JP2020108210A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2020108210A
JP2020108210A JP2018243311A JP2018243311A JP2020108210A JP 2020108210 A JP2020108210 A JP 2020108210A JP 2018243311 A JP2018243311 A JP 2018243311A JP 2018243311 A JP2018243311 A JP 2018243311A JP 2020108210 A JP2020108210 A JP 2020108210A
Authority
JP
Japan
Prior art keywords
rotor
outer peripheral
face plate
peripheral surface
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243311A
Other languages
English (en)
Inventor
健太郎 山口
Kentaro Yamaguchi
健太郎 山口
和弥 金田
Kazuya Kaneda
和弥 金田
統陽 藤田
Muneaki Fujita
統陽 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018243311A priority Critical patent/JP2020108210A/ja
Priority to CN201911343760.1A priority patent/CN111384805A/zh
Publication of JP2020108210A publication Critical patent/JP2020108210A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】ロータの外周部を軸方向外側に隆起させることなく、冷媒のエアギャップへの進入を抑えることができる回転電機を提供する。【解決手段】本発明に係る回転電機1は、コイル12が装着された筒状のステータ3と、ステータ3に対して径方向の内側にエアギャップ37をあけた状態で回転可能に構成されたロータ4と、を備え、端面板34,35の外側面34b,35bが軸方向に直交する平坦面に形成され、端面板34,35の外周面34c,35cのうち、外側面34b,35b及びエアギャップ37に対して軸方向に離れた位置には、径方向に延びる段部38,39が形成されている。【選択図】図2

Description

本発明は、回転電機に関する。
回転電機では、コイルに電流が供給されることでステータコアに磁界が形成され、ロータの永久磁石とステータコアとの間に磁気的な吸引力や反発力が生じる。これにより、ロータが回転軸を軸にしてステータに対して回転する。
上述した回転電機では、例えば高負荷運転の際に、磁石に発生する渦電流等の影響によりロータが発熱する。磁石の発熱により磁力が低下(いわゆる熱減磁)すると、回転電機の性能が低下する可能性がある。
回転電機を冷却する方法として、例えば回転軸内の冷媒が、ロータコアの回転による遠心力でロータコアと端面板との間を経てロータコアの内部に導かれることで、ロータコアを冷却する方法が知られている。ロータコアを冷却した冷媒は、端面板の貫通孔を経てロータコアの回転による遠心力で端面板における軸方向の外側を向く外側面に沿って端面板の外周縁に導かれる。端面板の外周縁に導かれた冷媒は、ロータコアの回転による遠心力でコイルに導かれ、コイルを冷却する。
しかし、上述した冷却方法では、端面板の外側面に沿って端面板の外周縁に導かれた冷媒がステータコアとロータコアとの間に形成された空間(エアギャップ)に進入することが考えられる。冷媒がエアギャップに進入すると、ロータと冷媒との間で発生する摩擦によりロータの回転効率に影響を与えることが考えられる。
この対策として、例えば特許文献1において、端面板の外周部を軸方向の外側に傾斜状に隆起させることが知られている。端面板の外周部を傾斜状に隆起させることにより、端面板の外周縁に導かれた冷媒を傾斜状の隆起でエアギャップから離すように軸方向の外側に飛散させることができる。これにより、冷媒がエアギャップに進入することを抑制できるとされている。
特開2013−27244号公報
しかし、特許文献1の構成によれば、端面板(すなわち、ロータ)の外周部を軸方向の外側に隆起させる必要がある。このため、回転電機が軸方向に大型化する可能性がある。
また、端面板の外周部を軸方向の外側に隆起させることにより、端面板の外周部(すなわち、ロータ)の重量が増す。このため、ロータの回転効率に影響を与えることが考えられる。
本発明は、ロータの外周部を軸方向外側に隆起させることなく、冷媒のエアギャップへの進入を抑えることができる回転電機を提供することを目的とする。
(1)上記目的を達成するために、本発明の一態様に係る回転電機(例えば、実施形態における回転電機1)は、コイル(例えば、実施形態におけるコイル12)が装着された筒状のステータ(例えば、実施形態におけるステータ3)と、前記ステータに対して径方向の内側に間隔(例えば、実施形態におけるエアギャップ37)をあけた状態で回転可能に構成されたロータ(例えば、実施形態におけるロータ4)と、を備え、前記ロータの軸方向の端部表面(例えば、実施形態における外側面34b,35b)が軸方向に直交する平坦面に形成され、前記ロータの外周面のうち、前記端部表面及び前記間隔に対して軸方向に離れた位置には、径方向に延びる段部(例えば、実施形態における段部38,39)が形成されている。
(2)上記(1)の態様に係る回転電機において、前記段部は、前記ロータの径方向に延びる離間面(例えば、実施形態における離間面44)と、前記離間面における径方向の内側端部に連なり、軸方向に延びる底面(例えば、実施形態における底面45)と、を有していてもよい。
(3)上記(1)の態様に係る回転電機において、前記段部は、前記ロータの径方向に延びる第1離間面(例えば、実施形態における第1離間面123)と、前記第1離間面に対して軸方向で前記間隔寄りに位置して径方向に延びる第2離間面(例えば、実施形態における第2離間面124)と、前記第1離間面及び前記第2離間面の径方向の内側端部同士を接続する底面(例えば、実施形態における底面125)と、を有していてもよい。
(4)上記(2)又は(3)の態様に係る回転電機において、前記底面は、径方向において、前記ロータに設けられた永久磁石の端面の途中の位置に配置されていてもよい。
(5)上記(1)の態様に係る回転電機において、前記段部は、前記外周面から径方向の内側に向かうに従い軸方向の内側へ傾斜状に延びる第1離間面(例えば、実施形態における第1離間面143)と、前記第1離間面における径方向の内側端部から径方向の外側に向かうに従い軸方向の内側へ前記外周面まで傾斜状に延びる第2離間面(例えば、実施形態における第2離間面144)と、を有していてもよい。
(6)上記(1)の態様に係る回転電機において、前記段部は、前記外周面から径方向の内側に窪む円弧状に形成されていてもよい。
(7)上記(1)から(6)の何れかの態様に係る回転電機において、前記ロータは、ロータコア(例えば、実施形態におけるロータコア32)と、前記ロータの軸方向の端面に設けられた端面板(例えば、実施形態における端面板34,35)と、を備え、前記段部は前記端面板に備えられていてもよい。
(8)上記(7)の態様に係る回転電機において、前記端面板の前記外周面は、軸方向から見て前記間隔よりも径方向の外側で、前記コイルよりも径方向の内側に配置されていてもよい。
上記(1)の態様によれば、段部とロータの外周縁との間において、ロータの外周面の表面積を減らすことができる。
ここで、冷媒は、ロータの軸方向の端部表面からロータの外周面に導かれる。よって、ロータの外周面の表面積を減らすことにより、ロータの外周面に導かれた冷媒に作用する表面張力を小さく抑えることができる。これにより、ロータの外周面に導かれた冷媒が、表面張力によって間隔に進入することを抑えることができ、冷媒を間隔とは反対方向に指向させることができる。
特に、ロータの外周面に段部を形成することにより、ロータの端部表面を軸方向において間隔から離れる外側に隆起させることなく、冷媒の間隔への進入を抑えることができる。その結果、回転電機の軸方向での大型化や、ロータの回転効率に影響を与えることなく、冷媒の間隔への進入を抑制できる。
上記(2)の態様によれば、段部を離間面と底面とにより構成する。離間面はロータの径方向に延び、底面はロータの軸方向に延びる。よって、ロータの外周面に段部を形成することにより、外周面に開口部を容易に形成することができる。これにより、ロータの外周面の表面積を簡単な構成で減らすことができる。
上記(3)の態様によれば、段部を第1離間面、第2離間面、及び底面で形成した。よって、第1離間面、第2離間面、及び底面で段部を断面U字状に形成して、ロータの外周面の表面積を減らすことができる。これにより、ロータの外周面に導かれた冷媒に作用する表面張力を小さく抑えることができる。したがって、ロータの外周面に導かれた冷媒が、表面張力によって間隔に進入することを抑えることができ、冷媒を間隔の方向とは反対方向に指向させることができる。
すなわち、ロータの外周部を軸方向外側に隆起させることなく、冷媒によるエアギャップへの進入を抑えることができる。
上記(4)の態様によれば、底面を永久磁石の端面の途中の位置に配置した。これにより、永久磁石をロータの内部に保持した状態において、段部の深さを広範囲において選択することが可能になり、設計の自由度を高めることができる。
上記(5)の態様によれば、段部を傾斜状の第1離間面、及び第2離間面で形成した。よって、第1離間面、及び第2離間面で段部を断面V字状に形成して、ロータの外周面の表面積を減らすことができる。これにより、ロータの外周面に導かれた冷媒に作用する表面張力を小さく抑えることができる。したがって、ロータの外周面に導かれた冷媒が、表面張力によって間隔に進入することを抑えることができ、冷媒を間隔の方向とは反対方向に指向させることができる。
すなわち、ロータの外周部を軸方向外側に隆起させることなく、冷媒によるエアギャップへの進入を抑えることができる。
上記(6)の態様によれば、段部を円弧状に延ばすことにより、ロータの外周面を開口させた。よって、ロータの外周面の表面積を減らすことができる。これにより、ロータの外周面に導かれた冷媒に作用する表面張力を小さく抑えることができる。したがって、ロータの外周面に導かれた冷媒が、表面張力によって間隔に進入することを抑えることができ、冷媒を間隔の方向とは反対方向に指向させることができる。
すなわち、ロータの外周部を軸方向外側に隆起させることなく、冷媒によるエアギャップへの進入を抑えることができる。
上記(7)の態様によれば、段部を端面板に形成した。よって、例えば、端面板をロータに組み付ける前工程において、端面板に段部を形成できる。これにより、端面板に段部を容易に形成することができる。
上記(8)の態様によれば、端面板の外周面が間隔よりも径方向の外側に配置されることで、外周面に到達した冷媒が間隔に進入するのを確実に抑えることができる。
第1実施形態に係る回転電機の概略構成を示す断面図である。 第1実施形態に係る回転電機の部分断面図である。 第1実施形態に係る回転電機の第1段部とエアギャップとの関係を示す断面図である。 第2実施形態に係る回転電機の要部を示す断面図である。 第3実施形態に係る回転電機の要部を示す断面図である。 第4実施形態に係る回転電機の要部を示す断面図である。 第5実施形態に係る回転電機の要部を示す断面図である。 第6実施形態に係る回転電機の要部を示す断面図である。 第7実施形態に係る回転電機の要部を示す断面図である。 第1実施形態の第1段部を第1端面板に加工する工程を説明する概略図である。 第1実施形態の第1段部を第1端面板に加工する工程を説明する概略図である。 第3実施形態の第1段部を第1端面板に加工する工程を説明する概略図である。 第3実施形態の第1段部を第1端面板に加工する工程を説明する概略図である。 比較例に係る回転電機の要部を示す断面図である。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下で説明する各実施形態について対応する構成については、同一の符号を付して説明を省略する場合がある。
(第1実施形態)
図1は、第1実施形態に係る回転電機1の概略構成を示す断面図である。
図1に示す回転電機1は、例えばハイブリッド自動車や電気自動車等の車両に搭載される走行用モータである。但し、本発明の構成は、走行用モータに限らず、発電用モータやその他用途のモータ、車両用以外の回転電機(発電機を含む)にも適用可能である。
回転電機1は、ケース2と、ステータ3と、ロータ4と、冷媒供給部5(図2参照)と、を備えている。以下の説明では、後述するシャフト31の軸線Cに沿う方向を単に軸方向といい、軸線Cに直交する方向を径方向といい、軸線C回りの方向を周方向という場合がある。
ケース2は、ステータ3及びロータ4を収容している。ケース2内には、冷媒10(図3参照)が収容されている。上述したステータ3は、ケース2内において、一部が冷媒10に浸漬された状態で配置されている。なお、冷媒10としては、トランスミッションの潤滑や動力伝達等に用いられる作動油である、ATF(Automatic Transmission Fluid)等が好適に用いられている。
図2は、回転電機1の部分断面図である。
図2に示すように、ステータ3は、ステータコア11と、ステータコア11に装着されたコイル12と、を備えている。
ステータコア11は、軸線Cと同軸に配置された筒状である。ステータコア11は、例えばケース2(図1参照)の内周面に固定されている。ステータコア11は、軸方向を向く第1軸方向端面(ステータ3の軸方向の端面)11a、及び第2軸方向端面(ステータ3の軸方向の端面)11bを有する。
ステータコア11は、電磁鋼板が軸方向に積層されて構成されている。なお、ステータコア11は、いわゆる圧粉コアであっても構わない。
コイル12は、ステータコア11に装着されている。コイル12は、周方向に関して互いに120°の位相差をもって配置されたU相コイル、V相コイル及びW相コイルを有している。コイル12は、ステータコア11のスロット(不図示)に挿通された挿通部12aと、ステータコア11から軸方向に突出したコイルエンド部12b,12cと、を有している。ステータコア11には、コイル12に電流が流れることで磁界が発生する。
ロータ4は、ステータ3に対して径方向の内側に、間隔37をあけて配置されている。ロータ4は、ステータ3に対向して軸線C回りに回転可能に構成されている。ロータ4は、シャフト31と、ロータコア32と、永久磁石33と、端面板(第1端面板34及び第2端面板35)と、を備えている。以下、ステータ3及びロータ4間の間隔37を「エアギャップ37」という。
シャフト31は、軸受(第1軸受41及び第2軸受42)を介して軸線C回りに回転可能に、ケース2に支持されている。
ロータコア32は、軸線Cと同軸に配置された筒状に形成されている。ロータコア32の内側には、シャフト31が圧入固定されている。なお、ロータコア32は、ステータコア11と同様に電磁鋼板が軸方向に積層されて構成されていても、圧粉コアであってもよい。
ロータコア32は、軸方向を向く第1軸方向端面(軸方向の端面)32a、及び第2軸方向端面(軸方向の端面)32bを有する。
ロータコア32の第1軸方向端面32aと、ステータコア11の第1軸方向端面11aとは、軸線Cの軸方向において面一になるように位置が揃えられている。また、ロータコア32の第2軸方向端面32bと、ステータコア11の第2軸方向端面11bとは、軸線Cの軸方向において面一になるように位置が揃えられている。但し、第1軸方向端面11a,32a同士、及び第2軸方向端面11b,32b同士は、軸方向の位置が互いに異なっていてもよい。
ここで、ステータコア11とロータコア32との間にエアギャップ37が形成される。よって、エアギャップ37における軸方向の第1側端部は、ロータコア32の第1軸方向端面32aに対して、軸方向において面一になるように位置が揃えられている。また、エアギャップ37における軸方向の第2側端部は、ロータコア32の第2軸方向端面32bに対して、軸方向において面一になるように位置が揃えられている。
ロータコア32の外周部分には、ロータコア32を軸方向に貫通する磁石保持孔36が形成されている。磁石保持孔36は、周方向に間隔をあけて複数形成されている。各磁石保持孔36には、永久磁石33が挿入されている。なお、ロータコア32の内周部分には、ロータコア32を軸方向に貫通する貫通孔40が形成されている。貫通孔40は、周方向及び径方向に間隔をあけて複数形成されている。
第1端面板34は、ロータコア32の第1軸方向端面32aに内側面34aが軸方向に接触した状態で設けられている。第1端面板34は、シャフト31に圧入固定された状態で、ロータコア32における少なくとも磁石保持孔36を軸方向の第1側から覆っている。
この状態において、第1端面板34の外側面34bは、第1軸方向端面32aの反対側に配置されている。第1端面板34の外側面34bは、ロータ4の軸方向の第1端部表面を形成し、軸方向に直交する平坦面に形成されている。
また、第1端面板34の外周面34cは、ロータコア32の外周面32cに対して径方向に面一になるように位置が揃えられている。第1端面板34の外周面34cには、第1段部(段部)38が形成されている。第1段部38は、エアギャップ37に対して軸方向に離れた位置に配置されている。第1段部38は、外周面34cに沿って環状に形成され、且つ断面L字状の凹部に形成されている。
第2端面板35は、ロータコア32の第2軸方向端面32bに内側面35aが軸方向に接触した状態で設けられている。第2端面板35は、シャフト31に圧入固定された状態で、ロータコア32における少なくとも磁石保持孔36を軸方向の第2側から覆っている。
この状態において、第2端面板35の外側面35bは、第2軸方向端面32bの反対側に配置されている。第2端面板35の外側面35bは、ロータ4の軸方向の第2端部表面を形成し、軸方向に直交する平坦面に形成されている。
また、第2端面板35の外周面35cは、ロータコア32の外周面32cに対して径方向に面一になるように位置が揃えられている。第2端面板35の外周面35cには、第2段部(段部)39が形成されている。第2段部39は、エアギャップ37に対して軸方向に離れた位置に配置されている。第2段部39は、外周面35cに沿って環状に形成され、且つ断面L字状の凹部に形成されている。
このように、第1段部38が第1端面板34に形成され、第2段部39が第2端面板35に形成されている。よって、例えば、第1段部38や第2段部39をロータコア32に組み付ける前工程において、第1端面板34に第1段部38を形成し、第2端面板35に第2段部39を形成できる。これにより、第1端面板34に第1段部38を容易に形成し、第2端面板35に第2段部39を容易に形成することができる。
なお、ロータ4は、端面板34,35を有さない構成であってもよい。この場合、ロータ4の外周面において、軸方向の第1側端部に第1段部38が形成され、第2側端部に第2段部39が形成される。
冷媒供給部5は、冷媒ポンプの駆動によって送出される冷媒10を、ステータ3やロータ4等に供給する。なお、冷媒ポンプは、シャフト31の回転に連動して駆動する、いわゆるメカポンプであってもよく、シャフト31の回転に対して独立して駆動する、いわゆる電動ポンプであってもよい。
冷媒供給部5は、シャフト流路51と、第1端面板流路52と、第2端面板流路53と、を備えている。
シャフト流路51は、軸心流路61と、吐出口62と、を備えている。
軸心流路61は、シャフト31内における軸線Cと同軸となる位置を軸方向に延在している。軸心流路61内には、冷媒ポンプから送出される冷媒10が軸方向に沿って流通する。
吐出口62は、シャフト31において、軸方向で第1端面板34と同等の位置に形成されている。吐出口62は、シャフト31を径方向に延在している。吐出口62における径方向の内側端部は、軸心流路61内に連通している。吐出口62における径方向の外側端部は、シャフト31の外周面上で開口している。吐出口62内には、軸心流路61内を流れる冷媒10が流入する。
第1端面板流路52は、ロータ4の回転に伴う遠心力によって、吐出口62から流入する冷媒10を径方向の内側から外側に向けて流通させる。具体的に、第1端面板流路52は、ロータ入口流路71と、ステータ供給路72と、を備えている。
ロータ入口流路71は、第1端面板34を径方向に延在している。ロータ入口流路71における径方向の内側端部は、上述した吐出口62内に連通している。すなわち、ロータ入口流路71内には、吐出口62を流れる冷媒10が流入する。ロータ入口流路71における径方向の外側端部は、第1端面板34の外周部分で終端している。
ロータ入口流路71は、第1端面板34の内側面34a上で開口している。ロータ入口流路71は、上述した貫通孔40内に連通している。ロータ入口流路71内を流れる冷媒10は、径方向の外側に向けて流通する過程で、貫通孔40内に流入可能とされている。すなわち、貫通孔40は、ロータコア32を冷却する冷却通路としても機能する。
ステータ供給路72は、ロータ入口流路71の下流端部(径方向の外側端部)に接続されている。ステータ供給路72は、第1端面板34内を軸方向に貫通している。すなわち、上述したロータ入口流路71は、ステータ供給路72を通じてロータ4の外部に連通している。
第2端面板流路53は、例えばロータ4の回転に伴う遠心力によって、ロータ4の内部を流れる冷媒10をロータ4から排出する。第2端面板流路53は、合流流路81と、ステータ供給路82と、を有している。
合流流路81は、第2端面板35を径方向に延在している。合流流路81は、第2端面板35の内側面35a上で開口している。合流流路81は、上述した磁石保持孔36や貫通孔40に連通している。
ステータ供給路82は、合流流路81における径方向の外側端部に連通している。ステータ供給路82は、第2端面板35を軸方向に貫通している。すなわち、上述した合流流路81は、ステータ供給路82を通じてロータ4の外部に連通している。なお、第1端面板流路52や第2端面板流路53は、周方向に複数形成されていてもよい。
ここで、第1端面板34の外周面34cには、上述したように第1段部38が形成されている。また、第2端面板35の外周面35cには、上述したように第2段部39が形成されている。第1段部38及び第2段部39は軸方向において対称に形成されている。そのため、以下第1段部38について詳しく説明して第2段部39の詳しい説明を省略する。
図3は、回転電機1の第1段部38とエアギャップ37との関係を示す断面図である。
図3に示すように、第1段部38は、径方向に延びる離間面44と、軸方向に延びる底面45とを有する。離間面44は、ロータコア32の第1軸方向端面32aに対して軸方向に所定間隔L1をおいて離れた位置に形成されている。離間面44は、第1軸方向端面32aに沿って底面45から第1端面板34の外周面34cまで延びている。なお、離間面44とは、法線方向が軸方向及び径方向の少なくとも一方向の成分を有してエアギャップ37を向き、かつ第1端面板34の外周面34cよりもエアギャップ37から径方向に離間している面である。本実施形態において、離間面44の法線方向は、軸方向と平行に延在している。
底面45は、離間面44における径方向内端に連なっている。底面45は、第1端面板34の外周面34cに対して径方向に所定間隔H1をおいて離れた位置に形成されている。底面45は、離間面44の径方向内端から軸方向に沿って第1端面板34の内側面34aまで延びている。
第1端面板34の外周面34cに第1段部38が形成されることにより、第1段部38及び第1軸方向端面32a間には、溝部46が形成されている。溝部46は、断面U字状の凹部に形成されることにより、第1端面板34の外周面34cに開口部46aが形成されている。溝部46は、溝深さH1及び溝幅L1に設定されている。
このように、第1端面板34の外周面34cに第1段部38を形成することにより、外周面34cに第1段部38(すなわち、開口部46a)を容易に形成することができる。これにより、第1端面板34の外周面34cの表面積を簡単な構成で減らすことができる。
[作用]
次に、上述した回転電機1を冷媒10で冷却する作用を図2〜図4に基づいて説明する。
図2に示すように、シャフト流路51の軸心流路61に冷媒10(図3参照)が導かれる。軸心流路61に導かれた冷媒10は、冷媒ポンプの作用とロータ4の回転に伴う遠心力により、主に軸心流路61の内周面上を伝って軸方向の第2側から第1側に向けて流れる。
軸心流路61に案内された冷媒10の一部は、吐出口62内に流入する。吐出口62内に流入した冷媒10は、吐出口62を径方向の外側に向けて流れた後、第1端面板流路52のロータ入口流路71内に流入する。なお、第1端面板流路52では、ロータ4の回転に伴う遠心力によって径方向の内側から外側に向けて冷媒10が流れる。
ロータ入口流路71内に流入した冷媒10のうち、一部の冷媒10は、ロータ入口流路71内を径方向の外側に流れる過程において、ステータ供給路72内に流入する。ステータ供給路72内に流入した冷媒10は、ステータ供給路72を通じてロータ4の外部に吐出される。ステータ供給路72から吐出された冷媒10は、遠心力によって径方向の外側に飛散し、ステータコア11に対して軸方向の第1側に位置するコイルエンド部12bに供給される。これにより、コイルエンド部12bが冷却される。
冷媒10を遠心力によって径方向の外側に飛散させる作用については図3で詳しく説明する。
一方、ロータ入口流路71内に流入した冷媒10のうち、一部の冷媒10は、ロータ入口流路71内を径方向の外側に流れる過程において、貫通孔40内に流入する。貫通孔40内に流入した冷媒10は、貫通孔40内を軸方向の第2側に向けて流れる。これにより、ロータ4が冷却される。貫通孔40を通過した冷媒10は、合流流路81内に流入する。合流流路81内に流入した冷媒10は、合流流路81内を径方向の外側に向けて流れた後、ステータ供給路82を通してロータ4の外部に排出される。なお、ステータ供給路82から排出された冷媒10は、遠心力によって径方向の外側に向けて飛散し、ステータコア11に対して軸方向の第2側に位置するコイルエンド部12cに供給される。これにより、コイルエンド部12cが冷却される。
次に、冷媒10を遠心力によって径方向の外側に飛散させる作用について図3に基づいて詳しく説明する。
図3に示すように、ロータ入口流路71からステータ供給路72に流入した冷媒10は、ステータ供給路72を通じて第1端面板34の外部(ロータ4の外部)に吐出される。ロータ4の外部に吐出された冷媒10は、第1端面板34の外側面34b及び外周縁34dを経て外周面34cに導かれる。
ここで、本実施形態では、ロータ4の外周面(第1端面板34の外周面34c)において、エアギャップ37に対して軸方向の外側に位置する部分に、第1段部38が形成されている。よって、第1段部38と外周縁34dとの軸方向の間において、外周面34cの表面積を減らすことができる。これにより、第1端面板34の外周面34cに冷媒10が導かれる冷媒量を減らすことができる。そのため、外周面34cに導かれた冷媒10に作用する表面張力γを小さく抑えることができる。
具体的に、外周面34cに導かれた冷媒10には、ロータ4の回転による遠心力Fcや、冷媒10の表面張力γが作用する。遠心力Fc、表面張力γの限界式(つりあいの瞬間)を(1)式で示す。
Fc±Mg=2πR×γ×cosθ……(1)
但し、
γ :第1端面板34の外周面34cに導かれた冷媒10の表面張力
Fc:ロータ4の回転により発生する遠心力
θ :端面板34の外周面34cに導かれた冷媒10の接触角
M :第1端面板34の外周面34cに導かれた冷媒10の質量
g :重力加速度
R :第1端面板34の外周面34cの半径
である。
(1)式の左項の±において、+の時は冷媒10が下向きに噴出する時であり、−の時は冷媒10が上向きに噴出するときである。冷媒10が下向きに噴出する時の方が表面張力γの限界にはやく到達する。
(1)式から分かるように、外周面34cに導かれた冷媒10の表面張力γを小さく抑えることにより、表面張力γによって冷媒10がエアギャップ37に進入することを抑えることができる。
すなわち、第1端面板34の外周面34cに第1段部38を形成することにより、第1端面板34を軸方向においてエアギャップ37から離れる外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
また、エアギャップ37に進入することを抑えられた冷媒10を、遠心力Fcにより、ロータコア32(エアギャップ37)の方向とは反対方向に指向(飛散)させることができる。飛散させた冷媒10は、ステータコア11に対して軸方向の第1側に位置するコイルエンド部12b(図2参照)に供給される。これにより、コイルエンド部12bが冷却される。
特に、端面板34,35の外周面34c,35cに段部38,39を形成することにより、端面板34,35の外側面34b,35bを軸方向の側に隆起させることなく、冷媒10のエアギャップ37への進入を抑えることができる。その結果、回転電機1の軸方向での大型化や、ロータ4の回転効率に影響を与えることなく、冷媒10のエアギャップ37への進入を抑制できる。
ここで、第1段部38及び第1軸方向端面32aにより形成される溝部46は、溝深さH1、溝幅L1に設定されている。溝深さH1が浅い場合には、溝部46に冷媒10が溜まり、冷媒10に溝部46の開口部46aを乗り越えてロータコア32に伝わる表面張力が発生することが考えられる。よって、外周面34cに導かれた冷媒10が開口部46aを跨いでロータコア32の外周面32cまで導かれ、エアギャップ37に進入することが考えられる。このため、溝部46の溝深さH1は、冷媒10の表面張力により、冷媒10が開口部46aを乗り越えことを抑制できる深さに形成されることが好ましい。
すなわち、次の(2)式が成立する冷媒10の質量Mとなるように、冷媒10の密度と体積との関係を設定することが好ましい。
Fc+Mg>2πR×γ×cosθ……(2)
さらに、溝幅L1が小さすぎる場合には、冷媒10に溝部46の開口部46aを乗り越えてロータコア32に伝わる表面張力が発生することが考えられる。よって、外周面34cに導かれた冷媒10が開口部46aを跨いでロータコア32の外周面32cまで導かれ、エアギャップ37に進入することが考えられる。このため、溝部46の溝幅L1は、冷媒10による開口部46aの乗り越えを抑制できる幅に形成されることが好ましい。
図15は、比較例の回転電機100の要部を示す断面図である。図15において第1実施形態の回転電機1と同一類似構成については同じ符号を付して詳しい説明を省略する。
比較例の回転電機100は、第1端面板101の外周面101aに、第1実施形態の第1段部38が形成されていない。よって、第1端面板101の外周面101aの表面積は、第1実施形態の外周面34cより大きくなる。このため、第1端面板101の外周面101aに導かれる冷媒10は、第1実施形態の外周面34cに導かれる冷媒10より導かれる冷媒量が増す。
ここで、第1端面板101の外周面101aは、第1実施形態の第1端面板34の外周面34cと濡れ性が同じである。よって、第1端面板101の外周面101aに導かれた冷媒10の表面張力γの接触角θは、第1実施形態の第1端面板34の外周面34cに導かれた冷媒10の接触角θと同じである。
また、第1端面板101の外周面101aに導かれる冷媒量は、第1実施形態の外周面34cに導かれる冷媒量より増す。このように、冷媒10の接触角θが実施形態の接触角θと同じで、第1端面板101の外周面101aに導かれる冷媒量が増すことにより、冷媒10がエアギャップ37に近接するまで導かれる。これにより、冷媒10がエアギャップ37に進入することが考えられる。
なお、前記実施形態では、段部38,39部が環状に形成された構成について説明したが、この構成のみに限らず、周方向に間欠的に形成されていてもよい。
前記実施形態では、冷媒10が軸心流路61を通過した後に外周面34c,35cに付着する場合について説明したが、この構成のみに限られない。すなわち、冷媒はロータ4の外部から端面板34,35(外周面34c,35c)に付着する場合であってもよい。
(第2実施形態)
図4は、第2実施形態に係る回転電機110の要部を示す断面図である。
回転電機110は、第1端面板111の外周面111aに第1段部(段部)112を形成したもので、その他の構成は第1実施形態の回転電機1と同様である。
第1段部112は、離間面113と、底面114とを有する。第1段部112は、第1実施形態の第1段部38と同様に、離間面113及び底面114で断面L字状の凹部に形成されている。
底面114は、径方向において永久磁石33の軸方向の第1側を向く磁石端面(端面)33aの途中の位置に配置されている。この状態において、第1端面板111の内側面111bは、磁石端面33aのうち径方向の内側部位33bに接触する。よって、永久磁石33を第1端面板111の内側面111bでロータコア32の内部に保持できる。
第1段部112及び第1軸方向端面32aにより溝部116が形成されている。溝部116は、断面U字状の凹部に形成されることにより、第1端面板111の外周面111aに開口部116aが形成されている。
第2実施形態の第1段部112によれば、第1実施形態の第1段部38と同様に、第1端面板111を軸方向においてエアギャップ37から離れる外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
また、第1段部112の底面114を磁石端面33aの途中の位置に配置することにより、第1段部112の深さを広範囲において選択することが可能になり、設計の自由度を高めることができる。
(第3実施形態)
図5は、第3実施形態に係る回転電機120の要部を示す断面図である。
回転電機120は、第1端面板121の外周面121aに第1段部(段部)122を形成したもので、その他の構成は第1実施形態の回転電機1と同様である。
第1段部122は、第1端面板121の外周面121aにおいて、外周面121aに沿って環状に形成されている。第1段部122は、第1離間面123と、第2離間面124と、底面125と、を有する。
第1離間面123は、エアギャップ37から軸方向の外側において径方向に延びている。第2離間面124は、第1離間面123より軸方向の内側(エアギャップ37側)において径方向に延びている。底部125は、軸方向に延び、第1離間面123の径方向に内側端部、及び第2離間面124の径方向に内側端部同士を連結している。
第1段部122は、第1離間面123、第2離間面124、及び底面125で断面U字状の凹部(溝部)に形成されている。
第3実施形態の第1段部122によれば、第1実施形態の第1段部38と同様に、第1端面板121の外周面121aの表面積を減らすことができる。これにより、第1端面板121の外周面121aに導かれた冷媒10に作用する表面張力を小さく抑えることができる。したがって、第1端面板121の外周面121aを軸方向外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
(第4実施形態)
図6は、第4実施形態に係る回転電機130の要部を示す断面図である。
回転電機130は、第1端面板131の外周面131aに第1段部(段部)132を形成したもので、その他の構成は第3実施形態の回転電機120と同様である。
第1段部132は、第1離間面133と、第2離間面134と、底面135と、を有する。第1段部132は、第3実施形態の第1段部122と同様に、第1離間面133、第2離間面134、及び底面135で断面U字状の凹部(溝部)を形成する。
底面135は、径方向において永久磁石33の軸方向の第1側を向く磁石端面33aの途中の位置に配置されている。この状態において、第1端面板131の内側面131bは、磁石端面33aに接触する。よって、永久磁石33を第1端面板131の内側面131bでロータコア32の内部に保持できる。
第4実施形態の第1段部132によれば、第3実施形態の第1段部122と同様に、第1端面板131を軸方向においてエアギャップ37から離れる外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
また、第1段部132の底面135を磁石端面33aの途中の位置に配置することにより、第1段部132の深さを広範囲において選択することが可能になり、設計の自由度を高めることができる。
(第5実施形態)
図7は、第5実施形態に係る回転電機140の要部を示す断面図である。
回転電機140は、第1端面板141の外周面141aに第1段部(段部)142を形成したもので、その他の構成は第1実施形態の回転電機1と同様である。
第1段部142は、第1端面板141の外周面141aにおいて、外周面141aに沿って環状に形成されている。第1段部142は、第1離間面143と、第2離間面144と、を有する。
第1離間面143は、第1端面板141の外周面141aから径方向の内側に向かうに従い軸方向の内側(すなわち、エアギャップ37側)へ傾斜状に延びている。第2離間面144は、第1離間面143の径方向の内側端部から径方向の外側に向かうに従い軸方向の内側(すなわち、エアギャップ37側)へ外周面141aまで傾斜状に延びている。
すなわち、第1段部142は、第1離間面143及び第2離間面144で断面V字状の凹部(溝部)に形成されている。
第5実施形態の第1段部142によれば、第1実施形態の第1段部38と同様に、第1端面板141の外周面141aの表面積を減らすことができる。これにより、第1端面板141の外周面141aに導かれた冷媒10に作用する表面張力を小さく抑えることができる。したがって、第1端面板141の外周面141aを軸方向外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
入を抑えることができる。
(第6実施形態)
図8は、第6実施形態に係る回転電機150の要部を示す断面図である。
回転電機150は、第1端面板151の外周面151aに第1段部(段部)152を形成したもので、その他の構成は第1実施形態の回転電機1と同様である。
第1段部152は、第1端面板151の外周面151aにおいて、外周面151aに沿って環状に形成されている。第1段部152は、円弧状の離間面で形成されている。
具体的に、第1段部(離間面)152は、第1端面板151の外周面151aから径方向の内側に窪む円弧状に形成されている。すなわち、第1段部152は、断面円弧状の凹部(溝部)に形成されている。
第6実施形態の第1段部152によれば、第1実施形態の第1段部38と同様に、第1端面板151の外周面151aの表面積を減らすことができる。これにより、第1端面板151の外周面151aに導かれた冷媒10に作用する表面張力を小さく抑えることができる。したがって、第1端面板151の外周面151aを軸方向外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
(第7実施形態)
図9は、第7実施形態に係る回転電機160の要部を示す断面図である。
回転電機160は、第1端面板161の外周面161aに第1段部(段部)162を形成したもので、その他の構成は第1実施形態の回転電機1と同様である。本実施形態において、第1端面板161の外周面161aは、ロータコア32の外周面32cよりも径方向の外側に位置している。具体的に、外周面161aは、軸方向から見てステータコア11と重なり合い、かつコイル12よりも径方向の内側に位置している。
第7実施形態の第1段部162によれば、外周面161aの表面積を減らすことにより、第1端面板161の外側面161bに導かれた冷媒10に作用する表面張力を小さく抑えることができる。これにより、第1端面板161の外周面151aを軸方向外側に隆起させることなく、冷媒10によるエアギャップ37への進入を抑えることができる。
しかも、第1端面板161の外周面161aがエアギャップ37よりも径方向の外側に配置されることで、外周面161aに到達した冷媒10がエアギャップ37に進入するのを確実に抑えることができる。
次に、第1実施形態〜第7実施形態のうち、代表例として、第1実施形態の第1段部38、第3実施形態の第1段部122を加工する例を図10〜図14に基づいて説明する。
図10は、第1実施形態の第1段部38を第1端面板34に加工する工程を説明する概略図である。
図10に示すように、第1端面板34をテーブル170に固定し、切削工具171を回転させる。
図11に示すように、切削工具171で第1段部38を第1端面板34の外周面34cに沿って環状にフライス加工する。
このように、第1段部38をロータコア32(図2参照)に組み付ける前工程において、第1端面板34に第1段部38を加工することにより、第1端面板34に第1段部38を容易に形成することができる。
図13は、第3実施形態の第1段部122を第1端面板121に加工する工程を説明する概略図である。
図13に示すように、第1端面板121をテーブル180に固定し、切削工具181を回転させる。
図14に示すように、切削工具181で第1段部122を第1端面板121の外周面121aに沿って環状に形成する。
このように、第1段部122をロータコア32(図2参照)に組み付ける前工程において、第1端面板121に第1段部122を加工することにより、第1端面板121に第1段部122を容易に形成することができる。
その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上述した変形例を適宜組み合わせてもよい。
1,100,110,120,130,140,150,160…回転電機
3…ステータ
4…ロータ
10…冷媒
11…ステータコア
12…コイル
32…ロータコア
33…永久磁石(磁石)
33a…磁石端面(端面)
34,101,111,121,131,141,151,161…第1端面板(端面板)
34b…外側面(端部表面)
34c,101a,111a,121a,131a,141a,151a,161a…外周面
35…第2端面板(端面板)
35b…外側面(端部表面)
35c…外周面
37…エアギャップ(間隔)
38,112,122,132,142,152,162…第1段部(段部)
39…第2段部(段部)
113…離間面
114…底面
123…第1離間面
124…第2離間面
125…底面
125…底部
133…第1離間面
134…第2離間面
135…底面
143…第1離間面
144…第2離間面

Claims (8)

  1. コイルが装着された筒状のステータと、
    前記ステータに対して径方向の内側に間隔をあけた状態で回転可能に構成されたロータと、を備え、
    前記ロータの軸方向の端部表面が軸方向に直交する平坦面に形成され、
    前記ロータの外周面のうち、前記端部表面及び前記間隔に対して軸方向に離れた位置には、径方向に延びる段部が形成されている回転電機。
  2. 前記段部は、
    前記ロータの径方向に延びる離間面と、
    前記離間面における径方向の内側端部に連なり、軸方向に延びる底面と、を有する請求項1に記載の回転電機。
  3. 前記段部は、
    前記ロータの径方向に延びる第1離間面と、
    前記第1離間面に対して軸方向で前記間隔寄りに位置して径方向に延びる第2離間面と、
    前記第1離間面及び前記第2離間面の径方向の内側端部同士を接続する底面と、を有する請求項1に記載の回転電機。
  4. 前記底面は、径方向において、前記ロータに設けられた永久磁石の端面の途中の位置に配置されている請求項2又は請求項3に記載の回転電機。
  5. 前記段部は、
    前記外周面から径方向の内側に向かうに従い軸方向の内側へ傾斜状に延びる第1離間面と、
    前記第1離間面における径方向の内側端部から径方向の外側に向かうに従い軸方向の内側へ前記外周面まで傾斜状に延びる第2離間面と、を有する請求項1に記載の回転電機。
  6. 前記段部は、前記外周面から径方向の内側に窪む円弧状に形成されている請求項1に記載の回転電機。
  7. 前記ロータは、
    ロータコアと、
    前記ロータの軸方向の端面に設けられた端面板と、を備え、
    前記段部は前記端面板に備えられる請求項1から請求項6の何れか1項に記載の回転電機。
  8. 前記端面板の前記外周面は、軸方向から見て前記間隔よりも径方向の外側で、前記コイルよりも径方向の内側に配置されている請求項7に記載の回転電機。
JP2018243311A 2018-12-26 2018-12-26 回転電機 Pending JP2020108210A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018243311A JP2020108210A (ja) 2018-12-26 2018-12-26 回転電機
CN201911343760.1A CN111384805A (zh) 2018-12-26 2019-12-23 旋转电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243311A JP2020108210A (ja) 2018-12-26 2018-12-26 回転電機

Publications (1)

Publication Number Publication Date
JP2020108210A true JP2020108210A (ja) 2020-07-09

Family

ID=71218509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243311A Pending JP2020108210A (ja) 2018-12-26 2018-12-26 回転電機

Country Status (2)

Country Link
JP (1) JP2020108210A (ja)
CN (1) CN111384805A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560067B2 (ja) * 2007-07-19 2010-10-13 トヨタ自動車株式会社 回転電機
JP5549857B2 (ja) * 2010-02-18 2014-07-16 アイシン・エィ・ダブリュ株式会社 回転電機用ロータ
JP5584669B2 (ja) * 2011-10-14 2014-09-03 三菱電機株式会社 回転電機の回転子
CN102780319A (zh) * 2012-07-27 2012-11-14 抚顺煤矿电机制造有限责任公司 一种隔爆型电动机的导风结构
JP6160690B2 (ja) * 2013-04-26 2017-07-12 株式会社豊田自動織機 誘導機
JP5959687B1 (ja) * 2015-04-28 2016-08-02 三菱電機株式会社 回転電機
CN106787452A (zh) * 2015-11-23 2017-05-31 南车株洲电力机车研究所有限公司 一种油冷电机

Also Published As

Publication number Publication date
CN111384805A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
JP4424385B2 (ja) 回転電機
US10778053B2 (en) Rotor structure of rotary electric machine
US9960649B2 (en) Rotating electric machine
JP5772544B2 (ja) 回転電機の冷却構造
US11056941B2 (en) Rotor of rotary electric machine and method for cooling rotary electric machine
JP2009027837A (ja) 回転電機
JP5899716B2 (ja) 回転電機のロータ構造
WO2013136405A1 (ja) 回転電機
JP2009284603A (ja) 回転電機
JP2016054608A (ja) 回転電機のロータ
US11205939B2 (en) Rotary electric machine
JP2014230393A (ja) 回転電機
US9257881B2 (en) Rotating electric machine
CN111384798B (zh) 旋转电机
JP2013258889A (ja) 誘導電動機
JP2020108210A (ja) 回転電機
JP2014092216A (ja) 駆動装置
JP2011193623A (ja) 回転電機
JP7142072B2 (ja) 回転電機のロータ
JP2018026978A (ja) 電動電機
JP2021151098A (ja) 回転電機およびこれを備えた車両
JP5590385B2 (ja) 回転電機
JP4301060B2 (ja) アキシャルギャップ電動機のロータ構造
JP2021013286A (ja) 回転電機
JP6915196B2 (ja) 回転電機