JP2020110779A - Molding absorbent and production method of molding absorbent - Google Patents

Molding absorbent and production method of molding absorbent Download PDF

Info

Publication number
JP2020110779A
JP2020110779A JP2019005119A JP2019005119A JP2020110779A JP 2020110779 A JP2020110779 A JP 2020110779A JP 2019005119 A JP2019005119 A JP 2019005119A JP 2019005119 A JP2019005119 A JP 2019005119A JP 2020110779 A JP2020110779 A JP 2020110779A
Authority
JP
Japan
Prior art keywords
adsorbent
molded
molded adsorbent
activated carbon
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019005119A
Other languages
Japanese (ja)
Other versions
JP7224596B2 (en
Inventor
松尾 陽
Akira Matsuo
陽 松尾
亮 池成
Ryo Ikenari
亮 池成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Co Ltd
Original Assignee
Takagi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Co Ltd filed Critical Takagi Co Ltd
Priority to JP2019005119A priority Critical patent/JP7224596B2/en
Publication of JP2020110779A publication Critical patent/JP2020110779A/en
Application granted granted Critical
Publication of JP7224596B2 publication Critical patent/JP7224596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a molding absorbent having a cross-section shape of an elliptical shape or a substantially elliptical shape and a plurality of through holes penetrating in a longitudinal direction.SOLUTION: A molding absorbent is a molding absorbent that contains activated carbon and a fibrous binder, has a shape of the molding absorbent of an elliptical columnar or substantially elliptically columnar shape, and has two or more of through holes penetrating in the longitudinal direction of the inside of the molding absorbent. The molding absorbent has a groove extending in the longer direction on an exterior surface and is preferably located at a center of an interval of the through holes where the most deep parts of the cross sectional shape of the groove of which the most deep parts of the cross sectional shape of the groove are adjacent.SELECTED DRAWING: Figure 4

Description

本発明は、吸着体として活性炭を含む成形吸着体、および、この成形吸着体の製造方法に関する。 The present invention relates to a shaped adsorbent containing activated carbon as an adsorbent and a method for producing the shaped adsorbent.

従来、浄水器に用いられる吸着体として、吸着材に活性炭を用いた成形吸着体が提案されている。このような成形吸着体において、蛇口一体型(水栓一体型)の浄水器に使用されるものとして、断面形状が円形状である成形吸着体が提案されている(例えば、特許文献1、2参照)。 BACKGROUND ART Conventionally, a shaped adsorbent using activated carbon as an adsorbent has been proposed as an adsorbent used in a water purifier. In such a shaped adsorbent, a shaped adsorbent having a circular cross-section has been proposed as being used in a faucet-integrated (water faucet-integrated) water purifier (for example, Patent Documents 1 and 2). reference).

また、近年、蛇口のデザインの多様化により、断面形状が円形でない蛇口が提案されており、これに伴い成形吸着体についても断面形状が円形でないものも必要とされている。例えば、特許文献3には、浄水器に用いられるフィルタ成形体の製造方法において、浄水材及び結合材を内部空間の横断面が円形の第1金型内に配置し、加熱及び加圧を行った後、冷却により硬化させることで多孔質でかつ横断面が円形の基体を成形する成形工程と、前記成形工程の後、前記基体を加熱により軟化させた状態で内部空間の横断面が仮想楕円を基本として前記仮想楕円の短軸の両端以外の部分に前記仮想楕円の内側に突出した凸部を有する略楕円形の第2金型内に配置し、加圧を行った後、冷却により硬化させることで、前記基体の横断面を円形から略楕円形に変形させる変形工程と、を備えたことを特徴とするフィルタ成形体の製造方法が記載されている(特許文献3(請求項1)参照)。 Further, in recent years, faucets having a non-circular cross-sectional shape have been proposed due to diversification of faucet designs, and accordingly, molded adsorbents having a non-circular cross-sectional shape are also required. For example, in Patent Document 3, in a method for manufacturing a filter molded body used in a water purifier, a water purifying material and a bonding material are placed in a first mold having a circular cross section of an internal space, and heating and pressurizing are performed. After that, a molding step of molding a porous substrate having a circular cross section by hardening by cooling is performed, and a cross section of the internal space is a virtual ellipse with the substrate softened by heating after the molding step. Based on the above, the virtual ellipse is placed in a substantially elliptical second mold having protrusions projecting inward of the virtual ellipse at portions other than both ends of the minor axis of the virtual ellipse, pressurized, and then cured by cooling. A deformation step of deforming the cross-section of the base body from a circular shape to a substantially elliptical shape by doing so. reference).

特開2015−112518号公報JP, 2015-112518, A 特開2016−059826号公報JP, 2016-059826, A 特開2016−036788号公報JP, 2016-036788, A

本発明は、断面形状が楕円形または略楕円形であり、かつ、長手方向に貫通する複数の貫通孔を有する成形吸着体を提供することを目的とする。本発明は、湿式成形により、断面形状が楕円形または略楕円形である成形吸着体を製造することができる吸着体の製造方法を提供することを目的とする。 It is an object of the present invention to provide a molded adsorbent having an elliptical or substantially elliptical cross section and having a plurality of through holes penetrating in the longitudinal direction. An object of the present invention is to provide a method for producing an adsorbent capable of producing a shaped adsorbent having an elliptical or substantially elliptical cross section by wet molding.

本発明の成形吸着体は、活性炭と、繊維状バインダーとを含有する成形吸着体であって、前記成形吸着体の形状が、楕円柱状または略楕円柱状であり、成形吸着体内部に、長手方向に貫通する貫通孔を2以上有することを特徴とする。 The shaped adsorbent of the present invention is a shaped adsorbent containing activated carbon and a fibrous binder, wherein the shape of the shaped adsorbent is an elliptic column or a substantially elliptic column, and inside the shaped adsorbent, the longitudinal direction It is characterized in that it has two or more through-holes penetrating through.

本発明の成形吸着体の製造方法は、活性炭と繊維状バインダーとを含有し、成形吸着体内部に長手方向に貫通する貫通孔を2以上有する成形吸着体の製造方法であって、活性炭と繊維状バインダーと水とを混合して材料スラリーを調製する第1工程、前記材料スラリーを用いて、2以上の軸部材を用いた湿式成形により、前駆体を作製する第2工程、および、前記前駆体を乾燥して成形吸着体を得る第3工程を有することを特徴とする。 The method for producing a shaped adsorbent according to the present invention is a method for producing a shaped adsorbent which contains activated carbon and a fibrous binder and has two or more through-holes penetrating in the longitudinal direction inside the shaped adsorbent, which comprises activated carbon and fibers. Step of preparing a material slurry by mixing a particulate binder and water, a second step of producing a precursor by wet molding using the material slurry with two or more shaft members, and the precursor It is characterized by comprising a third step of drying the body to obtain a shaped adsorbent.

本発明によれば、断面形状が楕円形または略楕円形であり、かつ、長手方向に貫通する複数の貫通孔を有する成形吸着体が得られる。 According to the present invention, a molded adsorbent having an elliptical or substantially elliptical cross section and having a plurality of through holes penetrating in the longitudinal direction can be obtained.

成形吸着体の一例を示す斜視図。The perspective view which shows an example of a shaping|molding adsorption body. 図1の成形吸着体のI−I線断面図。The II sectional view taken on the line of the shaping|molding adsorption body of FIG. 図1の成形吸着体のII−II線断面図。The II-II sectional view taken on the line of the shaping|molding adsorption body of FIG. 成形吸着体の他の例を示す斜視図。The perspective view which shows the other example of a shaping|molding adsorption body. 図4の成形吸着体のI−I線断面図。FIG. 5 is a sectional view taken along line I-I of the shaped adsorbent of FIG. 4. 図4の成形吸着体のII−II線断面図。II-II sectional view taken on the line of the shaping|molding adsorption body of FIG. 圧縮型の一例を示す斜視図。The perspective view which shows an example of a compression type. 図7の圧縮型のIII−III線断面図。The III-III sectional view taken on the line of the compression type of FIG. 浄水カートリッジの一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of a water purification cartridge. 浄水カートリッジを内蔵した浄水器の一例を示す側面図。The side view which shows an example of the water purifier which contained the water purification cartridge. 密度測定における成形吸着体の切断位置を示す側面図。The side view which shows the cutting position of the shaping|molding adsorption body in a density measurement. 密度測定における成形吸着体の切断位置を示す側面図。The side view which shows the cutting position of the shaping|molding adsorption body in a density measurement.

[成形吸着体]
本発明の成形吸着体は、活性炭と、繊維状バインダーとを含有する成形吸着体であって、前記成形吸着体の形状が、楕円柱状または略楕円柱状であり、成形吸着体内部に、長手方向に貫通する貫通孔を2以上有することを特徴とする。
[Molding adsorbent]
The shaped adsorbent of the present invention is a shaped adsorbent containing activated carbon and a fibrous binder, wherein the shape of the shaped adsorbent is an elliptic column or a substantially elliptic column, and inside the shaped adsorbent, the longitudinal direction It is characterized in that it has two or more through-holes penetrating through.

(形状)
前記成形吸着体は、楕円柱状または略楕円柱状である。前記成形吸着体の断面形状は楕円形または略楕円形である。前記断面形状の寸法は適宜調整すればよいが、浄水カートリッジとして使用する場合、断面形状の長径は11mm〜100mmが好ましく、より好ましくは20mm〜50mmであり、短径は10mm〜90mmが好ましく、より好ましくは15mm〜30mmである。前記長径と短径との比(長径/短径)は1.25以上が好ましく、より好ましくは1.50以上であり、2以下が好ましく、より好ましくは1.85以下である。前記成形吸着体の長さは適宜調整すればよいが、浄水カートリッジとして使用する場合、長さは40mm〜200mmが好ましい。前記成形吸着体の形状は、断面形状が一定の柱状であってもよいし、断面形状が変化する略柱状であってもよい。前記成形吸着体の形状は、柱状が好ましい。
(shape)
The shaped adsorbent has an elliptic cylinder shape or a substantially elliptic cylinder shape. The cross-sectional shape of the shaped adsorbent is elliptical or substantially elliptical. The dimensions of the cross-sectional shape may be appropriately adjusted, but when used as a water purification cartridge, the major axis of the cross-sectional shape is preferably 11 mm to 100 mm, more preferably 20 mm to 50 mm, and the minor axis is preferably 10 mm to 90 mm. It is preferably 15 mm to 30 mm. The ratio of the major axis to the minor axis (major axis/minor axis) is preferably 1.25 or more, more preferably 1.50 or more, and preferably 2 or less, more preferably 1.85 or less. The length of the shaped adsorbent may be appropriately adjusted, but when used as a water purification cartridge, the length is preferably 40 mm to 200 mm. The shape of the shaped adsorbent may be a column having a constant cross-sectional shape, or may be a substantially column shape having a varying cross-sectional shape. The shape of the shaped adsorbent is preferably columnar.

前記成形吸着体は、成形吸着体内部に、長手方向に貫通する貫通孔を2以上有する。これらの貫通孔は、成形吸着体を浄水カートリッジなどに使用した際に、原水または浄水の流路となる。前記貫通孔の断面形状は、特に限定されず、円形状、略円形状、楕円形状、略楕円形状、多角形状、角丸多角形状が挙げられ、円形状が好ましい。
前記貫通孔の個数は、成形吸着体の断面積および貫通孔の断面積に応じて適宜調整すればよいが、5個以下が好ましく、より好ましくは3個以下、さらに好ましくは2個である。
前記2以上の貫通孔は、それぞれ異なる断面形状を有していてもよいが、断面形状が全て同一であることが好ましい。
The molded adsorbent has two or more through-holes penetrating in the longitudinal direction inside the molded adsorbent. These through holes serve as flow paths for raw water or purified water when the molded adsorbent is used in a purified water cartridge or the like. The cross-sectional shape of the through hole is not particularly limited, and examples thereof include a circular shape, a substantially circular shape, an elliptical shape, a substantially elliptical shape, a polygonal shape, and a rounded polygonal shape, and a circular shape is preferable.
The number of the through holes may be appropriately adjusted according to the cross-sectional area of the molded adsorbent and the cross-sectional area of the through holes, but is preferably 5 or less, more preferably 3 or less, and further preferably 2.
The two or more through-holes may have different sectional shapes, but it is preferable that the sectional shapes are all the same.

前記貫通孔の断面形状は、最大径(外接円の直径)が3mm〜40mmであることが好ましい。前記貫通孔の断面形状の最大径と前記成形吸着体の断面形状の短径との比(成形吸着体の短径/貫通孔の最大径)は1.25以上が好ましく、より好ましくは2.0以上であり、4.0以下が好ましく、より好ましくは3.5以下、さらに好ましくは3.0以下である。 The cross-sectional shape of the through hole preferably has a maximum diameter (a diameter of a circumscribing circle) of 3 mm to 40 mm. The ratio of the maximum diameter of the cross-sectional shape of the through hole to the short diameter of the cross-sectional shape of the molded adsorbent (short diameter of molded adsorbent/maximum diameter of through hole) is preferably 1.25 or more, more preferably 2. It is 0 or more and preferably 4.0 or less, more preferably 3.5 or less, and further preferably 3.0 or less.

前記成形吸着体の断面積における前記貫通孔の断面積の合計が占める割合は、10.0面積%以上が好ましく、より好ましくは14.0面積%以上であり、56.0面積%以下が好ましく、より好ましくは30.0面積%以下である。
前記成形吸着体の断面において、外表面の各地点から貫通孔までの最短距離をろ層厚さとしたとき、ろ層厚さは3.5mm以上が好ましく、より好ましくは4.0mm以上であり、38.5mm以下が好ましく、より好ましくは30mm以下、さらに好ましくは10mm以下、特に好ましくは8.0mm以下である。
前記貫通孔の間隔(隣り合う貫通孔の最短距離)(di)は、1.0mm以上が好ましく、より好ましくは2.5mm以上、さらに好ましくは5.0mm以上であり、10mm以下が好ましい。
The proportion of the total cross-sectional area of the through holes in the cross-sectional area of the molded adsorbent is preferably 10.0 area% or more, more preferably 14.0 area% or more, and preferably 56.0 area% or less. , And more preferably 30.0 area% or less.
In the cross section of the shaped adsorbent, when the shortest distance from each point on the outer surface to the through hole is the filter layer thickness, the filter layer thickness is preferably 3.5 mm or more, more preferably 4.0 mm or more, It is preferably 38.5 mm or less, more preferably 30 mm or less, still more preferably 10 mm or less, and particularly preferably 8.0 mm or less.
The distance between the through holes (shortest distance between adjacent through holes) (di) is preferably 1.0 mm or more, more preferably 2.5 mm or more, further preferably 5.0 mm or more, and preferably 10 mm or less.

前記2以上の貫通孔の位置は特に限定されないが、成形吸着体の長径方向に並んでいることが好ましい。つまり、各貫通孔の中心を結んだ直線方向と、成形吸着体の長径方向とが一致していることが好ましい。 The positions of the two or more through-holes are not particularly limited, but they are preferably arranged in the major axis direction of the molded adsorbent. That is, it is preferable that the linear direction connecting the centers of the through holes and the major axis direction of the molded adsorbent are aligned.

前記成形吸着体は、外表面に、長手方向に延びる溝を有することが好ましい。また、前記溝は、隣り合う貫通孔の中心を結んだ直線方向をx方向(貫通孔が並ぶ方向)としたとき、このx方向において、断面形状の最深部が、隣り合う貫通孔の間隔の中央に位置していることが好ましい。このような溝を有することにより、成形吸着体の外表面から貫通孔までの距離が均一化できる。
前記溝の断面形状は特に限定されないが、三角形状、略三角形状が好ましい。前記溝の最大深さ(de)は、1.0mm以上が好ましく、より好ましくは2.0mm以上であり、20mm以下が好ましく、より好ましくは10mm以下、さらに好ましくは3.0mm以下である。
前記溝の最大深さと前記成形吸着体の断面形状の短径との比(溝深さ/成形吸着体の短径)は0.05以上が好ましく、より好ましくは0.10以上であり、1.40以下が好ましく、より好ましくは1.20以下、さらに好ましくは0.50以下である。
The shaped adsorbent preferably has a groove extending in the longitudinal direction on the outer surface. Further, in the groove, when the straight line direction connecting the centers of adjacent through holes is defined as the x direction (direction in which the through holes are arranged), the deepest portion of the cross-sectional shape is the distance between the adjacent through holes in the x direction. It is preferably located in the center. By having such a groove, the distance from the outer surface of the molded adsorbent to the through hole can be made uniform.
The cross-sectional shape of the groove is not particularly limited, but a triangular shape or a substantially triangular shape is preferable. The maximum depth (de) of the groove is preferably 1.0 mm or more, more preferably 2.0 mm or more, preferably 20 mm or less, more preferably 10 mm or less, and further preferably 3.0 mm or less.
The ratio of the maximum depth of the groove to the minor axis of the sectional shape of the shaped adsorbent (groove depth/minor axis of the shaped adsorbent) is preferably 0.05 or more, more preferably 0.10 or more, and 1 It is preferably 0.40 or less, more preferably 1.20 or less, and further preferably 0.50 or less.

前記成形吸着体の断面において、外表面の各地点から貫通孔までの最短距離をろ層厚さとしたとき、ろ層厚さの最大値(Tmax)とろ層厚さの最小値(Tmin)との比(Tmax/Tmin)は2.0以下であることが好ましく、より好ましくは1.4以下、さらに好ましくは1.2以下である。
前記ろ層厚さの最大値(Tmax)とろ層厚さの最小値(Tmin)との差(Tmax−Tmin)は、10.0mm以下が好ましく、より好ましくは7.0mm以下、さらに好ましくは4.0mm以下、特に好ましくは2.0mm以下である。
In the cross section of the shaped adsorbent, when the shortest distance from each point on the outer surface to the through hole is taken as the filter layer thickness, the maximum filter layer thickness value (T max ) and the minimum filter layer thickness value (T min ) The ratio (T max /T min ) is preferably 2.0 or less, more preferably 1.4 or less, still more preferably 1.2 or less.
The difference (T max -T min ) between the maximum value (T max ) of the filter layer thickness and the minimum value (T min ) of the filter layer thickness is preferably 10.0 mm or less, more preferably 7.0 mm or less, It is more preferably 4.0 mm or less, and particularly preferably 2.0 mm or less.

前記成形吸着体の全体の密度は、0.25g/mL以上が好ましく、より好ましくは035g/mL以上であり、0.60g/mL以下が好ましく、より好ましくは0.50g/mL以下である。
また、前記貫通孔の長手方向をz方向とし、前記成形吸着体の断面において、前記2以上の貫通孔が並ぶ方向をx方向、このx方向に直交する方向をy方向としたとき、前記成形吸着体を、それぞれの貫通孔の中心を通るyz平面で切断した時、x方向の最も外側に設けられた貫通孔の外方の部分の平均密度(Dout)と貫通孔間の部分の平均密度(Din)との比(Din/Dout)は、0.98以上であることが好ましく、より好ましくは0.99以上、さらに好ましくは1.00以上である。
前記貫通孔の外方の部分の平均密度(Dout)と貫通孔間の部分の平均密度(Din)との差(Dout−Din)は、0.025g/mL以下が好ましく、より好ましくは0.020g/mL以下である。
The overall density of the shaped adsorbent is preferably 0.25 g/mL or more, more preferably 035 g/mL or more, and 0.60 g/mL or less, more preferably 0.50 g/mL or less.
Further, when the longitudinal direction of the through hole is the z direction, the direction in which the two or more through holes are arranged in the cross section of the molded adsorbent body is the x direction, and the direction orthogonal to the x direction is the y direction, the molding is performed. When the adsorbent is cut in the yz plane passing through the centers of the respective through holes, the average density (D out ) of the outer portion of the through holes provided at the outermost side in the x direction and the average of the portions between the through holes. The ratio (D in /D out ) to the density (D in ) is preferably 0.98 or more, more preferably 0.99 or more, and further preferably 1.00 or more.
The difference (D out −D in ) between the average density (D out ) of the portion outside the through hole and the average density (D in ) of the portion between the through holes is preferably 0.025 g/mL or less, and more preferably It is preferably 0.020 g/mL or less.

貫通孔が2つの場合、貫通孔の中心を通るyz平面で切断すると成形吸着体は3つに分けられ、x方向中央部分が貫通孔間の部分であり、x方向両側部分が貫通孔の外方の部分となる。 When there are two through-holes, the molded adsorbent is divided into three by cutting in the yz plane passing through the center of the through-holes, and the central portion in the x-direction is the portion between the through-holes, and both side portions in the x-direction are outside the through-hole. It becomes the part of one.

貫通孔が3つの場合、貫通孔の中心を通るyz平面で切断すると成形吸着体は4つに分けられる。3つの貫通孔をx方向の一方端から順に第1貫通孔、第2貫通孔、第3貫通孔とすると、第1貫通孔と第2貫通孔の間の部分、および、第2貫通孔と第3貫通孔との間の部分が貫通孔間の部分であり、第1貫通孔または第3貫通孔の外側部分が貫通孔の外方の部分となる。 When there are three through holes, the molded adsorbent is divided into four when cut along the yz plane passing through the center of the through holes. When the three through holes are a first through hole, a second through hole, and a third through hole in this order from one end in the x direction, a portion between the first through hole and the second through hole, and a second through hole A portion between the third through hole is a portion between the through holes, and an outer portion of the first through hole or the third through hole is an outer portion of the through hole.

前記成形吸着体の形状の具体例の一例を図1〜6を参照して説明する。
図1は、成形吸着体の一例を示す斜視図である。図2は、図1の成形吸着体のI−I線断面図である。図3は、図1の成形吸着体のII−II線断面図である。図4は、成形吸着体の他の例を示す斜視図である。図5は、図4の成形吸着体のI−I線断面図である。図6は、図4の成形吸着体のII−II線断面図である。各図において、X方向が断面形状の長径方向、Y方向が断面形状の短径方向、Z方向が成形吸着体の長手方向を示す。
An example of a specific shape of the shaped adsorbent will be described with reference to FIGS.
FIG. 1 is a perspective view showing an example of a shaped adsorbent. FIG. 2 is a cross-sectional view of the shaped adsorbent of FIG. 1 taken along the line I-I. FIG. 3 is a sectional view taken along line II-II of the molded adsorbent of FIG. FIG. 4 is a perspective view showing another example of the shaped adsorbent. FIG. 5 is a cross-sectional view of the molded adsorbent body of FIG. 4 taken along the line I-I. FIG. 6 is a sectional view taken along the line II-II of the shaped adsorbent of FIG. In each figure, the X direction represents the major axis direction of the sectional shape, the Y direction represents the minor axis direction of the sectional shape, and the Z direction represents the longitudinal direction of the molded adsorbent.

図1に示す成形吸着体1は、略楕円柱状であり、成形吸着体内部に長手方向に貫通する貫通孔2を2つ有する。この成形吸着体1の断面形状は一定であり、その長径は35.5mm、短径は19.5mm、長径と短径との比(長径/短径)は1.82である。
図2に示すように、貫通孔2の断面形状は円形であり、直径は8.0mmである。貫通孔2は、成形吸着体の断面形状の長径方向Xに並んでいる。つまり、各貫通孔2の中心を結んだ直線の方向xは、前記方向Xと一致している。また、2つの貫通孔2の間隔(di)は8.0mmである。ろ層厚さの最大値(Tmax)とろ層厚さの最小値(Tmin)との比(Tmax/Tmin)は1.50である。
図3に示すように、貫通孔2の長手方向zは、成形吸着体1の長手方向Zと一致している。
The molded adsorbent 1 shown in FIG. 1 has a substantially elliptic cylindrical shape, and has two through holes 2 penetrating in the longitudinal direction inside the molded adsorbent. The cross-sectional shape of the molded adsorbent 1 is constant, its major axis is 35.5 mm, its minor axis is 19.5 mm, and the ratio of its major axis to its minor axis (major axis/minor axis) is 1.82.
As shown in FIG. 2, the cross-sectional shape of the through hole 2 is circular, and the diameter is 8.0 mm. The through holes 2 are arranged in the major axis direction X of the sectional shape of the molded adsorbent. That is, the direction x of the straight line connecting the centers of the through holes 2 coincides with the direction X. The distance (di) between the two through holes 2 is 8.0 mm. The ratio (T max /T min ) between the maximum value (T max ) of the filter layer thickness and the minimum value (T min ) of the filter layer thickness is 1.50.
As shown in FIG. 3, the longitudinal direction z of the through hole 2 coincides with the longitudinal direction Z of the molded adsorbent 1.

図4に示す成形吸着体1は、略楕円柱状であり、成形吸着体内部に長手方向に貫通する貫通孔2を2つ有する。この成形吸着体1の断面形状は一定であり、その長径は35.5mm、短径は19.5mm、長径と短径との比(長径/短径)は1.82である。
図5に示すように、貫通孔2の断面形状は円形であり、直径は8.0mmである。貫通孔2は、成形吸着体の断面形状の長径方向Xに並んでいる。つまり、各貫通孔2の中心を結んだ直線の方向xは、前記方向Xと一致している。また、2つの貫通孔2の間隔(di)は8.0mmである。
図4、5に示すように、成形吸着体1は、外表面に、長手方向に延びる溝3を有する。この溝3は、x方向(貫通孔が並ぶ方向)において、断面形状の最深部が、隣り合う貫通孔の間隔の中央に位置している。前記溝の断面形状は略三角形状であり、溝の深さ(de)は、2.4mmである。ろ層厚さの最大値(Tmax)とろ層厚さの最小値(Tmin)との比(Tmax/Tmin)は1.11である。
図6に示すように、貫通孔2の長手方向zは、成形吸着体1の長手方向Zと一致している。
The molded adsorbent 1 shown in FIG. 4 has a substantially elliptic cylindrical shape, and has two through holes 2 penetrating in the longitudinal direction inside the molded adsorbent. The cross-sectional shape of the molded adsorbent 1 is constant, its major axis is 35.5 mm, its minor axis is 19.5 mm, and the ratio of its major axis to its minor axis (major axis/minor axis) is 1.82.
As shown in FIG. 5, the cross-sectional shape of the through hole 2 is circular, and the diameter is 8.0 mm. The through holes 2 are arranged in the major axis direction X of the sectional shape of the molded adsorbent. That is, the direction x of the straight line connecting the centers of the through holes 2 coincides with the direction X. The distance (di) between the two through holes 2 is 8.0 mm.
As shown in FIGS. 4 and 5, the molded adsorbent 1 has a groove 3 extending in the longitudinal direction on the outer surface thereof. In the groove 3 in the x direction (the direction in which the through holes are arranged), the deepest part of the cross-sectional shape is located at the center of the interval between the adjacent through holes. The cross-sectional shape of the groove is substantially triangular, and the depth (de) of the groove is 2.4 mm. Filtration layer thickness maximum value (T max) Toro layer thickness minimum value (T min) and the ratio of (T max / T min) is 1.11.
As shown in FIG. 6, the longitudinal direction z of the through hole 2 coincides with the longitudinal direction Z of the molded adsorbent 1.

(材質)
前記成形吸着体は、活性炭と繊維状バインダーとを含有する。前記活性炭は吸着材であり、前記吸着材は、物理吸着性能および化学吸着性能を有する。活性炭とは、比表面積が800m2/g以上の炭素物質である。前記活性炭は、粒子状活性炭を含有することが好ましい。
(Material)
The shaped adsorbent contains activated carbon and a fibrous binder. The activated carbon is an adsorbent, and the adsorbent has physical adsorption performance and chemical adsorption performance. Activated carbon is a carbon material having a specific surface area of 800 m 2 /g or more. The activated carbon preferably contains particulate activated carbon.

前記粒子状活性炭の体積基準の中心粒子径(小径側を0とした体積累積分布における累積50%に対応する粒子径)は、20μm以上が好ましく、より好ましくは30μm以上、さらに好ましくは35μm以上であり、100μm以下が好ましく、より好ましくは80μm以下、さらに好ましくは60μm以下である。中心粒子径が20μm以上であれば、成形吸着体を成形した際に活性炭粒子間に適度に空隙が形成されるため、通水圧力損失を低減することができる。中心粒子径が100μm以下であれば、活性炭の単位質量当たりの吸着性能が高くなり、成形吸着体の吸着性能がより向上する。本発明において、体積基準の中心粒子径は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックベル社製、MT3000)により測定する。 The volume-based central particle diameter of the particulate activated carbon (particle diameter corresponding to cumulative 50% in volume cumulative distribution with 0 on the small diameter side) is preferably 20 μm or more, more preferably 30 μm or more, and further preferably 35 μm or more. It is preferably 100 μm or less, more preferably 80 μm or less, still more preferably 60 μm or less. When the central particle diameter is 20 μm or more, an appropriate void is formed between the activated carbon particles when the molded adsorbent is molded, so that the water flow pressure loss can be reduced. When the central particle diameter is 100 μm or less, the adsorption performance per unit mass of activated carbon is high, and the adsorption performance of the shaped adsorbent is further improved. In the present invention, the volume-based central particle size is measured by a laser diffraction/scattering type particle size distribution measuring device (MT3000 manufactured by Microtrac Bell).

前記粒子状活性炭の体積基準の10%粒子径(小径側を0とした体積累積分布における累積10%に対応する粒子径)は、5μm以上が好ましく、より好ましくは10μm以上、さらに好ましくは15μm以上であり、50μm以下が好ましく、より好ましくは40μm以下、さらに好ましくは30μm以下である。本発明において、体積基準の10%粒子径は、レーザー回折・散乱式粒子径分布測定装置により測定する。 The volume-based 10% particle diameter of the particulate activated carbon (particle diameter corresponding to 10% cumulative in the volume cumulative distribution where the small diameter side is 0) is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 15 μm or more. And is preferably 50 μm or less, more preferably 40 μm or less, still more preferably 30 μm or less. In the present invention, the volume-based 10% particle diameter is measured by a laser diffraction/scattering particle diameter distribution measuring device.

前記粒子状活性炭の粒子径が10μm以下の粒子の含有率は、2.0体積%以下が好ましく、より好ましくは1.5体積%以下、さらに好ましくは1.0体積%以下である。粒子径が10μm以下の粒子の含有率が2.0体積%以下であれば、成形吸着体を成形した際に、活性炭粒子間に適度に空隙が形成されるため、通水圧力損失を一層低減することができる。なお、粒子径が10μm以下の粒子の含有率の下限は0体積%である。粒子径が10μm以下の粒子の含有率は、レーザー回折・散乱式粒子径分布測定装置により測定した体積累積分布から求めることができる。 The content rate of particles having a particle diameter of 10 μm or less in the particulate activated carbon is preferably 2.0% by volume or less, more preferably 1.5% by volume or less, and further preferably 1.0% by volume or less. If the content of particles having a particle size of 10 μm or less is 2.0% by volume or less, an appropriate void is formed between the activated carbon particles when the molded adsorbent is molded, so that the water pressure loss is further reduced. can do. The lower limit of the content of particles having a particle diameter of 10 μm or less is 0% by volume. The content of particles having a particle size of 10 μm or less can be obtained from the volume cumulative distribution measured by a laser diffraction/scattering particle size distribution measuring device.

前記粒子状活性炭の比表面積(BET法)は、900m2/g以上が好ましく、より好ましくは950m2/g以上、さらに好ましくは1000m2/g以上であり、1200m2/g以下が好ましく、より好ましくは1150m2/g以下、さらに好ましくは1100m2/g以下である。比表面積が900m2/g以上であれば、活性炭自体の吸着性能が高く、得られる成形吸着体の吸着性能がより向上する。比表面積が1200m2/g以下であれば、細孔径が比較的大きく、除去対象物質を素早く吸着できるため、得られる成形吸着体の吸着性能がより向上する。 The specific surface area (BET method) of the particulate activated carbon is preferably 900 m 2 /g or more, more preferably 950 m 2 /g or more, further preferably 1000 m 2 /g or more, and 1200 m 2 /g or less, more preferably It is preferably 1150 m 2 /g or less, more preferably 1100 m 2 /g or less. When the specific surface area is 900 m 2 /g or more, the adsorption performance of the activated carbon itself is high, and the adsorption performance of the obtained shaped adsorbent is further improved. When the specific surface area is 1200 m 2 /g or less, the pore size is relatively large and the substance to be removed can be quickly adsorbed, so that the adsorption performance of the obtained molded adsorbent is further improved.

前記粒子状活性炭の細孔容積(BET法)は、0.40ml/g以上が好ましく、より好ましくは0.45ml/g以上、さらに好ましくは0.50ml/g以上であり、0.70ml/g以下が好ましく、より好ましくは0.65ml/g以下、さらに好ましくは0.60ml/g以下である。細孔容積が0.40ml/g以上であれば、クロロホルム等の揮発性有機化合物を吸着し得る容量が大きくなり、得られる成形吸着体の吸着性能がより向上する。細孔容積が0.70ml/g以下であれば、成形吸着体の密度が高くなり、活性炭単位質量当たりの吸着性能が向上する。 The pore volume (BET method) of the particulate activated carbon is preferably 0.40 ml/g or more, more preferably 0.45 ml/g or more, still more preferably 0.50 ml/g or more, 0.70 ml/g The following is preferable, more preferably 0.65 ml/g or less, still more preferably 0.60 ml/g or less. When the pore volume is 0.40 ml/g or more, the capacity capable of adsorbing a volatile organic compound such as chloroform is large, and the adsorption performance of the obtained molded adsorbent is further improved. When the pore volume is 0.70 ml/g or less, the density of the shaped adsorbent is increased, and the adsorption performance per unit mass of activated carbon is improved.

前記粒子状活性炭の平均細孔径(BJH法)は、1.0nm以上が好ましく、より好ましくは1.3nm以上、さらに好ましくは1.5nm以上であり、2.5nm以下が好ましく、より好ましくは2.2nm以下、さらに好ましくは2.0nm以下である。平均細孔径(BJH法)が1.0nm以上であれば、除去対象物質が細孔内に拡散しやすくなり、吸着速度がより向上し、2.5nm以下であれば、除去対象物質と細孔内壁との距離が近くなり、分子間力が強くなるため、吸着力がより高くなる。 The average pore diameter (BJH method) of the particulate activated carbon is preferably 1.0 nm or more, more preferably 1.3 nm or more, still more preferably 1.5 nm or more, and preferably 2.5 nm or less, more preferably 2 nm. 0.2 nm or less, more preferably 2.0 nm or less. When the average pore size (BJH method) is 1.0 nm or more, the removal target substance is more likely to diffuse into the pores, and the adsorption rate is further improved. Since the distance to the inner wall becomes shorter and the intermolecular force becomes stronger, the adsorption force becomes higher.

前記粒子状活性炭の体積基準の中心粒子径、10%粒子径、粒子径が10μm以下の粒子の含有率は、活性炭の粉砕、分級によって調整できる。粉砕方法は、特に限定されず、ジェットミル、ボールミル、スタンプミルなどが挙げられる。分級方法は、特に限定されず、気流分級、篩による分級などが挙げられる。また、粒子状活性炭の比表面積、細孔容積、平均細孔径は、活性炭製造時の賦活条件、粒子径分布などによって調整できる。 The volume-based central particle diameter of the particulate activated carbon, the 10% particle diameter, and the content rate of particles having a particle diameter of 10 μm or less can be adjusted by pulverization and classification of the activated carbon. The crushing method is not particularly limited, and examples thereof include a jet mill, a ball mill and a stamp mill. The classification method is not particularly limited, and examples thereof include airflow classification and classification with a sieve. The specific surface area, pore volume, and average pore diameter of the particulate activated carbon can be adjusted by the activation conditions at the time of activated carbon production, the particle size distribution, and the like.

前記活性炭は、粒子状活性炭のほかに繊維状活性炭を含有してもよい。この場合、全活性炭中の粒子状活性炭の含有率は、85質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。本発明の成形吸着体は、活性炭として、前記粒子状活性炭のみを含有することも好ましい。なお、本発明において、活性炭粒子のアスペクト比(長径/短径)が3以下のものを粒子状活性炭、アスペクト比が3超のものを繊維状活性炭とする。 The activated carbon may contain fibrous activated carbon in addition to the particulate activated carbon. In this case, the content of the particulate activated carbon in the total activated carbon is preferably 85% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. It is also preferable that the shaped adsorbent of the present invention contains only the particulate activated carbon as the activated carbon. In the present invention, activated carbon particles having an aspect ratio (major axis/minor axis) of 3 or less are referred to as particulate activated carbon, and those having an aspect ratio of more than 3 are referred to as fibrous activated carbon.

前記活性炭として、表面に銀が添着された銀添着活性炭を用いてもよい。銀添着活性炭を使用することで、成形吸着体に抗菌性能を付与できる。銀添着活性炭としては、銀添着粒子状活性炭、銀添着繊維状活性炭のいずれも使用できる。 As the activated carbon, silver-impregnated activated carbon having silver impregnated on its surface may be used. By using silver-impregnated activated carbon, it is possible to impart antibacterial performance to the shaped adsorbent. As the silver-impregnated activated carbon, both silver-impregnated particulate activated carbon and silver-impregnated fibrous activated carbon can be used.

前記活性炭は、炭素原料を炭化した後、水蒸気賦活、アルカリ賦活することで得られる。炭素原料としては、フェノール樹脂などの合成樹脂、ヤシ殻、木質、もみ殻、石炭などを用いることができる。これらの中でも、成形した際の充填密度を高くできることから、合成樹脂、ヤシ殻、石炭が好ましい。特に、不純物が少なく、粉砕後にも良好な吸着性能を有することからフェノール樹脂などの合成樹脂やヤシ殻が好ましい。 The activated carbon is obtained by carbonizing a carbon raw material and then activating steam and alkali. As the carbon raw material, synthetic resin such as phenol resin, coconut shell, wood, rice husk, coal and the like can be used. Among these, synthetic resin, coconut shell, and coal are preferable because they can increase the packing density when molded. In particular, synthetic resins such as phenolic resins and coconut shells are preferable because they have few impurities and have good adsorption performance even after pulverization.

前記粒子状活性炭としては、市販のものも使用することができる。市販の粒子状活性炭としては、味の素ファインテクノ社製のホクエツ;クラレケミカル社製のクラレコール(登録商標);クレハ社製のBAC(登録商標);日本エンバイロケミカルズ社製の粒状白鷺(登録商標);MCエバテック社製のアマソーブ(登録商標);UES社製の活力炭(登録商標)などが挙げられる。 As the particulate activated carbon, commercially available products can be used. Commercially available particulate activated carbon includes Hokuetsu manufactured by Ajinomoto Fine-Techno Inc.; Kuraray Coal (registered trademark) manufactured by Kuraray Chemical Co.; BAC (registered trademark) manufactured by Kureha Co.; MC Avasorb (registered trademark); Evatech Co., Ltd.; UES activated carbon (registered trademark);

本発明の成形吸着体は、吸着材として、前記活性炭の他に、ゼオライト、珪酸チタニウム、チタン酸ナトリウム、アルミノ珪酸塩、酸化チタン、イオン交換樹脂、キレート樹脂、イオン交換繊維、キレート繊維などを含有してもよい。この場合、吸着材中の活性炭の含有率は、85質量%以上が好ましく、より好ましくは87質量%以上、さらに好ましくは89質量%以上である。 The shaped adsorbent of the present invention contains, as an adsorbent, zeolite, titanium silicate, sodium titanate, aluminosilicate, titanium oxide, ion exchange resin, chelate resin, ion exchange fiber, chelate fiber, etc. as an adsorbent. You may. In this case, the content of activated carbon in the adsorbent is preferably 85% by mass or more, more preferably 87% by mass or more, and further preferably 89% by mass or more.

上記活性炭以外の吸着材において、イオン交換繊維、キレート繊維のような繊維状物質を配合すると、成形吸着体中に適度に空隙を形成することができ、また、繊維状物質が粒子状活性炭と絡み合うことで成形吸着体の機械的強度も高めることができる。 In the adsorbents other than the above-mentioned activated carbon, when a fibrous substance such as an ion exchange fiber or a chelate fiber is mixed, a void can be appropriately formed in the shaped adsorbent, and the fibrous substance is entangled with the particulate activated carbon. As a result, the mechanical strength of the shaped adsorbent can be increased.

前記成形吸着体中の吸着材の含有率は、90質量%以上が好ましく、より好ましくは91質量%以上、さらに好ましくは92質量%以上であり、97質量%以下が好ましく、より好ましくは95質量%以下である。吸着材の含有率が90質量%以上であれば、成形吸着体の吸着性能が向上し、97質量%以下であれば、相対的に繊維状バインダーの含有量が増加し、成形吸着体の機械的強度が向上する。 The content of the adsorbent in the shaped adsorbent is preferably 90% by mass or more, more preferably 91% by mass or more, further preferably 92% by mass or more, and preferably 97% by mass or less, more preferably 95% by mass. % Or less. If the content of the adsorbent is 90% by mass or more, the adsorption performance of the shaped adsorbent is improved, and if it is 97% by mass or less, the content of the fibrous binder is relatively increased, and the machine of the shaped adsorbent is increased. Strength is improved.

本発明の成形吸着体は、繊維状バインダーを含有する。繊維状バインダーは、粒子状活性炭などの吸着材に絡み合うことで保持するため、活性炭の吸着性能を維持したまま成形できる。繊維状バインダーとしては、アクリル繊維、セルロース繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、ポリアミド繊維、アラミド繊維などが挙げられる。これらの中でも、吸着材を保持しやすいことからアクリル繊維、セルロース繊維が好ましく、特に成形吸着体の機械的強度を向上できることからアクリル繊維が好適である。 The shaped adsorbent of the present invention contains a fibrous binder. Since the fibrous binder is held by being entangled with an adsorbent such as particulate activated carbon, the fibrous binder can be molded while maintaining the adsorption performance of activated carbon. Examples of the fibrous binder include acrylic fibers, cellulose fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, polyamide fibers, and aramid fibers. Among these, acrylic fibers and cellulose fibers are preferable because they easily hold the adsorbent, and acrylic fibers are particularly preferable because they can improve the mechanical strength of the molded adsorbent.

前記繊維状バインダーとしては、フィブリル化繊維が好ましい。フィブリル化繊維とは、摩擦作用などによって、繊維内部に存在するフィブリル(小繊維)を繊維表面に現させ、繊維表面を毛羽立ちささくれさせた繊維である。繊維状バインダーのフィブリル化は、リファイナー処理、ビーティング処理により行うことができる。 Fibrillated fibers are preferred as the fibrous binder. The fibrillated fiber is a fiber in which fibrils (small fibers) existing inside the fiber are made to appear on the fiber surface by frictional action or the like, and the fiber surface is fluffed. Fibrillation of the fibrous binder can be performed by a refiner treatment or a beating treatment.

前記繊維状バインダーの濾水度は、20ml以上が好ましく、より好ましくは60ml以上、さらに好ましくは110ml以上、特に好ましくは150ml以上であり、250ml以下が好ましく、より好ましくは240ml以下、さらに好ましくは230ml以下である。繊維状バインダーの濾水度が20ml以上であれば、成形吸着体の通水圧力損失を低減できる。特に、本発明で使用する特定の粒子径分布を有する粒子状活性炭では、濾水度が110ml以上の繊維状バインダーを用いると、成形吸着体の通水圧力損失を一層低減できる。なお、繊維状バインダーの濾水度とは、成形吸着体の作製に使用される繊維状バインダーの濾水度を指す。具体的には、成形吸着体の製造に使用するスラリーに含まれる繊維状バインダーの濾水度である。 The freeness of the fibrous binder is preferably 20 ml or more, more preferably 60 ml or more, further preferably 110 ml or more, particularly preferably 150 ml or more, 250 ml or less, more preferably 240 ml or less, further preferably 230 ml. It is as follows. When the freeness of the fibrous binder is 20 ml or more, the water pressure loss of the molded adsorbent can be reduced. In particular, in the case of the particulate activated carbon having a specific particle size distribution used in the present invention, when a fibrous binder having a freeness of 110 ml or more is used, the water pressure loss of the shaped adsorbent can be further reduced. The freeness of the fibrous binder refers to the freeness of the fibrous binder used for producing the shaped adsorbent. Specifically, it is the freeness of the fibrous binder contained in the slurry used to manufacture the shaped adsorbent.

前記繊維状バインダーの含有量は、前記吸着材100質量部に対して1質量部以上が好ましく、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、20質量部以下が好ましく、より好ましくは15質量部以下、さらに好ましくは10質量部以下である。繊維状バインダーの含有量が1質量部以上であれば、成形吸着体の機械的強度が向上し、20質量部以下であれば、成形吸着体の通水圧力損失がより低減される。 The content of the fibrous binder is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 20 parts by mass or less, with respect to 100 parts by mass of the adsorbent. It is more preferably 15 parts by mass or less, still more preferably 10 parts by mass or less. When the content of the fibrous binder is 1 part by mass or more, the mechanical strength of the molded adsorbent is improved, and when it is 20 parts by mass or less, the water pressure loss of the molded adsorbent is further reduced.

前記成形吸着体は、湿式成形により作製されたものが好ましい。湿式成形を採用することで、貫通孔を複数有する成形吸着体が容易に作製できる。 The shaped adsorbent is preferably made by wet molding. By adopting wet molding, a molded adsorbent having a plurality of through holes can be easily manufactured.

[成形吸着体の製造方法]
本発明の成形吸着体の製造方法は、活性炭と繊維状バインダーと水とを混合して材料スラリーを調製する第1工程、前記材料スラリーを用いて、2以上の軸部材を用いた湿式成形により、前駆体を作製する第2工程、および、前記前駆体を乾燥して成形吸着体を得る第3工程を有する。
[Method of manufacturing molded adsorbent]
The method for producing a shaped adsorbent according to the present invention includes a first step of preparing a material slurry by mixing activated carbon, a fibrous binder and water, and wet molding using two or more shaft members using the material slurry. , A second step of producing a precursor, and a third step of drying the precursor to obtain a shaped adsorbent.

(スラリー調整)
前記第1工程では、活性炭および繊維状バインダーを含有する混合材料を水に分散させてスラリーを調製する。混合材料を分散させる方法は特に限定されないが、例えば、ビーターを用いることができる。なお、スラリーの調製は、活性炭、繊維状バインダー等の材料を別々に水に投入した後、混合してもよい。スラリーを調製する際、水の使用量は、混合材料100質量部に対して、2000質量部以上が好ましく、より好ましくは3000質量部以上、さらに好ましくは4000質量部以上であり、10000質量部以下が好ましく、より好ましくは9000質量部以下、さらに好ましくは8000質量部以下である。
(Slurry adjustment)
In the first step, a mixed material containing activated carbon and a fibrous binder is dispersed in water to prepare a slurry. The method of dispersing the mixed material is not particularly limited, but, for example, a beater can be used. The slurry may be prepared by adding materials such as activated carbon and a fibrous binder separately to water and then mixing them. When preparing the slurry, the amount of water used is preferably 2000 parts by mass or more, more preferably 3000 parts by mass or more, still more preferably 4000 parts by mass or more and 10000 parts by mass or less, relative to 100 parts by mass of the mixed material. Is preferable, more preferably 9000 parts by mass or less, and further preferably 8000 parts by mass or less.

(吸引成形)
前記第2工程では、吸引用成形型として2以上の軸部材をスラリー中に浸漬し、ポンプを用いてスラリーを吸引し、軸部材の表面に混合材料を堆積させる。混合材料が堆積した軸部材を引き上げ、成形吸着体の前駆体を得る。前記軸部材は、スラリーを吸引できるように吸引用の貫通孔が形成されており、この貫通孔に連通するノズルにポンプを接続する。なお、前記軸部材の貫通孔は、材料スラリー中の固形分を通過させないように構成されている。
(Suction molding)
In the second step, two or more shaft members as a suction mold are immersed in the slurry, the slurry is sucked by using a pump, and the mixed material is deposited on the surface of the shaft member. The shaft member on which the mixed material is deposited is pulled up to obtain a precursor of the shaped adsorbent. The shaft member has a through hole for suction so that the slurry can be sucked, and a pump is connected to a nozzle communicating with the through hole. The through hole of the shaft member is configured so that the solid content in the material slurry does not pass through.

軸部材の間隔(隣り合う軸部材の断面中心の間隔)は、使用する軸部材の本数や所望とする成形吸着体の断面形状に応じて適宜調整すればよい。例えば、軸部材を2本とする場合は、軸部材の間隔は1.0mm以上が好ましく、より好ましくは2.5mm以上であり、38.5mm以下が好ましく、より好ましくは30.0mm以下である。 The spacing between the shaft members (the spacing between the cross-sectional centers of adjacent shaft members) may be appropriately adjusted according to the number of shaft members used and the desired cross-sectional shape of the molded adsorbent. For example, when the number of shaft members is two, the distance between the shaft members is preferably 1.0 mm or more, more preferably 2.5 mm or more, preferably 38.5 mm or less, and more preferably 30.0 mm or less. ..

スラリーを吸引する時間(成形時間)は、特に限定されないが、50秒以下が好ましく、より好ましくは40秒以下、さらに好ましくは35秒以下である。成形時間が短いほど生産性が向上する。成形時間の下限は特に限定されないが、通常5秒程度である。 The time for sucking the slurry (molding time) is not particularly limited, but is preferably 50 seconds or less, more preferably 40 seconds or less, and further preferably 35 seconds or less. The shorter the molding time, the higher the productivity. The lower limit of the molding time is not particularly limited, but is usually about 5 seconds.

前記軸部材の断面形状は、成形吸着体の貫通孔の断面形状に応じて適宜選択すればよい。例えば、成形吸着体の貫通孔の断面形状を円形とする場合、軸部材として断面形状が円形のものを使用すればよい。前記軸部材は、第2工程後に前駆体から取り外してもよいし、取り外さなくてもよい。 The cross-sectional shape of the shaft member may be appropriately selected according to the cross-sectional shape of the through hole of the molded adsorbent. For example, when the through-hole of the molded adsorbent has a circular cross-sectional shape, a shaft member having a circular cross-sectional shape may be used. The shaft member may or may not be removed from the precursor after the second step.

(溝形成)
前記第2工程では、前記前駆体表面に、隣り合う軸部材の軸間の中央に、軸方向に延びる溝を形成することが好ましい。乾燥前の前駆体は柔軟であるため、容易に溝を形成できる。また、前記溝は、前記前駆体に型を押圧することにより形成することが好ましい。2本以上の軸部材を用いた湿式成形では、軸間部の密度が低くなる傾向がある。しかしながら、型を押圧することにより溝を形成すれば、軸間部の前駆体が圧縮され、軸間部の密度を高めることができる。
(Groove formation)
In the second step, it is preferable that a groove extending in the axial direction is formed on the surface of the precursor at the center between the axes of the adjacent shaft members. Since the precursor before drying is flexible, the groove can be easily formed. Further, it is preferable that the groove is formed by pressing a mold against the precursor. In wet molding using two or more shaft members, the density of the inter-shaft portion tends to be low. However, if the groove is formed by pressing the mold, the precursor in the inter-shaft portion is compressed and the density in the inter-shaft portion can be increased.

(圧縮)
前記第2工程では、前記前駆体全体に、圧縮を施すことが好ましい。圧縮工程を有することで、最終的に得られる成形吸着体の密度をより高めることができ、一層吸着性能に優れた成形吸着体が得られる。前駆体の圧縮率は、最終的に得られる成形吸着体の密度に応じて適宜調節すればよい。
(compression)
In the second step, it is preferable that the entire precursor is compressed. By having the compression step, the density of the molded adsorbent finally obtained can be further increased, and the molded adsorbent having further excellent adsorption performance can be obtained. The compressibility of the precursor may be appropriately adjusted according to the density of the molded adsorbent finally obtained.

なお、前記溝形成および圧縮は、いずれか一方のみ行ってもよいし、両方を行ってもよい。前記溝形成および圧縮の両方を行う場合、溝を形成した後に圧縮を施してもよいし、圧縮を施した後に溝を形成してもよい。また、溝形成と圧縮とを同時に行ってもよい。 It should be noted that the groove formation and the compression may be performed on either one or both. When both the groove formation and the compression are performed, the compression may be performed after the formation of the groove, or the groove may be formed after the compression. Further, the groove formation and the compression may be performed at the same time.

溝形成と圧縮とを同時に行う場合は、圧縮型を用いることが好ましい。前記圧縮型としては、例えば、図7、8に示す圧縮型が使用できる。図7は圧縮型の一例を示す斜視図である。図8は、図7の圧縮型のIII−III線断面図である。 When performing groove formation and compression at the same time, it is preferable to use a compression mold. As the compression mold, for example, the compression mold shown in FIGS. 7 and 8 can be used. FIG. 7 is a perspective view showing an example of a compression mold. FIG. 8 is a cross-sectional view of the compression type III-III line in FIG. 7.

図7、8に示した圧縮型10は、上型11と下型12で一対となっている。上型11および下型12には、互いに対向する側に、断面形状が半楕円形の凹部11a、12aが形成されている。これらの上型11および下型12を合わせることで、凹部11aと凹部12aによって楕円柱状の空間が形成される。なお、凹部11a、12aの寸法は、乾燥後の成形吸着体の寸法に応じて適宜調整すればよい。 The compression mold 10 shown in FIGS. 7 and 8 is composed of an upper mold 11 and a lower mold 12. The upper mold 11 and the lower mold 12 are provided with recesses 11a and 12a having semi-elliptical cross-sections on the sides facing each other. By combining the upper mold 11 and the lower mold 12, an elliptic cylindrical space is formed by the recesses 11a and 12a. The dimensions of the recesses 11a and 12a may be appropriately adjusted according to the dimensions of the molded adsorbent after drying.

また、上下型11、12は、それぞれ凹部の幅方向中央部に、長手方向に延びる凸条11b、12bがそれぞれ形成されている。これらの凸条11b、12bの断面形状は角丸三角形状であり、頂部が前駆体の幅方向中央部に位置している。なお、前記凸条11b、12bの頂部は、2本の軸部材(2点鎖線で示す部分)の軸間の中央部と一致するように形成されている。 Further, the upper and lower dies 11 and 12 are provided with ridges 11b and 12b extending in the longitudinal direction, respectively, in the widthwise central portions of the recesses. The cross-sectional shape of these ridges 11b and 12b is a rounded triangular shape, and the top is located at the center in the width direction of the precursor. The tops of the ridges 11b and 12b are formed so as to coincide with the central portion between the axes of the two shaft members (portions indicated by two-dot chain lines).

前記成形吸着体の前駆体を、圧縮型10の上型11および下型12で挟み込むことにより、前駆体の圧縮と溝の形成を同時に行うことができる。なお、前駆体の寸法を調整することで、圧縮時の圧縮率を制御することができる。また、溝の形成や圧縮を行う際は、各軸部材の両端にポンプに接続されたチューブを接続しておき、ポンプを駆動して吸引しながら(成形吸着体を脱水しながら)行うことが好ましい。 By sandwiching the precursor of the shaped adsorbent between the upper mold 11 and the lower mold 12 of the compression mold 10, compression of the precursor and formation of grooves can be performed simultaneously. The compression rate during compression can be controlled by adjusting the dimensions of the precursor. When forming or compressing a groove, it is possible to connect a tube connected to a pump to both ends of each shaft member and drive the pump to suck (while dehydrating the molded adsorbent). preferable.

(乾燥)
前記第3工程では、前記前駆体を乾燥して成形吸着体を得る。乾燥温度は100℃〜120℃、乾燥時間は4時間〜6時間が好ましい。なお、軸部材は取り外してもよいし、このまま使用してもよい。例えば、軸部材として浄水カートリッジとして使用できるものを用いていれば、前駆体を乾燥すれば、浄水カートリッジが得られる。
(Dry)
In the third step, the precursor is dried to obtain a shaped adsorbent. The drying temperature is preferably 100°C to 120°C, and the drying time is preferably 4 hours to 6 hours. The shaft member may be removed or used as it is. For example, if the shaft member that can be used as a water purification cartridge is used, the water purification cartridge can be obtained by drying the precursor.

なお、繊維状バインダーの種類や堆積物の乾燥条件によっては、乾燥工程において繊維状バインダーが溶融又は変形する場合がある。繊維状バインダーの変形等の程度が大きくなると、成形吸着体中の空隙の体積が縮小し、浄水カートリッジの通水圧力損失が高くなったり、寸法安定性が低下したりする傾向がある。そのため、繊維状バインダーの種類に応じて堆積物の乾燥条件を選択することが好ましく、特に乾燥温度を低く設定することがより好ましい。 The fibrous binder may be melted or deformed in the drying step depending on the kind of the fibrous binder and the drying condition of the deposit. When the degree of deformation of the fibrous binder increases, the volume of voids in the molded adsorbent tends to decrease, resulting in higher water pressure loss in the water purification cartridge and lower dimensional stability. Therefore, it is preferable to select the drying condition of the deposit according to the kind of the fibrous binder, and it is more preferable to set the drying temperature low.

[浄水カートリッジ]
本発明の成形吸着体は、浄水器に用いられる浄水カートリッジに好適に使用できる。浄水カートリッジの構成としては、例えば、2以上の筒状の軸部材と、この軸部材の外表面に積層された成形吸着材とを備える構成が挙げられる。軸部材を有することにより、成形吸着体の機械的強度を高めることができる。前記軸部材としては、貫通孔を有する多孔性筒部材が好ましい。多孔性筒部材の形状は特に限定されず、円筒状、多角柱状が挙げられる。多孔性筒部材の材質としては樹脂、金属などが使用できる。また、活性炭粒子が軸部材内部へ入り込むことを防止できることから、軸部材としては、外表面に不織布を巻き付けた多孔性筒部材が好ましい。
[Water purification cartridge]
The molded adsorbent of the present invention can be suitably used in a water purification cartridge used in a water purifier. Examples of the configuration of the water purification cartridge include a configuration including two or more tubular shaft members and a molded adsorbent laminated on the outer surface of the shaft members. By having the shaft member, the mechanical strength of the molded adsorbent can be increased. As the shaft member, a porous cylindrical member having a through hole is preferable. The shape of the porous tubular member is not particularly limited, and examples thereof include a cylindrical shape and a polygonal column shape. Resin, metal or the like can be used as the material of the porous tubular member. Further, since the activated carbon particles can be prevented from entering the inside of the shaft member, the shaft member is preferably a porous tubular member having a nonwoven fabric wound around the outer surface.

浄水カートリッジの具体的な構成の一例を、図9を参照して説明する。なお、浄水カートリッジは、図9に記載された態様に限定されるものではない。浄水カートリッジ20は、筒状の軸部材21と、この軸部材21の外表面に積層された成形吸着材1と、前記軸部材21の一方の端部に取り付けられた接続部材22と、前記軸部材21の他方の端部に取り付けられたカバー23とを有する。前記軸部材21は、円筒状であり、複数の貫通孔21aが形成されている。軸部材21の外表面には、不織布24が巻き付けられている。接続部材22は、浄水器本体に接続可能に形成されている。また、前記成形吸着体1の周囲には、成形吸着体1を保護する不織布25が巻き付けられている。 An example of a specific configuration of the water purification cartridge will be described with reference to FIG. The water purification cartridge is not limited to the mode shown in FIG. The water purification cartridge 20 includes a cylindrical shaft member 21, a molded adsorbent 1 laminated on the outer surface of the shaft member 21, a connecting member 22 attached to one end of the shaft member 21, and the shaft. And a cover 23 attached to the other end of the member 21. The shaft member 21 is cylindrical and has a plurality of through holes 21a. A non-woven fabric 24 is wound around the outer surface of the shaft member 21. The connection member 22 is formed to be connectable to the water purifier body. Further, a non-woven fabric 25 that protects the shaped adsorbent 1 is wrapped around the shaped adsorbent 1.

図9に示した浄水カートリッジ20は、成形吸着体1の外側を原水流路とする。原水は成形吸着体1を通過し、軸部材21の内部に流入する。この際、成形吸着体1に含まれる吸着材(図示せず)により浄化され、浄水となる。得られた浄水は、接続部22から排出される。 The water purification cartridge 20 shown in FIG. 9 uses the outside of the molded adsorbent 1 as a raw water flow path. Raw water passes through the shaped adsorbent 1 and flows into the shaft member 21. At this time, it is purified by an adsorbent (not shown) contained in the shaped adsorbent 1 to become purified water. The obtained purified water is discharged from the connection part 22.

本発明の成形吸着体が使用される浄水器は、前記浄水カートリッジを用いたものであれば特に限定されない。浄水器としては、例えば、水道の蛇口の先端に直接取り付ける蛇口直結型;蛇口または蛇口に設けた分岐水栓からホースまたは配管などで接続して、蛇口近傍に設置する据え置き型;蛇口に浄水カートリッジが組み込まれた蛇口一体型(水栓一体型);シンクの下に設置するアンダーシンク型などが挙げられる。 The water purifier in which the molded adsorbent of the present invention is used is not particularly limited as long as it uses the water purification cartridge. As the water purifier, for example, a faucet direct connection type that is directly attached to the end of a faucet; a stationary type that is installed near a faucet by connecting a faucet or a branch faucet provided on the faucet with a hose or piping; a water purification cartridge for the faucet Built-in faucet (water faucet integrated type); under-sink type installed under the sink.

図10は、浄水器の好ましい態様を示す側面図である。浄水器30は、蛇口内部に浄水カートリッジ20が交換可能に内蔵された水栓一体型浄水器である。浄水器30は、分離可能な頭部31と胴部32とを有する。頭部31と胴部32とを分離して、浄水器30の内部に浄水カートリッジ1を装着する。 FIG. 10: is a side view which shows the preferable aspect of a water purifier. The water purifier 30 is a water faucet-integrated water purifier in which the water purification cartridge 20 is replaceably incorporated in the faucet. The water purifier 30 has a separable head 31 and a body 32. The head 31 and the body 32 are separated and the water purification cartridge 1 is mounted inside the water purifier 30.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and is appropriately modified and implemented within a range compatible with the gist of the above and the following. It is also possible that they are all included in the technical scope of the present invention.

1.評価方法
[中心粒子径]
粒子状活性炭の中心粒子径は、レーザー回折・散乱式粒子径分布測定装置(日機装社製、マイクロトラック、型式「MT3300」)を用いて測定した。粒子径分布は、粒子径0.021μm〜2000μmの範囲を対数スケールで132分割して、各区間の粒子径を有する活性炭粒子の体積を計測した。
1. Evaluation method [center particle size]
The central particle size of the particulate activated carbon was measured using a laser diffraction/scattering particle size distribution measuring device (Microtrac, model “MT3300” manufactured by Nikkiso Co., Ltd.). Regarding the particle size distribution, the range of the particle size of 0.021 μm to 2000 μm was divided into 132 on a logarithmic scale, and the volume of activated carbon particles having the particle size of each section was measured.

[密度]
成形吸着体(軸部材を除く。)の全体寸法を測定した。次に、カッターナイフを用いて成形吸着体を幅方向に3分割し、軸部材を取り除いた。具体的には、図11および図12の一点鎖線A、Bで示すように、成形吸着体の断面において、厚さ方向に延び、かつ、各軸部材の中心を通る直線(YZ平面(Y方向は断面形状の短径方向、Z方向は成形吸着体の長手方向))で切断した。切断後のパーツは第1軸外部1a、軸間部1b、および、第2軸外部1cとし、それぞれ乾燥後に質量を測定した。また、全体寸法から各パーツの3Dモデルを作成し、各パーツの体積を算出した。最後に、成形吸着体全体および各パーツの密度を算出した。
[density]
The overall dimensions of the molded adsorbent (excluding the shaft member) were measured. Next, the molded adsorbent was divided into three in the width direction using a cutter knife, and the shaft member was removed. Specifically, as shown by alternate long and short dash lines A and B in FIGS. 11 and 12, a straight line (YZ plane (Y direction) in the cross section of the molded adsorbent, which extends in the thickness direction and passes through the center of each shaft member. Was cut in the minor axis direction of the cross-sectional shape, and the Z direction was cut in the longitudinal direction of the molded adsorbent body)). The cut parts were the first shaft outer part 1a, the inter-shaft part 1b, and the second shaft outer part 1c, and the mass was measured after drying. In addition, a 3D model of each part was created from the overall dimensions, and the volume of each part was calculated. Finally, the density of the entire molded adsorbent and each part was calculated.

[初流水濁度]
成形吸着体を用いて浄水カートリッジを作製し、この浄水カートリッジを蛇口に取り付けた。静水圧0.75MPaに設定し、浄水に切り替えた状態で蛇口を全開にした。なお、水温は20±15℃とした。メスシリンダーを用いて、初期通水300mLを採水し、この初期通水の濁度を測定した。濁度は、濁度計(WTW社製、「Turb 430T」)を用いて測定した。
[Initial water turbidity]
A water purification cartridge was produced using the molded adsorbent, and this water purification cartridge was attached to the faucet. The static water pressure was set to 0.75 MPa, and the faucet was fully opened while the water was switched to purified water. The water temperature was 20±15°C. Using a graduated cylinder, 300 mL of initial water flow was sampled, and the turbidity of this initial water flow was measured. The turbidity was measured using a turbidimeter (“Turb 430T” manufactured by WTW).

[浄水ろ過流量測定]
成形吸着体を用いて浄水カートリッジを製作し、この浄水カートリッジを蛇口に取り付けた。JIS S 3201(2017) 「家庭用浄水器試験方法」に基づき動水圧0.1MPa時の浄水流量を測定した。
[Purified water filtration flow rate measurement]
A water purification cartridge was manufactured using the molded adsorbent, and this water purification cartridge was attached to the faucet. Based on JIS S 3201 (2017) "household water purifier test method", the purified water flow rate at a dynamic water pressure of 0.1 MPa was measured.

2.成形吸着体の製造(密度評価)
(1)成形吸着体No.1〜5
(スラリー調整)
吸着材として、粒子状活性炭(中心粒子径:30.4μm)を89.8質量%、他の吸着材を5.2質量%、繊維状バインダーとしてアクリル繊維(ビーターにより濾水度を120〜220mLに調製したもの)を5.0質量%含有する混合材料を調製した。この混合材料100質量部を、5000質量部の水に分散させてスラリーを調整した。
2. Manufacture of molded adsorbents (density evaluation)
(1) Formed adsorbent No. 1-5
(Slurry adjustment)
89.8% by mass of particulate activated carbon (center particle size: 30.4 μm) as an adsorbent, 5.2% by mass of other adsorbents, acrylic fiber as a fibrous binder (freeness of 120-220 mL by beater) Mixed material containing 5.0% by mass) was prepared. 100 parts by mass of this mixed material was dispersed in 5000 parts by mass of water to prepare a slurry.

(湿式成形)
前記スラリーを用いて湿式成形により成形吸着体の前駆体を成形した。具体的には、2本の軸部材のそれぞれの両端に、ポンプに接続されたチューブを接続した。このチューブを接続した軸部材を、スラリーを満たしたタンクに浸漬した後、ポンプを駆動してスラリーを吸引し、軸部材の表面に混合材料を堆積させた。
(Wet molding)
A precursor of a molded adsorbent was molded by wet molding using the slurry. Specifically, a tube connected to a pump was connected to both ends of each of the two shaft members. The shaft member connected with this tube was immersed in a tank filled with the slurry, and then the pump was driven to suck the slurry to deposit the mixed material on the surface of the shaft member.

軸部材には、いずれも樹脂製多孔性円筒部材の外表面に不織布を巻き付けたもの(内径:5.5mm、外径:8.0mm、全長:87mm)を使用した。また、軸部材の外表面に形成する成形吸着体の形状はいずれも、断面形状が楕円形状(長径が35.5mm以上、短径が19.5mm以上(見かけ体積43〜50mL))の楕円柱(貫通孔が2つ)となるように調整した。 As the shaft member, a resin porous cylindrical member having a nonwoven fabric wound around the outer surface (inner diameter: 5.5 mm, outer diameter: 8.0 mm, total length: 87 mm) was used. In addition, the shape of the molded adsorbent formed on the outer surface of the shaft member is an elliptic column having an elliptical cross-sectional shape (long diameter is 35.5 mm or more, short diameter is 19.5 mm or more (apparent volume 43 to 50 mL)). (Two through holes) were adjusted.

前記2本の軸部材は、互いに平行となるように配置し、軸間距離(各軸部材の断面中心部の距離)を16.0mmとした。この際、軸部材の表面の混合材料の堆積量が5.75mm以上となるようにポンプの駆動時間を調整した。なお、混合材料の堆積量は、成形吸着体の前駆体の横断面において、各軸部材の外方側(2本の軸部材の対向しない側)の堆積量を測定した。 The two shaft members were arranged so as to be parallel to each other, and the distance between the shafts (the distance between the center parts of the cross sections of the shaft members) was 16.0 mm. At this time, the driving time of the pump was adjusted so that the amount of the mixed material deposited on the surface of the shaft member was 5.75 mm or more. The amount of the mixed material deposited was measured by measuring the amount deposited on the outer side of each shaft member (the side where the two shaft members do not face each other) in the cross section of the precursor of the molded adsorbent.

(圧縮)
圧縮には圧縮型を用いた。圧縮型は、上型と下型で一対である。各型には断面形状が半楕円形の凹部が形成されており、上下型を合わせると楕円柱状の空間が形成される。なお、上下型を合わせた際に形成される楕円柱状の空間は厚さ方向の長さが19.3mm、幅方向の長さが35.3mm、長手方向の長さが85.0mmである。また、上下型は、半楕円形の凹部の幅方向中央部に、長手方向に延びる凸条が形成されている。凸条の断面形状は角丸三角形状であり、高さが2.6mm、底辺の長さが7.2mmである。前記凸条は、頂部が成形吸着体の幅方向中央部(2本の軸部材の軸間の中央部)と一致するように形成されている。
(compression)
A compression type was used for compression. The compression mold is a pair of upper mold and lower mold. A recess having a semi-elliptical cross-sectional shape is formed in each mold, and when the upper and lower molds are combined, an elliptic cylindrical space is formed. The elliptic cylindrical space formed when the upper and lower molds are combined has a thickness direction length of 19.3 mm, a width direction length of 35.3 mm, and a longitudinal direction length of 85.0 mm. In the upper and lower molds, a semi-elliptical recess has a ridge extending in the longitudinal direction at the center in the width direction. The ridge has a rounded triangular cross section, a height of 2.6 mm, and a bottom length of 7.2 mm. The ridges are formed so that the tops thereof coincide with the widthwise central portion of the molded adsorbent (the central portion between the axes of the two shaft members).

圧縮は、前記成形吸着体の前駆体に、圧縮型を押し当てることにより行った。前記成形吸着体に圧縮型を押し当てる時間は60秒とした。また、各軸部材の両端にポンプに接続されたチューブを接続しておき、ポンプを駆動して吸引しながら(成形吸着体を脱水しながら)、圧縮型を押し当て、所定時間経過後、圧縮型を外した。 The compression was performed by pressing a compression mold against the precursor of the shaped adsorbent. The time for pressing the compression mold against the shaped adsorbent was 60 seconds. Also, connect the tubes connected to the pump to both ends of each shaft member, press the compression mold while driving the pump and sucking (while dehydrating the molded adsorbent), and after a predetermined time, compress I removed the mold.

圧縮後の前駆体には、軸方向と平行に、前駆体の全体にわたって溝が形成された。前記溝は、断面が三角形状であり、頂点が2本の軸部材の中間と一致するように形成された。前記溝の先端の深さは2.4mm、溝の幅(最も浅い部分の幅)は7.0mmとなった。 Grooves were formed in the precursor after compression, parallel to the axial direction, throughout the precursor. The groove had a triangular cross section and was formed so that its apex coincided with the middle of the two shaft members. The depth of the tip of the groove was 2.4 mm, and the width of the groove (width of the shallowest part) was 7.0 mm.

[乾燥]
溝が形成された前駆体を、120℃で4時間乾燥させ、軸部材の外表面に吸着材が積層した成形吸着体No.1〜5を得た。
[Dry]
The shaped adsorbent No. 1 in which the adsorbent was laminated on the outer surface of the shaft member was obtained by drying the precursor in which the grooves were formed at 120° C. for 4 hours. 1-5 were obtained.

(2)成形吸着体No.6〜9
前記成形吸着体No.1〜5の製造方法において、圧縮を行わなかった点以外は成形吸着体No.1〜5と同様にして、成形吸着体No.6〜9を作製した。
(2) Formed adsorbent No. 6-9
The molded adsorbent No. Molded adsorbent Nos. 1 to 5 except that no compression was performed. In the same manner as in 1 to 5, the molded adsorbent No. 6-9 were produced.

得られた成形吸着体No.1〜9について、成形吸着体全体、ならびに、第1軸外部、軸間部、および、第2軸外部の密度を算出した。結果を表1に示した。 The obtained molded adsorbent No. For 1 to 9, the density of the entire molded adsorbent, and the outside of the first axis, the inter-axis part, and the outside of the second axis were calculated. The results are shown in Table 1.

Figure 2020110779
Figure 2020110779

成形吸着体No.6〜9は、湿式成形後に圧縮を行うことなく乾燥を行っている。これらの成形吸着体No.6〜9では、軸外部の平均密度と軸間部の密度との比(軸間部/軸外部平均)が0.97以下である。つまり、軸外部の密度と軸間部の密度との差が大きくなっている。これは、2本の軸部材を用いた湿式成形では、スラリー吸引時、軸間部分では、吸着材が双方の軸部材によって取り合いとなってしまうため、軸間部の密度が低くなると考えられる。 Forming adsorbent No. Nos. 6 to 9 were dried without compression after wet molding. These molded adsorbents No. In Nos. 6 to 9, the ratio of the average density outside the shaft to the density in the inter-shaft portion (inter-shaft portion/outer shaft average) is 0.97 or less. That is, the difference between the density outside the shaft and the density between the shafts is large. This is considered to be because in wet molding using two shaft members, the adsorbents of both shaft members compete with each other in the shaft-to-shaft portion during slurry suction, so that the density of the shaft-to-shaft portion becomes low.

成形吸着体No.1〜5は、湿式成形後、乾燥前に、圧縮型を用いた圧縮が施されており、特に圧縮型内面の凸条によって軸間部が大きく圧縮されている。そのため、これらの成形吸着体No.1〜5では、軸外部の平均密度と軸間部の密度との比(軸間部/軸外部平均)が0.99以上である。つまり、軸外部の密度と軸間部の密度との差が小さくなっている。 Forming adsorbent No. Nos. 1 to 5 are subjected to compression using a compression mold after wet molding and before drying, and in particular, the inter-axial portion is largely compressed by the ridges on the inner surface of the compression mold. Therefore, these molded adsorbent No. In Nos. 1 to 5, the ratio between the average density outside the axis and the density between the axes (inter-axis portion/average outside the axis) is 0.99 or more. That is, the difference between the density outside the shaft and the density between the shafts is small.

3.成形吸着体の製造(初流水濁度評価)
(1)成形吸着体No.21、22
(スラリー調整)
吸着材として、粒子状活性炭(中心粒子径:30.4μm)を89.8質量%、他の吸着材を5.2質量%、繊維状バインダーとしてアクリル繊維(ビーターにより濾水度を120〜220mLに調製したもの)を5.0質量%含有する混合材料を調製した。この混合材料100質量部を、5000質量部の水に分散させてスラリーを調整した。
3. Manufacturing of molded adsorbent (Evaluation of initial flow water turbidity)
(1) Formed adsorbent No. 21, 22
(Slurry adjustment)
89.8% by mass of particulate activated carbon (center particle size: 30.4 μm) as an adsorbent, 5.2% by mass of other adsorbents, acrylic fiber as a fibrous binder (freeness of 120-220 mL by beater) Mixed material containing 5.0% by mass) was prepared. 100 parts by mass of this mixed material was dispersed in 5000 parts by mass of water to prepare a slurry.

(湿式成形)
前記スラリーを用いて湿式成形により成形吸着体の前駆体を成形した。具体的には、2本の軸部材のそれぞれの両端に、ポンプに接続されたチューブを接続した。このチューブを接続した軸部材を、スラリーを満たしたタンクに浸漬した後、ポンプを駆動してスラリーを吸引し、軸部材の表面に混合材料を堆積させた。
(Wet molding)
A precursor of a molded adsorbent was molded by wet molding using the slurry. Specifically, a tube connected to a pump was connected to both ends of each of the two shaft members. The shaft member connected with this tube was immersed in a tank filled with the slurry, and then the pump was driven to suck the slurry to deposit the mixed material on the surface of the shaft member.

軸部材には、いずれも樹脂製多孔性円筒部材の外表面に不織布を巻き付けたもの(内径:5.5mm、外径:8.0mm、全長:87mm)を使用した。また、軸部材の外表面に形成する成形吸着体の形状はいずれも、断面形状が楕円形状(長径が35.5mm以上、短径が19.5mm以上(見かけ体積43〜50mL))の楕円柱(貫通孔が2つ)となるように調整した。 As the shaft member, a resin porous cylindrical member having a nonwoven fabric wound around the outer surface (inner diameter: 5.5 mm, outer diameter: 8.0 mm, total length: 87 mm) was used. In addition, the shape of the molded adsorbent formed on the outer surface of the shaft member is an elliptic column having an elliptical cross-sectional shape (long diameter is 35.5 mm or more, short diameter is 19.5 mm or more (apparent volume 43 to 50 mL)). (Two through holes) were adjusted.

前記2本の軸部材は、互いに平行となるように配置し、軸間距離(各軸部材の断面中心部の距離)を16.0mmとした。この際、軸部材の表面の混合材料の堆積量が5.75mm以上となるようにポンプの駆動時間を調整した。なお、混合材料の堆積量は、成形吸着体の前駆体の横断面において、各軸部材の外方側(2本の軸部材の対向しない側)の堆積量を測定した。 The two shaft members were arranged so as to be parallel to each other, and the distance between the shafts (the distance between the center parts of the cross sections of the shaft members) was 16.0 mm. At this time, the driving time of the pump was adjusted so that the amount of the mixed material deposited on the surface of the shaft member was 5.75 mm or more. The amount of the mixed material deposited was measured by measuring the amount deposited on the outer side of each shaft member (the side where the two shaft members do not face each other) in the cross section of the precursor of the molded adsorbent.

(圧縮)
圧縮には圧縮型を用いた。圧縮型は、上型と下型で一対である。各型には断面形状が半楕円形の凹部が形成されており、上下型を合わせると楕円柱状の空間が形成される。なお、上下型を合わせた際に形成される楕円柱状の空間は厚さ方向の長さが19.3mm、幅方向の長さが35.3mm、長手方向の長さが85.0mmである。
(compression)
A compression type was used for compression. The compression mold is a pair of upper mold and lower mold. A recess having a semi-elliptical cross-sectional shape is formed in each mold, and when the upper and lower molds are combined, an elliptic cylindrical space is formed. The elliptic cylindrical space formed when the upper and lower molds are combined has a thickness direction length of 19.3 mm, a width direction length of 35.3 mm, and a longitudinal direction length of 85.0 mm.

圧縮は、前記成形吸着体の前駆体に、圧縮型を押し当てることにより行った。前記成形吸着体に圧縮型を押し当てる時間は60秒とした。また、各軸部材の両端にポンプに接続されたチューブを接続しておき、ポンプを駆動して吸引しながら(成形吸着体を脱水しながら)、圧縮型を押し当て、所定時間経過後、圧縮型を外した。 The compression was performed by pressing a compression mold against the precursor of the shaped adsorbent. The time for pressing the compression mold against the shaped adsorbent was 60 seconds. Also, connect the tubes connected to the pump to both ends of each shaft member, press the compression mold while driving the pump and sucking (while dehydrating the molded adsorbent), and after a predetermined time, compress I removed the mold.

(乾燥)
圧縮後の前駆体を、120℃で4時間乾燥させ、軸部材の外表面に吸着材が積層した成形吸着体No.21、22を得た。
(Dry)
The compressed precursor is dried at 120° C. for 4 hours, and a molded adsorbent No. 1 in which an adsorbent is laminated on the outer surface of the shaft member. 21 and 22 were obtained.

(2)成形吸着体No.23、24
前記成形吸着体No.21、22の製造方法において、圧縮を行わなかった点以外は成形吸着体No.21、22と同様にして、成形吸着体No.23、24を作製した。
(2) Formed adsorbent No. 23, 24
The molded adsorbent No. In the manufacturing method of Nos. 21 and 22, except for the fact that compression was not performed, the molded adsorbent No. In the same manner as in Nos. 21 and 22, the molded adsorbent No. 23 and 24 were produced.

得られた成形吸着体No.21〜24について、成形吸着体全体の質量、密度、初流水濁度を評価した。結果を表2に示した。 The obtained molded adsorbent No. For Nos. 21 to 24, the mass, density, and initial flow water turbidity of the entire shaped adsorbent were evaluated. The results are shown in Table 2.

Figure 2020110779
Figure 2020110779

成形吸着体No.23、24は、湿式成形後に圧縮を行うことなく乾燥を行っている。これらの成形吸着体No.23、24では、初流水の濁度が高くなっている。圧縮を施さない場合、軸間部の密度が低く、空隙が多くなる。そのため、この軸間部の活性炭の微粒子が浄水とともに流出していると考えられる。 Forming adsorbent No. Nos. 23 and 24 are dried without compression after wet molding. These molded adsorbents No. At 23 and 24, the turbidity of the initial water is high. When the compression is not applied, the density of the inter-axial portion is low and the voids are large. Therefore, it is considered that the fine particles of the activated carbon in the inter-axis portion are flowing out together with the purified water.

成形吸着体No.21、22は、湿式成形後、乾燥前に、圧縮型を用いた圧縮が施されている。これらの成形吸着体No.21、22では、成形吸着体No.23、24に比べて、初流水の濁度が低くなっている。これは、圧縮を施すことで成形吸着体内部の空隙を低減することができ、活性炭の微粒子が浄水とともに流出することが抑制されたためと考えられる。 Forming adsorbent No. 21 and 22 are compressed using a compression mold after wet molding and before drying. These molded adsorbents No. 21 and 22, the molded adsorbent No. Compared with 23 and 24, the turbidity of the initial water is lower. It is considered that this is because the voids inside the molded adsorbent could be reduced by applying compression, and the fine particles of activated carbon were suppressed from flowing out together with purified water.

4.成形吸着体の製造(溝深さ評価)
(1)成形吸着体No.25〜28
(スラリー調整)
吸着材として、粒子状活性炭(中心粒子径:30.4μm)を89.8質量%、他の吸着材を5.2質量%、繊維状バインダーとしてアクリル繊維(ビーターにより濾水度を120〜220mLに調製したもの)を5.0質量%含有する混合材料を調製した。この混合材料100質量部を、5000質量部の水に分散させてスラリーを調整した。
4. Manufacture of molded adsorbent (groove depth evaluation)
(1) Formed adsorbent No. 25-28
(Slurry adjustment)
89.8% by mass of particulate activated carbon (center particle size: 30.4 μm) as an adsorbent, 5.2% by mass of other adsorbents, acrylic fiber as a fibrous binder (freeness of 120-220 mL by beater) Mixed material containing 5.0% by mass) was prepared. 100 parts by mass of this mixed material was dispersed in 5000 parts by mass of water to prepare a slurry.

(湿式成形)
前記スラリーを用いて湿式成形により成形吸着体の前駆体を成形した。具体的には、2本の軸部材のそれぞれの両端に、ポンプに接続されたチューブを接続した。このチューブを接続した軸部材を、スラリーを満たしたタンクに浸漬した後、ポンプを駆動してスラリーを吸引し、軸部材の表面に混合材料を堆積させた。
(Wet molding)
A precursor of a molded adsorbent was molded by wet molding using the slurry. Specifically, a tube connected to a pump was connected to both ends of each of the two shaft members. The shaft member connected with this tube was immersed in a tank filled with the slurry, and then the pump was driven to suck the slurry to deposit the mixed material on the surface of the shaft member.

軸部材には、いずれも樹脂製多孔性円筒部材の外表面に不織布を巻き付けたもの(内径:5.5mm、外径:8.0mm、全長:87mm)を使用した。また、軸部材の外表面に形成する成形吸着体の形状はいずれも、断面形状が楕円形状(長径が35.5mm以上、短径が19.5mm以上(見かけ体積43〜50mL))の楕円柱(貫通孔が2つ)となるように調整した。 As the shaft member, a resin porous cylindrical member having a nonwoven fabric wound around the outer surface (inner diameter: 5.5 mm, outer diameter: 8.0 mm, total length: 87 mm) was used. In addition, the shape of the molded adsorbent formed on the outer surface of the shaft member is an elliptic column having an elliptical cross-sectional shape (long diameter is 35.5 mm or more, short diameter is 19.5 mm or more (apparent volume 43 to 50 mL)). (Two through holes) were adjusted.

前記2本の軸部材は、互いに平行となるように配置し、軸間距離(各軸部材の断面中心部の距離)を16.0mmとした。この際、軸部材の表面の混合材料の堆積量が5.75mm以上となるようにポンプの駆動時間を調整した。なお、混合材料の堆積量は、成形吸着体の前駆体の横断面において、各軸部材の外方側(2本の軸部材の対向しない側)の堆積量を測定した。 The two shaft members were arranged so as to be parallel to each other, and the distance between the shafts (the distance between the center parts of the cross sections of the shaft members) was 16.0 mm. At this time, the driving time of the pump was adjusted so that the amount of the mixed material deposited on the surface of the shaft member was 5.75 mm or more. The amount of the mixed material deposited was measured by measuring the amount deposited on the outer side of each shaft member (the side where the two shaft members do not face each other) in the cross section of the precursor of the molded adsorbent.

(圧縮)
圧縮には圧縮型を用いた。圧縮型は、上型と下型で一対である。各型には断面形状が半楕円形の凹部が形成されており、上下型を合わせると楕円柱状の空間が形成される。なお、上下型を合わせた際に形成される楕円柱状の空間は厚さ方向の長さが19.3mm、幅方向の長さが35.3mm、長手方向の長さが85.0mmである。
(compression)
A compression type was used for compression. The compression mold is a pair of upper mold and lower mold. A recess having a semi-elliptical cross-sectional shape is formed in each mold, and when the upper and lower molds are combined, an elliptic cylindrical space is formed. The elliptic cylindrical space formed when the upper and lower molds are combined has a thickness direction length of 19.3 mm, a width direction length of 35.3 mm, and a longitudinal direction length of 85.0 mm.

成形吸着体No.25〜28では、異なる圧縮型を用いた。
成形吸着体No.25では、上下型の凹部に凸条を有さないものを用いた。
成形吸着体No.26〜28で用いた上下型は、半楕円形の凹部の幅方向中央部に、長手方向に延びる凸条が形成されている。凸条の断面形状は角丸三角形状である。前記凸条は、頂部が成形吸着体の幅方向中央部(2本の軸部材の軸間の中央部)と一致するように形成されている。そして、前記凸条の断面形状の寸法は、成形吸着体No.26では、高さが2.0mm、底辺の長さが5.6mmとした。成形吸着体No.27では、高さが2.6mm、底辺の長さが7.2mmとした。成形吸着体No.28では、高さが3.2mm、底辺の長さが11.4mmとした。
Forming adsorbent No. For 25-28, different compression types were used.
Forming adsorbent No. In No. 25, the upper and lower molds having no convex stripe were used.
Forming adsorbent No. In the upper and lower molds used in Nos. 26 to 28, a semi-elliptical recess has a ridge extending in the longitudinal direction at the center in the width direction. The cross-sectional shape of the ridge is rounded triangular. The ridges are formed so that the tops thereof coincide with the widthwise central portion of the molded adsorbent (the central portion between the axes of the two shaft members). And, the dimension of the cross-sectional shape of the ridge is the molded adsorbent No. In No. 26, the height was 2.0 mm and the length of the base was 5.6 mm. Forming adsorbent No. In No. 27, the height was 2.6 mm and the base length was 7.2 mm. Forming adsorbent No. In No. 28, the height was 3.2 mm and the length of the base was 11.4 mm.

圧縮は、前記成形吸着体の前駆体に、圧縮型を押し当てることにより行った。前記成形吸着体に圧縮型を押し当てる時間は60秒とした。また、各軸部材の両端にポンプに接続されたチューブを接続しておき、ポンプを駆動して吸引しながら(成形吸着体を脱水しながら)、圧縮型を押し当て、所定時間経過後、圧縮型を外した。 The compression was performed by pressing a compression mold against the precursor of the shaped adsorbent. The time for pressing the compression mold against the shaped adsorbent was 60 seconds. Also, connect the tubes connected to the pump to both ends of each shaft member, press the compression mold while driving the pump and sucking (while dehydrating the molded adsorbent), and after a predetermined time, compress I removed the mold.

成形吸着体No.26〜28では、圧縮後の前駆体には、軸方向と平行に、前駆体の全体にわたって溝が形成された。前記溝は、断面が三角形状であり、頂点が2本の軸部材の中間と一致するように形成された。 Forming adsorbent No. In 26-28, the precursor after compression had grooves formed throughout the precursor, parallel to the axial direction. The groove had a triangular cross section and was formed so that its apex coincided with the middle of the two shaft members.

(乾燥)
圧縮後の前駆体を、120℃で4時間乾燥させ、軸部材の外表面に吸着材が積層した成形吸着体No.25〜28を得た。なお、成形吸着体No.28は、乾燥後に溝に沿って亀裂が生じた。
(Dry)
The compressed precursor is dried at 120° C. for 4 hours, and a molded adsorbent No. 1 in which an adsorbent is laminated on the outer surface of the shaft member. 25-28 were obtained. The molded adsorbent No. No. 28 cracked along the groove after drying.

得られた成形吸着体No.25〜27について、成形吸着体全体の質量、密度、浄水ろ過流量を評価した。結果を表3に示した。 The obtained molded adsorbent No. For 25 to 27, the mass, density and purified water filtration flow rate of the entire molded adsorbent were evaluated. The results are shown in Table 3.

Figure 2020110779
Figure 2020110779

表3に示したように、頂点が2本の軸部材の間隔の中央と一致するように溝を形成することで、浄水ろ過流量が向上している。これは2本の軸部材間の中央に溝を形成することで、軸間部における成形吸着体表面から軸部材までの距離(ろ層厚さ)が短くなったためと考えられる。2本の軸部材を用いた場合、成形吸着体の断面形状を楕円形状とすると、軸外部のろ層に対して、軸間部のろ層が厚くなる。この場合、原水が軸外部を流通するようになり、軸間部が活用されにくくなる。しかし、溝を形成して軸間部のろ総を薄くすることで、原水が軸間部も流通しやすくなり、浄水ろ過流量が向上したと考えられる。 As shown in Table 3, by forming the groove so that the apex coincides with the center of the interval between the two shaft members, the purified water filtration flow rate is improved. It is considered that this is because by forming a groove in the center between the two shaft members, the distance (filter layer thickness) from the surface of the molded adsorbent in the inter-shaft portion to the shaft member was shortened. When two shaft members are used, if the shaped adsorbent has an elliptical cross-sectional shape, the filter layer in the inter-axis portion becomes thicker than the filter layer outside the shaft. In this case, the raw water comes to flow outside the shaft, making it difficult to utilize the inter-shaft portion. However, it is considered that by forming the grooves and thinning the filter in the inter-shaft portion, the raw water easily flows in the inter-shaft portion, and the purified water filtration flow rate is improved.

本発明の成形吸着体は、浄水器の吸着材として好適に使用できる。 The shaped adsorbent of the present invention can be suitably used as an adsorbent for a water purifier.

1:成形吸着体、2:貫通孔、3:溝、10:圧縮型、11:上型、12:下型、20:浄水カートリッジ、21:軸部材、22:接続部材、23:カバー、24:不織布、25:不織布、30:浄水器、31:頭部、32:胴部 1: molded adsorbent, 2: through hole, 3: groove, 10: compression mold, 11: upper mold, 12: lower mold, 20: water purification cartridge, 21: shaft member, 22: connection member, 23: cover, 24 : Nonwoven fabric, 25: Nonwoven fabric, 30: Water purifier, 31: Head, 32: Body

Claims (9)

活性炭と、繊維状バインダーとを含有する成形吸着体であって、
前記成形吸着体の形状が、楕円柱状または略楕円柱状であり、
成形吸着体内部に、長手方向に貫通する貫通孔を2以上有することを特徴とする成形吸着体。
A shaped adsorbent containing activated carbon and a fibrous binder,
The shape of the shaped adsorbent is an elliptic cylinder or a substantially elliptic cylinder,
A molded adsorbent having two or more through-holes penetrating in the longitudinal direction inside the molded adsorbent.
前記成形吸着体の断面において、成形吸着体の長径と短径との比(長径/短径)が、1.25〜2である請求項1に記載の成形吸着体。 The molded adsorbent according to claim 1, wherein a ratio of a major axis to a minor axis of the molded adsorbent (major axis/minor axis) is 1.25 to 2 in the cross section of the molded adsorbent. 前記貫通孔の長手方向をz方向とし、
前記成形吸着体の断面において、前記2以上の貫通孔が並ぶ方向をx方向、このx方向に直交する方向をy方向としたとき、
前記成形吸着体を、それぞれの貫通孔の中心を通るyz平面で切断した時、x方向の最も外側に設けられた貫通孔の外方の部分の平均密度(Dout)と貫通孔間の部分の平均密度(Din)との比(Din/Dout)が、0.98以上である請求項1または2に記載の成形吸着体。
The longitudinal direction of the through hole is the z direction,
In the cross section of the molded adsorbent, when the direction in which the two or more through holes are arranged is the x direction and the direction orthogonal to this x direction is the y direction,
When the shaped adsorbent is cut in the yz plane passing through the center of each through hole, the average density (D out ) of the outer portion of the through hole provided at the outermost side in the x direction and the portion between the through holes. The molded adsorbent according to claim 1 or 2, having a ratio (D in /D out ) to the average density (D in ) of 0.98 or more.
前記成形吸着体は、外表面に、長手方向に延びる溝を有し、
前記溝の断面形状の最深部が、隣り合う貫通孔の間隔の中央に位置している請求項1〜3のいずれか一項に記載の成形吸着体。
The molded adsorbent has a groove extending in the longitudinal direction on the outer surface,
The molded adsorbent according to any one of claims 1 to 3, wherein the deepest part of the cross-sectional shape of the groove is located at the center of the interval between adjacent through holes.
前記成形吸着体の断面において、外表面の各地点から貫通孔までの最短距離をろ層厚さとしたとき、
ろ層厚さの最大値(Tmax)とろ層厚さの最小値(Tmin)との比(Tmax/Tmin)が2.0以下である請求項1〜4のいずれか一項に記載の成形吸着体。
In the cross section of the molded adsorbent, when the shortest distance from each point on the outer surface to the through hole is the filter layer thickness,
The ratio (T max /T min ) of the maximum value (T max ) of the filter layer thickness and the minimum value (T min ) of the filter layer thickness is 2.0 or less. The shaped adsorbent described.
前記成形吸着体が、湿式成形により作製されたものである請求項1〜5のいずれか一項に記載の成形吸着体。 The molded adsorbent according to any one of claims 1 to 5, wherein the molded adsorbent is produced by wet molding. 活性炭と繊維状バインダーとを含有し、成形吸着体内部に長手方向に貫通する貫通孔を2以上有する成形吸着体の製造方法であって、
活性炭と繊維状バインダーと水とを混合して材料スラリーを調製する第1工程、
前記材料スラリーを用いて、2以上の軸部材を用いた湿式成形により、前駆体を作製する第2工程、および、
前記前駆体を乾燥して成形吸着体を得る第3工程を有することを特徴とする成形吸着体の製造方法。
A method for producing a molded adsorbent, which contains activated carbon and a fibrous binder, and has two or more through-holes penetrating in the longitudinal direction inside the molded adsorbent,
A first step of preparing a material slurry by mixing activated carbon, a fibrous binder and water,
A second step of preparing a precursor by wet molding using two or more shaft members using the material slurry; and
A method of manufacturing a shaped adsorbent, comprising a third step of drying the precursor to obtain a shaped adsorbent.
前記第2工程において、前記前駆体表面に、隣り合う軸部材の軸間の中央に、長手方向に延びる溝を形成する請求項7に記載の成形吸着体の製造方法。 The method for producing a molded adsorbent according to claim 7, wherein in the second step, a groove extending in the longitudinal direction is formed on the surface of the precursor at the center between the axes of the adjacent shaft members. 前記第2工程において、前記前駆体全体に、圧縮を施す請求項7または8に記載の成形吸着体の製造方法。 The method for producing a molded adsorbent according to claim 7 or 8, wherein, in the second step, the entire precursor is compressed.
JP2019005119A 2019-01-16 2019-01-16 Shaped adsorbent and method for manufacturing shaped adsorbent Active JP7224596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019005119A JP7224596B2 (en) 2019-01-16 2019-01-16 Shaped adsorbent and method for manufacturing shaped adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005119A JP7224596B2 (en) 2019-01-16 2019-01-16 Shaped adsorbent and method for manufacturing shaped adsorbent

Publications (2)

Publication Number Publication Date
JP2020110779A true JP2020110779A (en) 2020-07-27
JP7224596B2 JP7224596B2 (en) 2023-02-20

Family

ID=71666684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005119A Active JP7224596B2 (en) 2019-01-16 2019-01-16 Shaped adsorbent and method for manufacturing shaped adsorbent

Country Status (1)

Country Link
JP (1) JP7224596B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306710A (en) * 2004-03-22 2005-11-04 Kyocera Corp Honeycomb structure and method for manufacturing the same, and canister using the honeycomb structure
US20180207611A1 (en) * 2017-01-25 2018-07-26 Ingevity South Carolina, Llc Particulate adsorbent material and methods of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306710A (en) * 2004-03-22 2005-11-04 Kyocera Corp Honeycomb structure and method for manufacturing the same, and canister using the honeycomb structure
US20180207611A1 (en) * 2017-01-25 2018-07-26 Ingevity South Carolina, Llc Particulate adsorbent material and methods of making the same

Also Published As

Publication number Publication date
JP7224596B2 (en) 2023-02-20

Similar Documents

Publication Publication Date Title
JP6101195B2 (en) Molded adsorbent and water purifier using the same
JP5513701B1 (en) Water treatment filter and manufacturing method thereof
JP4731642B2 (en) Porous structure and manufacturing method thereof
JP6144655B2 (en) Molded adsorbent and water purifier using the same
JPWO2016080240A1 (en) Adsorption filter
TWI573624B (en) Adsorption filter
JP6080827B2 (en) Manufacturing method of molded adsorbent
JP7224596B2 (en) Shaped adsorbent and method for manufacturing shaped adsorbent
KR20180065280A (en) Water treatment filter and water treatment system and apparatus comprising the same
US10987650B2 (en) Adsorption filter
US20220081322A1 (en) Water purifying filter and water purifier using same
JP6243180B2 (en) Activated carbon molded body and method for producing activated carbon molded body
JP4593127B2 (en) Edible oil filtration filter and method for producing the same
CN111065601A (en) Granular activated carbon and method for producing same
JP6370130B2 (en) Manufacturing method of molded adsorbent
KR102641691B1 (en) Water treatment filter, water treatment system and apparatus comprising the same
CN102154953A (en) Automobile fuel filter paper suitable for national IV standard and preparation method thereof
WO2023008437A1 (en) Water purification filter and water purifier
WO2022071019A1 (en) Adsorption filter
JPH0372325B2 (en)
TW202346215A (en) adsorption filter
JP2022023531A (en) Water purification filter
KR20180039905A (en) Water treatment filter and water treatment system and apparatus comprising the same
JP2001239158A (en) Molded adsorbent and its production method
JPH04310237A (en) Pellet-formed adsorbent and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230131

R150 Certificate of patent or registration of utility model

Ref document number: 7224596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150