JP2020109175A - Functional film - Google Patents

Functional film Download PDF

Info

Publication number
JP2020109175A
JP2020109175A JP2020032736A JP2020032736A JP2020109175A JP 2020109175 A JP2020109175 A JP 2020109175A JP 2020032736 A JP2020032736 A JP 2020032736A JP 2020032736 A JP2020032736 A JP 2020032736A JP 2020109175 A JP2020109175 A JP 2020109175A
Authority
JP
Japan
Prior art keywords
thickness
film
functional film
thermoplastic elastomer
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020032736A
Other languages
Japanese (ja)
Other versions
JP6994064B2 (en
Inventor
智則 有馬
Tomonori Arima
智則 有馬
昌治 泊里
Shoji Tomari
昌治 泊里
一兆 稲家
Kazuyoshi Ineka
一兆 稲家
拓也 小坂
Takuya Kosaka
拓也 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Matai Co Ltd
Original Assignee
Nihon Matai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Matai Co Ltd filed Critical Nihon Matai Co Ltd
Priority to JP2020032736A priority Critical patent/JP6994064B2/en
Publication of JP2020109175A publication Critical patent/JP2020109175A/en
Application granted granted Critical
Publication of JP6994064B2 publication Critical patent/JP6994064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a functional film that is used for a vibration system support member of a speaker or the like and has a very small thickness unevenness.SOLUTION: The functional film comprises a thermoplastic elastomer, and has a thickness of 10 to 100 μm, and a tolerance in thickness unevenness of 2 μm or less. When it is measured for stress at 5% elongation and stress at 10% elongation on the basis of JIS-K7127, each shows a fluctuation range between the maximum value and minimum value of 20% or less.SELECTED DRAWING: None

Description

本発明は、熱可塑性エラストマーからなる機能性フィルムに関する。 The present invention relates to a functional film made of a thermoplastic elastomer.

スピーカーの振動系支持部材のように音響特性が要求される制振材用途を中心に、熱可塑性エラストマーからなる機能性フィルムを使用することが知られている(たとえば特許文献1および2参照)。 It is known to use a functional film made of a thermoplastic elastomer mainly for vibration damping material applications such as a vibration system supporting member of a speaker that requires acoustic characteristics (see, for example, Patent Documents 1 and 2).

特開2004−269756号公報JP 2004-269756 A 特開2001−59057号公報JP, 2001-59057, A

上述の制振材用途においてスピーカーの音質を良好にするには、使用される機能性フィルムの厚さムラを極力少なくし、厚さを均一にすることが要求される。 In order to improve the sound quality of the speaker in the above-mentioned vibration damping material application, it is required to reduce the thickness unevenness of the functional film used and to make the thickness uniform.

しかしながら、熱可塑性エラストマーは、100,000〜500,000程度と分子量が大きく、かつ溶融時の粘度バラツキが大きいので、均一な厚さのフィルムを得ることが難しく、安定した音質を提供することが困難であった。 However, since the thermoplastic elastomer has a large molecular weight of about 100,000 to 500,000 and a large viscosity variation at the time of melting, it is difficult to obtain a film having a uniform thickness, and stable sound quality can be provided. It was difficult.

本発明の目的は、厚さムラが極めて少ない機能性フィルムを提供することにある。 An object of the present invention is to provide a functional film having extremely small thickness unevenness.

本発明者は、上述の課題を解決するために鋭意検討を重ねた結果、以下の知見を得た。つまり、コーティング法により、熱可塑性エラストマーを含む溶液中の固形分濃度、粘度等を制御することで得られるフィルムの厚さムラを所望範囲内に抑えることができるという知見である。 The present inventor has obtained the following findings as a result of earnest studies to solve the above problems. That is, it is a finding that the coating method can suppress the thickness unevenness of the film obtained by controlling the solid content concentration, viscosity, etc. in the solution containing the thermoplastic elastomer within a desired range.

本発明は、この本発明者の知見に基づき、上述の課題を解決するための手段は以下の通りである。 The present invention is based on the knowledge of the present inventor, and means for solving the above problems are as follows.

<1> 熱可塑性エラストマーからなり、厚さが10〜100μmであり、その公差が2μm以内であり、かつ、JIS K7127に基づき測定した5%伸長時および10%伸長時の応力のいずれもが、それぞれ最大値と最小値との間の変動幅が20%以内であることを特徴とする機能性フィルムである。 <1> Made of a thermoplastic elastomer, having a thickness of 10 to 100 μm, a tolerance of 2 μm or less, and both stresses at 5% elongation and 10% elongation measured according to JIS K7127, Each of the functional films is characterized in that the fluctuation range between the maximum value and the minimum value is within 20%.

<2> 前記溶液は、前記熱可塑性エラストマーを10〜50重量%含む<1>に記載の機能性フィルムである。 <2> The solution is the functional film according to <1>, containing 10 to 50% by weight of the thermoplastic elastomer.

<4> 前記熱可塑性エラストマーは、ウレタン系、ポリエステル系、ポリアミド系、オレフィン系およびスチレン系の少なくともいずれかである<1>または<2>に記載の機能性フィルムである。 <4> The thermoplastic elastomer is the functional film according to <1> or <2>, which is at least one of urethane type, polyester type, polyamide type, olefin type, and styrene type.

<5> 前記熱可塑性エラストマーはポリウレタンエラストマー(TPU)である<1>から<3>のいずれかに記載の機能性フィルムである。 <5> The thermoplastic elastomer is the functional film according to any one of <1> to <3>, which is a polyurethane elastomer (TPU).

<6> スピーカーの振動系支持部材に用いられる<1>から<4>のいずれかに記載の機能性フィルムである。 <6> The functional film according to any one of <1> to <4>, which is used for a vibration system supporting member of a speaker.

本発明によれば、厚さの公差を2μm以内と厚さムラが極めて少ない高精度な機能性フィルムを提供することができる。 According to the present invention, it is possible to provide a highly accurate functional film having a thickness tolerance of 2 μm or less and having an extremely small thickness unevenness.

これにより、制振材用途等の当該機能性フィルムが使用される用途において、良好な音質を得ることが可能となる。 This makes it possible to obtain good sound quality in applications in which the functional film is used such as in vibration damping materials.

図1は、本発明のエステルタイプのポリウレタンフィルムにて、硬度を異ならせた場合の0〜80℃における貯蔵弾性率の経温変化を示すグラフである。FIG. 1 is a graph showing changes over time in storage elastic modulus at 0 to 80° C. when hardness is varied in the ester type polyurethane film of the present invention. 図2は、本発明のエーテルタイプのポリウレタンフィルムにて、硬度を異ならせた場合の0〜80℃における貯蔵弾性率の経温変化を示すグラフである。FIG. 2 is a graph showing changes over time in the storage elastic modulus at 0 to 80° C. when the ether type polyurethane film of the present invention has different hardness. 図3は、本発明のポリエステルフィルムにて、硬度を異ならせた場合の0〜80℃における貯蔵弾性率の経温変化を示すグラフである。FIG. 3 is a graph showing changes with time in storage elastic modulus at 0 to 80° C. when hardness is varied in the polyester film of the present invention.

本発明の機能性フィルムは、熱可塑性エラストマーからなり、厚さが10〜100μmであり、その公差(厚さムラ)が2μm以内であり、1μm以内がより好ましい。 The functional film of the present invention is made of a thermoplastic elastomer, has a thickness of 10 to 100 μm, and has a tolerance (unevenness in thickness) of 2 μm or less, more preferably 1 μm or less.

このように、公差を2μm以内とすることで、フィルムを伸長させた際の応力が変動を極めて少なくなるように抑えることができ、制振材用途で用いた場合にスピーカーの音質を極めて良好とすることが可能となる。換言すれば、公差が2μmを超えると、応力の変動を、この範囲に抑えることが困難となり、スピーカーに十分に良好な音質を提供できなくなる。 In this way, by setting the tolerance within 2 μm, it is possible to suppress the stress when the film is stretched so that the fluctuation is extremely small, and the sound quality of the speaker is very good when used for the vibration damping material. It becomes possible to do. In other words, when the tolerance exceeds 2 μm, it becomes difficult to suppress the stress variation within this range, and it becomes impossible to provide the speaker with sufficiently good sound quality.

厚さは、10μm未満であると所望の用途における適用が困難となる一方、100μmを超えると製造が困難になるとともに、コスト面でも、それ以上厚くする意味が無く好ましくない。 When the thickness is less than 10 μm, it is difficult to apply it in a desired application, while when it exceeds 100 μm, it is difficult to manufacture, and it is meaningless to increase the thickness further, which is not preferable.

この機能性フィルムの厚さは、市販の膜厚測定器を用いてJIS Z1072に準じて測定することができ、得られた1m×1mのフィルムにおいて、無作為に30か所を測定して算出した平均値を採用する。また、公差は、その最大値と最小値の差とする。 The thickness of this functional film can be measured according to JIS Z1072 using a commercially available film thickness measuring device, and in the obtained film of 1 m×1 m, it is calculated by randomly measuring 30 points. The average value is used. The tolerance is the difference between the maximum value and the minimum value.

応力変動は、JIS K7127に基づき測定することができ、上述の1m×1mのフィルムにおいて、無作為に5か所にて測定した値の差を変動値とする。良好な音質を安定して提供するには、安定したフィルムの剛性が必要となり、その指標は一般的に弾性率で表されるが、フィルムが厚くなるに連れて剛性は変化するため、上述の伸長時応力の安定が求められる。この伸長時応力が安定していれば、0〜80℃の生活環境で想定され得る温度下での貯蔵弾性率も安定し、良好な音質の提供、つまり音響特性に優れることとなる。 The stress fluctuation can be measured based on JIS K7127, and the difference between the values measured at 5 random positions in the above-mentioned 1 m×1 m film is used as the fluctuation value. In order to stably provide good sound quality, stable film rigidity is required, and its index is generally expressed by elastic modulus, but since the rigidity changes as the film becomes thicker, Stable stress during elongation is required. If the stress during extension is stable, the storage elastic modulus at a temperature that can be assumed in a living environment of 0 to 80° C. is also stable, and good sound quality is provided, that is, acoustic characteristics are excellent.

なお、フィルムの硬度については特に制限は無い。換言すれば、厚さの公差が2μm以内のフィルムであれば、硬度の高低に影響を受けること無く、良好な音質の提供が可能となる。 The hardness of the film is not particularly limited. In other words, if the film has a thickness tolerance of 2 μm or less, good sound quality can be provided without being affected by the hardness.

本発明の機能性フィルムの熱可塑性エラストマーは、コーティング法にて作製される。熱可塑性エラストマーは押出法でも作製可能であるが、押出法では固形の粉末もしくはペレットを加熱シリンダー内で軟化溶融させ、スクリューにてスリットの付いた金型に押し出すことにより成型する。これらは分子量が大きく、かつ溶融時の粘度のバラツキも大きい。この粘度のバラツキは、成型時に厚さムラの原因となってしまい、均一な厚さのフィルムが得難い。換言すれば、押出法では、粉末やペレットと言った固形分のみを用いるため、膜厚を制御するには製膜精度を上げるしか方法が無く、均一な厚さのフィルムを作製するには、その精度を相当に高める必要があり極めて困難である。 The thermoplastic elastomer of the functional film of the present invention is produced by a coating method. The thermoplastic elastomer can also be produced by an extrusion method, but in the extrusion method, solid powder or pellets are softened and melted in a heating cylinder and extruded by a screw into a die having a slit to form the thermoplastic elastomer. These have a large molecular weight and have large variations in viscosity when melted. This variation in viscosity causes unevenness in thickness during molding, and it is difficult to obtain a film having a uniform thickness. In other words, in the extrusion method, since only solid contents such as powder and pellets are used, the only way to control the film thickness is to increase the film forming accuracy, and to produce a film of uniform thickness, It is extremely difficult because the precision must be increased considerably.

一方、コーティング法は、溶液を一定の重量(厚さ)で塗工し、溶液中の溶媒を揮発させることで、溶質のみの皮膜を用いる製法であるため、溶液により厚さムラが生じたとしても、固形分濃度や溶液粘度を調整することで、厚さムラを小さくすることが可能となる。 On the other hand, the coating method is a method of applying a solution with a constant weight (thickness) and volatilizing the solvent in the solution to use a film of only solute. Also, by adjusting the solid content concentration and the solution viscosity, it becomes possible to reduce the thickness unevenness.

ただし、コーティング法で作製すれば、常に厚さムラを本発明の所望の範囲内に収められる訳では無く、その条件について本発明者が試行錯誤を重ねたところ、次の条件が適切であることが分かった。つまり、熱可塑性エラストマーを含む溶液中の当該熱可塑性エラストマーの固形分および塗工厚を一定に保ち、かつ溶液の温度を10〜40℃、粘度を100〜50,000mPa・sの範囲で一定に保ちつつフィルム化する。 However, when the coating method is used, the thickness unevenness cannot always be kept within the desired range of the present invention, and the inventors of the present invention have made trial and error about the conditions, and the following conditions are appropriate. I understood. That is, the solid content and coating thickness of the thermoplastic elastomer in the solution containing the thermoplastic elastomer are kept constant, and the temperature of the solution is kept constant at 10 to 40° C. and the viscosity is kept constant within the range of 100 to 50,000 mPa·s. Make a film while keeping it.

溶液における熱可塑性エラストマー濃度は、10〜50重量%であることが好ましい。10重量%未満であるとフィルムにムラができるなど外観上の品質を付与し難くなる一方、50重量%を超えると粘度が高くなり厚さムラを本発明の所望の範囲内に抑えることが困難となる。 The concentration of the thermoplastic elastomer in the solution is preferably 10 to 50% by weight. If it is less than 10% by weight, it is difficult to impart appearance quality such as unevenness to the film, while if it exceeds 50% by weight, the viscosity becomes high and it is difficult to suppress the thickness unevenness within the desired range of the present invention. Becomes

同様に、粘度についても、100mPa・s未満であるとフィルムの外観上の品質を保ち難くなり、50,000mPa・sを超えると厚さムラを所望の範囲内に抑えることが困難となる。なお、粘度は、JIS Z7117−1にしたがって測定することができる。 Similarly, if the viscosity is less than 100 mPa·s, it is difficult to maintain the appearance quality of the film, and if it exceeds 50,000 mPa·s, it becomes difficult to suppress the thickness unevenness within a desired range. The viscosity can be measured according to JIS Z7117-1.

溶液の温度は、上述の範囲外であると粘度が変化し、厚さムラを所望の範囲内に制御できない恐れがあるため、常温として想定され得る上述の温度範囲内とする。 If the temperature of the solution is outside the above range, the viscosity may change, and the thickness unevenness may not be controlled within a desired range. Therefore, the temperature of the solution is set within the above temperature range that can be assumed as room temperature.

熱可塑性エラストマーを含む溶液中の熱可塑性エラストマーの固形分や塗工厚は、用いる製造装置の性能やスケール等により異なり、具体的は範囲を定めることはできないが、固形分については、たとえば、熱可塑性エラストマーを25重量%含む溶液では、塗工厚の厚さムラが8μmであれば、フィルムの厚さムラ(公差)は2μmと、本発明の範囲内にできるため、10〜30重量%の範囲で質量の少ないものが好ましい。 The solid content and coating thickness of the thermoplastic elastomer in the solution containing the thermoplastic elastomer differ depending on the performance and scale of the manufacturing apparatus used, and the specific range cannot be defined. In a solution containing 25% by weight of the plastic elastomer, if the thickness unevenness of the coating thickness is 8 μm, the thickness unevenness (tolerance) of the film is 2 μm, which is within the range of the present invention. Those having a small mass in the range are preferable.

溶液の液圧は、得られるフィルムの厚さを均一にするには、溶液を一定量で塗工するために、一定圧に保つことが条件となり、たとえば、コンマコータでは液面の高さ、ダイコータでは液の供給量を一定に保つことで可能となる。 In order to make the thickness of the obtained film uniform, the liquid pressure of the solution must be kept constant because the solution is applied in a constant amount.For example, in the comma coater, the height of the liquid surface and the die coater are used. Then, it becomes possible by keeping the supply amount of the liquid constant.

固形分は、溶液を一定量塗工しても、溶液中の固形分が製造中に一定でないと均一な溶質量とならないことから、上述のように一定に保つことが条件となる。特に、溶液に用いる溶媒は有機溶剤が主であり、揮発し易く、溶媒の揮発により固形分が変動し得るため、一定に保つことは容易でない。そのため、フィルムの製造中は、溶液を密閉型の容器から供給する。 Even if a fixed amount of the solution is applied, the solid content does not become a uniform dissolved mass unless the solid content in the solution is constant during the production. Therefore, the solid content must be kept constant as described above. In particular, the solvent used for the solution is mainly an organic solvent, which easily volatilizes, and the solid content may fluctuate due to the volatilization of the solvent, so that it is not easy to keep it constant. Therefore, the solution is supplied from a closed container during the production of the film.

塗工量(厚さ)は、たとえばロールナイフコータにおけるバックアップロールとナイフロールの隙間のように、隙間の広さでも決定されるので、製膜されたフィルムの厚さを測定し、本発明の所望の範囲内であることを確認した後、塗工中の溶液状での塗工厚みを計測し、設定した一定の塗工厚みに調整する。 The coating amount (thickness) is also determined by the width of the gap, such as the gap between the backup roll and the knife roll in a roll knife coater. Therefore, the thickness of the formed film is measured and After confirming that it is within the desired range, the coating thickness in solution during coating is measured and adjusted to the set constant coating thickness.

コーティングに用いるコータとしては、特に制限は無く、通常用いられるものを目的に応じて適宜選択すればよく、たとえば、グラビアコータ、リバースロールコータ、キスコータ、ロールナイフコータ、ダイコータ等が挙げられるが、これらの中では、塗工厚みの制御が比較的容易なことから、ロールナイフコータ、ダイコータが好ましい。ロールナイフコータであれば、バックアップロールとナイフロールの隙間を、ダイコータであれば、ダイ口の隙間とダイ内圧を、それぞれ一定にすることで、均一な塗工厚みにすることができる。 The coater used for coating is not particularly limited, and those normally used may be appropriately selected according to the purpose, and examples thereof include a gravure coater, a reverse roll coater, a kiss coater, a roll knife coater, and a die coater. Among these, a roll knife coater and a die coater are preferable because the coating thickness can be controlled relatively easily. In the case of a roll knife coater, the gap between the backup roll and the knife roll can be made constant, and in the case of a die coater, the gap at the die port and the internal pressure of the die can be made constant, so that a uniform coating thickness can be obtained.

熱可塑性エラストマーを含む溶液としては、溶液重合法にて生成した溶液、塊状重合で生成された固形樹脂を溶媒で溶解した溶液のいずれを用いてもよい。 As the solution containing the thermoplastic elastomer, either a solution produced by a solution polymerization method or a solution obtained by dissolving a solid resin produced by bulk polymerization with a solvent may be used.

この塊状重合で生成された樹脂は、たとえば、トルエン、N,N−ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)、ジメチルアセトアミド(DMAc)、酢酸エチル等の熱可塑性エラストマーが溶解する溶媒を用いて溶液を得ることができる。 The resin produced by the bulk polymerization is dissolved in a solvent in which a thermoplastic elastomer such as toluene, N,N-dimethylformamide (DMF), methyl ethyl ketone (MEK), dimethyl acetamide (DMAc), and ethyl acetate is dissolved. Can be obtained.

熱可塑性エラストマーとしては、特に制限は無く、通常知られているものを、目的に応じて適宜選択して用いることができ、たとえば、ウレタン系、ポリエステル系、ポリアミド系、オレフィン系、スチレン系のものが挙げられ、これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 There is no particular limitation on the thermoplastic elastomer, and conventionally known ones can be appropriately selected and used according to the purpose. Examples thereof include urethane-based, polyester-based, polyamide-based, olefin-based, and styrene-based ones. These may be used alone or in combination of two or more.

これらの中では、0〜80℃における貯蔵弾性率の変化が少ない性質を有するものが好ましい。 Among these, those having the property of having little change in storage elastic modulus at 0 to 80° C. are preferable.

ウレタン系としては、たとえば、ウレタン系のポリウレタンエラストマー(TPU)が好適に用いられる。TPUの重合の際に用いられるポリオールの種類における、エステルタイプとしては、たとえば、ポリエチレンアジペート(PEA)、ポリブチレンアジペート(PBA)、ポリヘキサメチレンアジペート(PHA)、ポリ3−メチルペンタンアジペート(PMPA)、ポリカプロラクトン(PCL)などのポリオールが挙げられる。また、エーテルタイプとしては、ポリエチレングリコール(PEG)、ポリプロプレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)などのポリオールが挙げられる。 As the urethane-based material, for example, urethane-based polyurethane elastomer (TPU) is preferably used. Examples of the ester type in the type of polyol used in the polymerization of TPU include polyethylene adipate (PEA), polybutylene adipate (PBA), polyhexamethylene adipate (PHA), and poly-3-methylpentane adipate (PMPA). And polyols such as polycaprolactone (PCL). Examples of the ether type include polyols such as polyethylene glycol (PEG), polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMG).

ポリエステル系としては、たとえば、
ハードセグメントにポリブチレンテレフタレート(PBT)、ソフトセグメントにポリテトラメチレンエーテルグリコール(PTMG)を用いたポリエステル・エーテルタイプ、
ハードセグメントにポリブチレンテレフタレート(PBT)、ソフトセグメントにポリブチレンアジペート(PBA)を用いたポリエステル・エステルタイプ
など、通常知られるいずれかの樹脂を1種または2種以上組み合わせて使用することができる。
As the polyester type, for example,
Polyester/ether type using polybutylene terephthalate (PBT) for the hard segment and polytetramethylene ether glycol (PTMG) for the soft segment,
One or a combination of two or more commonly known resins, such as a polyester/ester type resin using polybutylene terephthalate (PBT) for the hard segment and polybutylene adipate (PBA) for the soft segment, can be used.

オレフィン系としては、たとえば、ハードセグメントにポリエチレン(PE)、ポリプロピレン(PP)などのオレフィン樹脂、ソフトセグメントにエチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)などのゴムを混合したもの等、通常知られるいずれかの樹脂を1種または2種以上組み合わせて使用することができる。 Examples of the olefins include a mixture of an olefin resin such as polyethylene (PE) and polypropylene (PP) in the hard segment and a rubber such as ethylene propylene rubber (EPM) and ethylene propylene diene rubber (EPDM) in the soft segment. Any one of the commonly known resins may be used alone or in combination of two or more.

スチレン系としては、たとえば、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)、スチレンブタジエンゴム(SBR)、スチレンエチレンプロピレンスチレンブロック共重合体(SEPS)、スチレンブタジエン(SB)、スチレンブロック共重合体(SBC)など、通常知られるいずれかの樹脂を1種または2種以上組み合わせて使用することができる。 Examples of the styrene type include styrene ethylene butylene styrene block copolymer (SEBS), styrene butadiene rubber (SBR), styrene ethylene propylene styrene block copolymer (SEPS), styrene butadiene (SB), styrene block copolymer ( Any commonly known resin such as SBC) can be used alone or in combination of two or more.

ポリアミド系としては、たとえば、
ハードセグメントにナイロン6、ナイロン11、ナイロン12、ソフトセグメントにポリエチレングリコール(PEG)、ポリプロプレングリコール(PPG)ポリテトラメチレンエーテルグリコール(PTMG)などを用いたポリエーテルエステルタイプ、
ソフトセグメントにポリプロピレンジアミン、ポリブチレンジアミンなどを用いたポリエーテルアミドタイプ
等、通常知られるいずれかの樹脂を1種または2種以上組み合わせて使用することができる。
As a polyamide-based material, for example,
Polyether ester type using nylon 6, nylon 11, nylon 12 for the hard segment, polyethylene glycol (PEG), polypropylene glycol (PPG) polytetramethylene ether glycol (PTMG), etc. for the soft segment,
One or a combination of two or more resins that are generally known, such as a polyetheramide type resin using polypropylenediamine or polybutylenediamine for the soft segment, can be used.

また、本発明の機能性フィルムは、上述した熱可塑性エラストマーの他、添加剤として、着色剤、滑剤、老化防止剤、帯電防止剤等の通常使用され得るものを、目的に応じて適宜使用してもよい。さらに、この添加剤としては、ポリマーやフィラーで希釈したマスターバッチを使用してもよい。 Further, the functional film of the present invention, in addition to the above-mentioned thermoplastic elastomer, as the additive, a colorant, a lubricant, an antiaging agent, an antistatic agent or the like which can be usually used, is appropriately used according to the purpose. May be. Further, as this additive, a master batch diluted with a polymer or a filler may be used.

なお、本発明の機能性フィルムは、単層構造であっても多層構造であってもよい。多層構造とする方法については特に制限は無く、通常知られている積層方法等を用いて多層化すればよい。 The functional film of the present invention may have a single-layer structure or a multi-layer structure. The method for forming a multilayer structure is not particularly limited, and a generally known lamination method or the like may be used to form a multilayer structure.

本発明の機能性フィルムは、音響特性に優れ、良好な音質を提供可能であるため、たとえば、スピーカーの振動系支持部材等の制振材用途に好適に用いられるのみならず、たとえば、音響振動材料、吸音材料等の制振材以外の音響用途に用いることもできる。また、音響用途の他、精密機器分野全般等、厚さ精度が求められ、かつ伸長時応力の変動が少ないことが要求される様々な用途においても、使用することができる。 INDUSTRIAL APPLICABILITY The functional film of the present invention has excellent acoustic characteristics and can provide good sound quality. Therefore, for example, the functional film is not only suitably used for a vibration damping material such as a vibration system support member of a speaker, but also, for example, acoustic vibrations. It can also be used for acoustic applications other than vibration damping materials such as materials and sound absorbing materials. Further, in addition to acoustic applications, it can also be used in various fields in which precision in thickness is required and variation in stress during extension is small, such as in the field of precision equipment.

以下、本発明の実施例について説明するが、本発明は下記実施例に限定されない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.

1.フィルムの厚さと引張応力との関係
エステルタイプのポリウレタン熱可塑性エラストマー(TPU)を20.0重量%、N−ジメチルホルムアミド(DMF)を40重量%、メチルエチルケトン(MEK)40重量%含む溶液を用い、作製されるTPUフィルムが、それぞれ15.0μm、17.0μm、19.0μm、21.0μmの厚さとなるように設定し、粘度を5,000.0mPa・s、溶液温度を23.0℃で一定に保ちながら、ダイコータを用いてフィルム化した。この際に、設定厚みが薄いものから順に、72.0μm、80.0μm、94.0μm、100.0μmに塗工膜厚みを一定に保ちながらフィルムを作製した(以上、表1参照)。また、フィルムは、ダイコータから供給される溶液の液量を一定とすることで、その液圧を一定に保ちながら作製した。
1. Relationship between film thickness and tensile stress A solution containing 20.0% by weight of an ester type polyurethane thermoplastic elastomer (TPU), 40% by weight of N-dimethylformamide (DMF) and 40% by weight of methyl ethyl ketone (MEK) was used. The TPU films produced were set to have thicknesses of 15.0 μm, 17.0 μm, 19.0 μm, and 21.0 μm, respectively, and the viscosity was 5.000.0 mPa·s and the solution temperature was 23.0° C. A film was formed using a die coater while keeping it constant. At this time, a film was produced while keeping the coating film thickness constant at 72.0 μm, 80.0 μm, 94.0 μm, and 100.0 μm in order of decreasing set thickness (see Table 1 above). Further, the film was produced while keeping the liquid pressure of the solution supplied from the die coater constant.

一方、同じTPUのサンプルにつき、それぞれ17.0μm、19.0μmの厚さとなるように設定し、ダイコータを用いるけれども、固形分や溶液温度、塗工膜厚み等について特に一定に保つための制御をせずに、フィルムを作製した。 On the other hand, although the same TPU sample was set to have thicknesses of 17.0 μm and 19.0 μm, respectively, and a die coater was used, control was performed to keep the solid content, solution temperature, coating film thickness, etc. particularly constant. The film was produced without doing.

得られた各フィルムについて、硬度、弾性率、膜厚の平均値、最大値、最小値および公差、5%伸長時および10%伸長時の応力変動(N/20mm)を測定した。 With respect to each of the obtained films, hardness, elastic modulus, average value, maximum value, minimum value and tolerance of film thickness, and stress fluctuation (N/20 mm) at 5% elongation and 10% elongation were measured.

ここで、測定の目的は成分毎に厚さのバラツキを評価することにあるが、前述の通り、厚さが増すと応力変動(剛性)も顕著に増加するので、伸長時の応力変動は、厚さのバラツキをより正確に把握するために測定した。また、硬度および弾性率については、物質固有の数値が得られるので、検体の識別のために測定した。 Here, the purpose of the measurement is to evaluate the variation of the thickness for each component, but as described above, the stress variation (rigidity) significantly increases as the thickness increases. It was measured in order to grasp the thickness variation more accurately. Further, with respect to hardness and elastic modulus, numerical values peculiar to the substance can be obtained, and thus the hardness and the elastic modulus were measured to identify the sample.

これらの結果を表2に示す。なお、いずれも、硬度は91A、弾性率は29.0MPaであった。 The results are shown in Table 2. In each case, the hardness was 91 A and the elastic modulus was 29.0 MPa.

硬度、弾性率、粘度、膜厚の各指標、伸長時応力については、以下のように測定した。 The hardness, elastic modulus, viscosity, film thickness indexes, and stress during elongation were measured as follows.

硬度:デュロメータ(スプリング式ゴム硬度計)を用い、JIS K6253にしたがって測定した。 Hardness: Measured according to JIS K6253 using a durometer (spring type rubber hardness meter).

弾性率:ティー・エイ・インスツルメント・ジャパン株式会社製の動的粘弾性測定装置「Q800」を用いて25℃環境下でJIS K7244−4にしたがって測定した。 Elastic Modulus: Measured according to JIS K7244-4 in a 25° C. environment using a dynamic viscoelasticity measuring device “Q800” manufactured by TA Instruments Japan Co., Ltd.

粘度:東機産業株式会社製の「Viscometer BII型粘度計」を用いてJIS Z7117−1にしたがって測定した。 Viscosity: Measured according to JIS Z7117-1 using "Viscometer BII viscometer" manufactured by Toki Sangyo Co., Ltd.

膜厚:株式会社尾崎製作所製の膜厚測定器「ダイヤルゲージ0.001mm」を用いてJIS Z1072に準じ、得られた1m×1mのフィルムにおいて、無作為に30か所を測定した。このうち、最大の厚さを最大値、最小の厚さを最小値、各測定値を30で割った値を平均値、最大値と最小値の差を公差とした。 Film thickness: According to JIS Z1072, a film thickness measuring device “Dial Gauge 0.001 mm” manufactured by Ozaki Seisakusho Co., Ltd. was used to measure 30 points at random in the obtained 1 m×1 m film. Of these, the maximum thickness was the maximum value, the minimum thickness was the minimum value, the value obtained by dividing each measured value by 30 was the average value, and the difference between the maximum value and the minimum value was the tolerance.

伸長時の応力変動:株式会社島津製作所製の精密万能試験機「オートグラフAG−500NX」を用いてJIS K7127に基づき、上述の1m×1mのフィルムにおいて、無作為に5か所にて測定し、それらの値の最大値と最小値との差を変動値とした。この変動値が少ない程、安定した音質を提供でき、音響特性に優れると言える。 Stress variation during elongation: Measured at 5 points randomly on the above-mentioned 1 m×1 m film using a precision universal testing machine “Autograph AG-500NX” manufactured by Shimadzu Corporation based on JIS K7127. , The difference between the maximum and minimum of these values was taken as the variation value. It can be said that the smaller the variation value, the more stable the sound quality can be provided and the better the acoustic characteristics.

Figure 2020109175
Figure 2020109175

Figure 2020109175
Figure 2020109175

表1および表2から判るように、コーティング法にて固形分や粘度等の諸条件を制御して作製した本発明のフィルムでは、公差を1μm以内と、極めて厚さムラが少なく均一な厚さのものが得られた。また、伸長時の応力変動も、5%伸長時に最小で概ね0、10%伸長時でも同様に最小で概ね0、最大であっても20%以内の変動幅に抑えられ、スピーカー等の制振材として使用した場合に、安定した音質を提供でき、音響特性が安定することが判った。 As can be seen from Table 1 and Table 2, in the film of the present invention produced by controlling various conditions such as solid content and viscosity by the coating method, the tolerance is within 1 μm, and the thickness is extremely uniform and the thickness is uniform. I got that. In addition, the stress variation during extension is also suppressed to a minimum of approximately 0 at 5% extension, a minimum of approximately 0 even at 10% extension, and within 20% even at the maximum. It was found that when used as a material, it can provide stable sound quality and have stable acoustic characteristics.

一方、諸条件を制御せずに作製した従来品のフィルムでは、公差が2μmを大きく超え、伸長時の応力変動も、5%伸長時に0.05N/20mm以上、10%伸長時では0.1N/20mm以上、いずれの伸長時も最大で20%以上の変動幅となり、安定した音質を得難いことが判った。 On the other hand, in the case of the conventional film produced without controlling various conditions, the tolerance greatly exceeds 2 μm, and the stress variation at the time of extension is 0.05 N/20 mm or more at the time of 5% extension and 0.1 N at the time of 10% extension. /20 mm or more, the maximum fluctuation range was 20% or more in any extension, and it was found that stable sound quality was difficult to obtain.

また、これらのことより、フィルムが優れた音響特性を提供するには、その厚さムラを2μm以内と極めて小さくする必要があることが判った。 Further, from these facts, it was found that it is necessary to make the thickness unevenness extremely small within 2 μm in order for the film to provide excellent acoustic characteristics.

つづいて、表3に示すように、硬度、弾性率がそれぞれ異なるエーテルタイプのTPUを10〜50重量%(固形分)含む溶液について、設定厚みにあわせて粘度および塗工膜厚みを調整し、塗工時の諸条件を一定に保ちながら、上述したエステルタイプのTPUと同様にして、フィルムを作製した。なお、表3に示す硬度および弾性率は、作製前における作製後の推測値である。 Subsequently, as shown in Table 3, for a solution containing 10 to 50% by weight (solid content) of an ether type TPU having different hardness and elastic modulus, the viscosity and the coating film thickness are adjusted according to the set thickness, A film was produced in the same manner as the ester type TPU described above while keeping the various conditions during coating constant. The hardness and elastic modulus shown in Table 3 are estimated values after the production before the production.

得られた各フィルムについて、硬度、弾性率、膜厚の平均値、最大値、最小値および公差、5%伸長時および10%伸長時の応力変動(N/20mm)を測定した。結果を表4に示す。なお、各指標の測定方法も、上述したエステルタイプのTPUと同様である。 With respect to each of the obtained films, hardness, elastic modulus, average value, maximum value, minimum value and tolerance of film thickness, and stress fluctuation (N/20 mm) at 5% elongation and 10% elongation were measured. The results are shown in Table 4. The measuring method of each index is the same as that of the ester type TPU described above.

Figure 2020109175
Figure 2020109175

Figure 2020109175
Figure 2020109175

表3および表4から判るように、エーテルタイプのTPUを用いて作製したフィルムであっても、コーティング法にて固形分や粘度等の諸条件を制御して作製すると、公差が1μm以内に抑えられた。また、伸長時の応力変動も、5%伸長時に最小で0.01N/20mm、10%伸長時に最小で0.04N/20mm、いずれの場合も最大でも10%以内の変動幅に抑えられ、音響特性が安定することが判った。 As can be seen from Tables 3 and 4, even a film produced by using an ether type TPU can have a tolerance within 1 μm when produced by controlling various conditions such as solid content and viscosity by a coating method. Was given. In addition, the stress variation at the time of extension is 0.01 N/20 mm at the time of 5% extension, the minimum is 0.04 N/20 mm at the time of 10% extension, and in both cases, the variation range is suppressed to within 10% at the maximum. It was found that the characteristics were stable.

これにより、コーティング法にて固形分や粘度等の諸条件を適切に制御すれば、異なるタイプの熱可塑性エラストマーであっても、厚さムラを2μm以内のフィルムとし、伸長時の応力変動を抑えられて音響特性に優れたものが得られることが判った。 As a result, if various conditions such as solid content and viscosity are properly controlled by the coating method, even for different types of thermoplastic elastomers, a film with thickness unevenness of 2 μm or less can be formed to suppress stress fluctuation during stretching. It was found that a product having excellent acoustic characteristics was obtained.

2.貯蔵弾性率の検証
音響特性が良好と言えるためには、生活環境下で貯蔵弾性率の変動も少ないことが要求される。そこで、TPUのエステルタイプおよびエーテルタイプ、ならびにポリエステルの複数のサンプルより、コーティング法にて、上述のように固形分や粘度等を制御してフィルムを作製し、硬度と、0〜80℃における貯蔵弾性率の経温変化を測定した。結果を、0℃、25℃、80℃における数値と最大値と最小値の差である変動値については表5に、TPUのエステルタイプの経温変化は図1に、同エーテルタイプの経温変化は図2に、ポリエステルの経温変化は図3に、それぞれ示す。なお、これらのサンプルは、得られたフィルムの公差がいずれも2μm以内であり、伸長時応力の変動も極めて少ないことが確認された。
2. Verification of storage elastic modulus In order to have good acoustic characteristics, it is required that the storage elastic modulus does not fluctuate in the living environment. Therefore, a film is prepared from a plurality of samples of ester type and ether type of TPU, and polyester by controlling the solid content and the viscosity as described above by the coating method, and the hardness and storage at 0 to 80° C. The change in elastic modulus with temperature was measured. The results are shown in Table 5 for the numerical values at 0° C., 25° C. and 80° C. and the fluctuation value which is the difference between the maximum value and the minimum value, the temperature change of the ester type of TPU is shown in FIG. The change is shown in FIG. 2, and the change in the temperature of polyester is shown in FIG. In addition, it was confirmed that the tolerances of the obtained films of these samples were all within 2 μm, and the variation of the stress during stretching was extremely small.

各サンプルより作製されたフィルムの硬度は既に述べた方法で測定し、貯蔵弾性率も測定温度を変えた以外は同様にして測定した。 The hardness of the film produced from each sample was measured by the method described above, and the storage elastic modulus was measured in the same manner except that the measurement temperature was changed.

Figure 2020109175
Figure 2020109175

表5と図1〜3の結果より、いずれのサンプルによるフィルムも、経温による貯蔵弾性率の変動が少なく、優れた音響特性が得られることが判った。なお、いずれのタイプにおいても、硬度が低い程、貯蔵弾性率の変動が少ないことが判った。 From the results shown in Table 5 and FIGS. 1 to 3, it was found that the films produced by any of the samples had little variation in storage elastic modulus due to temperature, and excellent acoustic characteristics were obtained. It was found that the lower the hardness of each type, the smaller the fluctuation of the storage elastic modulus.

以上、本発明の実施の形態および実施例を詳細に説明したが、本発明の機能性フィルムは、上記実施の形態に限定されず、その範囲内で想定されるあらゆる技術的思想を含んでもよい。 Although the embodiments and examples of the present invention have been described in detail above, the functional film of the present invention is not limited to the above-mentioned embodiments, and may include any technical ideas assumed within the scope thereof. ..

本発明は、スピーカーの振動系支持部材等の制振材用途の他、精密機器分野全般等、厚さ精度が求められ、かつ、伸長時応力の変動が少ないことが要求される様々な用途にて用いることができる。

INDUSTRIAL APPLICABILITY The present invention is applied to various applications in which precision of thickness is required and variation in stress during extension is small, in addition to use as a damping material such as a vibration system supporting member of a speaker Can be used.

Claims (5)

熱可塑性エラストマーからなり、厚さが10〜100μmであり、その公差が2μm以内であり、
かつ、JIS K7127に基づき測定した5%伸長時および10%伸長時の応力のいずれもが、それぞれ最大値と最小値との間の変動幅が20%以内であることを特徴とする機能性フィルム。
It is made of a thermoplastic elastomer, has a thickness of 10 to 100 μm, and has a tolerance of 2 μm or less.
Further, the functional film is characterized in that the variation width between the maximum value and the minimum value of both the stress at 5% elongation and the stress at 10% elongation measured according to JIS K7127 is within 20%, respectively. ..
前記溶液は、前記熱可塑性エラストマーを10〜50重量%含む請求項1に記載の機能性フィルム。 The functional film according to claim 1, wherein the solution contains 10 to 50% by weight of the thermoplastic elastomer. 前記熱可塑性エラストマーは、ウレタン系、ポリエステル系、ポリアミド系、オレフィン系およびスチレン系の少なくともいずれかである請求項1または2に記載の機能性フィルム。 The functional film according to claim 1, wherein the thermoplastic elastomer is at least one of urethane type, polyester type, polyamide type, olefin type, and styrene type. 前記熱可塑性エラストマーはポリウレタンエラストマー(TPU)である請求項1から3のいずれかに記載の機能性フィルム。 The functional film according to claim 1, wherein the thermoplastic elastomer is a polyurethane elastomer (TPU). スピーカーの振動系支持部材に用いられる請求項1から4のいずれかに記載の機能性フィルム。 The functional film according to any one of claims 1 to 4, which is used for a vibration system supporting member of a speaker.
JP2020032736A 2020-02-28 2020-02-28 Functional film Active JP6994064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032736A JP6994064B2 (en) 2020-02-28 2020-02-28 Functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032736A JP6994064B2 (en) 2020-02-28 2020-02-28 Functional film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016037352A Division JP6692182B2 (en) 2016-02-29 2016-02-29 Method for producing functional film

Publications (2)

Publication Number Publication Date
JP2020109175A true JP2020109175A (en) 2020-07-16
JP6994064B2 JP6994064B2 (en) 2022-01-14

Family

ID=71570048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032736A Active JP6994064B2 (en) 2020-02-28 2020-02-28 Functional film

Country Status (1)

Country Link
JP (1) JP6994064B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362571A (en) * 1994-03-16 1994-11-08 Teijin Limited Magnetic tape for use in cassette for digital audio tape recorder and biaxially oriented polyester base film therefor
JPH09208817A (en) * 1995-11-30 1997-08-12 Mitsui Toatsu Chem Inc Oriented lactic acid base polymer film
JPH11309776A (en) * 1998-04-27 1999-11-09 Kuraray Co Ltd Inflation molding method of film and device therefor
JP2001315137A (en) * 2000-05-12 2001-11-13 Dainippon Ink & Chem Inc Method and apparatus for manufacturing thermoplastic elastomer film
JP2002287531A (en) * 2001-03-28 2002-10-03 Canon Inc Transfer belt, method of manufacturing for the same and image forming device using this transfer belt
JP2005145044A (en) * 2003-09-29 2005-06-09 Zeon Kasei Co Ltd Substrate for marking film and manufacturing method therefor
JP2007221754A (en) * 2006-01-23 2007-08-30 Mitsubishi Plastics Ind Ltd Loud speaker diaphragm
JP2008265343A (en) * 2008-05-19 2008-11-06 Sumitomo Bakelite Co Ltd Carrier film with resin, and multilayer printed circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362571A (en) * 1994-03-16 1994-11-08 Teijin Limited Magnetic tape for use in cassette for digital audio tape recorder and biaxially oriented polyester base film therefor
JPH09208817A (en) * 1995-11-30 1997-08-12 Mitsui Toatsu Chem Inc Oriented lactic acid base polymer film
JPH11309776A (en) * 1998-04-27 1999-11-09 Kuraray Co Ltd Inflation molding method of film and device therefor
JP2001315137A (en) * 2000-05-12 2001-11-13 Dainippon Ink & Chem Inc Method and apparatus for manufacturing thermoplastic elastomer film
JP2002287531A (en) * 2001-03-28 2002-10-03 Canon Inc Transfer belt, method of manufacturing for the same and image forming device using this transfer belt
JP2005145044A (en) * 2003-09-29 2005-06-09 Zeon Kasei Co Ltd Substrate for marking film and manufacturing method therefor
JP2007221754A (en) * 2006-01-23 2007-08-30 Mitsubishi Plastics Ind Ltd Loud speaker diaphragm
JP2008265343A (en) * 2008-05-19 2008-11-06 Sumitomo Bakelite Co Ltd Carrier film with resin, and multilayer printed circuit board

Also Published As

Publication number Publication date
JP6994064B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6692182B2 (en) Method for producing functional film
TW495529B (en) Salt-modified electrostatic dissipative polymers
JP6202146B2 (en) Production method of polyester film
Tereshatov et al. Interrelationship between ultimate mechanical properties of variously structured polyurethanes and poly (urethane urea) s and stretching rate thereof
US8986182B2 (en) Paper feed roller
JP6994064B2 (en) Functional film
JP4620374B2 (en) Method for producing resin foam molded body and resin foam molded body
KR102310229B1 (en) Filament and its manufacturing method
JP2008254845A (en) Paper feed roller
US7709094B2 (en) Co-extruded water-proof and moisture-permeable film structure and textile
JP2017179122A (en) Polyamide resin foam sheet, laminated sheet, foam molding, and method for producing polyamide resin foam sheet
JP4242924B2 (en) Injection molding system
JP2009214542A (en) Film arrangement
Wang et al. Investigation of inelastic behavior of elastomeric composites during loading–unloading cycles
JPH0524675A (en) Paper feeding roller
KR101941358B1 (en) Spandex fiber with excellent unwinding property and adhering more strongly to hot melt adhesive and process for preparing the same
US20050238867A1 (en) Antistatic film, antistatic foam sheet and antistatic bubble sheet
US20050095418A1 (en) Antistatic film, antistatic foam sheet and antistatic bubble sheet
JPH11252695A (en) Ultrasonic measuring member
JPH0335054A (en) Thermoplastic polyurethane composition
KR20040078010A (en) A Surface Protective Functional Multi-layer Film
JP3063206B2 (en) Leather-like laminate
CN115243890A (en) Laminate, roller body using same, and package
JP2017186410A (en) Lactic acid-based resin composition, and molded body and biaxial oriented film using the same
CN117881538A (en) Biaxially stretched polyamide film and packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6994064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150