、基準台座への密着性、溶融及び硬化にともなう波長変換部材内部に蓄積される圧縮応力への耐久性などを考慮する必要がある。このような観点からは、FDM法による波長変換部材の製造では、アクリル樹脂、ポリスチレン、AS樹脂、ABS樹脂などのスチレン共重合体、高密度ポリエチレンなどのポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などの熱可塑性樹脂が特に好適である。 When the wavelength conversion member is manufactured by the FDM method, it is possible to use the above-mentioned thermoplastic resin, but in addition to good dispersibility of the phosphor in the thermoplastic resin at the time of molding, rapid melting by predetermined heating, It is necessary to consider rapid hardening after lamination, welding characteristics between layers at the time of lamination, adhesion to the reference pedestal, durability against compressive stress accumulated inside the wavelength conversion member due to melting and hardening. From such a viewpoint, in the production of the wavelength conversion member by the FDM method, styrene copolymers such as acrylic resin, polystyrene, AS resin and ABS resin, polyethylene such as high density polyethylene, polypropylene, ethylene-propylene copolymer and the like. The thermoplastic resin of is particularly preferable.

蛍光体含有熱可塑性樹脂フィラメントに分散させる蛍光体の粒子径は、用いる蛍光体の種類、その粒子形状、及び母材となる樹脂材料に合わせて設定され、通常、平均粒径D50(体積基準)が1μm以上、特に2μm以上で、30μm以下、特に18μm以下のものを用いることが好ましい。また、蛍光体含有熱可塑性樹脂フィラメントに分散させる蛍光体の濃度は、用いる蛍光体の種類、成形後の波長変換部材が目標とする発光色度に合わせて設定され、蛍光体の総量として、2質量%以上、特に3質量%以上で、30質量%以下、特に20質量%以下、とりわけ15質量%以下であることが好ましい。蛍光体濃度が高すぎると、溶融ノズルが閉塞する可能性が高くなると共に、溶融時のコシがなくなり、成形時にダレが生じるおそれがある。なお、蛍光体含有熱可塑性樹脂フィラメントの径は、現在用いられているFDM法を適用した3Dプリンターにおいては、通常φ1.75mm又はφ3mmである。 The particle size of the phosphor dispersed in the phosphor-containing thermoplastic resin filament is set according to the type of the phosphor used, the particle shape thereof, and the resin material as the base material, and usually the average particle diameter D50 (volume basis). Is preferably 1 μm or more, particularly 2 μm or more, and 30 μm or less, particularly 18 μm or less. The concentration of the phosphor dispersed in the phosphor-containing thermoplastic resin filament is set according to the type of phosphor used and the emission chromaticity targeted by the wavelength conversion member after molding, and the total amount of phosphor is 2 It is preferably not less than 3% by mass, more preferably not less than 30% by mass, especially not more than 20% by mass, especially not more than 15% by mass. If the phosphor concentration is too high, there is a high possibility that the melting nozzle will be clogged, and there will be no stiffness during melting, and sagging may occur during molding. The diameter of the phosphor-containing thermoplastic resin filament is usually 1.75 mm or 3 mm in the currently used 3D printer to which the FDM method is applied.

蛍光体含有熱可塑性樹脂フィラメントは、波長変換部材の成形時に水分を多く含んでいると、溶融し、積層する際に、溶融ヘッド内で水蒸気が発生し、これが積層時に細かな気泡となって、波長変換部材のヘイズを過度に増加させ、光学特性の変動の要因となるおそれがあり、また、密度が低下するおそれがある。特に、押出成形により蛍光体含有熱可塑性樹脂フィラメントを製造する場合、蛍光体含有熱可塑性樹脂フィラメントが冷却水槽を経由して水と接触することになるため、蛍光体含有熱可塑性樹脂フィラメントの内部に水が取り込まれる場合がある。そのため、蛍光体含有熱可塑性樹脂フィラメントは、その含有水分量を低減した後に使用することが好ましい。例えば、蛍光体含有熱可塑性樹脂フィラメントを、例えば70℃以上、特に80℃以上で、好ましくは100℃以下の温度で、大気雰囲気などのガス雰囲気や、真空雰囲気などで、例えば6時間以上加熱することで、水分量を低減することができる。加熱時間の上限は、通常24時間以下である。なお、この加熱には、真空炉などの加熱炉などを用いることができる。 When the phosphor-containing thermoplastic resin filament contains a large amount of water during the molding of the wavelength conversion member, when it is melted and laminated, water vapor is generated in the melting head, which becomes fine bubbles during lamination, There is a risk that the haze of the wavelength conversion member may be excessively increased, which may cause a change in optical characteristics, and the density may decrease. In particular, when the phosphor-containing thermoplastic resin filament is manufactured by extrusion molding, the phosphor-containing thermoplastic resin filament comes into contact with water through the cooling water tank, so Water may be taken in. Therefore, it is preferable to use the phosphor-containing thermoplastic resin filament after reducing the water content thereof. For example, the phosphor-containing thermoplastic resin filament is heated, for example, at a temperature of 70° C. or higher, particularly 80° C. or higher, preferably 100° C. or lower in a gas atmosphere such as an air atmosphere or a vacuum atmosphere for, for example, 6 hours or more. As a result, the amount of water can be reduced. The upper limit of the heating time is usually 24 hours or less. A heating furnace such as a vacuum furnace can be used for this heating.

FDM法では、蛍光体含有熱可塑性樹脂フィラメントを用いてFDM装置(FDM3Dプリンター)により波長変換部材を成形すればよい。溶融ノズルのノズル内径は、φ0.2mm以上φ0.6mm以下が適している。これは、ノズル内径がφ0.2mm未満であると、蛍光体により溶融ノズルが閉塞し易くなる一方で、内径φ0.6mmを超えると波長変換部材の寸法精度が低下するため、成形後に、サイズ調整の加工が必要となる場合があるためである。成形時の溶融ノズルの温度は、190℃以上、特に220℃以上で、280℃以下、特に260℃以下が適している。これは溶融ノズルの温度が上記範囲未満では、熱可塑性樹脂の溶融が不十分となるおそれがある一方、上記範囲を超えると、溶融時のコシがなくなり、また、積層後の硬化が遅くなり、積層時にダレが生じるおそれがあるためである。 In the FDM method, the wavelength conversion member may be molded by an FDM device (FDM3D printer) using the phosphor-containing thermoplastic resin filament. The inner diameter of the melting nozzle is suitably φ0.2 mm or more and φ0.6 mm or less. This is because when the inner diameter of the nozzle is less than φ0.2 mm, the melting nozzle is likely to be blocked by the phosphor, while when the inner diameter exceeds φ0.6 mm, the dimensional accuracy of the wavelength conversion member decreases. This is because it may be necessary to process the above. The temperature of the melting nozzle at the time of molding is preferably 190° C. or higher, particularly 220° C. or higher, and 280° C. or lower, particularly 260° C. or lower. If the temperature of the melting nozzle is less than the above range, the melting of the thermoplastic resin may be insufficient, while if it exceeds the above range, the stiffness during melting disappears, and the curing after lamination becomes slow, This is because sagging may occur during stacking.

本発明のLED発光装置は、LEDと、LEDが設置された基体と、波長変換部材とを備え、波長変換部材が、LEDと気体層又は真空層を介して離間するように配設されたリモートフォスファー型のLED発光装置である。本発明のLED発光装置は、本発明の波長変換部材を用いることにより、波長変換部材の内面が、LEDから照射された光の照射方向の前方側と、照射方向の側方側の一部又は全部とを取り囲み、波長変換部材が、基体と共に、LEDを内包し、かつLEDから照射された光が通過する空間を形成するように構成される。LED発光装置としては、特に、白色光を発光するLED発光装置が好ましいが、赤色光、緑色光、青色光、黄色光などの可視光を発光するLED発光装置でもよい。 The LED light-emitting device of the present invention includes an LED, a base on which the LED is installed, and a wavelength conversion member, and the wavelength conversion member is arranged so as to be separated from the LED via a gas layer or a vacuum layer. It is a phosphor type LED light emitting device. In the LED light-emitting device of the present invention, by using the wavelength conversion member of the present invention, the inner surface of the wavelength conversion member has a front side in the irradiation direction of the light emitted from the LED and a part of the side in the irradiation direction, or The wavelength conversion member is configured so as to surround the whole and, together with the substrate, form a space that includes the LED and that allows the light emitted from the LED to pass therethrough. As the LED light emitting device, an LED light emitting device that emits white light is particularly preferable, but an LED light emitting device that emits visible light such as red light, green light, blue light, and yellow light may be used.

以下に、実験例及び実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described by showing experimental examples and examples, but the present invention is not limited to the following examples.

[実験例1]
アクリル樹脂(デルペット 60N(旭化成(株)製))に、蛍光体としてYAG:Ceと、KSFとを練り込み、YAG:Ce蛍光体濃度が2.8質量%、KSF蛍光体濃度が8.4質量%の蛍光体含有熱可塑性樹脂のペレットを得た。次に、このペレットを、2軸押出機 TEM−18(東芝機械(株)製)に投入し、バレル平均加熱温度240℃で溶融混練を行った後、220℃まで温度を下げて、φ4.5mmのオリフィス穴より1.1m/minの線速度で押し出し、吐出した蛍光体含有樹脂を冷水に潜らせてから、定速引取機 IMC−19A5R((株)井元製作所製)により、延伸倍率が6倍となる6.5m/minの線速度で引き取り、平均でφ1.75mmの線状とし、更に、70℃の真空炉内で12時間加熱して、蛍光体含有熱可塑性樹脂フィラメントを得た。なお、この押出成形における溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)は42であった。
[Experimental Example 1]
YAG:Ce and KSF as phosphors were kneaded into an acrylic resin (Delpet 60N (manufactured by Asahi Kasei Co., Ltd.)) to obtain a YAG:Ce phosphor concentration of 2.8 mass% and a KSF phosphor concentration of 8. Pellets of 4% by mass of phosphor-containing thermoplastic resin were obtained. Next, the pellets were put into a twin-screw extruder TEM-18 (manufactured by Toshiba Machine Co., Ltd.), melt-kneaded at a barrel average heating temperature of 240° C., then the temperature was lowered to 220° C., and φ4. The phosphor-containing resin was extruded through a 5 mm orifice hole at a linear velocity of 1.1 m/min, and the discharged phosphor-containing resin was dipped in cold water. The filament was drawn at a linear velocity of 6.5 m/min, which was 6 times, and was made into a linear shape with an average diameter of 1.75 mm, and further heated in a vacuum furnace at 70° C. for 12 hours to obtain a phosphor-containing thermoplastic resin filament. .. The ratio (L/D) of the effective screw length L to the melting screw diameter D in this extrusion molding was 42.

得られた蛍光体含有熱可塑性樹脂フィラメントは、各部の直径が均一で、溶融不良に起因する微小異形部位(フィッシュアイ)は、概ね150mに1個程度の割合であった。 In the obtained phosphor-containing thermoplastic resin filament, the diameter of each part was uniform, and the number of minute irregularly shaped parts (fish eyes) due to defective melting was about 1 in 150 m.

[実験例2]
ポリプロピレン(ノーブレン Z144(旭化成(株)製))に、蛍光体としてYAG:Ceを練り込み、YAG:Ce蛍光体濃度が6質量%の蛍光体含有熱可塑性樹脂のペレットを得た。次に、このペレットを、2軸押出機 TEM−18(東芝機械(株)製)に投入し、バレル平均加熱温度220℃で溶融混練を行った後、180℃まで温度を下げて、φ4.5mmのオリフィス穴より0.6m/minの線速度で押し出し、吐出した蛍光体含有樹脂を冷水に潜らせてから、定速引取機 IMC−19A5R((株)井元製作所製)により、延伸倍率が20倍となる12m/minの線速度で引き取り、平均でφ1.75mmの線状とし、更に、80℃の真空炉内で8時間加熱して、蛍光体含有熱可塑性樹脂フィラメントを得た。なお、この押出成形における溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)は42であった。
[Experimental Example 2]
YAG:Ce as a phosphor was kneaded into polypropylene (Noblen Z144 (manufactured by Asahi Kasei Co., Ltd.)) to obtain pellets of a phosphor-containing thermoplastic resin having a YAG:Ce phosphor concentration of 6% by mass. Next, the pellets were put into a twin-screw extruder TEM-18 (manufactured by Toshiba Machine Co., Ltd.), melt-kneaded at a barrel average heating temperature of 220° C., then the temperature was lowered to 180° C., and φ4. The phosphor-containing resin was extruded from a 5 mm orifice hole at a linear velocity of 0.6 m/min, and the discharged phosphor-containing resin was dipped in cold water. It was drawn at a linear velocity of 12 m/min, which was 20 times, to obtain a linear shape with an average diameter of 1.75 mm, and further heated in a vacuum furnace at 80° C. for 8 hours to obtain a phosphor-containing thermoplastic resin filament. The ratio (L/D) of the effective screw length L to the melting screw diameter D in this extrusion molding was 42.

得られた蛍光体含有熱可塑性樹脂フィラメントは、各部の直径が均一で、溶融不良に起因する微小異形部位(フィッシュアイ)は、概ね300mに1個程度の割合であった。 In the obtained phosphor-containing thermoplastic resin filament, the diameter of each part was uniform, and the number of minute irregularly shaped parts (fish eyes) due to defective melting was about 1 per 300 m.

[実験例3]
アクリル樹脂(デルペット 60N(旭化成(株)製))に、蛍光体としてYAG:Ceを練り込み、YAG:Ce蛍光体濃度が7質量%の蛍光体含有熱可塑性樹脂のペレットを得た。次に、このペレットを、2軸押出機 TEM−18(東芝機械(株)製)に投入し、バレル平均加熱温度250℃で溶融混練を行った後、235℃まで温度を下げて、φ4.5mmのオリフィス穴より1.2m/minの線速度で押し出し、吐出した蛍光体含有樹脂を冷水に潜らせてから、定速引取機 IMC−19A5R((株)井元製作所製)により、延伸倍率が15倍となる18m/minの線速度で引き取り、平均でφ1.75mmの線状として、蛍光体含有熱可塑性樹脂フィラメントを得た。なお、この押出成形における溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)は38であった。
[Experimental Example 3]
YAG:Ce was kneaded as a phosphor into an acrylic resin (Delpet 60N (manufactured by Asahi Kasei Co., Ltd.)) to obtain pellets of a phosphor-containing thermoplastic resin having a YAG:Ce phosphor concentration of 7% by mass. Next, the pellets were put into a twin-screw extruder TEM-18 (manufactured by Toshiba Machine Co., Ltd.), melt-kneaded at a barrel average heating temperature of 250° C., then the temperature was lowered to 235° C., and φ4. The phosphor-containing resin was extruded through a 5 mm orifice hole at a linear velocity of 1.2 m/min, and the discharged phosphor-containing resin was dipped in cold water. The filament was drawn at a linear velocity of 18 m/min, which was 15 times, and a fluorescent substance-containing thermoplastic resin filament was obtained in a linear shape with an average diameter of 1.75 mm. The ratio (L/D) of the effective screw length L to the melting screw diameter D in this extrusion molding was 38.

得られた蛍光体含有熱可塑性樹脂フィラメントは、各部の直径が均一で、溶融不良に起因する微小異形部位(フィッシュアイ)は、概ね200mに1個程度の割合であった。 In the obtained phosphor-containing thermoplastic resin filament, the diameter of each part was uniform, and the number of minute irregularly shaped parts (fish eyes) due to defective melting was about 1 per 200 m.

[実験例4]
実験例3と同様の方法で得た蛍光体含有熱可塑性樹脂のペレットを、2軸押出機 TEM−18(東芝機械(株)製)に投入し、バレル平均加熱温度240℃で溶融混練を行った後、温度を維持したまま、φ4.5mmのオリフィス穴より0.5m/minの線速度で押し出し、吐出した蛍光体含有樹脂を冷水に潜らせてから、定速引取機 IMC−19A5R((株)井元製作所製)により、延伸倍率が2.6倍となる1.3m/minの線速度で引き取り、平均でφ1.75mmの線状として、蛍光体含有熱可塑性樹脂フィラメントを得た。なお、この押出成形における溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)は38であった。
[Experimental Example 4]
Pellets of the phosphor-containing thermoplastic resin obtained by the same method as in Experimental Example 3 were charged into a twin-screw extruder TEM-18 (manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at a barrel average heating temperature of 240°C. Then, while maintaining the temperature, the resin containing phosphor was extruded from the orifice hole of φ4.5 mm at a linear velocity of 0.5 m/min, and the discharged phosphor-containing resin was dipped in cold water, and then the constant speed take-up machine IMC-19A5R(( (Made by Imoto Seisakusho Co., Ltd.) was drawn at a linear velocity of 1.3 m/min at which the draw ratio was 2.6 times, and a fluorescent substance-containing thermoplastic resin filament was obtained in a linear shape with an average diameter of 1.75 mm. The ratio (L/D) of the effective screw length L to the melting screw diameter D in this extrusion molding was 38.

得られた蛍光体含有熱可塑性樹脂フィラメントは、各部の直径が1.5〜1.9mmと大幅にばらつき、直径が一定で連続した10m以上フィラメントを得ることはできなかった。 In the obtained phosphor-containing thermoplastic resin filament, the diameter of each part was significantly varied from 1.5 to 1.9 mm, and continuous filaments having a constant diameter of 10 m or more could not be obtained.

[実験例5]
実験例1と同様の方法で得た蛍光体含有熱可塑性樹脂のペレットを、2軸押出機 TEM−18(東芝機械(株)製)に投入し、バレル平均加熱温度240℃で溶融混練を行った後、220℃まで温度を下げて、φ1.8mmのオリフィス穴より28m/minの線速度で押し出し、吐出した蛍光体含有樹脂を冷水に潜らせてから、定速引取機 IMC−19A5R((株)井元製作所製)により、延伸倍率が1.1倍となる30m/minの線速度で引き取り、平均でφ1.75mmの線状とし、更に、70℃の真空炉内で12時間加熱して、蛍光体含有熱可塑性樹脂フィラメントを得た。なお、この押出成形における溶融スクリュー径Dに対する有効スクリュー長Lの比率(L/D)は29であった。
[Experimental Example 5]
Pellets of the phosphor-containing thermoplastic resin obtained by the same method as in Experimental Example 1 were charged into a twin-screw extruder TEM-18 (manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at a barrel average heating temperature of 240°C. After that, the temperature is lowered to 220° C., and the phosphor-containing resin discharged is extruded from a φ1.8 mm orifice hole at a linear velocity of 28 m/min, and the discharged phosphor-containing resin is dipped in cold water. Manufactured by Imoto Manufacturing Co., Ltd.), and draw it at a linear velocity of 30 m/min, which makes the draw ratio 1.1 times, to obtain a linear shape with an average diameter of 1.75 mm, and further heat it in a vacuum furnace at 70° C. for 12 hours. , A phosphor-containing thermoplastic resin filament was obtained. The ratio (L/D) of the effective screw length L to the melting screw diameter D in this extrusion molding was 29.

得られた蛍光体含有熱可塑性樹脂フィラメントは、各部の直径のばらつきが大きく、10m以上の連続した成形体を得ることができなかった。また、溶融不良に起因する微小異形部位(フィッシュアイ)は、概ね15mに1個程度の割合であった。 The obtained phosphor-containing thermoplastic resin filament had a large variation in the diameter of each part, and a continuous molded body of 10 m or more could not be obtained. In addition, the number of minute irregularly shaped portions (fish eyes) due to defective melting was about 1 per 15 m.

[実施例1]
実験例1で得たフィラメントを用い、FDM法の3Dプリンター Ninjabotシリーズ NJB−300W((株)三豊工業製)で、φ0.25mmの成形ノズルを適用して、図1〜3に示されるような3種のリングキャップ形状の波長変換部材を作製した。なお、成形には、Simplify 3D社のスライシングソフトを使用した。
[Example 1]
Using the filament obtained in Experimental Example 1, a 3D printer of the FDM method Ninjabot series NJB-300W (manufactured by Mitoyo Kogyo Co., Ltd.) and a molding nozzle of φ0.25 mm was applied, and as shown in FIGS. Three types of ring cap-shaped wavelength conversion members were produced. In addition, slicing software by Simplicity 3D was used for molding.

図1は、本発明の波長変換部材の一例を示す図であり、(A)は斜視図、(B)は断面図である。図1に示される波長変換部材(No.1)の内面は、円形リング状平面(頂面)、円錐台周面である内周面(側面)及び円周面である外側面(側面)のみで構成され、頂面と側面とが接線を介して接合した多面形状の不連続な面となっている。図中で示されるa〜fの各部のサイズを表1に示す。なお、内面の内周は、φ29mm、LEDから上端までの高さを8.3mmとした。 FIG. 1 is a diagram showing an example of the wavelength conversion member of the present invention, (A) is a perspective view, and (B) is a sectional view. The inner surface of the wavelength conversion member (No. 1) shown in FIG. 1 is only a circular ring-shaped flat surface (top surface), an inner peripheral surface (side surface) that is a truncated cone peripheral surface, and an outer surface (side surface) that is a circumferential surface. And a top surface and a side surface are joined via a tangent line to form a polyhedral discontinuous surface. Table 1 shows the size of each part of a to f shown in the figure. The inner circumference of the inner surface was φ29 mm, and the height from the LED to the upper end was 8.3 mm.

図2は、本発明の波長変換部材の一例を示す図であり、(A)は斜視図、(B)は断面図である。図2に示される波長変換部材(No.2)の内面は、12角形リング状平面(頂面)、12角錐台周面である内周面(側面)及び12角柱周面である外側面(側面)のみで構成され、頂面と側面とが接線を介して接合した多面形状の不連続な面となっている。図中で示されるa〜fの各部のサイズを表1に示す。なお、内面の外周サイズは、外周最大径46mm、LEDから上端までの高さを5mmとした。 FIG. 2 is a diagram showing an example of the wavelength conversion member of the present invention, (A) is a perspective view, and (B) is a sectional view. The inner surface of the wavelength conversion member (No. 2) shown in FIG. 2 has a dodecagonal ring-shaped flat surface (top surface), an inner peripheral surface (side surface) that is a 12-sided truncated pyramid peripheral surface, and an outer surface that is a 12-sided prism peripheral surface ( Side surface), and the top surface and the side surface are joined via a tangent line to form a polyhedral discontinuous surface. Table 1 shows the size of each part of a to f shown in the figure. The outer peripheral size of the inner surface was 46 mm in maximum outer diameter, and the height from the LED to the upper end was 5 mm.

図3は、本発明の波長変換部材の一例を示す図であり、(A)は斜視図、(B)は断面図である。図3に示される波長変換部材(No.3)の内面は、円形リング状平面(頂面)、円柱周面である内周面(側面)及び外側面(側面)のみで構成され、頂面と側面とが接線を介して接合した多面形状の不連続な面となっている。図中で示されるa〜fの各部のサイズを表1に示す。なお、内面の外周サイズは、φ46mm、LEDから上端までの高さを6.3mmとした。 FIG. 3 is a diagram showing an example of the wavelength conversion member of the present invention, (A) is a perspective view, and (B) is a sectional view. The inner surface of the wavelength conversion member (No. 3) shown in FIG. 3 is composed only of a circular ring-shaped flat surface (top surface), an inner peripheral surface (side surface) that is a cylindrical peripheral surface, and an outer surface (side surface). And the side surface are joined to each other via a tangent line to form a polyhedral discontinuous surface. Table 1 shows the size of each part of a to f shown in the figure. The outer peripheral size of the inner surface was φ46 mm, and the height from the LED to the upper end was 6.3 mm.

図4は、波長変換部材(No.1)を用いて作製した本発明のリモートフォスファー型のLED発光装置の一例を示す分解斜視図である。図4に示されるように、白色塗装を施したアルミニウム基板21上に、LED22(PK2N青色(ProLight Opto Technology社製、ピーク波長453nm)を12個、φ38mmの円周上に等間隔に直列接続して設置し、このLEDアレイが波長変換部材1の底部側の内外周面間に位置するように波長変換部材1を配設して、リモートフォスファー型のLED発光装置10とした。この場合、アルミニウム基板表面からLEDの上端までの高さは1.7mmである。そして、LEDに、安定化電源で3Vの電圧、200mAの電流を印加して、LED発光装置の光学特性を、全光束測定システム HM−9100B(大塚電子(株)製)により評価し、また、目視にて色のばらつきを評価した。結果を表1に示す。なお、3種のLED発光装置の発光の色温度は4500〜5000K、平均演色評価数Raは91〜93の範囲内にあった。 FIG. 4 is an exploded perspective view showing an example of the remote phosphor type LED light emitting device of the present invention manufactured by using the wavelength conversion member (No. 1). As shown in FIG. 4, 12 LEDs 22 (PK2N blue (produced by ProLight Opto Technology, peak wavelength 453 nm) on a white-painted aluminum substrate 21 are connected in series on a circumference of φ38 mm at equal intervals. The wavelength conversion member 1 is disposed so that this LED array is located between the inner and outer peripheral surfaces on the bottom side of the wavelength conversion member 1 to form a remote phosphor type LED light emitting device 10. In this case, The height from the surface of the aluminum substrate to the upper end of the LED is 1.7 mm, and the optical characteristics of the LED light emitting device are measured by measuring the total luminous flux by applying a voltage of 3 V and a current of 200 mA with a stabilized power supply to the LED. The system HM-9100B (manufactured by Otsuka Electronics Co., Ltd.) was evaluated and the color variation was visually evaluated.The results are shown in Table 1. The color temperature of light emitted from the three types of LED light emitting devices is 4500. .About.5000 K, and the average color rendering index Ra was in the range of 91 to 93.

Figure 2020111867
Figure 2020111867

光学特性の評価結果から、本発明の蛍光体含有熱可塑性樹脂フィラメントを用いて製造した波長変換部材により、発光効率が高く、色度や色温度のばらつきが小さい、高い発光特性を有するリモートフォスファー型のLED発光装置が得られたことがわかる。 From the evaluation results of the optical characteristics, the wavelength conversion member manufactured using the phosphor-containing thermoplastic resin filament of the present invention has a high luminous efficiency, a small variation in chromaticity and color temperature, and a remote phosphor having high luminous characteristics. It can be seen that a mold type LED light emitting device was obtained.

1 波長変換部材
10 リモートフォスファー型のLED発光装置
21 基板
22 LED
1 Wavelength Conversion Member 10 Remote Phosphor Type LED Light Emitting Device 21 Substrate 22 LED

Claims (3)

LEDから発光した光の波長を変換して、該波長とは異なる波長の光を発光する蛍光体を含有する波長変換部材を、溶融積層法による3Dプリンターにより製造するための原料フィラメントであり、粒子状の上記蛍光体が熱可塑性樹脂中に30質量%以下の濃度で分散しており、
上記蛍光体が、A2(M1-x,Mnx)F6(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素であり、xは0.001〜0.3の範囲の正数である。)で表されるマンガン賦活複フッ化物蛍光体を含み、
上記熱可塑性樹脂が、オレフィン系樹脂、環状ポリオレフィン樹脂、アクリル樹脂、スチレン系樹脂及びアクリルイミド樹脂から選ばれることを特徴とする蛍光体含有熱可塑性樹脂フィラメント。
A raw material filament for converting a wavelength of light emitted from an LED to produce a wavelength conversion member containing a phosphor that emits light of a wavelength different from the wavelength by a 3D printer by a melt lamination method, and particles. The above-mentioned fluorescent substance is dispersed in a thermoplastic resin at a concentration of 30% by mass or less,
The phosphor is A 2 (M 1-x , Mn x )F 6 (wherein A is selected from Li, Na, K, Rb and Cs, and contains at least Na and/or K. At least one alkali metal, M is at least one tetravalent element selected from Si, Ti, Zr, Hf, Ge and Sn, and x is a positive number in the range of 0.001 to 0.3. A) containing a manganese-activated double-fluoride phosphor represented by
The phosphor-containing thermoplastic resin filament, wherein the thermoplastic resin is selected from an olefin resin, a cyclic polyolefin resin, an acrylic resin, a styrene resin, and an acrylimide resin.
上記マンガン賦活複フッ化物蛍光体が、K2(Si1-x,Mnx)F6(式中、xは0.001〜0.3の範囲の正数である。)で表されるマンガン賦活ケイフッ化カリウム蛍光体であることを特徴とする請求項1記載の蛍光体含有熱可塑性樹脂フィラメント。 The manganese-activated double fluoride phosphor is represented by K 2 (Si 1-x , Mn x )F 6 (where x is a positive number in the range of 0.001 to 0.3). The phosphor-containing thermoplastic resin filament according to claim 1, which is an activated potassium fluorosilicate phosphor. 上記熱可塑性樹脂が、アクリル樹脂、ポリスチレン、スチレン共重合体、ポリエチレン、ポリプロピレン及びエチレン−プロピレン共重合体から選ばれることを特徴とする請求項1又は2記載の蛍光体含有熱可塑性樹脂フィラメント。 The phosphor-containing thermoplastic resin filament according to claim 1 or 2, wherein the thermoplastic resin is selected from acrylic resin, polystyrene, styrene copolymer, polyethylene, polypropylene and ethylene-propylene copolymer.
JP2020043591A 2020-03-13 2020-03-13 Fluorescent Thermoplastic Resin Filament Active JP6825734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020043591A JP6825734B2 (en) 2020-03-13 2020-03-13 Fluorescent Thermoplastic Resin Filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020043591A JP6825734B2 (en) 2020-03-13 2020-03-13 Fluorescent Thermoplastic Resin Filament

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017022669A Division JP6737199B2 (en) 2017-02-10 2017-02-10 Method for producing phosphor-containing thermoplastic resin filament and method for producing wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2020111867A true JP2020111867A (en) 2020-07-27
JP6825734B2 JP6825734B2 (en) 2021-02-03

Family

ID=71666549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043591A Active JP6825734B2 (en) 2020-03-13 2020-03-13 Fluorescent Thermoplastic Resin Filament

Country Status (1)

Country Link
JP (1) JP6825734B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129613A1 (en) * 2015-02-10 2016-08-18 ユニチカ株式会社 Molding material
US20160339633A1 (en) * 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160339633A1 (en) * 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
WO2016129613A1 (en) * 2015-02-10 2016-08-18 ユニチカ株式会社 Molding material

Also Published As

Publication number Publication date
JP6825734B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP5347354B2 (en) Fluorescent material molded body, method for manufacturing the same, and light emitting device
JP2018145088A (en) Method of making light emitting diode package
US20110198539A1 (en) Process for producing fluorescent substance composite glass and fluorescent substance composite glass green sheet
JP6376225B2 (en) Wavelength conversion member and light emitting device
JP4729583B2 (en) Light reflecting material, light emitting element storage package, light emitting device, and method of manufacturing light emitting element storage package
KR102087270B1 (en) Wavelength conversion member and light-emitting device
JP6079927B2 (en) Wavelength conversion member and light emitting device manufacturing method
CN102911490A (en) Polycarbonate resin fluorescent composite material and fluorescent LED lampshade production method
JP6737199B2 (en) Method for producing phosphor-containing thermoplastic resin filament and method for producing wavelength conversion member
EP2940742A1 (en) Light emitting device
CN114019595A (en) Quantum dot diffusion plate
EP2546319A1 (en) High efficiency plastic light conversion components by incorporation of phosphor in a polymer by adding to monomers before polymerisation
WO2010095395A1 (en) Phosphor-containing resin composition and fluorescent sheet
JP6098747B2 (en) Adjustment parts and light emitting device
JP2020111867A (en) Fluorescent substance-containing thermoplastic resin filament
CN102721003A (en) LED fluorescent lampshade and manufacturing method thereof
JP2018128617A (en) Wavelength conversion member and led light-emitting device
CN111051932B (en) Phosphor and method for producing same
JP6476592B2 (en) Wavelength conversion member
JP2019052210A (en) Phosphor and production method of the same
KR101618244B1 (en) Method of fabricating a white light emitting device utilizing 3D printing, and a white light emitting device fabricated by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150