JP2020111561A - Diamino or dinitro benzene compound having four aromatic rings, production method thereof and polyimide - Google Patents

Diamino or dinitro benzene compound having four aromatic rings, production method thereof and polyimide Download PDF

Info

Publication number
JP2020111561A
JP2020111561A JP2019096579A JP2019096579A JP2020111561A JP 2020111561 A JP2020111561 A JP 2020111561A JP 2019096579 A JP2019096579 A JP 2019096579A JP 2019096579 A JP2019096579 A JP 2019096579A JP 2020111561 A JP2020111561 A JP 2020111561A
Authority
JP
Japan
Prior art keywords
formula
group
carbon atoms
represented
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096579A
Other languages
Japanese (ja)
Other versions
JP7150335B2 (en
Inventor
昌弘 寺本
Masahiro Teramoto
昌弘 寺本
元則 竹田
Motonori Takeda
元則 竹田
和秀 西山
Kazuhide Nishiyama
和秀 西山
充隆 井本
Mitsutaka Imoto
充隆 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKA CORP
Seika Sangyo Co Ltd
Original Assignee
SEIKA CORP
Seika Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKA CORP, Seika Sangyo Co Ltd filed Critical SEIKA CORP
Publication of JP2020111561A publication Critical patent/JP2020111561A/en
Application granted granted Critical
Publication of JP7150335B2 publication Critical patent/JP7150335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a novel bis(aminophenoxy or nitrophenoxy)derivative, to provide a production method of the derivative and to provide a polyimide compound.SOLUTION: The compound represented by the following formula (1) is provided. (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 and R16 are each independently H, a 1-6C substituted/unsubstituted alkyl group, a 1-3C alkoxy group or the like; A and B are each independently a nitro group or an amino group; X is O, a single bond or a 1-14C substituted/unsubstituted divalent hydrocarbon group.)SELECTED DRAWING: None

Description

本発明は、ポリイミドをはじめとした高機能性高分子および種々の有機化合物のための原料として有用な、4つの芳香環を有するジアミノベンゼン及びその誘導体、及びその製造方法に関する。さらに本発明は、該ジアミン化合物の前駆体である(アミノフェノキシ)(ニトロフェノキシ)化合物、ビス(ニトロフェノキシ)化合物、及びこれらの誘導体、並びにこれら化合物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a diaminobenzene having four aromatic rings and a derivative thereof, which are useful as a raw material for highly functional polymers such as polyimide and various organic compounds, and a method for producing the same. Further, the present invention relates to a (aminophenoxy)(nitrophenoxy) compound, a bis(nitrophenoxy) compound which are precursors of the diamine compound, a derivative thereof, and a method for producing the compound.

情報通信分野において使用されるプリント配線基板等では高速・大容量通信が求められており、そのため従来よりも高周波数帯使用が期待されている。しかし、高周波数化することで伝送損失が増大するという問題がある。伝送損失は抵抗損失と誘電損失の寄与に分けられる。そのうち、抵抗損失は周波数に比例して熱に変わる特徴があり、誘電損失は周波数、誘電正接、比誘電率に比例する特徴がある。 High-speed, large-capacity communication is required for printed wiring boards and the like used in the field of information and communication, and therefore, higher frequency bands are expected to be used than before. However, there is a problem that the transmission loss increases as the frequency becomes higher. Transmission loss is divided into contributions of resistance loss and dielectric loss. Among them, the resistance loss has a characteristic of changing to heat in proportion to the frequency, and the dielectric loss has a characteristic of being proportional to frequency, dielectric loss tangent, and relative permittivity.

高周波数帯での使用に耐えうる材料には、耐熱性に加え、優れた電気特性、特に低誘電率、低誘電正接であることが求められている。優れた高耐熱性材料として,例えばポリイミド樹脂(PI)やポリアミド樹脂が知られている(非特許文献1、2)。しかし、これらの樹脂は分子内に極性の高いイミド基、あるいはアミド基構造を有しており、これらの寄与のため、多くのPIの誘電率(k)は3.0を越えるのが通常である。また、優れた電気特性を有する材料として、例えばポリフェニレンエーテル樹脂(PPE)が知られている(特許文献1,非特許文献1,2)。しかし、熱可塑性であり、溶融時の流動性が悪い、溶剤溶解性が乏しいといった問題がある。 A material that can withstand use in a high frequency band is required to have not only heat resistance but also excellent electrical characteristics, particularly a low dielectric constant and a low dielectric loss tangent. Polyimide resins (PI) and polyamide resins are known as excellent high heat resistant materials (Non-patent Documents 1 and 2). However, these resins have a highly polar imide group or amide group structure in the molecule. Due to these contributions, the dielectric constant (k) of many PIs usually exceeds 3.0. is there. In addition, for example, polyphenylene ether resin (PPE) is known as a material having excellent electrical characteristics (Patent Document 1, Non-Patent Documents 1 and 2). However, it is thermoplastic and has problems such as poor fluidity during melting and poor solvent solubility.

特開2005−82793号公報JP-A-2005-82793

Pathrick R.A.et,al「Journal of Applied Polymer Science」、vol.132、p.41684−41692、2015年.Pathrick R. et al. A. et al, “Journal of Applied Polymer Science”, vol. 132, p. 41684-41692, 2015. Akhter Z.et,al「Polymer Bulletin」vol.74、p.3889−3906、2017年.Akhter Z. et al, "Polymer Bulletin", vol. 74, p. 3889-3906, 2017.

優れた高耐熱性と電気特性を有する材料として、PIの低誘電率化が提案されている。PIはそのモノマーであるジアミンの設計の多様性から、低誘電率化の分子設計には魅力的な材料である。PIの低誘電率化の基本的な考えは、高誘電率に寄与するイミド基濃度をどのように希釈(低減)していくかにある。PI中のイミド基濃度を下げるには,芳香族ジアミンとして代表的なオキシジアニリンのような二核体に代え、三核以上の芳香環を有するジアミンを採用するのが有効である。しかし、イミド基濃度を下げる分、PIの耐熱性を損なうことになる。イミド基濃度を下げ、なおかつ耐熱性を損なわないようにするには、芳香環に嵩高い炭化水素を導入し、芳香族アミン部位のエーテル結合や、イミド環と芳香環との単結合の自由回転を規制し、ポリイミド主鎖の一次運動を阻害するのが有効である。 As a material having excellent high heat resistance and electrical characteristics, a low dielectric constant of PI has been proposed. PI is an attractive material for molecular design with a low dielectric constant because of the variety of diamine designs that are its monomers. The basic idea of lowering the dielectric constant of PI lies in how to dilute (reduce) the imide group concentration that contributes to the high dielectric constant. In order to reduce the imide group concentration in PI, it is effective to employ a diamine having a trinuclear or higher aromatic ring, instead of a binuclear compound such as oxydianiline, which is a typical aromatic diamine. However, as the imide group concentration is reduced, the heat resistance of PI is impaired. In order to reduce the imide group concentration and not to impair the heat resistance, a bulky hydrocarbon is introduced into the aromatic ring to allow free rotation of the ether bond at the aromatic amine site or the single bond between the imide ring and the aromatic ring. Is effective to inhibit the primary movement of the polyimide main chain.

本発明は上記事情に鑑み、ポリイミド樹脂などの樹脂原料、また、電子材料やこれらの中間体や原料として有用な、四核体構造を有する、芳香族ジアミン化合物及びその誘導体、並びにその製造方法を提供することを目的とする。 In view of the above circumstances, the present invention provides a resin raw material such as a polyimide resin, and also useful as an electronic material or an intermediate or raw material thereof, having a tetranuclear structure, an aromatic diamine compound and a derivative thereof, and a method for producing the same. The purpose is to provide.

本発明者らは、上記のような芳香族ジアミンの問題点を鋭意検討した結果、アミノフェノキシ又はニトロフェノキシを有し四核体である、ビス(アミノ又はニトロフェノキシ)化合物であって、4つの芳香環が夫々少なくとも1のアルキル基、アルコキシ基又はアリール基を有する新規の化合物を製造し、本発明を成すに至った。 As a result of intensive studies on the problems of the aromatic diamines as described above, the present inventors have found that they are tetranuclear bis(amino or nitrophenoxy) compounds having aminophenoxy or nitrophenoxy, and The present invention has been completed by producing a novel compound in which each aromatic ring has at least one alkyl group, alkoxy group or aryl group.

すなわち本発明は、下記式(1)で表される化合物及びその製造方法を提供する。

Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、A及びBは、互いに独立に、ニトロ基又はアミノ基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)。 That is, the present invention provides a compound represented by the following formula (1) and a method for producing the same.
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 independently of one another are the substituents, A and B independently of one another are a nitro group or an amino group, X is an oxygen atom, a single bond, or an optionally substituted divalent hydrocarbon group having 1 to 14 carbon atoms).

本発明のビス(アミノ又はニトロフェノキシ)化合物は、4核体を成す4つの芳香環が少なくとも1つの置換基を有することから、誘電率、及び誘電正接が低いポリイミド樹脂を提供し、ポリイミド原料として好適に使用できる。また、本発明のビス(ニトロフェノキシ)ベンゼン化合物は、ニトロ基を還元することにより前記ビス(アミノフェノキシ)ベンゼン化合物を容易に提供することができ、ポリイミド原料として有用である。 The bis(amino or nitrophenoxy) compound of the present invention provides a polyimide resin having a low dielectric constant and a low dielectric loss tangent since four aromatic rings forming a tetranuclear body have at least one substituent, and is used as a polyimide raw material. It can be preferably used. Further, the bis(nitrophenoxy)benzene compound of the present invention can easily provide the bis(aminophenoxy)benzene compound by reducing the nitro group, and is useful as a polyimide raw material.

図1は実施例1で製造した化合物のH−NMRスペクトルのチャートである。FIG. 1 is a chart of 1 H-NMR spectrum of the compound produced in Example 1. 図2は実施例1で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 2 is a chart of 13 C-NMR spectrum of the compound produced in Example 1. 図3は実施例2で製造した化合物のH−NMRスペクトルのチャートである。FIG. 3 is a chart of the 1 H-NMR spectrum of the compound produced in Example 2. 図4は実施例2で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 4 is a chart of the 13 C-NMR spectrum of the compound produced in Example 2. 図5は実施例3で製造した化合物のH−NMRスペクトルのチャートである。FIG. 5 is a chart of the 1 H-NMR spectrum of the compound produced in Example 3. 図6は実施例3で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 6 is a chart of the 13 C-NMR spectrum of the compound produced in Example 3. 図7は実施例4で製造した化合物のH−NMRスペクトルのチャートである。FIG. 7 is a chart of the 1 H-NMR spectrum of the compound produced in Example 4. 図8は実施例4で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 8 is a chart of 13 C-NMR spectrum of the compound produced in Example 4. 図9は実施例5で製造した化合物のH−NMRスペクトルのチャートである。FIG. 9 is a chart of the 1 H-NMR spectrum of the compound produced in Example 5. 図10は実施例5で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 10 is a chart of 13 C-NMR spectrum of the compound produced in Example 5. 図11は実施例6で製造した化合物のH−NMRスペクトルのチャートである。FIG. 11 is a chart of 1 H-NMR spectrum of the compound produced in Example 6. 図12は実施例6で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 12 is a chart of 13 C-NMR spectrum of the compound produced in Example 6.

本発明のビス(アミノ又はニトロフェノキシ)化合物は、下記式(1)で表される。以下、詳細に説明する。
下記式(1)で表される化合物

Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、A及びBは、互いに独立に、ニトロ基又はアミノ基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)。 The bis(amino or nitrophenoxy) compound of the present invention is represented by the following formula (1). The details will be described below.
Compound represented by the following formula (1)
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 independently of one another are the substituents, A and B independently of one another are a nitro group or an amino group, X is an oxygen atom, a single bond or an optionally substituted divalent hydrocarbon group having 1 to 14 carbon atoms).

上記式(1)において、A及びBは互いに独立にアミノ基又はニトロ基である。A及びBが共にアミノ基であるジアミン化合物(下記(1−a))は、後述する方法により、上記式(1)で表されA及びBの少なくとも1がニトロ基である化合物(下記(1−b)又は(1−c)又は(1−d))のニトロ基を還元することにより、容易に得ることができる。

Figure 2020111561
In the above formula (1), A and B are each independently an amino group or a nitro group. A diamine compound in which both A and B are amino groups (following (1-a)) is a compound represented by the above formula (1) in which at least one of A and B is a nitro group (following (1 -B) or (1-c) or (1-d)) can be easily obtained by reducing the nitro group.
Figure 2020111561

上記式(1)において、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基、又は炭素数6〜12のアリール基から選ばれる置換基である。R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16の少なくとも一つは前記置換基であり、結合箇所は特に制限されるものでない。Xは、酸素原子、単結合、又は、炭素数1〜14の置換されていてよい二価炭化水素基である。 In the above formula (1), R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15 and R 16 are independently of each other a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, or an aryl group having 6 to 12 carbon atoms. It is the substituent of choice. At least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 . One is the above-mentioned substituent, and the bonding site is not particularly limited. X is an oxygen atom, a single bond, or an optionally substituted divalent hydrocarbon group having 1 to 14 carbon atoms.

上記Xにおいて、炭素数1〜14の置換されていてよい二価炭化水素基は、飽和又は不飽和結合を有してよい、置換または非置換の、二価の脂肪族炭化水素基であるのがよい。二価の脂肪族炭化水素基は、好ましくはアルキリデン基及びアルキレン基が挙げられ、より好ましくはアルキリデン基であり、これらの炭素原子に結合する水素原子の少なくとも1が、本発明の効果を妨げない範囲において、ハロゲン原子、アルコキシ基、フェニル基等に置換されていてよい。より好ましくは、Xは、酸素原子、単結合、又は−CR1718−で表される二価炭化水素基であり、R17及びR18は、互いに独立に、水素原子、炭素数1〜6のアルキル基、又は炭素数6〜12のアリールである。炭素原子数1〜6のアルキル基とは、例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、及びイソブチル基等である。炭素数6〜12のアリール基としては、フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、及びナフチル基が挙げられる。R17及びR18は、より好ましくは、炭素数1〜3のアルキル基又はフェニル基であり、さらに好ましくはメチル基又はフェニル基である。 In X above, the optionally substituted divalent hydrocarbon group having 1 to 14 carbon atoms is a substituted or unsubstituted divalent aliphatic hydrocarbon group which may have a saturated or unsaturated bond. Is good. The divalent aliphatic hydrocarbon group is preferably an alkylidene group or an alkylene group, more preferably an alkylidene group, and at least one hydrogen atom bonded to these carbon atoms does not hinder the effect of the present invention. In the range, it may be substituted with a halogen atom, an alkoxy group, a phenyl group or the like. More preferably, X is an oxygen atom, a single bond, or a divalent hydrocarbon group represented by —CR 17 R 18 —, and R 17 and R 18 are each independently a hydrogen atom or a carbon number of 1 to 1. It is an alkyl group having 6 or an aryl having 6 to 12 carbon atoms. The alkyl group having 1 to 6 carbon atoms is, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, an isobutyl group, or the like. Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, and naphthyl group. R 17 and R 18 are more preferably an alkyl group having 1 to 3 carbon atoms or a phenyl group, and further preferably a methyl group or a phenyl group.

本発明の化合物は、好ましくは、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、R13、R14、R15及びR16の少なくとも一つが、互いに独立に、置換されていてよい炭素原子数1〜6のアルキル基、及び炭素原子数1〜3のアルコキシ基,又は炭素数6〜12のアリール基から選ばれる置換基であるのがよい。 The compound of the present invention is preferably at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and At least one of R 12 and at least one of R 13 , R 14 , R 15 and R 16 are, independently of each other, an optionally substituted alkyl group having 1 to 6 carbon atoms, and 1 to 3 carbon atoms. It is preferable that it is a substituent selected from an alkoxy group or an aryl group having 6 to 12 carbon atoms.

、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、R13、R14、R15及びR16の少なくとも一つとは、各々異なる置換基であってよいし、2以上が同じ置換基であってもよい。 At least one of R 1 , R 2 , R 3 and R 4 , at least one of R 5 , R 6 , R 7 and R 8 , at least one of R 9 , R 10 , R 11 and R 12 , and R 13 , R 14 , R 15 and at least one of R 16 may be different substituents or two or more may be the same substituent.

上記置換されていてよい炭素原子数1〜6のアルキル基とは、例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、及びイソブチル基等、又は、これらの炭素原子に結合する水素原子の少なくとも1が、本発明の効果を妨げない範囲において、ハロゲン原子、アルコキシ基、フェニル基等に置換されている基である。好ましくは、置換されていない炭素原子数1〜6のアルキル基である。炭素原子数1〜3のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、及びプロポキシ基が挙げられる。炭素数6〜12のアリール基としてフェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、及びナフチル基が挙げられる。好ましくはフェニル基である。
より好ましくは、置換されていない、炭素原子数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、さらに好ましくは炭素原子数1〜4のアルキル基であり、特に好ましくは炭素原子数1〜3のアルキル基であり、最も好ましくはメチル基である。
The alkyl group having 1 to 6 carbon atoms which may be substituted is, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, an isobutyl group, or the like, or a bond to these carbon atoms. At least one of the hydrogen atoms is a group substituted with a halogen atom, an alkoxy group, a phenyl group or the like within a range that does not impair the effects of the present invention. Preferably, it is an unsubstituted alkyl group having 1 to 6 carbon atoms. Examples of the alkoxy group having 1 to 3 carbon atoms include methoxy group, ethoxy group, isopropoxy group, and propoxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, a dimethylphenyl group, a trimethylphenyl group, and a naphthyl group. A phenyl group is preferred.
More preferably, it is an unsubstituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, further preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably carbon. It is an alkyl group having 1 to 3 atoms, and most preferably a methyl group.

上記式(1)で表される化合物は、好ましくは、下記式(1a)、(1b)又は(1c)で表される。

Figure 2020111561
Figure 2020111561
Figure 2020111561
上記各式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、A及びBは上記の通りである。R17及びR18は互いに独立に、炭素数1〜6のアルキル基、又は炭素数6〜12のアリール基であり、好ましくは炭素数1〜3のアルキル基又はフェニル基であり、さらに好ましくはメチル基又はフェニル基である。 The compound represented by the above formula (1) is preferably represented by the following formula (1a), (1b) or (1c).
Figure 2020111561
Figure 2020111561
Figure 2020111561
The In the formulas, R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16 , A and B are as described above. R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms or a phenyl group, and more preferably It is a methyl group or a phenyl group.

より好ましくは、下記式で表される化合物が挙げられる。

Figure 2020111561
Figure 2020111561
上記各式中、A及びBは上記の通りであり、R、R、R、R、R10、R11、R13、及びR14は互いに独立に、水素原子又は炭素原子数1〜6のアルキル基であり、但し4つの芳香環は夫々少なくとも1のアルキル基を有する。Phはフェニル基である。 More preferably, the compound represented by the following formula is mentioned.
Figure 2020111561
Figure 2020111561
In the above formulas, A and B are as described above, and R 1 , R 2 , R 5 , R 6 , R 10 , R 11 , R 13 and R 14 are each independently a hydrogen atom or the number of carbon atoms. 1 to 6 alkyl groups with the proviso that each of the four aromatic rings has at least one alkyl group. Ph is a phenyl group.

より詳細には、上記式(1)で表され、A及びBが共にアミノ基であるジアミン化合物としては、例えば、4,4’−ビス(4−アミノ−3−メチルフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニル、2,2−ビス[4−(4−アミノ−3−メチルフェノキシ)−3,5−ジメチルフェニル]プロパン、4,4’−ビス(4−アミノ−2−メチルフェノキシ)−2,3’ジメチルジフェニルエーテル等が挙げられるが、これらの化合物に制限されるものでない。上記式(1)で表され、A及びBが共にニトロ基であるジニトロ化合物としては、例えば、4,4’−ビス(3−メチル−4−ニトロフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニル、2,2−ビス[4−(3−メチル−4−ニトロフェノキシ)−3,5−ジメチルフェニル]プロパン、2,3’−ジメチル−4,4’−ビス(2−メチル−4−ニトロフェノキシ)ジフェニルエーテル等が挙げられるが、これらの化合物に制限されるものでない。 More specifically, examples of the diamine compound represented by the above formula (1), in which A and B are both amino groups, include, for example, 4,4′-bis(4-amino-3-methylphenoxy)-3,3. ',5,5'-Tetramethyl-1,1'-biphenyl, 2,2-bis[4-(4-amino-3-methylphenoxy)-3,5-dimethylphenyl]propane, 4,4'- Examples thereof include bis(4-amino-2-methylphenoxy)-2,3′ dimethyldiphenyl ether and the like, but are not limited to these compounds. Examples of the dinitro compound represented by the above formula (1), in which A and B are both nitro groups, include, for example, 4,4′-bis(3-methyl-4-nitrophenoxy)-3,3′,5,5. '-Tetramethyl-1,1'-biphenyl, 2,2-bis[4-(3-methyl-4-nitrophenoxy)-3,5-dimethylphenyl]propane, 2,3'-dimethyl-4,4 Examples thereof include'-bis(2-methyl-4-nitrophenoxy)diphenyl ether and the like, but the compounds are not limited to these compounds.

[製造方法]
(1)下記式(1−a)で表されるジアミン化合物の製造方法

Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りである)
該ジアミン化合物の製造方法は何ら制限されるものではなく、いかなる方法で製造してもよい。例えば、下記一般式(1−b)又は(1−c)又は(1−d)で表される化合物のニトロ基を還元することにより得ることが出来る。
Figure 2020111561
Figure 2020111561
Figure 2020111561
(上記式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りである) [Production method]
(1) Method for producing diamine compound represented by the following formula (1-a)
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R. 16 and X are as described above)
The method for producing the diamine compound is not particularly limited and may be produced by any method. For example, it can be obtained by reducing the nitro group of the compound represented by the following general formula (1-b) or (1-c) or (1-d).
Figure 2020111561
Figure 2020111561
Figure 2020111561
(In the above formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and X are as described above)

上記ニトロ基の還元反応は、特に限定されるものではなく、ニトロ基をアミノ基に還元する公知の方法を用いることが出来る。例えば、芳香族ジニトロ化合物の還元方法としては、接触還元、ベシャン還元、亜鉛末還元、塩化スズ還元、及びヒドラジン還元等が挙げられる。 The reduction reaction of the nitro group is not particularly limited, and a known method of reducing the nitro group to an amino group can be used. For example, examples of the method for reducing the aromatic dinitro compound include catalytic reduction, Beshan reduction, zinc dust reduction, tin chloride reduction, and hydrazine reduction.

還元反応に用いられる溶剤は例えば、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、2−メトキシエタノール、及び2−エトキシエタノールなどのアルコール系溶剤、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、N,N’−ジメチルイミダゾリジノンなどのアミド系溶剤、及び、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、及びジエチレングリコールなどのエーテル系溶剤が挙げられるが、芳香族ジニトロ化合物が溶解する溶媒であれば、これらに限定されることはない。溶剤の量は適宜調整されればよい。 Solvents used for the reduction reaction are, for example, alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-methoxyethanol, and 2-ethoxyethanol, N,N-dimethylformamide, N,N-. Examples include amide-based solvents such as dimethylacetamide, N-methylpyrrolidone, and N,N′-dimethylimidazolidinone, and ether-based solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and diethylene glycol. The solvent is not limited to these as long as it can be dissolved. The amount of the solvent may be adjusted appropriately.

還元反応に使用される触媒は上記各還元反応の触媒として公知の触媒を使用すればよい。例えば、接触還元またはヒドラジン還元に用いられる触媒としては、活性炭、カーボンブラック、グラファイト、アルミナなどに担持させたパラジウム、白金、ロジウムなどの貴金属触媒、ラネーニッケル触媒、及びスポンジニッケル触媒が挙げられる。触媒の量は特に制限されるものでないが、通常0.1〜10wt%である。 As the catalyst used for the reduction reaction, a catalyst known as a catalyst for each of the above reduction reactions may be used. Examples of catalysts used for catalytic reduction or hydrazine reduction include activated carbon, carbon black, graphite, noble metal catalysts such as palladium, platinum and rhodium supported on alumina, Raney nickel catalysts, and sponge nickel catalysts. The amount of the catalyst is not particularly limited, but is usually 0.1 to 10 wt %.

還元反応の反応温度及び時間は適宜選択されればよい。例えば、50〜150℃の範囲にある温度、好ましくは60〜130℃の範囲にある温度で、1〜35時間、好ましくは3〜10時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、触媒を除去し、冷却した後、生成した固体を濾過、水洗、乾燥することにより、上記一般式(1−a)で示される化合物を得ることができる。また、更に必要に応じて、再度、晶析濾過、カラム分離等の方法にて精製すれば、高純度品を得ることが出来る。 The reaction temperature and time of the reduction reaction may be appropriately selected. For example, the reaction may be performed at a temperature in the range of 50 to 150° C., preferably in the range of 60 to 130° C. for 1 to 35 hours, preferably 3 to 10 hours. The method of treating the reaction product is not particularly limited. For example, the compound represented by the general formula (1-a) can be obtained by removing the catalyst, cooling, and filtering the resulting solid, washing with water, and drying. Further, if necessary, a high-purity product can be obtained by refining again by a method such as crystallization filtration and column separation.

(2)上記一般式(1−b)又は(1−c)又は(1−d)で表される(ジ)ニトロ化合物の製造方法
上記一般式(1−b)又は(1−c)又は(1−d)で表される(ジ)ニトロ化合物の製造方法は、何ら制限されるものではなく、いかなる方法で製造してもよい。好ましくは、下記一般式(2−a)で示される化合物の一以上と下記一般式(2−b)で示される化合物の一以上と下記一般式(3−a)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。下記一般式(2−a)で示される化合物と下記一般式(2−b)で示される化合物とは、同一であっても、異なっていてもよい。

Figure 2020111561
式中、R、R、R及びRは上記の通りである。Yはハロゲン原子であり、例えば塩素原子又はフッ素原子であり、好ましくはフッ素原子である。
Figure 2020111561
式中、R13、R14、R15及びR16は上記の通りである。Yはハロゲン原子であり)、例えば塩素原子又はフッ素原子であり、好ましくはフッ素原子である。
Figure 2020111561
式中、R、R、R、R、R、R10、R11、R12及びXは、上記の通りである。Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。 (2) Method for producing (di)nitro compound represented by the general formula (1-b) or (1-c) or (1-d) The general formula (1-b) or (1-c) or The method for producing the (di)nitro compound represented by (1-d) is not particularly limited and may be produced by any method. Preferably, one or more compounds represented by the following general formula (2-a), one or more compounds represented by the following general formula (2-b) and one or more compounds represented by the following general formula (3-a). And are dehydrated and condensed in an organic solvent, preferably in the presence of a base, under heating to obtain the dinitro compound represented by the general formula (1-b). The compound represented by the following general formula (2-a) and the compound represented by the following general formula (2-b) may be the same or different.
Figure 2020111561
In the formula, R 1 , R 2 , R 3 and R 4 are as described above. Y is a halogen atom, for example, a chlorine atom or a fluorine atom, preferably a fluorine atom.
Figure 2020111561
In the formula, R 13 , R 14 , R 15 and R 16 are as described above. Y is a halogen atom), for example, a chlorine atom or a fluorine atom, preferably a fluorine atom.
Figure 2020111561
In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and X are as described above. Z is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.

一般式(2−a)と(2−b)で示される化合物の合計と一般式(3−a)で示される化合物の原料モル比は、通常、一般式(3−a)で示される化合物1モルに対して一般式(2−a)と(2−b)で示される化合物の合計を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(3−a)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The starting material molar ratio of the total of the compounds represented by the general formulas (2-a) and (2-b) to the compound represented by the general formula (3-a) is usually the compound represented by the general formula (3-a). The total amount of the compounds represented by the general formulas (2-a) and (2-b) is in the range of 2 to 5 mol, preferably 2 to 3 mol per 1 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N,N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (3-a), but may be appropriately adjusted. The reaction temperature and the reaction time may be adjusted appropriately. For example, the reaction may be performed at a temperature in the range of 100 to 200° C., preferably in the range of 130 to 160° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after completion of the reaction, the reaction solution is cooled or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

製造方法の別の態様としては、下記一般式(4−a)で示される化合物の一以上と下記一般式(4−b)で示される化合物の一以上と下記一般式(3−b)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。下記一般式(4−a)で示される化合物と下記一般式(4−b)で示される化合物とは、同一であっても、異なっていてもよい。

Figure 2020111561
式中、R、R、R及びRは上記の通りである。Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。
Figure 2020111561
式中、R13、R14、R15及びR16は上記の通りである。Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。
Figure 2020111561
式中、R、R、R、R、R、R10、R11、R12及びXは、上記の通りである。Yはハロゲン原子であり、好ましくは臭素である。 As another aspect of the production method, one or more compounds represented by the following general formula (4-a) and one or more compounds represented by the following general formula (4-b) and the following general formula (3-b) are used. A dinitro compound represented by the above general formula (1-b) is obtained by subjecting one or more of the compounds shown by the dehydration condensation reaction in an organic solvent, preferably in the presence of a base, under heating. .. The compound represented by the following general formula (4-a) and the compound represented by the following general formula (4-b) may be the same or different.
Figure 2020111561
In the formula, R 1 , R 2 , R 3 and R 4 are as described above. Z is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.
Figure 2020111561
In the formula, R 13 , R 14 , R 15 and R 16 are as described above. Z is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.
Figure 2020111561
In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and X are as described above. Y is a halogen atom, preferably bromine.

一般式(4−a)と(4−b)で示される化合物の合計と一般式(3−b)で示される化合物の原料モル比としては、通常、一般式(3−b)で示される化合物1モルに対して一般式(4−a)と(4−b)で示される化合物の合計を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(3−b)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The total molar ratio of the compounds represented by the general formulas (4-a) and (4-b) to the raw material molar ratio of the compound represented by the general formula (3-b) is usually represented by the general formula (3-b). The total amount of the compounds represented by the general formulas (4-a) and (4-b) is in the range of 2 to 5 mol, preferably 2 to 3 mol, per 1 mol of the compound. The reaction solvent is preferably used, and examples thereof include solvents such as N,N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (3-b), but may be appropriately adjusted. The reaction temperature and the reaction time may be adjusted appropriately. For example, the reaction may be performed at a temperature in the range of 100 to 200° C., preferably in the range of 130 to 160° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after completion of the reaction, the reaction solution is cooled or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

製造方法の別の態様としては、下記一般式(2−a)で示される化合物の一以上と下記一般式(5−a)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。

Figure 2020111561
式中、R、R、R及びRは上記の通りである。Yはハロゲン原子であり、例えば塩素原子又はフッ素原子であり、好ましくはフッ素原子である。
Figure 2020111561
式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りである。Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。 As another aspect of the production method, one or more compounds represented by the following general formula (2-a) and one or more compounds represented by the following general formula (5-a) are prepared in an organic solvent, preferably a base. In the presence of, the dinitro compound represented by the general formula (1-b) is obtained by performing a dehydration condensation reaction under heating.
Figure 2020111561
In the formula, R 1 , R 2 , R 3 and R 4 are as described above. Y is a halogen atom, for example, a chlorine atom or a fluorine atom, preferably a fluorine atom.
Figure 2020111561
In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and X are as described above. Z is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.

一般式(2−a)で示される化合物の合計と一般式(5−a)で示される化合物の原料モル比としては、通常、一般式(5−a)で示される化合物1モルに対して一般式(2−a)で示される化合物の合計を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(5−a)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The starting material molar ratio of the compound represented by the general formula (2-a) to the compound represented by the general formula (5-a) is usually 1 mol of the compound represented by the general formula (5-a). The total amount of the compounds represented by formula (2-a) is in the range of 2 to 5 mol, preferably 2 to 3 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N,N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (5-a), but may be appropriately adjusted. The reaction temperature and the reaction time may be adjusted appropriately. For example, the reaction may be performed at a temperature in the range of 100 to 200° C., preferably in the range of 130 to 160° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after completion of the reaction, the reaction solution is cooled or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

製造方法の別の態様としては、下記一般式(4−a)で示される化合物の一以上と下記一般式(5−b)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。

Figure 2020111561
式中、R、R、R及びRは上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。
Figure 2020111561
式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りであり、Yはハロゲン原子であり、好ましくは臭素である。 As another aspect of the production method, one or more compounds represented by the following general formula (4-a) and one or more compounds represented by the following general formula (5-b) are prepared in an organic solvent, preferably a base. In the presence of, the dinitro compound represented by the general formula (1-b) is obtained by performing a dehydration condensation reaction under heating.
Figure 2020111561
In the formula, R 1 , R 2 , R 3 and R 4 are as described above, Z is a hydrogen atom, an alkali metal or an alkaline earth metal, for example, sodium or potassium, preferably potassium.
Figure 2020111561
In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and X are as described above, and Y is A halogen atom, preferably bromine.

一般式(4−a)で示される化合物の合計と一般式(5−b)で示される化合物の原料モル比としては、通常、一般式(5−b)で示される化合物1モルに対して一般式(4−a)で示される化合物の合計を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(5−b)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The starting material molar ratio of the compound represented by the general formula (4-a) to the compound represented by the general formula (5-b) is usually 1 mol of the compound represented by the general formula (5-b). The total amount of the compounds represented by formula (4-a) is in the range of 2 to 5 mol, preferably 2 to 3 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N,N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (5-b), but may be appropriately adjusted. The reaction temperature and the reaction time may be adjusted appropriately. For example, the reaction may be performed at a temperature in the range of 100 to 200° C., preferably in the range of 130 to 160° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after completion of the reaction, the reaction solution is cooled or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

製造方法の別の態様としては、下記一般式(6)で示される化合物の一以上と下記一般式(7)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、下記一般式(1−b’)で表される、即ち上記式(1−b)においてXが酸素原子である、ジニトロ化合物が得られる。

Figure 2020111561
Figure 2020111561
式中、R、R、R、R、R、R、R及びRは上記の通りであり、Yはハロゲン原子であり、好ましくは臭素である。
Figure 2020111561
式中、R、R10、R11、R12、R13、R14、R15及びR16は、上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。 As another aspect of the production method, one or more compounds represented by the following general formula (6) and one or more compounds represented by the following general formula (7) are prepared in an organic solvent, preferably in the presence of a base. Then, by performing a dehydration condensation reaction under heating, a dinitro compound represented by the following general formula (1-b′), that is, X in the above formula (1-b) is an oxygen atom is obtained.
Figure 2020111561
Figure 2020111561
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are as described above, and Y is a halogen atom, preferably bromine.
Figure 2020111561
In the formula, R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are as described above, and Z is a hydrogen atom, an alkali metal or an alkaline earth metal, for example, It is sodium or potassium, preferably potassium.

一般式(6)で示される化合物の合計と一般式(7)で示される化合物の原料モル比としては、通常、一般式(6)で示される化合物1モルに対して一般式(7)で示される化合物の合計を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(5−b)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The starting material molar ratio of the compound represented by the general formula (6) to the compound represented by the general formula (7) is usually 1 mole of the compound represented by the general formula (6) in the general formula (7). The total amount of the compounds shown is in the range of 2 to 5 mol, preferably 2 to 3 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N,N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (5-b), but may be appropriately adjusted. The reaction temperature and the reaction time may be adjusted appropriately. For example, the reaction may be performed at a temperature in the range of 100 to 200° C., preferably in the range of 130 to 160° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after completion of the reaction, the reaction solution is cooled or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

例えば、上記一般式(2−a)と(2−b)で示される化合物として5−フルオロ―2−ニトロトルエンと、一般式(3−a)で示される化合物として3,3’,5,5’−テトラメチル−1,1’−ビフェノールとを反応させる場合、下記反応式で表される。

Figure 2020111561
For example, 5-fluoro-2-nitrotoluene as the compound represented by the general formula (2-a) and (2-b) and 3,3′,5,5 as the compound represented by the general formula (3-a). When reacted with'-tetramethyl-1,1'-biphenol, it is represented by the following reaction formula.
Figure 2020111561

上記式(1−a)で表されるビス(アミノフェノキシ)化合物はポリイミドの原料として有用である。また、上記式(1−b)で表されるるビス(ニトロフェノキシ)化合物及び式(1−c)と(1−d)で表される(アミノフェノキシ)(ニトロフェノキシ)化合物は、上述した通りビス(アミノフェノキシ)ベンゼン化合物の前駆体として有用である。上記式(1−a)で表されるビス(アミノフェノキシ)化合物は、例えば、酸無水物と反応させることにより、ポリイミド化合物を提供する。 The bis(aminophenoxy) compound represented by the above formula (1-a) is useful as a raw material for polyimide. The bis(nitrophenoxy) compound represented by the formula (1-b) and the (aminophenoxy)(nitrophenoxy) compound represented by the formulas (1-c) and (1-d) are as described above. It is useful as a precursor of a bis(aminophenoxy)benzene compound. The bis(aminophenoxy) compound represented by the above formula (1-a) provides a polyimide compound by reacting with an acid anhydride, for example.

酸無水物はポリイミドの原料として用いられている従来公知のものであればよい。例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、2,2−ビス〔3−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、および3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物およびオキシ−4,4’−ジフタル酸二無水物からなる群から選択される少なくとも1以上である。 The acid anhydride may be any conventionally known one used as a raw material for polyimide. For example, pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, benzophenone-3,4,3′,4′-tetracarboxylic dianhydride, 4,4′ -(2,2-hexafluoroisopropylidene)diphthalic acid dianhydride, 2,2-bis[3-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 2,2-bis[4-( 3,4-dicarboxyphenoxy)phenyl]propane dianhydride, and the group consisting of 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride and oxy-4,4′-diphthalic dianhydride. It is at least 1 or more selected from.

上記ジアミン化合物と酸無水物の反応条件や反応比率は特に制限されるものでなく、従来公知の方法に従い、適宜選択されればよい。例えば、反応条件は
25〜30℃の範囲にある温度で0.5〜24時間反応させればよい。反応比率は1.00とすればよい。得られるポリイミド化合物は、好ましくは数平均分子量2,000〜200,000、好ましくは10,000〜50,000を有するのがよい。該数平均分子量は例えばGPC(ゲル浸透クロマトグラフィー、THF)により、測定される値である。
The reaction conditions and reaction ratio of the above diamine compound and acid anhydride are not particularly limited and may be appropriately selected according to a conventionally known method. For example, the reaction conditions are
The reaction may be performed at a temperature in the range of 25 to 30°C for 0.5 to 24 hours. The reaction ratio may be 1.00. The polyimide compound obtained preferably has a number average molecular weight of 2,000 to 200,000, preferably 10,000 to 50,000. The number average molecular weight is a value measured by, for example, GPC (gel permeation chromatography, THF).

上記ポリイミド化合物としては、本発明のジアミン化合物以外の任意のジアミン化合物をさらに反応させてもよい。全ジアミン化合物の合計モルに対する本発明のジアミン化合物の割合は10モル%〜100モル%であるのが好ましい。本発明のジアミン化合物以外の任意のジアミン化合物としては、例えば、1,4−フェニレンジアミン、1,3−フェニレンジアミン、1,2−フェニレンジアミン、2,4−ジアミノトルエン、2,6−ジアミノトルエン、m−キシリレンジアミン、p−キシリレンジアミン、2,2’−ジメチルベンジジン、3,3’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノベンズアニリド、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9’−ビス(4−アミノフェニル)フルオレン、9,9’−ビス[4−(4−アミノフェノキシ)フェニル]フルオレンからなる群から選択される1以上である。 As the polyimide compound, any diamine compound other than the diamine compound of the present invention may be further reacted. The ratio of the diamine compound of the present invention to the total moles of all diamine compounds is preferably 10 mol% to 100 mol %. Examples of any diamine compound other than the diamine compound of the present invention include 1,4-phenylenediamine, 1,3-phenylenediamine, 1,2-phenylenediamine, 2,4-diaminotoluene, and 2,6-diaminotoluene. , M-xylylenediamine, p-xylylenediamine, 2,2′-dimethylbenzidine, 3,3′-dimethylbenzidine, 2,2′-bis(trifluoromethyl)benzidine, 4,4′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminobenz Anilide, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4′-bis(4- Aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(4-aminophenoxy)phenyl)sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane , 9,9′-bis(4-aminophenyl)fluorene and 9,9′-bis[4-(4-aminophenoxy)phenyl]fluorene.

本発明のポリイミド化合物からなる成形物としては、例えば高速・大容量通信用材料が挙げられる。 Examples of the molded article made of the polyimide compound of the present invention include materials for high speed/large capacity communication.

以下、実施例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものでない。
下記実施例において用いた測定方法及び装置は以下の通りである。
HPLC測定にはSHIMADZU製SPD−10Aを使用し、融点測定にはYAMATO製MP−21を使用した。
H核磁気共鳴スペクトル分析には、JEOL製JNM−ECA600型を用い、共鳴周波数600MHzで測定した。測定溶媒は重クロロホルムを用いた。
13C核磁気共鳴スペクトル分析には、JEOL製JNM−ECA600型を用い、共鳴周波数150MHzで測定した。測定溶媒は重クロロホルムを用いた。
赤外分光測定には日本分光製FT/IR−4100を使用し、KBr錠剤法により測定した。
質量分析には、実施例1〜4ではエーエムアールのDART/SVPを装着したSHIMADZU製のLCMS−2020を用い、実施例5及び6ではSHIMADZU製GCMS−QP2010を使用した。
精密質量分析には、SHIMADZU製のLCMS−IT−TOFを使用した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
The measuring method and apparatus used in the following examples are as follows.
SHIMADZU SPD-10A was used for HPLC measurement, and YAMATO MP-21 was used for melting point measurement.
For 1 H nuclear magnetic resonance spectrum analysis, a JEOL JNM-ECA600 type was used, and measurement was performed at a resonance frequency of 600 MHz. Deuterated chloroform was used as the measurement solvent.
For 13 C nuclear magnetic resonance spectrum analysis, JEOL JNM-ECA600 type was used, and measurement was performed at a resonance frequency of 150 MHz. Deuterated chloroform was used as the measurement solvent.
FT/IR-4100 manufactured by JASCO Corporation was used for the infrared spectroscopic measurement, and the measurement was performed by the KBr tablet method.
For mass spectrometry, LCMS-2020 manufactured by SHIMADZU equipped with AART DART/SVP was used in Examples 1 to 4, and GCMS-QP2010 manufactured by SHIMADZU was used in Examples 5 and 6.
LCMS-IT-TOF manufactured by SHIMADZU was used for accurate mass spectrometry.

[実施例1]
4,4’−ビス(3−メチル−4−ニトロフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニルの合成
100mL二口フラスコに3,3’,5,5’−テトラメチル−1,1’−ビフェノール2.0g(8.3mmol)と5−フルオロ―2−ニトロトルエン2.6g(16.6mmol)と炭酸カリウム1.5g(10.8mmol)とDMF15mLと撹拌用マグネットを仕込んだ後加熱し、反応温度135℃を保ちながら5時間反応を行った。反応終了後、冷却し、蒸留水100mLを加えた析出した固体を濾過し、洗浄及び乾燥して4,4’−ビス(3−メチル−4−ニトロフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニルの粗生成物を得た。これをメチルセロソルブに溶解させ加熱し、活性炭を加え脱色し、濾過、加水晶析を行った。析出した固体を濾過し、洗浄および乾燥して精製された4,4’−ビス(3−メチル−4−ニトロフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニル3.6gを得た。HPLCで測定した純度は99.9%であり、mp.は219−220℃であった。
該実施例1で製造した化合物のH−NMRスペクトルのチャートを図1に示し、13C−NMRスペクトルのチャートを図2に示す。IR及びDART−MSの結果は以下の通り。
IR(KBr,cm−1):3438,2922,2852,1578,1512,1471,1336,1277,1242,1184,1170,1091,867,753.
DART−MS:m/z=513(M+H)
[Example 1]
Synthesis of 4,4'-bis(3-methyl-4-nitrophenoxy)-3,3',5,5'-tetramethyl-1,1'-biphenyl 3,3',5, in a 100 mL two-necked flask. 2.0 g (8.3 mmol) of 5'-tetramethyl-1,1'-biphenol, 2.6 g (16.6 mmol) of 5-fluoro-2-nitrotoluene, 1.5 g (10.8 mmol) of potassium carbonate, and 15 mL of DMF. A stirring magnet was charged and then heated, and the reaction was carried out for 5 hours while keeping the reaction temperature at 135°C. After completion of the reaction, the mixture was cooled, 100 mL of distilled water was added, and the precipitated solid was filtered, washed and dried to give 4,4′-bis(3-methyl-4-nitrophenoxy)-3,3′,5,5. A crude product of'-tetramethyl-1,1'-biphenyl was obtained. This was dissolved in methyl cellosolve and heated, activated carbon was added to decolorize, and filtration and crystallization were performed. The precipitated solid was filtered, washed and dried to purify 4,4′-bis(3-methyl-4-nitrophenoxy)-3,3′,5,5′-tetramethyl-1,1′-. 3.6 g of biphenyl was obtained. The purity measured by HPLC is 99.9%, mp. Was 219-220°C.
The 1 H-NMR spectrum chart of the compound produced in Example 1 is shown in FIG. 1, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and DART-MS are as follows.
IR (KBr, cm -1 ): 3438, 2922, 2852, 1578, 1512, 1471, 1336, 1277, 1242, 1184, 1170, 1091, 867, 753.
DART-MS: m/z=513 (M+H) +

[実施例2]
4,4’−ビス(4−アミノ−3−メチルフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニルの合成
300mLオートクレーブに、実施例1で得た4,4’−ビス(3−メチル−4−ニトロフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニル4.0gと2−メトキシエタノール50g、5%Pd/C 0.05gを仕込み、0.8MPaで90℃を保ちながら接触水素化還元を行った。反応終了後、触媒を除去した後に濃縮、冷却した。析出した固体を濾過、洗浄及び乾燥して4,4’−ビス(4−アミノ−3−メチルフェノキシ)−3,3’,5,5’−テトラメチル−1,1’−ビフェニル1.8gを得た。HPLCで測定した純度は97.4%であった。
該実施例2で製造した化合物のH−NMRスペクトルのチャートを図3に示し、13C−NMRスペクトルのチャートを図4に示す。IR及びHRMSの結果は以下の通り。
IR(KBr,cm−1):3444,3367,2920,1634,1500,1472,1421,1273,1227,1194,861.
HRMS(ESI):453.2527(M+H)
[Example 2]
Synthesis of 4,4'-bis(4-amino-3-methylphenoxy)-3,3',5,5'-tetramethyl-1,1'-biphenyl Obtained in Example 1 in a 300 mL autoclave. 4′-bis(3-methyl-4-nitrophenoxy)-3,3′,5,5′-tetramethyl-1,1′-biphenyl 4.0 g and 2-methoxyethanol 50 g, 5% Pd/C 0 0.05 g was charged, and catalytic hydrogenation reduction was performed while maintaining 90° C. at 0.8 MPa. After completion of the reaction, the catalyst was removed, then concentrated and cooled. The precipitated solid was filtered, washed and dried to give 1.8 g of 4,4′-bis(4-amino-3-methylphenoxy)-3,3′,5,5′-tetramethyl-1,1′-biphenyl. Got The purity measured by HPLC was 97.4%.
The 1 H-NMR spectrum chart of the compound produced in Example 2 is shown in FIG. 3, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and HRMS are as follows.
IR (KBr, cm< -1 >): 3444, 3367, 2920, 1634, 1500, 1472, 1421, 1273, 1227, 1194, 861.
HRMS (ESI): 453.2527 (M+H) +

[実施例3]
2,2−ビス[4−(3−メチル−4−ニトロフェノキシ)−3,5−ジメチルフェニル]プロパンの合成
100mL二口フラスコにテトラメチル−ビスフェノールA2.0g(7.1mmol)と5−フルオロ―2−ニトロトルエン2.2g(14.2mmol)と炭酸カリウム1.3g(9.2mmol)とDMF15mLと撹拌用マグネットを仕込んだ後加熱し、反応温度145℃を保ちながら4時間反応を行った。反応終了後、冷却し、蒸留水100mLを加えた析出した固体を濾過し、洗浄及び乾燥して2,2−ビス[4−(3−メチル−4−ニトロフェノキシ)−3,5−ジメチルフェニル]プロパンの粗生成物を得た。これをメチルセロソルブに溶解させ加熱し、活性炭を加え脱色し、濾過、加水晶析を行った。析出した固体を濾過し、洗浄および乾燥して精製された2,2−ビス[4−(3−メチル−4−ニトロフェノキシ)−3,5−ジメチルフェニル]プロパン3.3gを得た。HPLCで測定した純度は99.9%であり、mp.は153−154℃であった。
該実施例3で製造した化合物のH−NMRスペクトルのチャートを図5に示し、13C−NMRスペクトルのチャートを図6に示す。IR及びDART−MSの結果は以下の通り。
IR(KBr,cm−1):2971,1615,1583,1577,1509,1491,1339,1283,1242,1176,1077,870,754.
DART−MS:m/z=555(M+H)
[Example 3]
Synthesis of 2,2-bis[4-(3-methyl-4-nitrophenoxy)-3,5-dimethylphenyl]propane In a 100 mL two-necked flask, 2.0 g (7.1 mmol) of tetramethyl-bisphenol A and 5-fluoro were used. 2.2 g (14.2 mmol) of 2-nitrotoluene, 1.3 g (9.2 mmol) of potassium carbonate, 15 mL of DMF and a stirring magnet were charged and heated, and the reaction was carried out for 4 hours while maintaining the reaction temperature of 145°C. After completion of the reaction, the mixture was cooled, 100 mL of distilled water was added, the precipitated solid was filtered, washed and dried to give 2,2-bis[4-(3-methyl-4-nitrophenoxy)-3,5-dimethylphenyl. ] A crude product of propane was obtained. This was dissolved in methyl cellosolve and heated, activated carbon was added to decolorize, and filtration and crystallization were performed. The precipitated solid was filtered, washed and dried to obtain 3.3 g of purified 2,2-bis[4-(3-methyl-4-nitrophenoxy)-3,5-dimethylphenyl]propane. The purity measured by HPLC is 99.9%, mp. Was 153-154°C.
The 1 H-NMR spectrum chart of the compound produced in Example 3 is shown in FIG. 5, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and DART-MS are as follows.
IR (KBr, cm< -1 >): 2971, 1615, 1583, 1577, 1509, 1491, 1339, 1283, 1242, 1176, 1077, 870, 754.
DART-MS: m/z=555 (M+H) +

[実施例4]
2,2−ビス[4−(4−アミノ―3−メチルフェノキシ)−3,5−ジメチルフェニル]プロパンの合成
300mLオートクレーブに、実施例3で得た2,2−ビス[4−(3−メチル−4−ニトロフェノキシ)−3,5−ジメチルフェニル]プロパン2.0gと2−メトキシエタノール50g、5%Pd/C 0.02gを仕込み、0.8MPaで90℃を保ちながら接触水素化還元を行った。反応終了後、触媒を除去した後に加水、冷却、濃縮して2,2−ビス[4−(4−アミノ―3−メチルフェノキシ)−3,5−ジメチルフェニル]プロパンの粗生成物を得た。これを酢酸エチルに溶解させた後、塩酸を加えて酸析させ、析出した固体を濾別した。この固体を酢酸エチルに加え、さらにアルカリ水溶液を加え、水層を除去した。得られた油層に活性体を加え脱色し、濾過し、濾液を濃縮し、減圧乾燥して精製された2,2−ビス[4−(4−アミノ―3−メチルフェノキシ)−3,5−ジメチルフェニル]プロパン1.6gを得た。HPLCで測定した純度は98.6%であった。
該実施例4で製造した化合物のH−NMRスペクトルのチャートを図7に示し、13C−NMRスペクトルのチャートを図8に示す。IRおよびHRMSの結果は以下の通り。
IR(KBr,cm−1):3443,3366,2967,2921,1607,1501,1482,1421,1315,1227,1180,998,954,863.
HRMS(ESI):495.3006(M+H)
[Example 4]
Synthesis of 2,2-bis[4-(4-amino-3-methylphenoxy)-3,5-dimethylphenyl]propane 2,2-bis[4-(3-) obtained in Example 3 in a 300 mL autoclave. 2.0 g of methyl-4-nitrophenoxy)-3,5-dimethylphenyl]propane and 50 g of 2-methoxyethanol, and 0.02 g of 5% Pd/C were charged, and catalytic hydrogenation reduction was performed while maintaining 90° C. at 0.8 MPa. I went. After completion of the reaction, the catalyst was removed, water was added, cooled and concentrated to obtain a crude product of 2,2-bis[4-(4-amino-3-methylphenoxy)-3,5-dimethylphenyl]propane. .. This was dissolved in ethyl acetate, hydrochloric acid was added to cause acid precipitation, and the precipitated solid was separated by filtration. This solid was added to ethyl acetate, an aqueous alkaline solution was further added, and the aqueous layer was removed. An active substance was added to the obtained oil layer for decolorization, filtration, the filtrate was concentrated, and dried under reduced pressure to purify 2,2-bis[4-(4-amino-3-methylphenoxy)-3,5- 1.6 g of dimethylphenyl]propane was obtained. The purity measured by HPLC was 98.6%.
The 1 H-NMR spectrum chart of the compound produced in Example 4 is shown in FIG. 7, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and HRMS are as follows.
IR (KBr, cm< -1 >): 3443, 3366, 2967, 2921, 1607, 1501, 1482, 1421, 1315, 1227, 1180, 998, 954, 863.
HRMS (ESI): 495.3006 (M+H) +

[実施例5]
4,4’−ビス(3−メチル−4−ニトロフェノキシ)−2,2’−ジメチルジフェニル エーテルの合成
50mL三つ口フラスコに4,4’−ジヒドロキシー2,2’−ジメチルジフェニル エーテル0.2g(0.89mmol)と5−フルオロ―2−ニトロトルエン0.28g(1.8mmol)と炭酸カリウム0.2g(1.2mmol)とDMF7mLと撹拌用マグネットを仕込んだ後加熱し、反応温度125℃を保ちながら5.5時間反応を行った。反応終了後、冷却し、蒸留水60mLを加えた析出した固体を濾過し、洗浄及び乾燥して4,4’−ビス(3−メチル−4−ニトロフェノキシ)−2,2’−ジメチルジフェニル エーテル0.4gを得た。HPLCで測定した純度は96.1%であった。
該実施例5で製造した化合物のH−NMRスペクトルのチャートを図9に示し、13C−NMRスペクトルのチャートを図10に示す。GC−MSの結果は以下の通り。
GC−MS:m/z=500(M
[Example 5]
Synthesis of 4,4′-bis(3-methyl-4-nitrophenoxy)-2,2′-dimethyldiphenyl ether 4,4′-dihydroxy-2,2′-dimethyldiphenyl ether was added to a 50 mL three-necked flask. 2 g (0.89 mmol), 5-fluoro-2-nitrotoluene 0.28 g (1.8 mmol), potassium carbonate 0.2 g (1.2 mmol), DMF 7 mL, and a stirring magnet were charged and heated, and the reaction temperature was 125°C. The reaction was carried out for 5.5 hours while maintaining the above. After the completion of the reaction, the mixture was cooled, 60 mL of distilled water was added, the precipitated solid was filtered, washed and dried to give 4,4′-bis(3-methyl-4-nitrophenoxy)-2,2′-dimethyldiphenyl ether. 0.4 g was obtained. The purity measured by HPLC was 96.1%.
The 1 H-NMR spectrum chart of the compound produced in Example 5 is shown in FIG. 9, and the 13 C-NMR spectrum chart is shown in FIG. The results of GC-MS are as follows.
GC-MS: m/z=500 (M + )

[実施例6]
4,4’−ビス(4−アミノ−3−メチルフェノキシ)−2,2’−ジメチルジフェニル エーテルの合成
300mLオートクレーブに、実施例5で得た4,4’−ビス(3−メチル−4−ニトロフェノキシ)−2,2’−ジメチルジフェニル エーテル0.3gと2−メトキシエタノール50g、5%Pd/C 0.004gを仕込み、0.8MPaで90℃を保ちながら接触水素化還元を行った。反応終了後、触媒を除去した後に濃縮、冷却した。析出した固体を濾過、洗浄及び乾燥して4,4’−ビス(4−アミノ−3−メチルフェノキシ)−2,2’−ジメチルジフェニル エーテル0.3gを得た。HPLCで測定した純度は93.9%であった。
該実施例6で製造した化合物のH−NMRスペクトルのチャートを図11に示し、13C−NMRスペクトルのチャートを図12に示す。GC−MSの結果は以下の通り。
GC−MS:440(M
[Example 6]
Synthesis of 4,4'-bis(4-amino-3-methylphenoxy)-2,2'-dimethyldiphenyl ether 4,4'-bis(3-methyl-4-) obtained in Example 5 was placed in a 300 mL autoclave. Nitrophenoxy)-2,2'-dimethyldiphenyl ether (0.3 g) and 2-methoxyethanol (50 g) and 5% Pd/C (0.004 g) were charged, and catalytic hydrogenation reduction was carried out while maintaining 90°C at 0.8 MPa. After completion of the reaction, the catalyst was removed, then concentrated and cooled. The precipitated solid was filtered, washed and dried to obtain 0.34 g of 4,4'-bis(4-amino-3-methylphenoxy)-2,2'-dimethyldiphenyl ether. The purity measured by HPLC was 93.9%.
The 1 H-NMR spectrum chart of the compound produced in Example 6 is shown in FIG. 11, and the 13 C-NMR spectrum chart is shown in FIG. The results of GC-MS are as follows.
GC-MS: 440 (M + ).

本発明のビス(アミノフェノキシ)化合物は、新規なジアミン化合物として好適に使用することができ、該化合物から誘導されるポリイミド分野の可能性を大きく広げ、優れた高耐熱性と電気特性を有する材料としての可能性が期待できる。また、ビス(ニトロフェノキシ)化合物及び(アミノフェノキシ)(ニトロフェノキシ)化合物は、上記ビス(アミノフェノキシ)化合物の前駆体となり、ジアミン化合物と同様にポリイミド分野の可能性を大きく広げることが期待できる。 INDUSTRIAL APPLICABILITY The bis(aminophenoxy) compound of the present invention can be suitably used as a novel diamine compound, greatly expands the possibility of the polyimide field derived from the compound, and has excellent high heat resistance and electrical properties. Can be expected as Further, the bis(nitrophenoxy) compound and the (aminophenoxy)(nitrophenoxy) compound serve as precursors of the above-mentioned bis(aminophenoxy) compound, and like the diamine compound, it can be expected to greatly expand the possibility of the polyimide field.

Claims (17)

下記式(1)で表される化合物
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、A及びBは、互いに独立に、ニトロ基又はアミノ基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)。
Compound represented by the following formula (1)
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 independently of one another are the substituents, A and B independently of one another are a nitro group or an amino group, X is an oxygen atom, a single bond, or an optionally substituted divalent hydrocarbon group having 1 to 14 carbon atoms).
下記式(1a)、(1b)又は(1c)で表される、請求項1記載の化合物
Figure 2020111561
Figure 2020111561
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、A及びBは上記の通りであり、R17及びR18は、互いに独立に、水素原子、炭素数1〜6のアルキル基又は炭素数6〜12のアリール基である)。
The compound according to claim 1, which is represented by the following formula (1a), (1b) or (1c).
Figure 2020111561
Figure 2020111561
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R. 16 , A and B are as described above, and R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms).
上記式(1b)で表され、R17及びR18が、互いに独立に、メチル基又はフェニル基である、請求項2記載の化合物。 The compound according to claim 2, which is represented by the above formula (1b), and R 17 and R 18 are each independently a methyl group or a phenyl group. 下記式(1−a)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)、
下記式(1−b)、式(1−c)又は式(1−d)で表される化合物のニトロ基を還元して上記式(1−a)で表される化合物を得る工程を含む、前記製造方法
Figure 2020111561
Figure 2020111561
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りである)。
A method for producing a compound represented by the following formula (1-a),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are each independently the above substituent, X is an oxygen atom, a single bond, or a C 1-14 carbon atom. , A divalent hydrocarbon group which may be substituted),
A step of reducing the nitro group of the compound represented by the following formula (1-b), formula (1-c) or formula (1-d) to obtain the compound represented by the above formula (1-a) is included. , The manufacturing method
Figure 2020111561
Figure 2020111561
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R. 16 and X are as above).
下記式(1−b)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)、
下記式(2−a)で表される化合物及び下記式(2−b)で表される化合物の1以上と
Figure 2020111561
Figure 2020111561
(式中、R、R、R、R、R13、R14、R15及びR16は上記の通りであり、Yはハロゲン原子である)、
下記式(3)で表される化合物の1以上とを
Figure 2020111561
(式中、R、R、R、R、R、R10、R11、R12及びXは、上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属である)
反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are each independently the above substituent, X is an oxygen atom, a single bond, or a C 1-14 carbon atom. , A divalent hydrocarbon group which may be substituted),
One or more of a compound represented by the following formula (2-a) and a compound represented by the following formula (2-b)
Figure 2020111561
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 13 , R 14 , R 15 and R 16 are as described above, and Y is a halogen atom),
One or more compounds represented by the following formula (3)
Figure 2020111561
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and X are as described above, and Z is a hydrogen atom, an alkali metal or an alkaline earth metal. is there)
The said manufacturing method containing the process of making it react and obtaining the compound represented by said Formula (1-b).
下記式(1−b)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)、
下記式(4−a)で表される化合物及び下記式(4−b)で表される化合物の1以上と
Figure 2020111561
Figure 2020111561
(式中、R、R、R、R、R13、R14、R15及びR16は上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属である)、
下記式(3−b)で表される化合物の1以上とを
Figure 2020111561
(式中、R、R、R、R、R、R10、R11、R12及びXは、上記の通りであり、Yはハロゲン原子である)
反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are each independently the above substituent, X is an oxygen atom, a single bond, or a C 1-14 carbon atom. , A divalent hydrocarbon group which may be substituted),
One or more compounds represented by the following formula (4-a) and compounds represented by the following formula (4-b)
Figure 2020111561
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 13 , R 14 , R 15 and R 16 are as described above, and Z is a hydrogen atom, an alkali metal or an alkaline earth metal),
One or more compounds represented by the following formula (3-b)
Figure 2020111561
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and X are as described above, and Y is a halogen atom.)
The said manufacturing method containing the process of making it react and obtaining the compound represented by said Formula (1-b).
下記式(1−b)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)、
下記式(2−a)で表される化合物の1以上と
Figure 2020111561
(式中、R、R、R及びRは上記の通りであり、Yはハロゲン原子である)、
下記式(5−a)で表される化合物の1以上とを
Figure 2020111561
(式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属である)
反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are each independently the above substituent, X is an oxygen atom, a single bond, or a C 1-14 carbon atom. , A divalent hydrocarbon group which may be substituted),
One or more compounds represented by the following formula (2-a):
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 and R 4 are as described above, and Y is a halogen atom),
One or more compounds represented by the following formula (5-a):
Figure 2020111561
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and X are as described above, and Z is as described above. Is a hydrogen atom, an alkali metal or an alkaline earth metal)
The said manufacturing method containing the process of making it react and obtaining the compound represented by said Formula (1-b).
下記式(1−b)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基であり、Xは、酸素原子、単結合、又は、炭素数1〜14の、置換されていてもよい二価炭化水素基である)、
下記式(4−a)で表される化合物の1以上と
Figure 2020111561
(式中、R、R、R及びRは上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属である)、
下記式(5−b)で表される化合物の1以上とを
Figure 2020111561
(式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16及びXは、上記の通りであり、Yはハロゲン原子である)
反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are each independently the above substituent, X is an oxygen atom, a single bond, or a C 1-14 carbon atom. , A divalent hydrocarbon group which may be substituted),
One or more compounds represented by the following formula (4-a):
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 and R 4 are as described above, and Z is a hydrogen atom, an alkali metal or an alkaline earth metal),
One or more compounds represented by the following formula (5-b):
Figure 2020111561
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and X are as described above, and Y Is a halogen atom)
The said manufacturing method containing the process of making it react and obtaining the compound represented by said Formula (1-b).
下記式(1−b’)で表される化合物の製造方法であって
Figure 2020111561
(式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15及びR16は、互いに独立に、水素原子、又は、炭素原子数1〜6の、置換されていてもよいアルキル基、炭素原子数1〜3のアルコキシ基、及び炭素数6〜12のアリール基から選ばれる置換基であり、R、R、R及びRの少なくとも一つと、R、R、R及びRの少なくとも一つと、R、R10、R11及びR12の少なくとも一つと、及び、R13、R14、R15及びR16の少なくとも一つとが、互いに独立に、前記置換基である)、
下記式(6)で表される化合物の1以上と
Figure 2020111561
(式中、R、R、R、R、R、R、R及びRは上記の通りであり、Yはハロゲン原子である)、
下記式(7)で表される化合物の1以上とを
Figure 2020111561
(式中、R、R10、R11、R12、R13、R14、R15及びR16は、上記の通りであり、Zは水素原子、アルカリ金属またはアルカリ土類金属である)
反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b′),
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is independently selected from a hydrogen atom, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and an aryl group having 6 to 12 carbon atoms. A substituent group represented by at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 5 , R 6 , R 7 and R 8 , and R 9 , R 10 , R 11 and R 12 ; At least one and at least one of R 13 , R 14 , R 15 and R 16 are, independently of one another, said substituents),
One or more compounds represented by the following formula (6)
Figure 2020111561
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are as described above, and Y is a halogen atom),
One or more of the compounds represented by the following formula (7)
Figure 2020111561
(In the formula, R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are as described above, and Z is a hydrogen atom, an alkali metal or an alkaline earth metal).
The said manufacturing method containing the process of making it react and obtaining the compound represented by said Formula (1-b).
Xが、酸素原子、単結合、又は、−CR1718−で表される二価炭化水素基であり、R17及びR18は、互いに独立に、水素原子、炭素数1〜6のアルキル基、又は炭素数6〜12のアリール基である、請求項4〜8のいずれか1項記載の製造方法。 X is an oxygen atom, a single bond, or a divalent hydrocarbon group represented by —CR 17 R 18 —, and R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. The manufacturing method according to any one of claims 4 to 8, which is a group or an aryl group having 6 to 12 carbon atoms. Xが−CR1718−で表され、R17及びR18が、互いに独立に、メチル基又はフェニル基である、請求項10記載の製造方法。 X is -CR 17 R 18 - is represented by, R 17 and R 18, independently of one another, a methyl group or a phenyl group, The method according to Claim 10. A及びBが共にアミノ基である、請求項1〜3のいずれか1項記載の化合物。 The compound according to any one of claims 1 to 3, wherein both A and B are amino groups. 請求項12に記載の化合物と酸無水物との反応物である、ポリイミド化合物。 A polyimide compound, which is a reaction product of the compound according to claim 12 and an acid anhydride. 前記酸無水物が、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、2,2−ビス〔3−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物およびオキシ−4,4’−ジフタル酸二無水物からなる群から選択される少なくとも1である、請求項13記載のポリイミド化合物。 The acid anhydride is pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, benzophenone-3,4,3′,4′-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene)diphthalic acid dianhydride, 2,2-bis[3-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 2,2-bis [4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride and oxy-4,4′-diphthalic dianhydride The polyimide compound according to claim 13, which is at least one selected from the group consisting of: 数平均分子量2,000〜200,000を有する、請求項13または14に記載のポリイミド化合物。 The polyimide compound according to claim 13 or 14, which has a number average molecular weight of 2,000 to 200,000. 請求項12記載の化合物と、酸無水物と、請求項12記載の化合物以外のジアミン化合物との反応物であるポリイミド化合物であって、請求項12記載の化合物と前記請求項12記載の化合物以外のジアミン化合物の合計モルに対する請求項12記載の化合物の割合が、10モル%〜100モル%である、請求項13〜15のいずれか1項記載のポリイミド化合物。 A polyimide compound which is a reaction product of the compound according to claim 12, an acid anhydride, and a diamine compound other than the compound according to claim 12, other than the compound according to claim 12 and the compound according to claim 12. The polyimide compound according to any one of claims 13 to 15, wherein the ratio of the compound according to claim 12 to the total moles of the diamine compound according to claim 12 is 10 mol% to 100 mol %. 請求項13〜16のいずれか1項に記載のポリイミド化合物からなる成型物。
A molded article comprising the polyimide compound according to claim 13.
JP2019096579A 2019-01-16 2019-05-23 Diamino or dinitrobenzene compound having four aromatic rings, method for producing the same, and polyimide Active JP7150335B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005134 2019-01-16
JP2019005134 2019-01-16

Publications (2)

Publication Number Publication Date
JP2020111561A true JP2020111561A (en) 2020-07-27
JP7150335B2 JP7150335B2 (en) 2022-10-11

Family

ID=71666728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096579A Active JP7150335B2 (en) 2019-01-16 2019-05-23 Diamino or dinitrobenzene compound having four aromatic rings, method for producing the same, and polyimide

Country Status (1)

Country Link
JP (1) JP7150335B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004102A1 (en) * 1983-04-11 1984-10-25 Hitachi Ltd Fluorine-containing polyamic acids and polyimides
JPH1060110A (en) * 1996-08-16 1998-03-03 Chisso Corp Composition for liquid crystal alignment film, liquid crystal alignment film, substrates for holding liquid crystal in sandwiched state, and liquid crystal display device
JP2005120001A (en) * 2003-10-15 2005-05-12 National Taiwan Univ Of Science & Technology Fluorinated dinitro monomer, fluorinated diamine monomer, and fluorinated polyamide and fluorinated polyimide prepared from fluorinated diamine monomer
CN101560162A (en) * 2009-05-12 2009-10-21 东华大学 Preparation method of 4,4'-bi(4-amino-2-trifluoromethylphenoxyl)-3,3'5,5'-tetramethylbiphenyl
CN101704989A (en) * 2009-11-13 2010-05-12 东华大学 Fluorine-containing imine matrix resin used for advanced composite material and preparation method thereof
CN105176078A (en) * 2015-08-11 2015-12-23 东华大学 Electroplating biphenyl type maleimido polyimide modified engineering plastic alloy and preparation method thereof
CN105218814A (en) * 2015-09-24 2016-01-06 苏州华辉材料科技有限公司 Fluorine-containing copolyimide and preparation method thereof
JP2018097346A (en) * 2016-12-15 2018-06-21 コニカミノルタ株式会社 Slide member, slide member for fixing device, fixing device, and image forming apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004102A1 (en) * 1983-04-11 1984-10-25 Hitachi Ltd Fluorine-containing polyamic acids and polyimides
JPH1060110A (en) * 1996-08-16 1998-03-03 Chisso Corp Composition for liquid crystal alignment film, liquid crystal alignment film, substrates for holding liquid crystal in sandwiched state, and liquid crystal display device
JP2005120001A (en) * 2003-10-15 2005-05-12 National Taiwan Univ Of Science & Technology Fluorinated dinitro monomer, fluorinated diamine monomer, and fluorinated polyamide and fluorinated polyimide prepared from fluorinated diamine monomer
CN101560162A (en) * 2009-05-12 2009-10-21 东华大学 Preparation method of 4,4'-bi(4-amino-2-trifluoromethylphenoxyl)-3,3'5,5'-tetramethylbiphenyl
CN101704989A (en) * 2009-11-13 2010-05-12 东华大学 Fluorine-containing imine matrix resin used for advanced composite material and preparation method thereof
CN105176078A (en) * 2015-08-11 2015-12-23 东华大学 Electroplating biphenyl type maleimido polyimide modified engineering plastic alloy and preparation method thereof
CN105218814A (en) * 2015-09-24 2016-01-06 苏州华辉材料科技有限公司 Fluorine-containing copolyimide and preparation method thereof
JP2018097346A (en) * 2016-12-15 2018-06-21 コニカミノルタ株式会社 Slide member, slide member for fixing device, fixing device, and image forming apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POLYMER, vol. 47, JPN6022014310, 2006, pages 2337 - 2348, ISSN: 0004751339 *

Also Published As

Publication number Publication date
JP7150335B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CA1095083A (en) Aromatic diamines and process for their manufacture
Yang et al. Preparation and properties of aromatic polyamides and polyimides derived from 3, 3‐bis [4‐(4‐aminophenoxy) phenyl] phthalide
More et al. Synthesis and characterization of polyamides containing pendant pentadecyl chains
Yan et al. Soluble polyimides based on a novel pyridine-containing diamine m, p-PAPP and various aromatic dianhydrides
Hsiao et al. Synthesis and properties of poly (ether imide) s having ortho-linked aromatic units in the main chain
Ghaemy et al. Synthesis of soluble and thermally stable polyimide from new diamine bearing N-[4-(9H-carbazol-9-yl) phenyl] formamide pendent group
US9840514B2 (en) Dianhydrides, polyimides, methods of making each, and methods of use
Sheng et al. Synthesis and properties of novel aromatic polyamides with xanthene cardo groups
Wu et al. Novel soluble and optically active polyimides containing axially asymmetric 9, 9′-spirobifluorene units: synthesis, thermal, optical and chiral properties
US5130481A (en) Bis-n,n&#39; nitro or amino benzoyl amino phenols
US11608310B1 (en) Bis(aniline) compounds containing multiple substituents with carbon-carbon triple-bonded groups
WO2022239534A1 (en) Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material
Hsiao et al. A novel class of organosoluble and light-colored fluorinated polyamides derived from 2, 2′-bis (4-amino-2-trifluoromethylphenoxy) biphenyl or 2, 2′-bis (4-amino-2-trifluoromethylphenoxy)-1, 1′-binaphthyl
JP7150335B2 (en) Diamino or dinitrobenzene compound having four aromatic rings, method for producing the same, and polyimide
Ghaemy et al. Organosoluble and thermally stable polyimides derived from a new diamine containing bulky-flexible triaryl pyridine pendent group
Chern et al. High Tg and high organosolubility of novel polyimides containing twisted structures derived from 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2, 6-di-tert-butylbenzene
JP7345158B2 (en) Diamino or dinitrobenzene compound having five aromatic rings, method for producing the same, and polyimide
EP0387106B1 (en) Novel diamine compounds, production of the same and polyamideimide resins produced therefrom
JP7390754B2 (en) Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide
WO2006085493A1 (en) Aromatic diamine and process for producing the same
Rafiee et al. Synthesis and characterization of highly soluble and thermally stable new polyimides based on 3, 5-diamino benzoyl amino phenyl-14H-dibenzo [a, j] xanthene
Ghaemy et al. Synthesis of soluble and thermally stable polyamides from diamine containing (quinolin‐8‐yloxy) aniline pendant group
Tsay et al. Synthesis and properties of fluorinated polyamideimides with high solubility
Liaw et al. Synthesis and characterization of norbornane‐containing cardo polyamides
Chen et al. Novel organosoluable aromatic polyimides derived from unsymmetrical 1, 3-bis (4-aminophenoxy) naphthalene and aromatic dianhydrides

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7150335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150