JP2020110955A - Antibacterial member - Google Patents

Antibacterial member Download PDF

Info

Publication number
JP2020110955A
JP2020110955A JP2019002384A JP2019002384A JP2020110955A JP 2020110955 A JP2020110955 A JP 2020110955A JP 2019002384 A JP2019002384 A JP 2019002384A JP 2019002384 A JP2019002384 A JP 2019002384A JP 2020110955 A JP2020110955 A JP 2020110955A
Authority
JP
Japan
Prior art keywords
protrusion
antibacterial
base material
diameter
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019002384A
Other languages
Japanese (ja)
Inventor
真理子 宮崎
Mariko Miyazaki
真理子 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019002384A priority Critical patent/JP2020110955A/en
Publication of JP2020110955A publication Critical patent/JP2020110955A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide an antibacterial member achieving high antibacterial performance without an antibacterial coating.SOLUTION: An antibacterial member (10) has a substrate (11), a plurality of first protrusions (12) arranged so that one bottom surface thereof contacts the surface of the substrate (11), and a plurality of second protrusions (14) arranged on the other bottom surface (13) of the first protrusion (12). The first protrusion (12) has a diameter of 0.5 μm or more and 20 μm or less. The second protrusion (14) has a diameter of 1 nm or more and less than 500 nm. The first protrusion (12) and the second protrusion (14) have each a Young's modulus of more than 0.004 GPa and 5 GPa or less.SELECTED DRAWING: Figure 1

Description

本発明は、抗菌部材に関する。 The present invention relates to an antibacterial member.

近年、医療現場における院内感染や、街中での感染症流行が問題となっている。また、生活の質が向上するのに伴い、人々の衛生に対する意識が高まり、食品や家電製品での抗菌ニーズが高まっている。 In recent years, nosocomial infections at medical sites and epidemics of infectious diseases in towns have become a problem. In addition, as the quality of life is improved, people's awareness of hygiene is increasing, and antibacterial needs for foods and home appliances are increasing.

これまでに提案されている抗菌部材は、基材の表面に、抗菌性のある金属元素(銅(Cu)および銀(Ag)等)やセラミックス(TiO)等の成分(抗菌活性成分)を含む皮膜(以下「抗菌皮膜」と称する。)を形成することにより抗菌性を与えるものである。例えば、特許文献1には、ステンレス鋼を下地とし、その上にZnめっき層又はZn合金めっき層が形成され、更に抗菌・防カビ剤を含む熱硬化型塗装が施されている耐久性に優れた抗菌・防カビ性塗装鋼板が開示されており、抗菌・防カビ剤はAg,Cu,Zn等の無機系薬剤、リン酸亜鉛,酸化亜鉛等の化合物系薬剤、チアゾール,イミダゾール等の有機系薬剤から選ばれた1種又は2種以上であることが開示されている。 The antibacterial members that have been proposed so far include components (antibacterial active components) such as antibacterial metallic elements (copper (Cu) and silver (Ag)) and ceramics (TiO 2 ) on the surface of the base material. An antibacterial property is imparted by forming a film containing the same (hereinafter referred to as "antibacterial film"). For example, in Patent Document 1, stainless steel is used as a base, a Zn plating layer or a Zn alloy plating layer is formed thereon, and a thermosetting coating containing an antibacterial/antifungal agent is further applied, which is excellent in durability. Antibacterial and antifungal coated steel sheets are disclosed. As the antibacterial and antifungal agents, inorganic agents such as Ag, Cu and Zn, compound agents such as zinc phosphate and zinc oxide, and organic agents such as thiazole and imidazole are disclosed. It is disclosed that it is one kind or two or more kinds selected from drugs.

特開平8−156175号公報JP-A-8-156175

上述した抗菌皮膜を設ける方法では、抗菌活性成分は母材表面に多くとも数%しか露出しておらず、抗菌性能は十分ではない可能性がある。性能を十分にするために、部材表面における抗菌活性成分の分散量を増加することもできるが、抗菌皮膜の安定性や強度の関係上、分散量には限界がある。Agの場合には値段が高いという問題もあり、分散量を過度に増大させるとコストを増大させることになってしまう。また、抗菌活性成分が1種類の場合には、耐性菌を生じる可能性が高く、新たな菌を生む可能性もある。 In the method of providing the antibacterial film described above, the antibacterial active ingredient is exposed to the surface of the base material in only a few percent at most, and the antibacterial performance may not be sufficient. The amount of the antibacterial active ingredient dispersed on the surface of the member can be increased in order to achieve sufficient performance, but the amount of the antibacterial component is limited due to the stability and strength of the antibacterial film. In the case of Ag, there is also a problem that the price is high, and if the amount of dispersion is excessively increased, the cost will increase. Further, when there is only one kind of antibacterial active ingredient, there is a high possibility that resistant bacteria will be produced and new bacteria may be produced.

本発明の目的は、上記事情に鑑み、抗菌皮膜を設けることなく、高い抗菌性を実現する抗菌部材を提供することにある。 In view of the above circumstances, an object of the present invention is to provide an antibacterial member that realizes high antibacterial properties without providing an antibacterial film.

上記課題を解決するための本発明の一態様は、基材と、基材の表面に一方の底面が接するように設けられた複数の第1の突起と、第1の突起の他方の底面に設けられた複数の第2の突起とを有し、第1の突起の直径は0.5μm以上20μm以下であり、第2の突起の直径は1nm以上500nm未満であり、第1の突起および第2の突起のヤング率は0.004GPaよりも大きく5GPa以下であることを特徴とする抗菌部材である。 One embodiment of the present invention for solving the above problems is to provide a base material, a plurality of first projections provided so that one bottom surface is in contact with the surface of the base material, and the other bottom surface of the first projection. A plurality of second protrusions provided, the diameter of the first protrusion is 0.5 μm or more and 20 μm or less, the diameter of the second protrusion is 1 nm or more and less than 500 nm, and The Young's modulus of the protrusion 2 is more than 0.004 GPa and 5 GPa or less, which is an antibacterial member.

本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.

本発明によれば、抗菌皮膜を設けることなく、高い抗菌性、および殺菌性を実現する抗菌部材を提供することができる。 According to the present invention, it is possible to provide an antibacterial member that realizes high antibacterial properties and bactericidal properties without providing an antibacterial film.

上述した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 Problems, configurations and effects other than those described above will be clarified by the following description of the embodiments.

本発明の抗菌部材の一例を模式的に示す斜視図The perspective view which shows typically an example of the antibacterial member of this invention. 基材の表面にバイオフィルムが形成されるメカニズムを説明するフロー図Flow chart explaining the mechanism of biofilm formation on the surface of the substrate 本発明の抗菌部材の第1の突起の配列の第1の例を示す上面図The top view which shows the 1st example of arrangement|sequence of the 1st protrusion of the antibacterial member of this invention. 本発明の抗菌部材の第1の突起の配列の第2の例を示す上面図The top view which shows the 2nd example of arrangement|sequence of the 1st protrusion of the antibacterial member of this invention. 本発明の抗菌部材の第2の突起の配列の第1の例を示す上面図The top view which shows the 1st example of arrangement|sequence of the 2nd protrusion of the antibacterial member of this invention. 本発明の抗菌部材の第2の突起の配列の第2の例を示す上面図The top view which shows the 2nd example of arrangement|sequence of the 2nd protrusion of the antibacterial member of this invention. 本発明の抗菌部材の基材の形状の第1の例を示す断面図Sectional drawing which shows the 1st example of the shape of the base material of the antibacterial member of this invention. 本発明の抗菌部材の基材の形状の第2の例を示す斜視図The perspective view which shows the 2nd example of the shape of the base material of the antibacterial member of this invention. 実施例1の抗菌部材の表面のSEM観察写真SEM observation photograph of the surface of the antibacterial member of Example 1 比較例1の抗菌部材の表面のSEM観察写真SEM observation photograph of the surface of the antibacterial member of Comparative Example 1 比較例2の抗菌部材の耐水性評価後の表面のSEM観察写真SEM observation photograph of the surface of the antibacterial member of Comparative Example 2 after water resistance evaluation

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を適宜省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each drawing, common or similar components are designated by the same reference numerals, and redundant description thereof will be appropriately omitted.

図1は本発明の抗菌部材の一例を模式的に示す斜視図である。図1に示すように、抗菌部材10は、基材11と、基材11の表面と一方の底面が接するように設けられた複数の第1の突起12と、第1の突起12の他方の底面(上面)13に設けられた複数の第2の突起14とを有している。このような第1の突起12の集合体および第2の突起14の集合体を「ピラー構造体」とも称する。この第1の突起12および第2の突起14によって、基材11の表面には微細な凹凸構造が形成されている。なお、本発明において「菌」とは、細菌、酵母およびカビ等のあらゆる種類の微生物の総称とする。 FIG. 1 is a perspective view schematically showing an example of the antibacterial member of the present invention. As shown in FIG. 1, the antibacterial member 10 includes a base material 11, a plurality of first projections 12 provided so that the surface of the base material 11 and one bottom surface thereof are in contact with each other, and the other of the first projections 12 is provided. It has a plurality of second protrusions 14 provided on the bottom surface (top surface) 13. Such an aggregate of the first protrusions 12 and an aggregate of the second protrusions 14 are also referred to as a “pillar structure”. The first protrusion 12 and the second protrusion 14 form a fine uneven structure on the surface of the base material 11. In the present invention, the term "fungus" is a general term for all kinds of microorganisms such as bacteria, yeasts and molds.

上述したように、従来は部材の表面に抗菌皮膜を設けて菌を化学的に殺していた。本発明における第1の突起12には、基材の表面構造でバイオフィルム(菌や菌が分泌する細胞外多糖類からなる立体的な構造体)の成長を抑制する効果がある。菌自体は単体では人体に悪影響を及ぼすことは少なく、バイオフィルムが人体に悪影響を及ぼすことが多いため、バイオフィルムの成長を抑制できれば抗菌部材としては非常に有用である。 As described above, conventionally, an antibacterial film is provided on the surface of the member to chemically kill the bacteria. The first protrusion 12 in the present invention has an effect of suppressing the growth of a biofilm (a three-dimensional structure composed of a fungus or an extracellular polysaccharide secreted by the fungus) due to the surface structure of the base material. The bacterium itself does not adversely affect the human body when it is used alone, and the biofilm often adversely affects the human body. Therefore, if the growth of the biofilm can be suppressed, it is very useful as an antibacterial member.

さらに、本発明における第2の突起14には、菌の細胞を突き破って菌を物理的に殺す効果がある。これについては、以下の参考文献に、高さが100nm程度の先がとがった突起が密集した構造を有するブラックシリコンが、菌を物理的に殺す効果があることが記載されている。 Further, the second protrusion 14 in the present invention has an effect of piercing the cells of the bacterium and physically killing the bacterium. Regarding this, it is described in the following references that black silicon having a structure in which pointed protrusions having a height of about 100 nm are densely packed has an effect of physically killing bacteria.

参考文献1:
Ivanova E. et al., Bactericidal activity of black silicon, Nature Communications, Vol.4, p.2838 (2013)
参考文献2:
Hasan J. et al., Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces, Appl. Microbiol. Biotechnol., Vol.97, p.9257 (2013)
第1の突起12にはバイオフィルムの成長を抑制する効果があるが、菌自体を殺す効果を有するものではない。しかし、バイオフィルムの成長が何らかの影響で進行してしまった場合でも、抗菌部材10が第2の突起14を有することで、バイオフィルム中の菌を物理的に殺すことができる。
Reference 1:
Ivanova E. et al. , Bactericidal activity of black silicon, Nature Communications, Vol. 4, p. 2838 (2013)
Reference 2:
Hasan J. et al. , Selective bacterial activity of nanopatterned superhydrophobic cicada Psaltoda clarennis wing surfaces, Appl. Microbiol. Biotechnol. , Vol. 97, p. 9257 (2013)
The first projections 12 have an effect of suppressing the growth of biofilm, but do not have an effect of killing the bacteria themselves. However, even if the growth of the biofilm has progressed for some reason, the antibacterial member 10 has the second protrusions 14, so that the bacteria in the biofilm can be physically killed.

また、第2の突起14には菌を物理的に殺す効果があるが、第2の突起14は非常に微細であるため、第2の突起14が覆われるくらい菌が降り積もると、それ以降にやってきた菌には第2の突起14が届かず、第2の突起14の効果を発揮することができない。しかし、第2の突起14が菌で覆われた場合でも、抗菌部材10に第1の突起12が設けられていることで、バイオフィルムの成長を抑制するこができる。すなわち、第1の突起12と第2の突起14の両方を有することで、より強い抗菌機能を得ることができる。 Further, although the second protrusion 14 has an effect of physically killing the bacteria, since the second protrusion 14 is extremely fine, if the bacteria accumulate to the extent that the second protrusion 14 is covered, after that, The second projection 14 does not reach the bacteria that have come in, and the effect of the second projection 14 cannot be exerted. However, even when the second protrusion 14 is covered with the bacteria, the growth of the biofilm can be suppressed by providing the first protrusion 12 on the antibacterial member 10. That is, by having both the first protrusion 12 and the second protrusion 14, a stronger antibacterial function can be obtained.

以下、基材にバイオフィルムが形成されるメカニズムについて説明する。図2は基材の表面にバイオフィルムが形成されるメカニズムを説明するフロー図である。図2に示すように、バイオフィルムは以下の順序で発生する:
S1:清浄な基材が水に接触すると、水と基材との界面に菌(パイオニア菌)が付着する
S2:菌の表面に分泌されている細胞外多糖類(Extracellular Polysaccharide:EPS)が基材に付着し、接着が安定化する
S3:パイオニア菌が増殖を始め、多糖類(グリコカリックス)で被覆された一次コロニーが形成される
S4:グリコカリックスが他のタイプの菌細胞を取り込み、一次コロニー(パイオニア菌のコロニー)の排泄物を代謝する二次コロニーが一次コロニーの上層に形成される
S5:二次コロニーの排泄物を代謝する微生物が付着し、逐次的に多層コロニー構造が形成されてバイオフィルムが形成される
上述した通り、本発明の抗菌部材10は、基材11の表面に第1の突起の12が設けられて凹凸構造が形成されていることにより、菌が一次コロニーを形成する過程で足場が構造的に不安定となり、一次コロニー自体の内部応力によって破断する効果があると考えられる。そのため、上記S3以降のプロセスが発生せず、バイオフィルムの成長が抑制されると考えられる。
Hereinafter, a mechanism of forming a biofilm on the substrate will be described. FIG. 2 is a flow diagram illustrating the mechanism of forming a biofilm on the surface of a base material. As shown in Figure 2, biofilms occur in the following order:
S1: When a clean substrate comes into contact with water, bacteria (Pioneer's bacteria) adhere to the interface between water and the substrate S2: Extracellular polysaccharide (EPS) secreted on the surface of the bacteria S3: Pioneer bacteria start to grow and form primary colonies coated with polysaccharide (glycocalyx) S4: Glycocalyx incorporates other types of bacterial cells to form primary colonies Secondary colonies that metabolize the excretion of colonies (pioneer colonies) are formed in the upper layer of the primary colony. S5: Microorganisms that metabolize the excretion of secondary colonies are attached and a multi-layer colony structure is sequentially formed. As described above, the antibacterial member 10 of the present invention is provided with the first projection 12 on the surface of the base material 11 to form the concavo-convex structure, so that bacteria can form primary colonies. It is considered that the scaffold becomes structurally unstable during the formation process and has an effect of breaking due to the internal stress of the primary colony itself. Therefore, it is considered that the processes after S3 do not occur and the growth of the biofilm is suppressed.

第1の突起12の直径は、0.5μm以上20μm以下とする。この範囲の中で、第1の突起12の直径は増殖を抑制する対象の菌(以下、「対象菌」と称する。)と同程度の直径を有していることが好ましい。第1の突起12の直径が対象菌よりも大きすぎる場合も、逆に第1の突起12の直径が対象菌よりも小さすぎる場合も、一次コロニーを効果的に破断することができない。なお、第1の突起12の直径が対象菌の大きさと「同程度」であることについて、両者は必ずしも同一である必要は無い。第1の突起12の直径は、一次コロニー破断の効果を得ることができる値の範囲にあればよい。第1の突起12の直径は、各対象菌について破断効果を検証する実験を行い、決定することができる。対象菌の直径は、例えば細菌:約0.5μm、酵母:約5μmおよびカビ:約20μmである。 The diameter of the first protrusion 12 is 0.5 μm or more and 20 μm or less. Within this range, it is preferable that the diameter of the first protrusion 12 is about the same as the diameter of the target microorganism whose growth is to be suppressed (hereinafter referred to as “target microorganism”). Even when the diameter of the first protrusion 12 is too larger than the target bacterium, or conversely when the diameter of the first protrusion 12 is too smaller than the target bacterium, the primary colony cannot be effectively broken. Note that the diameter of the first protrusion 12 is “about the same” as the size of the target bacterium, and the two do not necessarily have to be the same. The diameter of the first protrusion 12 may be within a range of values that can obtain the effect of breaking the primary colonies. The diameter of the first protrusion 12 can be determined by conducting an experiment for verifying the breaking effect for each target bacterium. The diameter of the target bacterium is, for example, bacteria: about 0.5 μm, yeast: about 5 μm, and mold: about 20 μm.

第1の突起12の形状は、図1では円柱形状であるが、これに限られない。例えば、三角柱、四角柱等の多角柱であってもよい。この場合、「第1の突起12の直径」とは、外接円の直径を意味するものとする。 The shape of the first protrusion 12 is a cylindrical shape in FIG. 1, but is not limited to this. For example, it may be a polygonal prism such as a triangular prism or a square prism. In this case, the “diameter of the first protrusion 12” means the diameter of the circumscribing circle.

第2の突起14の直径は、1nm以上500nm未満とする。第2の突起14の直径は、1nm未満であると製造が困難となる。また、第1の突起12の直径の下限値(0.5μm(=500nm))を考慮すると、第2の突起14の直径の上限は、500nm未満であることが好ましい。第2の突起14がこのようなサイズを有することにより、第2の突起14を第1の突起12の底面(上面)13に形成することができる。また、このナノメートルスケールの直径を持つ突起は、菌の細胞よりも十分小さく、菌の細胞を突き破り、菌を物理的に殺す効果を十分に得ることができる。 The diameter of the second protrusion 14 is 1 nm or more and less than 500 nm. If the diameter of the second protrusion 14 is less than 1 nm, it becomes difficult to manufacture. Further, considering the lower limit value (0.5 μm (=500 nm)) of the diameter of the first protrusion 12, the upper limit of the diameter of the second protrusion 14 is preferably less than 500 nm. Since the second protrusion 14 has such a size, the second protrusion 14 can be formed on the bottom surface (top surface) 13 of the first protrusion 12. Further, the protrusions having a diameter on the nanometer scale are sufficiently smaller than the cells of the bacterium, and the effect of piercing the cells of the bacterium and physically killing the bacterium can be sufficiently obtained.

第2の突起14の形状は、図1では円柱形状であるが、これに限らない。例えば、三角柱、四角柱等の多角柱であってもよい。この場合、「第2の突起14の直径」とは、外接円の直径を意味するものとする。 Although the shape of the second protrusion 14 is a cylindrical shape in FIG. 1, the shape is not limited to this. For example, it may be a polygonal prism such as a triangular prism or a square prism. In this case, the “diameter of the second protrusion 14” means the diameter of the circumscribed circle.

また、第1の突起12および第2の突起14のヤング率は、0.004GPaよりも大きく5GPa以下であることが好ましい。第1の突起12および第2の突起14のヤング率が0.004GPa未満であると突起12,14の水中での構造安定性(耐水性)が不十分となる。また、突起12のヤング率が5GPaより大きいと一次コロニーの破断効果が十分ではなくなり、突起14のヤング率が5GPaより大きいと菌を物理的に殺す効果が十分ではなくなる。 The Young's modulus of the first protrusion 12 and the second protrusion 14 is preferably more than 0.004 GPa and 5 GPa or less. If the Young's modulus of the first protrusion 12 and the second protrusion 14 is less than 0.004 GPa, the structural stability (water resistance) of the protrusions 12 and 14 in water becomes insufficient. If the Young's modulus of the protrusions 12 is larger than 5 GPa, the effect of breaking the primary colonies becomes insufficient, and if the Young's modulus of the protrusions 14 is larger than 5 GPa, the effect of physically killing the bacteria becomes insufficient.

図3Aは本発明の抗菌部材の第1の突起の配列の第1の例を示す上面図であり、図3Bは本発明の抗菌部材の第1の突起の配列の第2の例を示す上面図である。本発明の抗菌部材10の基材11における第1の突起12の配列は、特に限定は無いが、例えば図3Aに示すように、正方格子状とすることができる。また、図3Bに示すように、三方格子状であってもよい。 FIG. 3A is a top view showing a first example of the arrangement of the first protrusions of the antibacterial member of the present invention, and FIG. 3B is a top view showing a second example of the arrangement of the first protrusions of the antibacterial member of the present invention. It is a figure. The arrangement of the first protrusions 12 on the base material 11 of the antibacterial member 10 of the present invention is not particularly limited, but may be a square lattice as shown in FIG. 3A, for example. Further, as shown in FIG. 3B, it may be a three-sided grid.

隣り合う第1の突起12の中心間の距離L(ピッチ間隔)は、第1の突起12の直径の1.5倍以上3倍未満であることが好ましい。距離Lが第1の突起12の直径の1.5倍未満であると、十分な量の凹凸構造を確保できず、凹凸構造の効果(一次コロニーを破断してバイオフィルム抑制の効果)を十分に得ることができない。また、距離Lが第1の突起12の直径の3倍以上であると、凹部の割合が大きくなり過ぎて、凹部に菌が入り込み、バイオフィルム成長抑制の効果を十分に得ることができなくなる。 The distance L (pitch interval) between the centers of the adjacent first protrusions 12 is preferably 1.5 times or more and less than 3 times the diameter of the first protrusions 12. If the distance L is less than 1.5 times the diameter of the first protrusion 12, a sufficient amount of uneven structure cannot be secured, and the effect of the uneven structure (the effect of biofilm suppression by breaking primary colonies) is sufficient. Can't get to. Further, when the distance L is three times or more the diameter of the first protrusion 12, the proportion of the recesses becomes too large and bacteria enter the recesses, and the effect of suppressing biofilm growth cannot be obtained sufficiently.

また、第1の突起12の高さhと直径rの比h/r(アスペクト比)は、それぞれ1以上5以下であることが好ましい。アスペクト比が1未満であると、凹凸構造の効果を十分に得ることができない。アスペクト比が5よりも大きいと、構造が不安定になる恐れがある。 Further, the ratio h 1 /r 1 (aspect ratio) of the height h 1 and the diameter r 1 of the first projections 12 is preferably 1 or more and 5 or less, respectively. If the aspect ratio is less than 1, the effect of the uneven structure cannot be sufficiently obtained. If the aspect ratio is larger than 5, the structure may become unstable.

図4Aは本発明の抗菌部材の第2の突起の配列の第1の例を示す上面図であり、図4Bは本発明の抗菌部材の第2の突起の配列の第2の例を示す上面図である。本発明の抗菌部材10において、第1の突起12の上面13に設けられた第2の突起14の配列は、特に限定は無いが、例えば図4Aに示すように、正方格子状とすることができる。また、図4Bに示すように、三方格子状であってもよい。 FIG. 4A is a top view showing a first example of the arrangement of the second protrusions of the antibacterial member of the present invention, and FIG. 4B is a top view showing the second example of the arrangement of the second protrusions of the antibacterial member of the present invention. It is a figure. In the antibacterial member 10 of the present invention, the arrangement of the second protrusions 14 provided on the upper surface 13 of the first protrusions 12 is not particularly limited, but may be a square lattice, for example, as shown in FIG. 4A. it can. Further, as shown in FIG. 4B, it may be in a three-sided lattice shape.

隣り合う第2の突起14の中心間の距離L(ピッチ間隔)は、第2の突起14が形成されていれば特に限定はない。 The distance L (pitch interval) between the centers of the adjacent second protrusions 14 is not particularly limited as long as the second protrusions 14 are formed.

第2の突起14の高さと直径の比(アスペクト比:高さh/直径r)は1以上5以下であることが好ましい。アスペクト比が1未満であると、菌を突き破って殺す効果を十分に得ることができない。アスペクト比が5よりも大きいと、構造が不安定になる恐れがある。 The ratio between the height and the diameter of the second protrusion 14 (aspect ratio: height h 2 /diameter r 2 ) is preferably 1 or more and 5 or less. If the aspect ratio is less than 1, the effect of breaking through and killing the bacteria cannot be sufficiently obtained. If the aspect ratio is larger than 5, the structure may become unstable.

基材11の材料は、第1の突起12および第2の突起14を形成できるものであれば特に限定は無く、抗菌性を持たせたい部材に合わせて選択することができる。例えば、エポキシ系樹脂、アクリル系樹脂、PDMS(ポリジメチルシロキサン)およびCOP(シクロオレフィンポリマー)等の樹脂を用いることができる。また、ステンレス鋼等の金属であってもよい。 The material of the base material 11 is not particularly limited as long as it can form the first protrusions 12 and the second protrusions 14, and can be selected according to the member to be given antibacterial properties. For example, resins such as epoxy resin, acrylic resin, PDMS (polydimethylsiloxane) and COP (cycloolefin polymer) can be used. It may also be a metal such as stainless steel.

図5Aは本発明の抗菌部材の基材の形状の第1の例を示す側面図であり、図5Bは本発明の抗菌部材の基材の形状の第2の例を示す斜視図である。基材11の形状についても、第1の突起12および第2の突起14を形成できるものであれば特に限定は無く、抗菌性を持たせたい部材に合わせて選択することができる。例えば、図1および図5Aに示すように、フィルム状であってもよい。基材11aがフィルム状である場合、可搬性の向上および抗菌部材10aを使用する現場で施工しやすくなる等のメリットが得られる。突起を設けている面と反対側の面に接着剤15を設ければ、抗菌性を持たせたい部材に簡単に貼り付けることができる。 5A is a side view showing a first example of the shape of the base material of the antibacterial member of the present invention, and FIG. 5B is a perspective view showing a second example of the shape of the base material of the antibacterial member of the present invention. The shape of the base material 11 is not particularly limited as long as the first protrusion 12 and the second protrusion 14 can be formed, and can be selected according to the member to be given antibacterial properties. For example, as shown in FIGS. 1 and 5A, it may be in the form of a film. When the base material 11a is in the form of a film, advantages such as improved portability and easier construction at the site where the antibacterial member 10a is used can be obtained. If the adhesive 15 is provided on the surface opposite to the surface provided with the protrusions, it can be easily attached to a member to which antibacterial property is desired.

また、図5Bに示すように、基材11bが管状であってもよい。この場合、管状の基材11bの内側の面に第1の突起12および第2の突起14が設けられていてもよい。このような形状を有する抗菌部材10bは、ドラム式洗濯機の洗濯槽に適用することができる。 Further, as shown in FIG. 5B, the base material 11b may be tubular. In this case, the first protrusion 12 and the second protrusion 14 may be provided on the inner surface of the tubular base material 11b. The antibacterial member 10b having such a shape can be applied to a washing tub of a drum type washing machine.

次に、上述した抗菌部材の製造方法について説明する。図5Aに示すように、基材11がフィルム状の樹脂である場合、例えばナノインプリント加工によって第1の突起12および第2の突起14を作製することができる。具体的には、第1の突起12と同じ凹凸構造を有する金属金型を樹脂フィルムに押し当て、熱を加えることで樹脂フィルム基材の表面に第1の突起12を形成することができる。さらに、第1の突起12が形成された基材に、第2の突起14と同じ凹凸構造を有する金属金型を樹脂フィルムに押し当て、熱を加えることで、第1の突起12の上面に第2の突起14を形成することができる。 Next, a method for manufacturing the above-mentioned antibacterial member will be described. As shown in FIG. 5A, when the base material 11 is a film-shaped resin, the first protrusions 12 and the second protrusions 14 can be produced by, for example, nanoimprinting. Specifically, the first protrusion 12 can be formed on the surface of the resin film base material by pressing a metal mold having the same uneven structure as the first protrusion 12 against the resin film and applying heat. Further, a metal die having the same uneven structure as the second protrusion 14 is pressed against the resin film on the base material on which the first protrusion 12 is formed, and heat is applied to the upper surface of the first protrusion 12. The second protrusion 14 can be formed.

また、基材11が金属である場合、例えばメタルプリント加工によって金属基材の表面に第1の突起12、および第2の突起14を形成することができる。具体的には、第1の突起と同じ凹凸構造を有する金属金型を金属基材に押し当て、熱と圧力を加えることで金属基材の表面に第1の突起12を形成することができる。さらに、第1の突起12が形成された基材に、第2の突起と同じ凹凸構造を有する金属金型を金属基材に押し当て、熱と圧力を加えることで、第1の突起の上面に第2の突起14を形成することができる。 When the base material 11 is made of metal, the first protrusion 12 and the second protrusion 14 can be formed on the surface of the metal base material by, for example, metal printing. Specifically, a metal mold having the same concavo-convex structure as the first protrusion is pressed against the metal base material, and heat and pressure are applied to form the first protrusion 12 on the surface of the metal base material. .. Further, a metal mold having the same uneven structure as the second projection is pressed against the base material on which the first projections 12 are formed, and heat and pressure are applied to the top surface of the first projections. The second protrusion 14 can be formed on the surface.

図5Bに示すように、基材11が金属の管状部材であり、管状部材の内側に第1の突起12および第2の突起14が設けられている場合、例えばロール技術を用いて抗菌部材10bを作製することができる。具体的には、外側表面に第1の突起12と同じ凹凸構造が形成された円筒状の原版に基材11bを押し付けながら回転させることで、基材11bの表面に第1の突起12を形成しながら、基材を管状に成形することができる。さらに、外側表面に第2の突起14と同じ凹凸構造が形成された円筒状の原版に、第1の突起12が形成された基材11bを押し付けながら回転させることで、第1の突起12の上面に第2の突起14を形成しながら、基材を管状に成形することができる。 As shown in FIG. 5B, when the base material 11 is a metal tubular member and the first protrusion 12 and the second protrusion 14 are provided inside the tubular member, the antibacterial member 10b is formed by using, for example, a roll technique. Can be produced. Specifically, the first projection 12 is formed on the surface of the base material 11b by rotating the base material 11b while pressing the base material 11b against a cylindrical original plate having the same uneven structure as the first projection 12 on the outer surface. However, the substrate can be formed into a tubular shape. Furthermore, the base material 11b having the first projections 12 is pressed and rotated on a cylindrical original plate having the same projections and depressions structure as the second projections 14 on the outer surface of the first projections 12 to rotate. The base material can be formed into a tubular shape while forming the second protrusion 14 on the upper surface.

上述したナノインプリント加工、メタルプリント加工およびロール技術ともに、基材11a,11bの表面の一部を第1の突起12および第2の突起とすることから、抗菌部材10a,10bは、基材11a,11bと第1の突起12および第2の突起14とが一体に成形された物となる。もちろん、基材11a,11bと第1の突起12および第2の突起14との十分な密着性が得られれば、基材11a,11bと第1の突起12および第2の突起14とを別に用意して接着した物であってもよい。また、基材11a,11bと第1の突起12が一体に形成されており、第2の突起14のみ別に用意して接着した物であってもよい。 In the nanoimprinting process, the metal printing process, and the roll technique described above, the antibacterial members 10a and 10b are made of the base material 11a, because the first projection 12 and the second projection are formed on a part of the surface of the base material 11a, 11b. 11b and the first protrusion 12 and the second protrusion 14 are integrally molded. Of course, if sufficient adhesion between the base materials 11a and 11b and the first projections 12 and the second projections 14 is obtained, the base materials 11a and 11b and the first projections 12 and the second projections 14 can be separated. It may be prepared and adhered. Alternatively, the base materials 11a and 11b and the first protrusion 12 may be integrally formed, and only the second protrusion 14 may be separately prepared and adhered.

以下、実施例に基づいて本発明についてより詳細に説明する。以下の実施例では、第1の突起12がバイオフィルムの成長を抑制する効果を有することについて検証を行った。なお、第2の突起14が菌を物理的に殺す効果があることは、上述した参考文献に記載されている。 Hereinafter, the present invention will be described in more detail based on examples. In the following examples, it was verified that the first protrusion 12 has an effect of suppressing the growth of biofilm. In addition, it is described in the above-mentioned reference that the second protrusion 14 has an effect of physically killing bacteria.

(1)バイオフィルム抑制効果の確認
基材11として樹脂フィルムを用い、第1の突起12の直径を変えた2つの抗菌部材(実施例1、比較例1)を作製した。樹脂フィルムは、COP(ヤング率:0.22GPa)を材料とした。実施例1の抗菌部材の第1の突起12のサイズを1μmとし、比較例1の第1の突起12のサイズを5μmとした。ピッチ間隔Lは第1の突起12の直径の1.75倍とし、第1の突起12のアスペクト比は1とした。樹脂フィルムへの第1の突起12の形成は、ニッケルモールドをナノインプリント加工することで行った。
(1) Confirmation of biofilm suppression effect Using a resin film as the base material 11, two antibacterial members (Example 1 and Comparative Example 1) having different diameters of the first protrusions 12 were produced. The resin film was made of COP (Young's modulus: 0.22 GPa). The size of the first protrusion 12 of the antibacterial member of Example 1 was 1 μm, and the size of the first protrusion 12 of Comparative Example 1 was 5 μm. The pitch interval L was 1.75 times the diameter of the first protrusion 12, and the aspect ratio of the first protrusion 12 was 1. The formation of the first protrusions 12 on the resin film was performed by nanoimprinting a nickel mold.

上述した抗菌部材10に、以下の手順で菌を培養した。試験菌には黄色ブドウ球菌(直径:約1μm)を用いた。試験菌数が10〜10/mLになるまでトリプケースソイ(SCD)ブイヨン(Trypcase Soy Broth)培地で浮遊培養して試験菌液を得た。ガラスシャーレ、抗菌部材10を高圧蒸気滅菌(121℃、15分間)し、実施例1および比較例1の抗菌部材10をガラスシャーレに設置した後、試験菌液を添加した。SCDブイヨン培地を1日1回交換し、21日間培養した。 Bacteria were cultured on the above-mentioned antibacterial member 10 by the following procedure. Staphylococcus aureus (diameter: about 1 μm) was used as the test bacterium. A test bacterial solution was obtained by suspension culture in a trypcase soy broth medium until the test bacterial count reached 10 7 to 10 8 /mL. The glass petri dish and antibacterial member 10 were subjected to high-pressure steam sterilization (121° C., 15 minutes), the antibacterial member 10 of Example 1 and Comparative Example 1 was placed on the glass petri dish, and then the test bacterial solution was added. The SCD broth medium was exchanged once a day and cultured for 21 days.

図6は実施例1の抗菌部材の表面のSEM観察写真であり、図7は比較例1の抗菌部材の表面のSEM観察写真である。実施例1および比較例1の抗菌部材ともに、第1の突起12が設けられた領域(図6および図7中の点線で囲んだ領域)と、第1の突起12が設けられていない領域(図6および図7中の点線で囲んだ領域以外の領域)がある。図6および図7に示すように、実施例1および比較例1の抗菌部材ともに、第1の突起12が設けられていない領域は、菌20が増殖している。 FIG. 6 is a SEM observation photograph of the surface of the antibacterial member of Example 1, and FIG. 7 is a SEM observation photograph of the surface of the antibacterial member of Comparative Example 1. In both of the antibacterial members of Example 1 and Comparative Example 1, a region where the first protrusion 12 is provided (a region surrounded by a dotted line in FIGS. 6 and 7) and a region where the first protrusion 12 is not provided ( There is a region other than the region surrounded by the dotted line in FIGS. 6 and 7. As shown in FIGS. 6 and 7, in both of the antibacterial members of Example 1 and Comparative Example 1, bacteria 20 are growing in the area where the first protrusion 12 is not provided.

一方、第1の突起12が設けられている領域を見ると、実施例1の抗菌部材はほとんど菌が増殖していないのに対し、比較例1の抗菌部材では、菌20は第1の突起12が設けられている領域においても増殖している。このことから、黄色ブドウ球菌と同じ直径を有する第1の突起12が設けられた抗菌部材は、菌の増殖を抑制できることがわかった。 On the other hand, looking at the region where the first protrusions 12 are provided, in the antibacterial member of Example 1, almost no bacteria were proliferated, whereas in the antibacterial member of Comparative Example 1, the bacteria 20 were the first protrusions. It also proliferates in the area where 12 is provided. From this, it was found that the antibacterial member provided with the first protrusion 12 having the same diameter as S. aureus can suppress the growth of bacteria.

(2)抗菌部材の耐水性評価
次に、基材の樹脂材料を変え、ナノインプリントによって直径1μm、高さ5μmの第1の突起12を有する抗菌部材(実施2〜4および比較例2)を作製した。ピッチ間隔Lは第1の突起12の直径の1.75倍とし、第1の突起12のアスペクト比は1とした。実施例2〜4および比較例2のそれぞれの抗菌部材の材料およびそのヤング率を後述する表1に示す。ヤング率は、ナノインデンテーション法を用いて測定した。
(2) Evaluation of Water Resistance of Antibacterial Member Next, by changing the resin material of the base material, an antibacterial member (Examples 2 to 4 and Comparative Example 2) having the first protrusions 12 having a diameter of 1 μm and a height of 5 μm was prepared by nanoimprinting. did. The pitch interval L was 1.75 times the diameter of the first protrusion 12, and the aspect ratio of the first protrusion 12 was 1. The materials of the antibacterial members of Examples 2 to 4 and Comparative Example 2 and their Young's moduli are shown in Table 1 described later. Young's modulus was measured using the nanoindentation method.

作製した抗菌部材を水中に浸した後、SEM(Scanning Electron Microscope)によって表面の構造を観察し、耐水性(水中での構造安定性)評価を行った。観察の結果、第1の突起12同士が結合せず、基材表面の凹凸構造が崩壊していないものを「合格」、第1の突起12同士が結合し、基材表面の凹凸構造が崩壊したものを「不合格」と評価した。耐水性評価結果を後述する表1に併記する。 After immersing the produced antibacterial member in water, the surface structure was observed by SEM (Scanning Electron Microscope), and water resistance (structural stability in water) was evaluated. As a result of the observation, when the first projections 12 are not bonded to each other and the concavo-convex structure of the base material surface is not collapsed, “pass” is determined, the first projections 12 are bonded to each other and the concavo-convex structure of the base material surface is collapsed What was done was evaluated as "fail". The water resistance evaluation results are also shown in Table 1 described later.

Figure 2020110955
Figure 2020110955

表1に示すように、抗菌部材の材料のヤング率が本発明の規定を満たす実施例2〜4は、SEM観察の結果、第1の突起12同士が結合しておらず、耐水性評価の結果は全て「合格」となった。一方、抗菌部材の材料のヤング率が本発明の規定を満たさない比較例2は、耐水性評価の結果が「不合格」であった。 As shown in Table 1, in Examples 2 to 4 in which the Young's modulus of the material of the antibacterial member satisfies the requirements of the present invention, as a result of SEM observation, the first protrusions 12 are not bonded to each other, and the water resistance evaluation All the results were “pass”. On the other hand, in Comparative Example 2 in which the Young's modulus of the material of the antibacterial member does not satisfy the regulations of the present invention, the result of water resistance evaluation was “fail”.

図8は比較例2の抗菌部材の耐水性試験後の表面のSEM観察写真である。図8に示すように、第1の突起12同士が結合し、凹凸構造が崩れる現象が見られた。これは、比較例2の抗菌部材の材料の強度が弱く(ヤング率:0.002〜0.004GPa)、表面張力や静電気等の力で第1の突起12同士が結合したものと考えられる。 FIG. 8 is a SEM observation photograph of the surface of the antibacterial member of Comparative Example 2 after the water resistance test. As shown in FIG. 8, a phenomenon was observed in which the first protrusions 12 were bonded to each other and the concavo-convex structure collapsed. It is considered that this is because the material of the antibacterial member of Comparative Example 2 has low strength (Young's modulus: 0.002 to 0.004 GPa), and the first protrusions 12 are bonded to each other by a force such as surface tension or static electricity.

このことから、基材11表面の凹凸構造を安定に保つためには、第1の突起12のヤング率は、0.005GPa以上、5GPa以下とすることが好ましいことが実証された。 From this, it was demonstrated that the Young's modulus of the first protrusions 12 is preferably 0.005 GPa or more and 5 GPa or less in order to stably maintain the uneven structure on the surface of the base material 11.

以上、発明したように、本発明によれば、抗菌皮膜を設けることなく、抗菌対象の部材表面におけるバイオフィルム成長を抑制、さらに菌を物理的に殺すことが可能な抗菌部材を提供可能であることが示された。また、水に接触した場合であっても基材11の表面に設けられた凹凸構造を安定に保つことができ、抗菌効果を持続させることが可能であることが示された。本発明の抗菌部材は、医療、食品および電化製品等の様々な分野で使用することができる。 As described above, according to the present invention, it is possible to provide an antibacterial member capable of suppressing biofilm growth on the surface of a member to be antibacterial and further physically killing bacteria without providing an antibacterial film. Was shown. In addition, it was shown that the uneven structure provided on the surface of the base material 11 can be stably maintained even when contacted with water, and the antibacterial effect can be maintained. The antibacterial member of the present invention can be used in various fields such as medical care, foods and electric appliances.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added/deleted/replaced.

10,10a,10b…抗菌部材、11,11a,11b…基材、12…第1の突起、13…第1の突起の底面、14…第2の突起、15…接着剤、20…菌、L…ピッチ間隔。 10, 10a, 10b... Antibacterial member, 11, 11a, 11b... Base material, 12... First projection, 13... First projection bottom surface, 14... Second projection, 15... Adhesive agent, 20... Fungus, L: pitch interval.

Claims (8)

基材と、前記基材の表面に一方の底面が接するように設けられた複数の第1の突起と、前記第1の突起の他方の底面に設けられた複数の第2の突起とを有し、
前記第1の突起の直径は0.5μm以上20μm以下であり、前記第2の突起の直径は1nm以上500nm未満であり、前記第1の突起および前記第2の突起のヤング率は0.004GPaよりも大きく5GPa以下であることを特徴とする抗菌部材。
A base material; a plurality of first projections provided so that one bottom surface is in contact with the surface of the base material; and a plurality of second projections provided on the other bottom surface of the first projection. Then
The diameter of the first protrusion is 0.5 μm or more and 20 μm or less, the diameter of the second protrusion is 1 nm or more and less than 500 nm, and the Young's modulus of the first protrusion and the second protrusion is 0.004 GPa. The antibacterial member is characterized in that it is larger than and less than or equal to 5 GPa.
隣り合う前記第1の突起の中心間の距離が、前記第1の突起の直径の1.5倍以上3倍未満であることを特徴とする請求項1に記載の抗菌部材。 The antibacterial member according to claim 1, wherein the distance between the centers of the adjacent first protrusions is 1.5 times or more and less than 3 times the diameter of the first protrusions. 前記第1の突起の高さhと直径rの比h/rが1以上5以下であることを特徴とする請求項1に記載の抗菌部材。 The antibacterial member according to claim 1, wherein a ratio h 1 /r 1 of the height h 1 of the first protrusion and the diameter r 1 is 1 or more and 5 or less. 前記第2の突起の高さhと直径rの比h/rが1以上5以下であることを特徴とする請求項1に記載の抗菌部材。 The antibacterial member according to claim 1, wherein a ratio h 2 /r 2 of the height h 2 and the diameter r 2 of the second protrusion is 1 or more and 5 or less. 前記基材がフィルム状の部材からなり、前記フィルム状の部材の一方の面に前記第1の突起および前記第2の突起が設けられ、前記部材の他方の面に接着剤が設けられていることを特徴とする請求項1から4のいずれか1項に記載の抗菌部材。 The substrate is made of a film-shaped member, the first protrusion and the second protrusion are provided on one surface of the film-shaped member, and the adhesive is provided on the other surface of the member. The antibacterial member according to any one of claims 1 to 4, wherein 前記基材が金属であることを特徴とする請求項1から4のいずれか1項に記載の抗菌部材。 The antibacterial member according to any one of claims 1 to 4, wherein the base material is a metal. 前記基材が管状の部材からなり、前記第1の突起および前記第2の突起が、前記管状の部材の内側に設けられていることを特徴とする請求項1から4のいずれか1項に記載の抗菌部材。 The said base material consists of a tubular member, The said 1st protrusion and the said 2nd protrusion are provided inside the said tubular member, The any one of Claim 1 to 4 characterized by the above-mentioned. The antibacterial member described. 前記基材と前記第1の突起および前記第2の突起が一体に成形されていることを特徴とする請求項1から4のいずれか1項に記載の抗菌部材。 The antibacterial member according to any one of claims 1 to 4, wherein the base material, the first protrusion, and the second protrusion are integrally molded.
JP2019002384A 2019-01-10 2019-01-10 Antibacterial member Pending JP2020110955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019002384A JP2020110955A (en) 2019-01-10 2019-01-10 Antibacterial member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019002384A JP2020110955A (en) 2019-01-10 2019-01-10 Antibacterial member

Publications (1)

Publication Number Publication Date
JP2020110955A true JP2020110955A (en) 2020-07-27

Family

ID=71668023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019002384A Pending JP2020110955A (en) 2019-01-10 2019-01-10 Antibacterial member

Country Status (1)

Country Link
JP (1) JP2020110955A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504165A (en) * 2010-10-28 2014-02-20 スリーエム イノベイティブ プロパティズ カンパニー Processed surface to reduce bacterial adhesion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504165A (en) * 2010-10-28 2014-02-20 スリーエム イノベイティブ プロパティズ カンパニー Processed surface to reduce bacterial adhesion

Similar Documents

Publication Publication Date Title
Jang et al. Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching
Hasan et al. Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications
Li et al. Surface design for antibacterial materials: from fundamentals to advanced strategies
Tripathy et al. Natural and bioinspired nanostructured bactericidal surfaces
Zhang et al. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters
Olmo et al. Antibacterial coatings for improving the performance of biomaterials
Lin et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers
Siddiquie et al. Anti-biofouling properties of femtosecond laser-induced submicron topographies on elastomeric surfaces
Hizal et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity
JP2019073710A (en) Synthetic polymer film, laminate having synthetic polymer film, film having synthetic polymer film, sterilization method using surface of synthetic polymer film, and method of reactivating surface of synthetic polymer film
Liu et al. Understanding the role of polymer surface nanoscale topography on inhibiting bacteria adhesion and growth
Li et al. The nanotipped hairs of gecko skin and biotemplated replicas impair and/or kill pathogenic bacteria with high efficiency
JP6516662B2 (en) Sterilization method using filter having germicidal action
Wong et al. Drastically lowered protein adsorption on microbicidal hydrophobic/hydrophilic polyelectrolyte multilayers
Liu et al. Complementary effects of nanosilver and superhydrophobic coatings on the prevention of marine bacterial adhesion
Lee et al. Development of multimodal antibacterial surfaces using porous amine-reactive films incorporating lubricant and silver nanoparticles
Qian et al. Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions
Heckmann et al. Spatially organized nanopillar arrays dissimilarly affect the antifouling and antibacterial activities of Escherichia coli and Staphylococcus aureus
Minoura et al. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film
US20220355350A1 (en) Micro-/nano-structured anti-biofilm surfaces
JP2016215622A (en) Antibacterial and antifungal article, and agricultural antibacterial and antifungal article
Linklater et al. Nanopillar polymer films as antibacterial packaging materials
Lee et al. Engineering antifouling and antibacterial stainless steel for orthodontic appliances through layer-by-layer deposition of nanocomposite coatings
Zhou et al. Recent advances in superhydrophobic and antibacterial cellulose-based fibers and fabrics: bio-inspiration, strategies, and applications
Xu et al. One-step large-scale nanotexturing of nonplanar PTFE surfaces to induce bactericidal and anti-inflammatory properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307