JP2020109329A - Heat exchanger double tube - Google Patents

Heat exchanger double tube Download PDF

Info

Publication number
JP2020109329A
JP2020109329A JP2018248776A JP2018248776A JP2020109329A JP 2020109329 A JP2020109329 A JP 2020109329A JP 2018248776 A JP2018248776 A JP 2018248776A JP 2018248776 A JP2018248776 A JP 2018248776A JP 2020109329 A JP2020109329 A JP 2020109329A
Authority
JP
Japan
Prior art keywords
ridge
ridges
height
tube
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018248776A
Other languages
Japanese (ja)
Other versions
JP6958911B2 (en
Inventor
佐藤 進
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watanabe Seisakusho KK
Waki Seisakusho KK
Original Assignee
Watanabe Seisakusho KK
Waki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe Seisakusho KK, Waki Seisakusho KK filed Critical Watanabe Seisakusho KK
Priority to JP2018248776A priority Critical patent/JP6958911B2/en
Publication of JP2020109329A publication Critical patent/JP2020109329A/en
Application granted granted Critical
Publication of JP6958911B2 publication Critical patent/JP6958911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

To provide a heat exchanger double tube capable of adequately reducing the fluid resistance of fluid flowing between an inner tube having spiral ridges and an outer tube.SOLUTION: The heat exchanger double tube is formed with an inner tube 20 on which two-four circularly swollen ridges are spirally circulated and which is mounted in an outer tube 10 to actualize heat exchange between fluid flowing in a clearance 35 between the outer tube 10 and the inner tube 20 and fluid flowing in the inner tube. A height (Ha) of one of the ridges 21 is made a ratio of 8-26% higher than a height (Hb) of the other ridge 23, and the higher ridge 22 is made to abut on the outer tube inner peripheral face throughout the whole periphery.SELECTED DRAWING: Figure 2

Description

本発明は、外管と内管との隙間を流れる流体と内管内を流れる流体との熱交換を図る熱交換用二重管に関する。 The present invention relates to a heat exchange double pipe for exchanging heat between a fluid flowing through a gap between an outer pipe and an inner pipe and a fluid flowing inside the inner pipe.

従来自動車の空調器の熱交換器等では、エバポレータから送られる冷媒の流れる螺旋状の内管を外管で囲んで二重管とし、その内管と外管の隙間にコンプレッサーからの液状の冷媒を流して、局所的に比較的効率の良い熱交換が実施されている。
本出願人にあっても、特許文献1の図1(C)及び特許文献2の図1の直管部に示される如く、内管に螺旋状の凹凸を刻設すると共にそれを外管に密着させて互いの接触効率を高め熱の交換効率を改善した二重管を提案している。
ところで、この螺旋状の二重管について本出願人がさらに検討したところ、この二重管は接触効率が良い反面、螺旋状の内管と外管との隙間が狭くなることで、流体抵抗が増大するという問題が提起された。例えば、隙間を流れる流体抵抗が増すと、流体を圧送するためのコンプレッサー等の圧送装置への負荷が生じてしまい、省エネルギー効果への改善が求められた。
そこで、これを解消する為、例えば、特許文献2の図3及び図8に示される如く、螺旋状の内管と外管との間に少し広い隙間を設け、この隙間に冷媒を流すことで通路抵抗が軽減できるはずである。
しかし、このように単に内管と外管との隙間を広げてしまうと、流体抵抗を少なくしたぶん冷媒が隙間を短時間のうちに通過してしまい、接触時間が失われて、却って、熱の交換効率を落としてしまうという問題が惹起される。
In a conventional heat exchanger of an air conditioner of an automobile, a spiral inner pipe in which a refrigerant sent from an evaporator flows is surrounded by an outer pipe to form a double pipe, and a liquid refrigerant from a compressor is provided in a gap between the inner pipe and the outer pipe. The heat exchange is locally performed with relatively high efficiency.
The applicant of the present invention, as shown in FIG. 1(C) of Patent Document 1 and the straight pipe portion of FIG. 1 of Patent Document 2, engraves spiral irregularities on the inner pipe and uses it on the outer pipe. We have proposed a double tube that is closely contacted with each other to improve contact efficiency and improve heat exchange efficiency.
By the way, when the applicant further studied this spiral double tube, the double tube has good contact efficiency, but the gap between the spiral inner tube and the outer tube becomes narrow, so that the fluid resistance is The issue of increasing numbers was raised. For example, when the resistance of the fluid flowing through the gap increases, a load is applied to a pressure-feeding device such as a compressor for pressure-feeding the fluid, and improvement in energy saving effect has been demanded.
Therefore, in order to solve this, for example, as shown in FIG. 3 and FIG. 8 of Patent Document 2, a slightly wide gap is provided between the spiral inner pipe and the outer pipe, and the refrigerant is allowed to flow in this gap. The passage resistance should be reduced.
However, if the gap between the inner pipe and the outer pipe is simply widened in this way, the refrigerant passes through the gap in a short time because the fluid resistance is reduced, and the contact time is lost. This raises the problem of reducing the exchange efficiency.

特許第5993554号Patent No. 5995354 特許第5709733号Patent No. 5709733 特許第4350079号Patent No. 4350079 特開2002−318083JP 2002-318083

本発明は、上記課題を解決しようとしてなされたもので、外管と内管の隙間を旋回する螺旋状の流れの抵抗を減じつつ、一方で、そこから生じる接触時間の短縮化等の弊害を回避し、流路抵抗と接触時間との間に均衡のとれた熱交換用二重管を実現しようとするものである。 The present invention has been made in order to solve the above problems, while reducing the resistance of the spiral flow swirling the gap between the outer tube and the inner tube, on the other hand, adverse effects such as shortening of the contact time resulting therefrom. This is to avoid and try to realize a double tube for heat exchange in which flow resistance and contact time are balanced.

上記課題を解決するため、本発明の請求項1に記載の熱交換用二重管は、弧状に膨出させた凸条を2条〜4条に螺旋状に周回させた内管を外管に内装させてなり、該外管と内管との隙間を流れる流体と内管内を流れる流体との熱交換を図る二重管において、前記凸条のうちの1条の高さ(Ha)を他の凸条の高さ(Hb)に対して8〜26%の比率で高くし、その高くした凸条を全周に渡って外管内周面に当接させたことを特徴とする。 In order to solve the above-mentioned problems, the double tube for heat exchange according to claim 1 of the present invention is an outer tube in which an inner tube formed by spirally circling a convex strip that bulges in an arc into two to four rows. In a double pipe for which heat is exchanged between the fluid flowing in the gap between the outer pipe and the inner pipe and the fluid flowing in the inner pipe, the height (Ha) of one of the ridges is set to The height (Hb) of the other ridges is increased at a rate of 8 to 26%, and the raised ridges are brought into contact with the inner peripheral surface of the outer pipe over the entire circumference.

請求項2に記載の熱交換用二重管は、高くした凸条の横幅(Wa)を他の凸条の横幅(Wb)と等しく、且つ、その凸条の曲率半径(Ra)が他の凸条の曲率半径(Rb)よりも小さな劣弧状としたことを特徴とする。 In the double tube for heat exchange according to claim 2, the height (Wa) of the raised ridge is equal to the width (Wb) of the other ridge, and the radius of curvature (Ra) of the ridge is different. It is characterized in that it has an inferior arc shape smaller than the radius of curvature (Rb) of the ridge.

本発明の請求項1に記載の熱交換用二重管は、内管の螺旋状の凸条を2条、3条又は4条とし、その凸条のうちの1条の高さ(Ha)を他の凸条の高さ(Hb)に対して8〜26%の比率で高くすることで、高くした1つの凸条とより低い他の凸状との間で高低差(Hs)から新たな間隙が形成され、その形成された間隙に比例して全体の流体抵抗を減じることができ、負荷の問題を解消することができる。
他方、その高くした凸条は全周に渡って外管に当接状態に接合されるため、2条、3条又は4条からなる凸状のうち1条のみは流入口から排出口へと向かう流路を閉塞し、流路抵抗が過大に減じられて接触時間の短さからくる熱効率を落とすという懸念を払拭する。
総じて、流体抵抗の大きさから生じる圧送装置の負荷を解消しつつ、且つ、それが接触時間を失って熱交換効率を下げてしまうという懸念を払拭し、互いの均衡のとれた作用効果をもたらすことができる。
このとき、凸条のうちの1条の高さ(Ha)を他の凸条の高さ(Hb)に対して8〜26%の比率で高い値とすれば、区切られた空間の高低差が小さ過ぎず、又、過大となって螺旋の接触効率を落とすこともなく、最適な間隙の効果が得られる。
In the double tube for heat exchange according to claim 1 of the present invention, the number of spiral projections of the inner tube is two, three or four, and the height (Ha) of one of the projections is Ha. By increasing the height of other convex stripes (Hb) at a rate of 8 to 26%, the height difference (Hs) between one raised convex stripe and another convex shape lower than Since a large gap is formed, the overall fluid resistance can be reduced in proportion to the formed gap, and the load problem can be solved.
On the other hand, since the raised ridge is joined to the outer pipe in abutting state over the entire circumference, only one of the two ridges, three ridges, or four ridges extends from the inlet to the outlet. This eliminates the concern that the flow path to be closed will be blocked and the flow path resistance will be excessively reduced to reduce the thermal efficiency due to the short contact time.
In general, while eliminating the load on the pumping device caused by the magnitude of fluid resistance, it also eliminates the concern that it loses contact time and lowers heat exchange efficiency, resulting in a balanced working effect. be able to.
At this time, if the height (Ha) of one of the ridges is set to a high value at a rate of 8 to 26% with respect to the height (Hb) of the other ridges, the height difference of the separated spaces Is not too small and the contact efficiency of the spiral is not lowered by being too large, and the optimum gap effect can be obtained.

請求項2の記載の熱交換用二重管にあっては、高くした凸条の曲率半径(Ra)を他の凸条の曲率半径(Rb)よりも小さなものとすることで、その横幅(Wa)を他の凸条の横幅(Wb)と等しくすることができ、2条、3条又は4条からなる凸条の幅をすべて均一に揃えることが可能となる。
この結果、もし上記選択された1条の高さ(Ha)をそのまま高くすると、その高さ分だけ凸条の横幅が拡大されて他の凸条の横幅と不揃いとなる心配を解消し、螺旋状の流路に生じる流れをバランスのとれた均質なものとし、安定的な流れを得ることができる。
In the double tube for heat exchange according to claim 2, by making the radius of curvature (Ra) of the raised ridge smaller than the radii of curvature (Rb) of the other ridges, the lateral width ( Wa) can be made equal to the lateral width (Wb) of the other ridges, and the widths of the ridges consisting of two, three or four ridges can all be made uniform.
As a result, if the height (Ha) of the selected one strip is increased as it is, the lateral width of the convex strip is enlarged by the height and the fear that it is not aligned with the lateral width of other convex strips is eliminated. It is possible to obtain a stable and uniform flow by making the flow generated in the uniform flow path uniform and balanced.

本発明の二重管の外管を縦断し内管を露出させた状態を示す側面図である。It is a side view showing the state where the outer pipe of the double pipe of the present invention was longitudinally cut and the inner pipe was exposed. 外管と内管の要部を示す切断側面図である。It is a cutting side view which shows the principal part of an outer pipe and an inner pipe. 接続管に接続した使用状態を示す縦断側面図である。It is a vertical side view which shows the use condition connected to the connection pipe. 曲率半径を決める際の模式図である。It is a schematic diagram when determining a curvature radius.

本発明二重管は、例えば自動車の空調器の熱交換器として用いられるもので、図1〜3に示す如く、外管10とそこに内装される内管20とからなり、該内管20には弧状に膨出させた凸条が螺旋状に刻設されると共に、その内管20と外管10との間に間隙が形成され、エバポレータから流れる内管内の冷媒と、それを囲んだ間隙を流れる圧縮器からの液状冷媒との間で熱交換が図られる構造となる。
その間隙の一端に流入管13が、他端側に流出管14が配され、該流入管13及び流出管14の下方には、流入した流体を空域部30の間隙35へと導くための導入空間31と、排出へと導くため導出空間32が形成される。
The double pipe of the present invention is used, for example, as a heat exchanger of an air conditioner of an automobile, and is composed of an outer pipe 10 and an inner pipe 20 installed therein as shown in FIGS. An arcuate bulge is engraved in a spiral shape on the tube, and a gap is formed between the inner tube 20 and the outer tube 10 to surround the refrigerant in the inner tube flowing from the evaporator. The structure allows heat exchange with the liquid refrigerant from the compressor flowing through the gap.
An inflow pipe 13 is arranged at one end of the gap and an outflow pipe 14 is arranged at the other end thereof, and an inflowing fluid is introduced below the inflow pipe 13 and the outflow pipe 14 for guiding the inflowing fluid to the gap 35 of the air space portion 30. A space 31 and a lead-out space 32 for leading to discharge are formed.

該外管10には、一方に上記流入管13と連通する流入口13を配し、他端に流出管14と連通する流出口14aを配設する。
その形態は直管状で、内側に平坦面の内周面11が配され、その左右には後述する内管20の閉鎖凸部25a、25bに固着する形態で端部12a及び12bが配され、その内周面11と左右の端部12a、12bとに囲まれた閉鎖空間を形成する。
The outer pipe 10 is provided with an inflow port 13 communicating with the inflow pipe 13 on one side and an outflow port 14a communicating with the outflow pipe 14 on the other end.
The form is a straight tube, the inner peripheral surface 11 of a flat surface is arranged on the inner side, and the end portions 12a and 12b are arranged on the left and right sides thereof so as to be fixed to the closing convex portions 25a, 25b of the inner pipe 20 described later, A closed space surrounded by the inner peripheral surface 11 and the left and right ends 12a and 12b is formed.

内管20は、外管10に内装されて、上記閉鎖空間内に外管10と内管20とに挟まれた間隙35を形成するものであるが、該間隙35に対して、導入空間31からの流体を取り入れるための取入口33を配設し、出口となる導出空間32側には出口34を配設する。 The inner pipe 20 is installed in the outer pipe 10 to form a gap 35 sandwiched between the outer pipe 10 and the inner pipe 20 in the closed space. An inlet 33 for taking in the fluid from is provided, and an outlet 34 is provided on the side of the outlet space 32 that serves as an outlet.

内管20には凸条21を突設し、その凸条21と隣り合う凸条21と、その凸条と外管10の内周面11との間に間隙35が形成されるが、その凸条21は螺旋状に内管20を周回し、それらが数条となって一群の流路36を形成する。
即ち、螺旋の形態は、2条、3条・・の螺旋が対となって周回し、それらが一群の流路を形成する。例えば、上記導入空間31からの取入口33を、3つの取入口33a、33b、33cとした場合には、その3つの取入口に対応して、凸条22a、22b、22bを設け、各凸条に挟まれた間隙35a、35b、35cに3つの流路36a、36b、36cを形成し、対応して3つの出口34a、34b、34cを配設する。
A ridge 21 is provided on the inner pipe 20. A ridge 21 adjacent to the ridge 21 and a gap 35 is formed between the ridge 21 and the inner peripheral surface 11 of the outer pipe 10. The ridges 21 spirally circulate around the inner pipe 20, and the ridges 21 form several lines to form a group of channels 36.
That is, in the form of a spiral, two-, three-,... spirals circulate in pairs to form a group of flow paths. For example, when the intake ports 33 from the introduction space 31 are three intake ports 33a, 33b, 33c, the ridges 22a, 22b, 22b are provided in correspondence with the three intake ports, and Three flow paths 36a, 36b, 36c are formed in the gaps 35a, 35b, 35c sandwiched between the strips, and three outlets 34a, 34b, 34c are correspondingly arranged.

この一群の凸条21にあって、本発明では、2条〜4条に渡って螺旋状に周回させたものを対象とする。
その理由は、1条では本発明に有効でなく、5条以上となると1つの螺旋のピッチが大きくなり、巻き数が減少して流通抵抗が小さくなるが、その反面、流体が速く流出してしまい接触時間が短くなるからである。
In the present invention, this group of convex strips 21 is intended to be spirally wound over 2 to 4 strips.
The reason is that one-row is not effective for the present invention, and if the number of threads is five or more, the pitch of one spiral becomes large, the number of turns decreases and the flow resistance decreases, but on the other hand, the fluid flows out quickly. This is because the contact time becomes short.

この2条〜4条の凸条にあって、本発明は、その凸条のうちの1つの凸条22の高さを、より低い他の凸条23の高さより高く形成し、且つ、その高くした凸22を全周に渡って外管内周面に当接状態とする。
例えば、図3に示す如く、3つの凸条がある場合、そのうちの1つの凸条22aの高さHaを、他の凸条23a、23bの高さHbに対して8〜26%の比率でより高い値に設定する。
そこには、図示の如く、1つの凸条22a1と次の巡回番にあたる22a1との間に他の凸条23a、23bが挟まれる形態となり、且つ、高くした凸22aを全周に渡って外管も内周面11に当接させると、その1つの凸条22a1と次の凸条22a1との間に閉鎖された空間が形成されると共に、そこには新たな間隙35が形成されるものとなる。
即ち、凸条の上方を頂部としその左右を峰部としそれ以外を平坦部としたとき、高くした凸条の頂部22aとより低い他の凸条の頂部23aの高低差Hsから新たな間隙35aが形成され、一方、その平坦部24a、24b、24c及び峰部22a、23a2、23b2の上方には従来からの間隙35bが担保されている。
そして、それら間隙35は先の巡回の凸条22a1と次の巡回の凸条22a1とで区切られた区画空間を形成し、その区切られた空間のなかで高低差から生まれる新たな間隙35aと担保された間隙35bとの総和として間隙35が形成されることとなる。
In the two to four ridges, the present invention forms the height of one ridge 22 of the ridges higher than the height of the other ridge 23 which is lower, and The raised protrusion 22 is brought into contact with the inner peripheral surface of the outer pipe over the entire circumference.
For example, as shown in FIG. 3, when there are three ridges, the height Ha of one of the ridges 22a is 8 to 26% with respect to the height Hb of the other ridges 23a and 23b. Set a higher value.
As shown in the figure, there is a configuration in which one convex strip 22a1 and another convex strip 22a1 sandwich the other convex strips 23a and 23b, and the raised convex strip 22a extends over the entire circumference. When the pipe is also brought into contact with the inner peripheral surface 11, a closed space is formed between one of the ridges 22a1 and the next ridge 22a1 and a new gap 35 is formed therein. Becomes
That is, when the upper part of the ridge is the top part and the left and right sides thereof are the ridge parts and the other parts are the flat parts, the height difference Hs between the raised ridge top part 22a and the lower ridge part 23a of another ridge is increased to a new gap 35a. On the other hand, the conventional gap 35b is secured above the flat portions 24a, 24b, 24c and the peak portions 22a, 23a2, 23b2.
Then, these gaps 35 form a partitioned space partitioned by the convex line 22a1 of the previous round and the convex line 22a1 of the next round, and a new gap 35a created from the height difference in the partitioned space and a collateral. The gap 35 will be formed as the total of the gap 35b.

そしてこのとき、2条〜4条の凸条のうちの1つの凸条22aの高さHaを、他の凸条23a、23bの高さHbに対する比率((Ha−Hb)/Hb)を、8〜26%高い値に設定する。
これは、1つの凸条22aの高さを他の凸条23a、23bの高さHbに対して8%以下とした場合には、区切られた空間の高低差が少なく隙間35の効果が薄く、一方28%以上とした場合には、間隙が過大となり螺旋による接触効率を落としてしまい、8〜26%の範囲で最も適した間隙35の効果が得られるからである。
And at this time, the ratio Ha ((Ha-Hb)/Hb) of the height Ha of one convex strip 22a among the two to four convex strips to the height Hb of the other convex strips 23a, 23b, Set 8 to 26% higher.
This means that when the height of one ridge 22a is 8% or less of the height Hb of the other ridges 23a and 23b, the height difference between the separated spaces is small and the effect of the gap 35 is small. On the other hand, when it is 28% or more, the gap becomes excessively large and the contact efficiency due to the spiral is reduced, and the most suitable effect of the gap 35 is obtained in the range of 8 to 26%.

具体的には、平坦部となる内管外側の直径を16.0mmとし、小突起を頂点とした螺旋頂部の直径を18.3mmとし、凸条の頂部の直径を約18.5mmとした場合に、最適となる間隙寸法は、本出願人の実験では、0.1〜0.3mmの間隔であった。
これを比率化すると、8%〜26%に相当するものとなる。
Specifically, when the outer diameter of the inner tube to be the flat portion is 16.0 mm, the diameter of the spiral top with the small protrusion as the apex is 18.3 mm, and the diameter of the top of the ridge is about 18.5 mm. In addition, the optimum gap size was 0.1 to 0.3 mm in the experiment by the applicant.
When this is ratioed, it corresponds to 8% to 26%.

上記高くした凸22a1の頂部22a2、22a2を外管の内周面11に当接させるには、両者を密着状態とするか、又は頂部の一部を潰して圧接状態におくかのいずれであっても良い。 In order to bring the tops 22a2 and 22a2 of the raised projections 22a1 into contact with the inner peripheral surface 11 of the outer tube, they are brought into close contact with each other, or a part of the top is crushed and placed in a pressure contact state. May be.

一方、その高くした凸条にあって、そのまま頂部を高くすると、それに追随して峰部の横幅が拡大し、高くした凸条の峰部と隣り合う凸条の峰部との間に形成される平坦部の横幅を狭くしてしまい、全体として平坦部が不揃いとなってしまう心配が指摘される。
そこで、1つの凸条を高くしつつも、その峰部の横幅を他の凸条の峰部の横幅と等しいものにすることが望ましく、以下にその手段を説明する。
On the other hand, in the raised ridge, if the top is raised as it is, the lateral width of the ridge will follow up and it will be formed between the raised ridge and the adjacent ridge. It is pointed out that the width of the flat part is narrowed and the flat part becomes uneven as a whole.
Therefore, it is desirable to make the width of one ridge equal to the width of the ridge of another ridge while increasing the height of one ridge. The means will be described below.

図4に示す如く、高くした凸条の高さをHa、他の凸条の高さをHb、高くした凸条の横幅の半値をWa、他の凸条の横幅の半値をWb、高くした凸条の曲率半径をRa、他の凸条の曲率半径をRbとする。
このとき、高くした凸条の高さHa及び横幅Waを含めた直角三角形△AaNaCaと曲率半径Raを含む直角三角形OaMaAaとは、θaを等しくする相似形となる。
従って、△AaNaCa∽△OaMaAaが成り立つ。
同様に他の凸条にあっても、
△AbNbCb∽△ObMbAb が成り立つ。
As shown in FIG. 4, the height of the raised ridges is Ha, the height of the other ridges is Hb, the half width of the raised ridges is Wa, and the half width of the other ridges is Wb. The radius of curvature of the ridge is Ra, and the radii of curvature of the other ridges are Rb.
At this time, the right-angled triangle ΔAaNaCa including the height Ha and the lateral width Wa of the raised ridge and the right-angled triangle OaMaAa including the radius of curvature Ra are similar shapes in which θa is equal.
Therefore, ΔAaNaCa∽ΔOaMaAa is established.
Similarly, even in other convex stripes,
ΔAbNbCb∽ΔObMbAb holds.

従って、高くした凸条の曲率半径をRaと他の凸条の曲率半径をRbには次の関係式が成立する。
Ra=1/2・√(Wa+Ha)/sinθa・・・・(1)
(但し、θa=tan−1Ha/Wa )
Rb=1/2・√(Wb+Hb)/sinθb・・・・(2)
(但し、θb=tan−1Hb/Wb )
つまり、高くした凸条と他の凸条との間にHaとHbの高低差を設けたとき、それぞれの曲率半径RaとRbとは上記(1)、(2)の関係となる。
そしてこのとき、高くした凸条の横幅と他の凸条の横幅とを等しく設定しようとする場合には、Wa=Wbの関係が成り立つ。
Therefore, the following relational expression holds for the radius of curvature of the raised ridge and the radius of curvature of the other ridges Ra and Rb.
Ra=1/2·√(Wa 2 +Ha 2 )/sin θa... (1)
(However, θa=tan −1 Ha/Wa)
Rb=1/2·√(Wb 2 +Hb 2 )/sin θb (2)
(However, θb=tan −1 Hb/Wb)
That is, when a height difference between Ha and Hb is provided between the raised ridge and another ridge, the respective radii of curvature Ra and Rb have the above-described relationships (1) and (2).
At this time, when it is attempted to set the lateral widths of the raised ridges and the lateral widths of the other ridges equal, the relationship Wa=Wb is established.

この関係から、例えば、上記高くした凸条の高さHaと他の凸条の高さHbと、他の凸条の横幅Wb及び他の凸条の曲率半径をRbが既に設定されているとき、ここに高くした凸条の横幅Waを他の凸条の横幅Wbと等しくし(Wa=Wb)、且つ、高くした凸条の曲率半径をRaとした場合には、上記式(1)、(2)から次の関係式を導きだすことができる。
Ra=√(4Rb・sinθb−Hb+Ha)/2sinθb・・・・(3)
(但し、θa=tan−1Ha/Wa、θb=tan−1Hb/Wb、Rb=1/2・√(Wb+Hb)/sinθb)
From this relationship, for example, when the height Ha of the raised ridge and the height Hb of the other ridge, the lateral width Wb of the other ridge, and the radius of curvature Rb of the other ridge are already set, When the lateral width Wa of the raised ridge is made equal to the lateral width Wb of the other ridge (Wa=Wb) and the radius of curvature of the raised ridge is Ra, the above equation (1), The following relational expression can be derived from (2).
Ra=√(4Rb 2 ·sin 2 θb−Hb 2 +Ha 2 )/2sin θb ··· (3)
(However, θa=tan −1 Ha/Wa, θb=tan −1 Hb/Wb, Rb=½·√(Wb 2 +Hb 2 )/sin θb)

式(3)によれば、高くした凸条の高さHaと他の凸条の高さHbと他の凸条の横幅の半値Wb及び他の凸条の曲率半径Rbが決定されていれば、高くした凸条の曲率半径Raを正しく定めることができる。 According to the formula (3), if the height Ha of the raised ridge, the height Hb of the other ridge, the half width Wb of the width of the other ridge, and the radius of curvature Rb of the other ridge are determined. , The radius of curvature Ra of the raised ridge can be correctly determined.

例えば、高くした凸条の高さHaを1.4mmとし、他の凸条の高さHbを1.2mmとし、高くした凸条の横幅Waを8.87mmと他の凸条の横幅を8.87mmと等しく設定した場合は以下の如くとなる。
式(1)及びθa=tan−1Ha/Wa より、
Rb=1/2・√(Wb+Hb)/sinθb
=1/2/√(4.435+1.2)/sin15.14
=8.79mm
次いで、式(3)及びθb=tan−1Hb/Wbより
Ra=√(4Rbsinθb−Hb+Ha)/2sinθb・
=1/2/√(4.435+1.4)/sin17.52
=7.72mm
が決定される。
For example, the height Ha of the raised ridges is 1.4 mm, the height Hb of the other ridges is 1.2 mm, the lateral width Wa of the raised ridges is 8.87 mm, and the lateral widths of the other ridges are 8. When it is set equal to 0.87 mm, the result is as follows.
From equation (1) and θa=tan −1 Ha/Wa,
Rb=1/2·√(Wb 2 +Hb 2 )/sin θb
= 1/2/√(4.435 2 +1.2 2 )/sin 15.14
= 8.79 mm
Then, from equation (3) and θb=tan −1 Hb/Wb
Ra=√(4Rb 2 sin θb−Hb 2 +Ha 2 )/2sin θb·
= 1/2/√(4.435 2 +1.4 2 )/sin 17.52
=7.72 mm
Is determined.

例えば、高くした凸条の両側の平坦面の幅Faを3.8mmとし、他の凸条同士の平坦面の幅Fbを3.8mmとすれば、図示の如く、高くした凸条の高さと他の凸条の高さとに高低差を設けつつ、高くした凸条の横幅と他の凸条の横幅を等しくし、且つ、各平坦部の間隔も等しい、均質な流路が形成されることが確認された。 For example, if the width Fa of the flat surface on both sides of the raised ridge is 3.8 mm and the width Fb of the flat surface between the other ridges is 3.8 mm, the height of the raised ridge is as shown in the figure. A uniform flow path is formed in which the heights of the other ridges are different from each other and the lateral widths of the raised ridges are equal to the lateral widths of the other ridges and the intervals between the flat portions are also equal. Was confirmed.

上記二重管の製法は限定されるものではなく、例えば、内管を液圧で拡張させる拡管工法とし、外管を直径の大きな管を縮小させる縮管工法として製造することができる。
又、外管と凸条の頂点に生じる接合部を形成するには、一旦外管を大径とし、それを縮管させる過程で凸条の頂点を一部圧潰させて圧接状態とすることもでき、その圧潰の寸法を変化させることで凸条の高さを求める高さに設定することができる。
このとき、凸条の頂点部の一部を潰した圧接状態とすると、外管に内管を強く固定することができ、又、必要に応じて外管へのセンタリング効果が得られる。
The method for producing the double pipe is not limited, and for example, the inner pipe can be produced by expanding the pipe by hydraulic pressure and the outer pipe can be produced by reducing the pipe having a large diameter.
In addition, in order to form a joint that occurs at the apex of the outer tube and the ridge, the outer tube may be once made to have a large diameter, and the apex of the ridge may be partially crushed in the process of contracting the outer tube to bring it into a pressure contact state. The height of the ridge can be set to the required height by changing the size of the crush.
At this time, if the apexes of the ridges are partly crushed into a pressed state, the inner tube can be strongly fixed to the outer tube, and a centering effect on the outer tube can be obtained if necessary.

次いで、上記工程からなる本発明二重管の作用及びその効果を説明する。
先ず、圧縮器から送られた流体は、流入管13及び流入口13aを経て導入空間31へ至ると、これに臨んだ取入口33へと導かれる。
例えば、3つの取入口33a、33b、33cが配設された場合、それが凸条22a、23a、23b、22aとの間に形成される間隙35a、35b、35cに連結され、その間隙によって形成される流路36a、36b、36cへと連なる。そして、これが螺旋状に旋回することで、2巻き、3巻き・・と連なり,一群の流路が形成される。
すると、これら流路は、内管20を周回する螺旋の比較的長い流路を形成することから、内管20内の流体と長く接触するものとなる。
Next, the action and effect of the double pipe of the present invention including the above steps will be described.
First, when the fluid sent from the compressor reaches the introduction space 31 via the inflow pipe 13 and the inflow port 13a, it is guided to the intake port 33 facing this.
For example, when three intakes 33a, 33b, 33c are provided, they are connected to the gaps 35a, 35b, 35c formed between the protrusions 22a, 23a, 23b, 22a, and formed by the gaps. The flow paths 36a, 36b, 36c are connected to each other. Then, when this spirally turns, two turns, three turns, and so on are connected to form a group of flow paths.
Then, these flow paths form a relatively long spiral flow path that circulates the inner pipe 20, and thus come into long contact with the fluid in the inner pipe 20.

このとき、本発明二重管にあっては、上記の如く、先の高くした凸22a1と次の凸条22a1との間が区画されると共に、高くした凸条22とより低い他の凸条23との間に間隙35が形成される。
この間隙35には平坦部23の上方に間隙35bが担保されていると共に、新たな間隙35aが形成される。
即ち、先ず、平坦部23の上方に担保された間隙35bには、導入された流体の主流が形成され、その主流が比較的長い距離となる螺旋経路を周回し、内管20を流れる流体と長い時間に渡って接触し、効率の良い熱交換を促す。
At this time, in the double pipe of the present invention, as described above, the space between the raised ridge 22a1 and the next raised ridge 22a1 is partitioned, and the raised ridge 22 and other lower ridges are formed. A gap 35 is formed between the gaps 23 and 23.
In this gap 35, a gap 35b is secured above the flat portion 23, and a new gap 35a is formed.
That is, first, the main flow of the introduced fluid is formed in the gap 35b secured above the flat portion 23, and the main flow circulates in the spiral path having a relatively long distance and flows into the inner pipe 20. Contact for a long time to promote efficient heat exchange.

そして、2条〜4条の凸条のうちの1つの凸条22aの高さHaを、他の凸条23a、23bの高さHbに対して、8〜26%の比率で高い値に設定すると、区切られた空間の高低差が小さ過ぎず、又、過大となって螺旋の接触効率を落とすこともなく、最適な間隙の効果が得られる。 Then, the height Ha of one protrusion 22a of the two to four protrusions is set to a high value at a rate of 8 to 26% with respect to the height Hb of the other protrusions 23a and 23b. Then, the height difference between the separated spaces is not too small, and the contact efficiency of the spiral is not excessively lowered to obtain the optimum gap effect.

次いで、本発明二重管には、上記の如く、平坦部23上方の間隙35bに加えて、高くした凸条22の頂部22aとより低い他の凸条23の頂部23aの高低差Hsから生まれる新たな間隙35aが形成される。
この新たな間隙35aにより、間隙35の容積が増し、その増加した容積に比例して、外管10と内管20とに挟まれた間隙35内に生じる流体抵抗を減じることができる。
この結果、従来の装置では、隙間を流れる流体抵抗が増すと流体を圧送するための圧縮器等への負荷となって省エネ効果が求められたものを、斯かる流体抵抗の減少によりこれを解消することが可能となる。
Next, in the double pipe of the present invention, as described above, in addition to the gap 35b above the flat portion 23, the height difference Hs between the top portion 22a of the raised ridge 22 and the top portion 23a of another lower ridge 23 is generated. A new gap 35a is formed.
The new gap 35a increases the volume of the gap 35, and the fluid resistance generated in the gap 35 sandwiched between the outer pipe 10 and the inner pipe 20 can be reduced in proportion to the increased volume.
As a result, in the conventional device, when the fluid resistance flowing through the gap increases, the load on the compressor for pumping the fluid and the like, which is required to save energy, are solved by reducing the fluid resistance. It becomes possible to do.

更に、上記凸条21の形成は、内管の螺旋状の凸条を2条、3条又は4条のものを対象とし、その高くした凸条22を全周に渡って外管に当接状態に接合するので、上記平坦部上方の間隙35bと新たに形成された間隙35aは、他の凸条23を挟んで高くした一つの凸条21と次の順番の高くした凸条21との間に区画された閉鎖空間を形成する。
従って、2条、3条又は4条からなる一群の流路は、この閉鎖空間を乗り越えることはなく、この結果、新たな間隙35aの形成により流路抵抗が過大に減じられて、接触時間の短さからくる熱効率を落とすという懸念を解消することができる。
Further, the formation of the ridges 21 is intended for the spiral ridges of the inner pipe having two ridges, three ridges or four ridges, and the raised ridges 22 contact the outer pipe over the entire circumference. Since they are joined in a state, the gap 35b above the flat portion and the newly formed gap 35a are formed by one protrusion 21 that is raised with another protrusion 23 sandwiched between it and the protrusion 21 that is raised in the next order. Form a closed space defined between them.
Therefore, a group of flow passages composed of two, three or four passages does not cross over this closed space, and as a result, the flow passage resistance is excessively reduced due to the formation of the new gap 35a, which reduces the contact time. It is possible to eliminate the concern that the thermal efficiency is reduced due to the short length.

上記平坦部23の上方に担保された間隙35bと新たな間隙35aとの総和となる間隙35は、流体抵抗の大きさから生じる圧送装置の負荷を解消しつつ、且つ、それが接触時間を失って熱の交換効率を下げてしまうという懸念を払拭し、互いに均衡のとれた作用効果をもたらすものとなる。 The gap 35, which is the sum of the gap 35b secured above the flat portion 23 and the new gap 35a, eliminates the load of the pumping device caused by the magnitude of the fluid resistance and loses the contact time. This eliminates the concern that the heat exchange efficiency will be reduced, resulting in balanced effects.

一方、もし上記選択された1条の高さHaをそのまま高くすると、その高さ分だけ凸条の横幅が拡大され、他の凸条の横幅と不揃いとなり、螺旋状の空間から生じる流れにアンバランスが生じるおそれがある。
しかし、高くした凸条の横幅Waを他の凸条の横幅Wbと等しく、且つ、その凸条の曲率半径(Ra)が他の凸条の曲率半径(Rb)よりも小さな劣弧状とすれば、その横幅Waを他の凸条の横幅Wbと等しくすることができ、2条、3条又は4条からなる凸条の幅をすべて均一に揃えることできる。
従って、1つの凸条を高くしても、その横幅を低い他の凸条の横幅と等しくすることができ、その結果、一群をなす流路のすべてを均衡のとれた安定的な流れとすることができる。
On the other hand, if the height Ha of the selected one strip is increased as it is, the lateral width of the convex strip is enlarged by the height and becomes uneven with the lateral widths of other convex strips. Balance may occur.
However, if the raised ridge lateral width Wa is equal to the other ridge lateral width Wb and the radius of curvature (Ra) of the ridge is smaller than the radius of curvature (Rb) of the other ridge, it is an inferior arc shape. The lateral width Wa can be made equal to the lateral width Wb of the other ridges, and the widths of the ridges consisting of two, three or four ridges can be made uniform.
Therefore, even if one ridge is made high, its lateral width can be made equal to the width of the other ridge that is low, and as a result, all of the flow paths forming a group are balanced and stable. be able to.

このとき、式(1)、(2)及び、Ra=√(4Rb・sinθb−Hb+Ha)/2sinθb(但し、θa=tan−1Ha/Wa、θb=tan−1Hb/Wb、Rb=1/2・√(Wb+Hb)/sinθb)の式(3)によれば、必要な高さ及び横幅を設定した後に、対応する曲率半径を求めることができ、高くした凸条の横幅Waと他の凸条の横幅Wbとを正確に一致させることができる。 At this time, the equations (1) and (2) and Ra=√(4Rb 2 ·sin 2 θb−Hb 2 +Ha 2 )/2sin θb (where θa=tan −1 Ha/Wa and θb=tan −1 Hb/ According to the equation (3) of Wb, Rb=1/2√(Wb 2 +Hb 2 )/sin θb), after setting the required height and width, the corresponding radius of curvature can be obtained and increased. The lateral width Wa of the ridge and the lateral width Wb of the other ridge can be accurately matched.

上記本発明二重管の効果は、螺旋部が直線状の場合を主に説明したが、管が屈曲する部位においても、同様な効果を発揮することができる。 The effect of the above-described double pipe of the present invention has been mainly described in the case where the spiral portion is linear, but the same effect can be exerted even in a portion where the pipe bends.

10 外管
11 内周面
12a、12b 端部
13 流入管
13a 流入口
14 流出管
14a 流出口
20 内管
21 凸条
22 高くした凸条
22a1 各高くした凸条
22a2 頂部
22a3 峰部
23 他の凸条
23a、23b 各他の凸条
23a1、23b1 頂部
23a2、23b2 峰部
24 平坦部
24a、24b、24c 各平坦部
25 閉鎖部
25a、25b 閉鎖凸部
30 空域部
31 導入空間
32 導出空間
33 取入口
33a、33b、33c 各取入口
34 出口
34a、34b、34c 各出口
35 間隙
35a 新たな間隙
35b 担保された間隙
36 流路
36a、36b、36c 各流路
Ha 高くした凸条の高さ
Hb 他の凸条の高さ
Hs 高低差
Wa 高くした凸条の横幅
Wb 他の凸条の横幅
Ra 高くした凸条の曲率半径
Rb 他の凸条の曲率半径
Fa、Fb、Fc 平坦部の横幅
10 outer pipe 11 inner peripheral surfaces 12a, 12b end 13 inflow pipe 13a inflow port 14 outflow pipe 14a outflow port 20 inner pipe 21 convex ridge 22 raised ridge 22a1 each raised ridge 22a2 top 22a3 ridge 23 other convex Strips 23a, 23b Other convex strips 23a1, 23b1 Tops 23a2, 23b2 Peaks 24 Flats 24a, 24b, 24c Flats 25 Closings 25a, 25b Closing convexes 30 Airspaces 31 Introducing space 32 Deriving space 33 Inlet 33a, 33b, 33c Each inlet 34 Outlet 34a, 34b, 34c Each outlet 35 Gap 35a New gap 35b Secured gap 36 Channels 36a, 36b, 36c Each channel Ha Each height of raised ridge Hb Other Height of ridge Hs Height difference Wa Horizontal width of raised ridge Wb Lateral width of other ridge Ra Ra radius of curvature of raised ridge Rb Radius of curvature of other ridge Fa, Fb, Fc Lateral width of flat portion

Claims (2)

弧状に膨出させた凸条を2条〜4条に螺旋状に周回させた内管を外管に内装させてなり、該外管と内管との隙間を流れる流体と内管内を流れる流体との熱交換を図る二重管において、
前記凸条のうちの1条の高さ(Ha)を他の凸条の高さ(Hb)に対して8〜26%の比率で高くし、その高くした凸条を全周に渡って外管内周面に当接させたことを特徴とする熱交換用二重管。
A fluid flowing in a gap between the outer tube and the inner tube and a fluid flowing in the inner tube, wherein an inner tube in which an arcuately bulged ridge is spirally wound into two to four threads is provided inside the outer tube. In a double tube that exchanges heat with
The height (Ha) of one of the ridges is increased at a rate of 8 to 26% with respect to the height (Hb) of the other ridge, and the height of the ridge is increased over the entire circumference. A double tube for heat exchange characterized by being brought into contact with the inner peripheral surface of the tube.
高くした凸条の横幅(Wa)を、他の凸条の横幅(Wb)と等しく、且つ、その凸条の曲率半径(Ra)が他の凸条の曲率半径(Rb)よりも小さな劣弧状としたことを特徴とする請求項1に記載の熱交換用二重管。 The height (Wa) of the raised ridge is equal to the width (Wb) of the other ridge, and the radius of curvature (Ra) of the ridge is smaller than the radius of curvature (Rb) of the other ridge. The double tube for heat exchange according to claim 1, wherein
JP2018248776A 2018-12-29 2018-12-29 Double tube for heat exchange Active JP6958911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018248776A JP6958911B2 (en) 2018-12-29 2018-12-29 Double tube for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018248776A JP6958911B2 (en) 2018-12-29 2018-12-29 Double tube for heat exchange

Publications (2)

Publication Number Publication Date
JP2020109329A true JP2020109329A (en) 2020-07-16
JP6958911B2 JP6958911B2 (en) 2021-11-02

Family

ID=71570007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018248776A Active JP6958911B2 (en) 2018-12-29 2018-12-29 Double tube for heat exchange

Country Status (1)

Country Link
JP (1) JP6958911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008182A1 (en) 2021-07-29 2023-02-02 住友理工株式会社 Double-tube heat exchanger and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008182A1 (en) 2021-07-29 2023-02-02 住友理工株式会社 Double-tube heat exchanger and manufacturing method therefor

Also Published As

Publication number Publication date
JP6958911B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
EP3415854B1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
JP6529709B1 (en) Plate type heat exchanger, heat pump device and heat pump type heating and cooling system
EP3458789B1 (en) Double tube for heat-exchange
WO2017101472A1 (en) Inlet flow regulating structure and plate heat exchanger
JP2020109329A (en) Heat exchanger double tube
JP2020109330A (en) Heat exchanger double tube
KR101987599B1 (en) The plate heat exchanger of welding type
KR102010156B1 (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
CN110749210B (en) Shell-and-tube heat exchanger with variable tube diameter
CN108955319B (en) Box type heat exchanger
CN110617724B (en) Shell-and-tube heat exchanger with variable side length
CN209910482U (en) Flat pipe for replacing fin channel of plate-fin heat exchanger
CN111336840B (en) Shell and tube heat exchanger
JP6732647B2 (en) Heat exchanger
KR102242649B1 (en) Disk type heat transfer plate
EP4257905A1 (en) Spiral heat exchanger and heat exchange device
KR101885476B1 (en) Heat exchanger plate and exchanger plate assembly having the same
CN113063307A (en) Heat exchange core and heat exchanger
CN116659275A (en) Plate heat exchanger
JP2014238226A (en) Panel radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6958911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531