JP2020108981A - Automatic takeoff/landing charging system - Google Patents

Automatic takeoff/landing charging system Download PDF

Info

Publication number
JP2020108981A
JP2020108981A JP2018249002A JP2018249002A JP2020108981A JP 2020108981 A JP2020108981 A JP 2020108981A JP 2018249002 A JP2018249002 A JP 2018249002A JP 2018249002 A JP2018249002 A JP 2018249002A JP 2020108981 A JP2020108981 A JP 2020108981A
Authority
JP
Japan
Prior art keywords
landing
takeoff
flying object
aircraft
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018249002A
Other languages
Japanese (ja)
Inventor
植田 拓也
Takuya Ueda
拓也 植田
啓太朗 新
Keitaro Arata
啓太朗 新
勇治 池谷
Yuji Iketani
勇治 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icon Yamato Co Ltd
Original Assignee
Icon Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icon Yamato Co Ltd filed Critical Icon Yamato Co Ltd
Priority to JP2018249002A priority Critical patent/JP2020108981A/en
Publication of JP2020108981A publication Critical patent/JP2020108981A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

To provide an automatic takeoff/landing charging device capable of certainly and safely performing takeoff, landing, and charging when flying a flying object autonomously.SOLUTION: An automatic takeoff/landing charging device recognizes a flying object 1 to which a flying object position publicly announcing mark 13 is attached by an imaging device 3 attached to a takeoff/landing board 2, and obtains positional information on the flying object. By comparing an error between the positional information of the flying object and the takeoff/landing board, a control device 4 corrects a position of the flying object so as to locate the flying object immediately above the takeoff/landing board. By repeating these until the flying object lands, landing accuracy can be improved. The takeoff/landing board has a power supply device of a battery, and supplies power when the flying object lands on the takeoff/landing board and charging terminals 7 and 8 are connected.SELECTED DRAWING: Figure 1

Description

本発明は飛行体が、自動で離着陸でき、充電できる様にした自動離着陸充電システムに関するものである。 The present invention relates to an automatic take-off and landing charging system that enables an aircraft to take off and land automatically and be charged.

近年、小型飛行機、小型ヘリコプタ等の飛行体の性能の向上、遠隔操作技術の向上、GNSS(Global Navigation Satellite System/全球測位衛星システム)の民生品利用の普及により、飛行体を所定の位置(発着甲板)からリモートコントロールにより、あるいは飛行体に内蔵されたプログラムにより自動で離陸させ、予定の範囲を飛行させ、飛行の完了後、発着甲板の設置位置に帰還させ、更に自動で発着甲板に着陸させる仕組みを備えたものがある(特許文献1参照)。 In recent years, due to the improvement of performance of air vehicles such as small airplanes and small helicopters, improvement of remote control technology, and spread of civilian goods such as GNSS (Global Navigation Satellite System) From the deck) by remote control or by a program built into the air vehicle to automatically take off, fly within the planned range, return to the installation position of the departure and arrival deck after the flight is completed, and further land on the departure and arrival deck automatically Some have a mechanism (see Patent Document 1).

飛行体を自動で離陸、飛行、着陸させる場合に、制御が難しいのは、離陸、着陸であり、特に所定の位置に飛行体を着陸させる制御が難しい。従って、飛行体を自律飛行させるために、簡便な制御で安全、確実に自動離着陸させる技術の確立が求められる。 When automatically taking off, flying, or landing an air vehicle, it is difficult to control the take off or landing, and particularly the control to land the air vehicle at a predetermined position is difficult. Therefore, in order to autonomously fly an air vehicle, it is required to establish a technology that enables safe and reliable automatic takeoff and landing with simple control.

なお、特許文献1には所定の位置に小型飛行体を着陸させるための着陸支援システムと、画像認識に基づき目標地点に飛行体を着陸させるための航法装置が示され、特許文献2には複数の撮像装置を用いて垂直離着陸の誘導を行う自動着陸誘導方法が示されている。 Note that Patent Document 1 discloses a landing support system for landing a small aircraft at a predetermined position and a navigation device for landing the aircraft at a target point based on image recognition. There is disclosed an automatic landing guidance method for guiding vertical takeoff and landing using the image pickup device.

特許第5690539号公報Japanese Patent No. 569039 特開平5−24589号公報JP-A-5-24589

特許文献1の構成によると、飛行体に撮像装置と、撮像した画像を処理する制御部を設けていることにより、飛行体重量の増加に伴いバッテリー消費量が増加し、滞空時間が比較的に短くなると考えられる。一方、本発明によれば、飛行体側に飛行体位置周知目印を設け、離着陸盤側に撮像装置と撮像した画像を処理する制御部を設けることで、上記問題を解決している。 According to the configuration of Patent Document 1, the image pickup device and the control unit for processing the picked-up image are provided in the flying body, so that the battery consumption increases as the weight of the flying body increases, and the flight time becomes relatively long. It is expected to shorten. On the other hand, according to the present invention, the above-mentioned problem is solved by providing a known flying body position mark on the flying body side and providing an imaging device and a control unit for processing the picked-up image on the takeoff/landing board side.

特許文献2の構成によると、速度計と画像センサが向いている方向以外からの、飛行体の進入に対応することが出来ないと考えられる。一方、本発明によれば、飛行体の進入方向に対する依存性はなく上記制限は生じない。 According to the configuration of Patent Document 2, it is considered that it is not possible to cope with the approach of the air vehicle from directions other than the direction in which the speedometer and the image sensor face. On the other hand, according to the present invention, there is no dependence on the approach direction of the flying body, and the above limitation does not occur.

本発明は、飛行体を自律飛行させる場合の、離陸、着陸、充電を確実、安全に行える自動離着陸充電装置を提供するものである。 The present invention provides an automatic take-off and landing charging device capable of reliably and safely taking off, landing, and charging when an air vehicle is autonomously flying.

本発明は、離着陸盤と充電装置と飛行体とを有する自動離着陸充電システムであり、前記離着陸盤は、上方を撮像する撮像装置と、前記撮像装置で取得した画像を処理し、飛行体の航行手段を制御する制御装置とを有し、該制御装置は、前記撮像装置で取得した前記飛行体の飛行体位置周知目印の像に基づき、該離着陸盤と前記飛行体との位置関係を演算し、演算結果に基づき前記飛行体の離着陸を制御する様にした自動離着陸充電システムに係るものである。 The present invention is an automatic take-off and landing charging system having a takeoff and landing board, a charging device, and an aircraft, wherein the takeoff and landing board processes an image captured by the imaging device and an image acquired by the imaging device, and navigates the aircraft. A control device for controlling the means, and the control device calculates a positional relationship between the takeoff and landing platform and the flying object based on an image of a known flying object position mark of the flying object acquired by the imaging device. The present invention relates to an automatic take-off and landing charging system that controls the take-off and landing of the aircraft based on the calculation result.

前記充電装置が前記飛行体のバッテリーに対する給電装置を有し、該給電装置は前記飛行体が前記離着陸盤に着陸した状態で給電する自動離着陸充電システムに係るものである。 The charging device has a power feeding device for a battery of the flying object, and the power feeding device relates to an automatic take-off and landing charging system that feeds power when the flying object is landing on the takeoff/landing board.

前記飛行体が航行手段と、飛行体位置周知目印を有し、前記制御装置は、前記撮像装置で撮像した飛行体位置周知目印を画像処理により該飛行体位置周知目印の基準位置を求め、該飛行体位置周知目印の基準位置と離着陸盤の基準位置との関係に基づき飛行体の離着陸を誘導する自動離着陸充電システムに係るものである。 The flight body has a navigation means and a flight body position known mark, and the control device obtains a reference position of the flight position known mark by image processing of the flight position known mark imaged by the imaging device, The present invention relates to an automatic take-off and landing charging system that guides take-off and landing of an aircraft based on the relationship between a reference position of a well-known aircraft position mark and a reference position of a takeoff and landing board.

前記飛行体が飛行体位置周知目印を有し、前記制御装置が飛行体位置周知目印を認識するための認識パターンを有し、前記制御装置は前記撮像装置で撮像した画像から前記認識パターンに基づき飛行体位置周知目印を認識し、画像上で飛行体位置周知目印画像の中心が画像の中心となる様に前記飛行体を誘導する自動離着陸充電システムに係るものである。 The flying object has a flying object position well-known mark, the control device has a recognition pattern for recognizing the flying object position well-known mark, the control device based on the recognition pattern from the image captured by the imaging device The present invention relates to an automatic take-off and landing charging system for recognizing a well-known mark of a flying body position and guiding the flying body so that the center of the image of the well-known flying body position mark becomes the center of the image.

認識した前記飛行体位置周知目印の大きさにより、前記飛行体の高度を測定する自動離着陸充電システムに係るものである。 The present invention relates to an automatic take-off and landing charging system that measures the altitude of the flying body based on the size of the recognized landmark of the flying body position.

前記飛行体にGPS装置が設けられ、前記離着陸盤は既知の位置に設けられ、前記制御装置は、前記GPS装置が取得する飛行体の位置と前記既知の位置に基づき飛行体の位置と離着陸盤との位置関係を求め飛行の制御を行う自動離着陸充電システムに係るものである。 A GPS device is provided on the flying body, the takeoff and landing plate is provided at a known position, and the control device is based on the position of the flying body and the known position acquired by the GPS device. The present invention relates to an automatic take-off and landing charging system that controls the flight by obtaining the positional relationship with.

前記飛行体にGPS装置が設けられ、前記離着陸盤は既知の位置に設けられ、前記制御装置は、前記GPS装置が取得する飛行体の位置と前記既知の位置に基づき飛行体の位置と離着陸盤との位置関係を求め飛行の制御を行い、前記制御装置は、前記撮像装置で撮像した飛行体位置周知目印を画像処理により該飛行体位置周知目印の基準位置を求め、該飛行体位置周知目印の基準位置と飛行体の基準位置との関係に基づき飛行体の着陸を制御する自動離着陸充電システムに係るものである。 A GPS device is provided on the flying body, the takeoff and landing plate is provided at a known position, and the control device is based on the position of the flying body and the known position acquired by the GPS device. The flight control is performed by obtaining the positional relationship with the flight control device, and the control device obtains the reference position of the flight control device known mark by the image processing of the flight control device known landmark imaged by the imaging device. The present invention relates to an automatic take-off and landing charging system that controls landing of an aircraft based on the relationship between the reference position of 1 and the reference position of the aircraft.

本発明によれば、飛行体と離着陸盤と充電装置を有する自動離着陸システムであり、前記飛行体は、航行手段と、飛行体位置周知目印とを有し、前記離着陸盤は、上方を撮像する撮像装置と、前記撮像装置で取得した画像を処理し、前記航行手段を制御する制御装置とを有し、該制御装置は、前記撮像装置で取得した前記飛行体位置周知目印の像に基づき、該離着陸盤と前記飛行体との位置関係を演算し、演算結果に基づき前記飛行体の離着陸を制御するため、着陸を自動で行うための特別な検出装置等を必要とせず、確実に飛行体を離着陸盤に導き着陸させることが可能で、簡便で安価な自動離着陸充電システムを提供することができる。 According to the present invention, there is provided an automatic take-off and landing system having a flying body, a takeoff and landing board, and a charging device, wherein the flying body has a navigation means and a flying body position well-known mark, and the takeoff and landing board captures an image of the upper side. An imaging device and a control device for processing the image acquired by the imaging device and controlling the navigation means, the control device is based on the image of the flying object position known mark acquired by the imaging device, The positional relationship between the takeoff/landing board and the flight vehicle is calculated, and the takeoff/landing of the flight vehicle is controlled based on the calculation result. Therefore, a special detection device or the like for automatically performing the landing is not required, and the flight vehicle can be reliably performed. It is possible to provide a simple and inexpensive automatic take-off and landing charging system that can guide the vehicle to the take-off and landing landing.

前記充電装置が前記飛行体のバッテリーに対する給電装置を有し、該給電装置は前記飛行体が前記離着陸盤に着陸し、充電端子が接続された状態で給電するため、自律飛行を繰り返し行うことができる。 The charging device has a power feeding device for the battery of the flying object, and the power feeding device feeds power in a state where the flying object lands on the takeoff and landing plate and the charging terminal is connected, so that autonomous flight can be repeated. it can.

前記飛行体に設けられた前記充電端子には、バッテリー充電電力受電端子と、バッテリーセル電圧監視出力端子があり、一方、前記離着陸盤には、バッテリー充電電力供給端子と、バッテリーセル電圧監視入力端子があるので、それらを接続することで充電を行うことができる。 The charging terminal provided on the aircraft has a battery charging power receiving terminal and a battery cell voltage monitoring output terminal, while the takeoff and landing platform has a battery charging power supply terminal and a battery cell voltage monitoring input terminal. Since there are, you can charge them by connecting them.

前記飛行体が飛行体位置周知目印を有し、前記制御装置は、前記撮像装置で撮像した飛行体位置周知目印を画像処理により該飛行体位置周知目印の基準位置を求め、該飛行体位置周知目印の基準位置と離着陸盤の基準位置との関係に基づき飛行体の離着陸を誘導するため、着陸の誘導を高精度に行うことができる。 The flying body has a flying body position known mark, and the control device obtains a reference position of the flying body position known mark by image processing of the flying body position known mark imaged by the imaging device, and the flying body position known Since the takeoff and landing of the air vehicle is guided based on the relationship between the reference position of the mark and the reference position of the takeoff and landing pad, the landing can be guided with high accuracy.

前記飛行体にGPS装置が設けられ、前記離着陸盤は既知の位置に設けられ、前記制御装置は、前記GPS装置が取得する飛行体の位置と前記既知の位置に基づき飛行体の位置と離着陸盤との位置関係を求め飛行の制御を行うため、簡単な構成で飛行体の自律飛行が実現できる。 A GPS device is provided on the flying body, the takeoff and landing plate is provided at a known position, and the control device is based on the position of the flying body and the known position acquired by the GPS device. Since the flight control is performed by obtaining the positional relationship with, the autonomous flight of the flying object can be realized with a simple configuration.

前記飛行体にGPS装置が設けられ、前記離着陸盤は既知の位置に設けられ、前記制御装置は、前記GPS装置が取得する飛行体の位置と前記既知の位置に基づき飛行体の位置と離着陸盤との位置関係を求め飛行の制御を行い、前記制御装置は、前記撮像装置で撮像した飛行体位置周知目印を画像処理により該飛行体位置周知目印の基準位置を求め、該飛行体位置周知目印の基準位置と離着陸盤の基準位置との関係に基づき飛行体の着陸を制御するため、柔軟な自律飛行と、高精度な着陸の誘導を行うことができる。 A GPS device is provided on the flying body, the takeoff and landing plate is provided at a known position, and the control device is based on the position of the flying body and the known position acquired by the GPS device. The flight control is performed by obtaining the positional relationship with the flight control device, and the control device obtains the reference position of the flight control device known mark by the image processing of the flight control device known landmark imaged by the imaging device. Since the landing of the flying body is controlled based on the relationship between the reference position of 1) and the reference position of the takeoff/landing board, flexible autonomous flight and highly accurate landing guidance can be performed.

前記飛行体位置周知目印は、発光手段を有するので、霧などにより視程が悪化するなど、前記飛行体の認識が困難な場合、あるいは夜間でも確実に着陸の誘導を行うことができる。 Since the known flying body position mark has a light emitting means, it is possible to reliably guide the landing when it is difficult to recognize the flying body, such as when visibility is deteriorated by fog or the like, or at night.

本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 本発明の概略を示す構成図である。It is a block diagram which shows the outline of this invention. 該実施例に使用される飛行体位置周知目印の一例を示す図である。It is a figure which shows an example of the flying object position well-known mark used for the said Example.

以下、図面を参照しつつ本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず、図1〜2により本発明に係る自動離着陸充電システムの概略を説明する。一般に、ドローン等の回転翼機が着陸する際には、先ず定点への進入を図り、定点の上空に達してからホバリングを行った後、垂直に降下して着陸する。さらに、一般的に、飛行体のバッテリーを充電する際には、給電装置とバッテリーが接触、あるいは、非接触することにより充電を行う。本実施例は、このような手順に則った着陸を自動的に誘導し、充電を行う方法である。 First, the outline of the automatic take-off and landing charging system according to the present invention will be described with reference to FIGS. Generally, when a rotary wing aircraft such as a drone lands, it first attempts to approach a fixed point, reaches the sky above the fixed point, then hover, and then descends vertically to land. Furthermore, in general, when charging the battery of an aircraft, charging is performed by contacting or non-contacting the power supply device and the battery. The present embodiment is a method of automatically inducing landing and charging according to such a procedure.

図1に、本実施例による自動着陸誘導方法で用いられる装置の概略構成を示す。1は飛行体、2は離着陸盤、3は撮像装置、4は制御装置、5は冷却ファン、7は充電端子、8は充電端子、9〜12はプロペラ、13は飛行体位置周知目印、14はGPSセンサである。 FIG. 1 shows a schematic configuration of an apparatus used in the automatic landing guidance method according to this embodiment. 1 is a flying body, 2 is a takeoff/landing platform, 3 is an imaging device, 4 is a control device, 5 is a cooling fan, 7 is a charging terminal, 8 is a charging terminal, 9 to 12 are propellers, 13 is a mark for well-known flying body position, 14 Is a GPS sensor.

飛行体位置周知目印とは、飛行体にLEDを設けてもよいし、飛行体にQRコードを設けてもよいし、飛行体に模様を設けてもよいし、飛行体に目印になるものを設けてもよいし、飛行体を目印となるような形状にしてもよい。 The well-known mark of the position of the flying object may be an LED provided on the flying object, a QR code may be provided on the flying object, a pattern may be provided on the flying object, or something that serves as a mark on the flying object. It may be provided, or the flying body may be shaped so as to serve as a mark.

ドローンはプロペラの回転数を変えることにより向きを変えることと、前後左右上下の方向に移動することができる。ドローンとは、図1の飛行体1を指す。例えば図1において、プロペラ9とプロペラ10の回転数を下げれば、それらのプロペラがある側に傾くので、その後傾きを所定の値に維持して、回転数を上げれば傾いた方向に進む。 The drone can change direction by changing the number of rotations of the propeller, and can move in the front, back, left, right, up and down directions. The drone refers to the air vehicle 1 shown in FIG. For example, in FIG. 1, if the rotational speeds of the propeller 9 and the propeller 10 are lowered, the propellers tilt toward the side where they are, so if the rotational speed is increased after that, the tilt is maintained at a predetermined value.

次に、このような装置を用いて着陸を誘導する手順について述べる。 Next, the procedure for inducing landing using such a device will be described.

先ずドローンは、図1における飛行体1のようにGPSセンサ14の位置情報を利用して離着陸盤2まで誘導され、ゆっくり飛行体1を降下させる。 First, the drone is guided to the takeoff/landing platform 2 using the position information of the GPS sensor 14 like the flying body 1 in FIG. 1, and slowly descends the flying body 1.

ドローンが撮像装置3で捉えられる位置にくると、ドローンの飛行体1の画像が捉えられる。 When the drone reaches a position where it can be captured by the imaging device 3, an image of the drone's air vehicle 1 is captured.

撮像装置3から出力された画像信号は、制御装置4により画像処理される。図5に、画面内に捉えられた飛行体1、飛行体位置周知目印13と撮像装置画面中心31との位置関係を示す。撮像画像32より、飛行体位置周知目印13が抽出され、それらの位置の重心位置を求めることにより、飛行体の中心30の位置を求めることができる。次に撮像画像画面中心31に対する垂直方向の偏差ΔLv1と、水平方向の偏差ΔLh1とが測定される。この実施例のように、誘導すべき飛行体がドローンの場合は、垂直方向の偏差ΔLv1はエレベーターに対するフィードバック量に相当し、水平方向の偏差ΔLh1は、エルノンに対するフィードバック量に相当する。 The image signal output from the imaging device 3 is image-processed by the control device 4. FIG. 5 shows the positional relationship between the flying body 1, the flying body position known mark 13, and the image pickup device screen center 31 captured in the screen. The well-known flying body position marks 13 are extracted from the captured image 32, and the position of the center 30 of the flying body can be obtained by obtaining the barycentric positions of those positions. Next, the vertical deviation ΔLv1 and the horizontal deviation ΔLh1 with respect to the captured image screen center 31 are measured. When the aircraft to be guided is a drone as in this embodiment, the vertical deviation ΔLv1 corresponds to the feedback amount for the elevator, and the horizontal deviation ΔLh1 corresponds to the feedback amount for Ernon.

ドローンが撮像装置3の中心に位置するよう制御される。ドローンが着陸するまで制御と降下を繰り返す。画面内に捉えられた飛行体1と画面中心との位置関係は平面的な距離であり、ドローンと撮像装置3との位置関係が離れているほど、制御量は大きくなる。ここで、制御量が適切になるように制御するには、例えば、画面内に捉えられた飛行体位置周知目印13の2点間の距離から予め用意したテーブルを参照し、ドローンと離着陸盤2の位置関係を求める方法がある。 The drone is controlled so as to be located at the center of the imaging device 3. Control and descent are repeated until the drone lands. The positional relationship between the aircraft 1 and the center of the screen captured in the screen is a planar distance, and the farther the positional relationship between the drone and the imaging device 3 is, the greater the control amount. Here, in order to perform control so that the control amount becomes appropriate, for example, by referring to a table prepared in advance from the distance between the two points of the aircraft body position well-known mark 13 captured on the screen, the drone and the takeoff/landing board 2 There is a method of obtaining the positional relationship of.

着陸盤とドローンの距離があらかじめ設定した距離を下回ったとき、ドローンが着陸したと離着陸盤2の制御装置4が判断し、制御装置4を着陸状態に遷移する。 When the distance between the landing board and the drone is less than a preset distance, the controller 4 of the takeoff/landing board 2 determines that the drone has landed, and transitions the controller 4 to the landing state.

着陸状態にもとづき離着陸盤2の制御装置4が、冷却ファン5を起動し、一定時間ドローンのバッテリー15を冷却する。 Based on the landing state, the control device 4 of the takeoff/landing board 2 activates the cooling fan 5 to cool the drone battery 15 for a certain period of time.

着陸状態にもとづき離着陸盤2の制御装置4が、離着陸盤2の充電端子7の電圧を測定することで、充電端子8が充電端子7に接続されているか識別する。すなわち、電圧がかかっていれば接続されていると判断できる。 Based on the landing state, the control device 4 of the takeoff/landing board 2 measures whether or not the charging terminal 8 is connected to the charging terminal 7 by measuring the voltage of the charging terminal 7 of the takeoff/landing board 2. That is, if voltage is applied, it can be determined that the connection is established.

着陸状態にもとづき離着陸盤2の制御装置4が、離着陸盤2のバッテリーセル電圧監視入力端子21の電圧を測定することで、バッテリーセル電圧監視出力端子20がバッテリーセル電圧監視入力端子21に接続されているか識別する。すなわち、電圧がかかっていれば接続されていると判断できる。 The control device 4 of the takeoff/landing board 2 measures the voltage of the battery cell voltage monitoring input terminal 21 of the takeoff/landing board 2 based on the landing state, so that the battery cell voltage monitoring output terminal 20 is connected to the battery cell voltage monitoring input terminal 21. Identify if That is, if voltage is applied, it can be determined that the connection is established.

充電端子7と充電端子8、および、バッテリーセル電圧監視入力端子21とバッテリーセル電圧監視出力端子20が接続されているとき、離着陸盤2の給電装置6より、ドローンのバッテリー15へ給電を行う。 When the charging terminal 7 and the charging terminal 8 are connected, and the battery cell voltage monitoring input terminal 21 and the battery cell voltage monitoring output terminal 20 are connected, the power supply device 6 of the takeoff and landing platform 2 supplies power to the drone battery 15.

給電装置6より、満充電を示す信号が制御装置4に送られた時、充電回路を切断する。 When the power supply device 6 sends a signal indicating full charge to the control device 4, the charging circuit is disconnected.

離着陸盤2の制御装置4が待機状態に遷移し、待機状態を維持する。待機状態においては、ドローンはいつでも離陸できる状態である。 The control device 4 of the takeoff/landing board 2 transits to the standby state and maintains the standby state. In the standby state, the drone is ready to take off.

ドローンの離陸は、人の介在による離陸操作があってもよいし、タイマー等による一定時間経過後の自動離陸であってもよいし、センサ等をトリガーとする自動離陸でもあってもよい。 The takeoff of the drone may be a takeoff operation by human intervention, may be an automatic takeoff after a lapse of a certain time by a timer, or may be an automatic takeoff triggered by a sensor or the like.

1 飛行体
2 離着陸盤
3 撮像装置
4 制御装置
5 冷却ファン
6 給電装置
7、8 充電端子
9〜12 プロペラ
13 飛行体位置周知目印
14 GPSセンサ
15 バッテリー
16、20 アンテナ
17 送信機
18 フライトコントローラ
19 受信機
20 バッテリーセル電圧監視出力端子
21 バッテリーセル電圧監視入力端子
30 飛行体の中心
31 撮像画像画面中心
32 撮像画像
1 Aircraft 2 Takeoff/landing board 3 Imaging device 4 Control device 5 Cooling fan 6 Power supply device 7, 8 Charging terminals 9-12 Propeller 13 Aircraft position known mark 14 GPS sensor 15 Battery 16, 20 Antenna 17 Transmitter 18 Flight controller 19 Reception Aircraft 20 Battery cell voltage monitoring output terminal 21 Battery cell voltage monitoring input terminal 30 Aircraft center 31 Captured image Screen center 32 Captured image

本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 本発明の概略を示す構成図である。It is a block diagram which shows the outline of this invention. 該実施例に使用される飛行体位置周知目印の一例を示す図である。It is a figure which shows an example of the flying object position well-known mark used for the said Example. 該実施例に使用される飛行体位置を求める一例を示す図である。It is a figure which shows an example which calculates|requires the flying body position used for the said Example.

Claims (3)

離着陸盤と充電装置と飛行体とを有する自動離着陸充電システムであり、
前記飛行体は航行手段と、飛行体位置周知目印を有し、
前記離着陸盤表面上に上方を撮像する様設けられた、撮像装置と、前記撮像装置で取得した画像を処理し、前記飛行体の前記航行手段を制御する制御装置とを有し、
前記制御装置は、前記撮像装置で取得した前記飛行体の飛行体位置周知目印に基づき、該離着陸盤と前記飛行体との位置関係を演算し、
前記制御装置は、前記撮像装置で撮像した飛行体位置周知目印を画像処理により前記飛行体位置周知目印の基準位置を求め、前記離着陸盤の基準位置との関係を求め、
さらに前記制御装置が認識した飛行体位置周知目印画像の大きさと、前記飛行体位置周知目印の既知値から、前記飛行体の高度を測定し、
該飛行体位置周知目印の基準位置と前記着陸盤の基準位置との関係及び測定した高度に基づき前記飛行体の離着陸を誘導し、
前記充電装置が前記飛行体のバッテリーの給電装置を有し、該給電装置は前記飛行体が前記離着陸盤に着陸した状態で給電をする様にしたことを特徴とする自動離着陸充電システム。
An automatic takeoff and landing charging system having a takeoff and landing board, a charging device, and an aircraft.
The aircraft has a navigation means and an aircraft position well-known mark,
An imaging device provided to image the upper part on the surface of the takeoff and landing, and a control device for processing the image acquired by the imaging device and controlling the navigation means of the flying object,
The control device calculates a positional relationship between the takeoff and landing board and the flying object based on a known flying object position mark of the flying object acquired by the imaging device,
The control device obtains a reference position of the aircraft position known mark by image processing of the aircraft position known mark imaged by the image pickup device, and obtains a relationship with the reference position of the takeoff and landing plane,
Further, the size of the flying body position known mark image recognized by the control device, from the known value of the flying body position known mark, to measure the altitude of the flying body,
Inducing takeoff and landing of the aircraft based on the relationship between the reference position of the aircraft position known mark and the reference position of the landing plate and the measured altitude,
The automatic take-off and landing charging system, wherein the charging device has a power supply device for a battery of the flying object, and the power feeding device is configured to supply power when the flying object is landing on the takeoff and landing plate.
前記飛行体が飛行体位置周知目印を有し、前記制御装置が飛行体位置周知目印画像を認識するための認識パターンを有し、前記制御装置は前記撮像装置で撮像した画像から前記認識パターンに基づき飛行体位置周知目印画像を認識し、画像上で飛行体位置周知目印画像の中心が画像中心となる様に前記飛行体を誘導する請求項1の自動離着陸充電システム。 The flying object has a flying object position well-known mark, the control device has a recognition pattern for recognizing a flying object position well-known mark image, the control device from the image captured by the imaging device to the recognition pattern The automatic take-off and landing charging system according to claim 1, wherein the aircraft body position known landmark image is recognized based on the image, and the aircraft is guided so that the center of the aircraft body position known landmark image is the image center. 前記飛行体にGPS装置が設けられ、前記離着陸盤は既知の位置に設けられ、前記制御装置は、前記GPS装置が取得する飛行体の位置と前記既知の位置に基づき飛行体の位置と離着陸盤との位置関係を求め飛行の制御を行い、離着陸を制御する様にした請求項1の自動離着陸充電システム。 A GPS device is provided on the flying body, the takeoff and landing plate is provided at a known position, and the control device is based on the position of the flying body and the known position acquired by the GPS device. The automatic take-off and landing charging system according to claim 1, wherein flight control is carried out by obtaining a positional relationship with and the take-off and landing is controlled.
JP2018249002A 2018-12-28 2018-12-28 Automatic takeoff/landing charging system Pending JP2020108981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018249002A JP2020108981A (en) 2018-12-28 2018-12-28 Automatic takeoff/landing charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018249002A JP2020108981A (en) 2018-12-28 2018-12-28 Automatic takeoff/landing charging system

Publications (1)

Publication Number Publication Date
JP2020108981A true JP2020108981A (en) 2020-07-16

Family

ID=71569893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018249002A Pending JP2020108981A (en) 2018-12-28 2018-12-28 Automatic takeoff/landing charging system

Country Status (1)

Country Link
JP (1) JP2020108981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181130A1 (en) * 2021-02-26 2022-09-01 ソニーグループ株式会社 Information processing method, information processing device, information processing system, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181130A1 (en) * 2021-02-26 2022-09-01 ソニーグループ株式会社 Information processing method, information processing device, information processing system, and program

Similar Documents

Publication Publication Date Title
CN107943073B (en) Unmanned aerial vehicle taking-off and landing method, equipment and system and unmanned aerial vehicle
JP5690539B2 (en) Automatic take-off and landing system
KR101494654B1 (en) Method and Apparatus for Guiding Unmanned Aerial Vehicle and Method and Apparatus for Controlling Unmanned Aerial Vehicle
US11604479B2 (en) Methods and system for vision-based landing
CN106873627B (en) Multi-rotor unmanned aerial vehicle and method for automatically inspecting power transmission line
US20230027342A1 (en) Automatic landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for landing of vertical takeoff/landing aircraft
EP2518580A2 (en) Taking-off and landing target instrument and automatic taking-off and landing system
US20210011492A1 (en) Unmanned Aircraft
CN105335733A (en) Autonomous landing visual positioning method and system for unmanned aerial vehicle
KR101757105B1 (en) Unmanned aerial vehicle for improving landing accuracy and station comprising rotational linear slide rail
WO2017166724A1 (en) Aircraft apron device, aircraft, and aircraft parking system
CN205450785U (en) Novel automatic unmanned aerial vehicle image recognition automatic landing system
KR101798996B1 (en) Method for calculating relative position of the vertical take-off and landing UAV and landing guide system for the UAV using the method
CN109665099B (en) Unmanned aerial vehicle and overhead line shooting method
CN105068542A (en) Rotor unmanned aerial vehicle guided flight control system based on vision
KR101914179B1 (en) Apparatus of detecting charging position for unmanned air vehicle
CN107918401A (en) It is a kind of independently to be maked a return voyage system based on laser-guided unmanned plane
KR102088989B1 (en) Method and apparatus for landing guidance of unmanned aerial vehicle
JP2020149640A (en) Flight system and landing control method
US20220081113A1 (en) Systems and methods for delivery using unmanned aerial vehicles
CN105711847A (en) Quad-rotor unmanned helicopter take-off, landing and positioning system based on laser positioning technology
JP2017206072A (en) Flight control device and flight control method
KR20190054432A (en) Apparatus and method for inducing landing of drone
JP2020108981A (en) Automatic takeoff/landing charging system
CN106542105B (en) Aircraft moving landing method and system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218