JP2020106563A - Image capturing device - Google Patents

Image capturing device Download PDF

Info

Publication number
JP2020106563A
JP2020106563A JP2018241910A JP2018241910A JP2020106563A JP 2020106563 A JP2020106563 A JP 2020106563A JP 2018241910 A JP2018241910 A JP 2018241910A JP 2018241910 A JP2018241910 A JP 2018241910A JP 2020106563 A JP2020106563 A JP 2020106563A
Authority
JP
Japan
Prior art keywords
plate
polarization
wavelength
acquisition element
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018241910A
Other languages
Japanese (ja)
Inventor
理絵 石松
Rie Ishimatsu
理絵 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018241910A priority Critical patent/JP2020106563A/en
Publication of JP2020106563A publication Critical patent/JP2020106563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

To provide a polarization acquisition element capable of accurately acquiring polarization information without reducing resolution even when wide wavelength plates are used.SOLUTION: A polarization acquisition element for acquiring different polarization states is provided. The polarization acquisition element comprises a laminate-type 1/4λ plate obtained by laminating a material with birefringence while shifting a fast or slow axis in an in-plane direction, a variable phase plate that allows for switching the retardation between two or more values, and a polarizing plate, and is arranged such that an angle between a fast or slow axis of the variable phase plate and a transmission axis of the polarizing plate is roughly 45 degrees, and that an angle between the fast or slow axis of the variable phase plate and a fast or slow axis of the 1/4λ plate at a specific wavelength is roughly 45 degrees. The maximum wavelength λmax and the minimum wavelength λmin of a used wavelength range satisfies a condition expressed as: λmax/λmin>2.SELECTED DRAWING: Figure 1

Description

本発明は、素子および撮像装置に関するものであり、特に偏光情報を取得することのできる素子および撮像装置に関する。 The present invention relates to an element and an image pickup apparatus, and more particularly to an element and an image pickup apparatus capable of acquiring polarization information.

被写体からの光の偏光状態を観察することによって、被写体の所定の特徴を強調して検出できることが知られている。例えば一眼レフカメラのレンズ前面に偏光フィルタを装着し、透過する偏光方向を観察しながら撮影することで、被写体の色やコントラスト等の質感を際立たせる、水面等の反射光の写り込みを強調または軽減する、等の効果を得る事ができる。他にも偏光方向を異ならせた複数の偏光成分の画像を撮影し、被写体のエッジや欠陥部を検出するような検査装置等に用いられる。 It is known that predetermined characteristics of a subject can be emphasized and detected by observing the polarization state of light from the subject. For example, by attaching a polarization filter to the front of the lens of a single-lens reflex camera and observing the transmitted polarization direction, you can emphasize the texture such as color and contrast of the subject, and emphasize the reflection of reflected light such as water surface. You can obtain effects such as reducing. In addition, it is used in an inspection device or the like for capturing an image of a plurality of polarization components having different polarization directions and detecting an edge or a defective portion of a subject.

被写体からの偏光情報を撮影する撮像装置としては様々な方法がある。特許文献1には、固体撮像素子上の各画素に対して異なる偏光を透過するワイヤーグリッド偏光板を形成することで、複数の画素から偏光情報を抽出する撮像素子の構成が開示されている。また特許文献2には、1/4λ板と位相差を変更可能な位相差板と偏光板から構成され、位相差板の位相差を変えながら撮影した複数枚画像から偏光情報を取得する方法が開示されている。 There are various methods as an imaging device for imaging polarization information from a subject. Patent Document 1 discloses a configuration of an image sensor that extracts polarization information from a plurality of pixels by forming a wire grid polarization plate that transmits different polarized light to each pixel on the solid-state image sensor. Further, Patent Document 2 discloses a method of acquiring polarization information from a plurality of images captured while changing the phase difference of the phase difference plate, which is composed of a ¼λ plate, a phase difference plate capable of changing the phase difference, and a polarizing plate. It is disclosed.

特開2012−80065号公報JP 2012-80065 A 特開2016−145924号公報JP, 2016-145924, A

特許文献1では、1枚の画像から偏光情報を得られるものの、複数の画素を偏光情報の取得に割り当てるため、解像度が失われるという課題がある。また、特許文献2では、1/4λ板の位相差に波長分散により偏光取得性能が低化するため、広い波長域にわたって同時に偏光情報を取得することが難しいという課題があった。 In Patent Document 1, although polarization information can be obtained from a single image, a plurality of pixels are assigned to acquire polarization information, so there is a problem that resolution is lost. Further, in Patent Document 2, there is a problem that it is difficult to simultaneously acquire polarization information over a wide wavelength range because the polarization acquisition performance deteriorates due to the wavelength dispersion due to the phase difference of the ¼λ plate.

上記の課題を解決するために、本発明に係る偏光取得素子は、
異なる偏光状態を取得する偏光取得素子であって、
複屈折を有する材料が、進相軸もしくは遅相軸を面内方向にずらして積層された積層型の1/4λ板と、
位相差を2値以上に変更可能な可変位相板と、
偏光板と、を有し、
該可変位相板の進相軸もしくは遅相軸と該偏光板の透過軸とのなす角度が略45度に配置され、
該可変位相板の進相軸もしくは遅相軸と該積層型の1/4λ板の特定波長での進相軸もしくは遅相軸のなす角度が略45度に配置され、
使用波長域の最大波長λmaxおよび最小波長λminが、
λmax/λmin>2
を満たすことを特徴としている。
In order to solve the above problems, the polarization acquisition element according to the present invention,
A polarization acquisition element for acquiring different polarization states,
A laminated type 1/4 λ plate in which a material having birefringence is laminated by shifting the fast axis or the slow axis in the in-plane direction,
A variable phase plate that can change the phase difference into two or more values,
And a polarizing plate,
The angle formed by the fast axis or slow axis of the variable phase plate and the transmission axis of the polarizing plate is arranged at about 45 degrees,
An angle formed by the fast axis or slow axis of the variable phase plate and the fast axis or slow axis at a specific wavelength of the laminated ¼λ plate is arranged at about 45 degrees,
The maximum wavelength λmax and the minimum wavelength λmin in the operating wavelength range are
λmax/λmin>2
It is characterized by satisfying.

本発明によれば、解像度を落とすことなく偏光情報を取得でき、かつ波長板が広い場合にも精度良く偏光情報を取得可能な偏光取得素子の提供を実現できる。 According to the present invention, it is possible to provide a polarization acquisition element that can acquire polarization information without lowering resolution and that can acquire polarization information with high accuracy even when the wavelength plate is wide.

偏光取得素子の概略図Schematic diagram of polarization acquisition element 積層型1/4λ板の概略図Schematic of laminated 1/4λ plate 積層型1/4λ板の軸方向が85°での可変位相板の位相差ΔLCと偏光取得素子の透過光強度IThe phase difference Δ LC of the variable phase plate and the transmitted light intensity I of the polarization acquisition element when the axial direction of the laminated 1/4 λ plate is 85° 積層型1/4λ板の軸方向が80°での可変位相板の位相差ΔLCと偏光取得素子の透過光強度IThe phase difference Δ LC of the variable phase plate and the transmitted light intensity I of the polarization acquisition element when the axial direction of the laminated 1/4 λ plate is 80° 積層型1/4λ板の軸方向が75°での可変位相板の位相差ΔLCと偏光取得素子の透過光強度IThe phase difference Δ LC of the variable phase plate and the transmitted light intensity I of the polarization acquisition element when the axial direction of the laminated 1/4 λ plate is 75° 積層型1/4λ板の軸方向のずれ量と最小偏光度Axial displacement and minimum polarization degree of laminated 1/4 λ plate 積層型1/4λ板の位相差のずれ量と最小偏光度Lag amount of phase difference and minimum polarization degree of laminated 1/4λ plate 実施例1の積層型1/4λ板の概略図Schematic diagram of the laminated 1/4 lambda plate of Example 1. 実施例1の積層型1/4λ板の波長λに対する位相差Δ(λ)The phase difference Δ(λ) with respect to the wavelength λ of the laminated ¼λ plate of the first embodiment. 実施例1の積層型1/4λ板の波長λに対する軸方向θ(λ)Axial direction θ(λ) with respect to wavelength λ of the laminated 1/4 λ plate of Example 1 実施例2の撮像装置の概略図2 is a schematic diagram of an image pickup apparatus according to a second embodiment. 実施例2の固体撮像素子の画素配列Pixel array of the solid-state image sensor of Example 2 偏光取得素子の概略Outline of polarization acquisition element 偏光取得素子の軸方向Axial direction of polarization acquisition element 偏光取得素子の可変位相板の位相差ΔLCと偏光取得素子の透過光強度IPhase difference Δ LC of variable phase plate of polarization acquisition element and transmitted light intensity I of polarization acquisition element 入射楕円偏光と透過光強度I(θ)Incident elliptical polarization and transmitted light intensity I(θ) 1/4λ板の位相差が0.38のときの可変位相板の位相差ΔLCと偏光取得素子の透過光強度IThe phase difference Δ LC of the variable phase plate and the transmitted light intensity I of the polarization acquisition element when the phase difference of the ¼ λ plate is 0.38 1/4λ板の位相差が0.50のときの可変位相板の位相差ΔLCと偏光取得素子の透過光強度IThe phase difference Δ LC of the variable phase plate and the transmitted light intensity I of the polarization acquisition element when the phase difference of the ¼ λ plate is 0.50 入射偏光と検出偏光(1/4λ板の位相差0.38時)Incident polarized light and detected polarized light (phase difference of 1/4 λ plate at 0.38) 入射偏光と検出偏光(1/4λ板の位相差0.50時)Incident polarization and detection polarization (when the phase difference of 1/4 λ plate is 0.50) 比較例1の1/4λ板の概略Outline of 1/4λ plate of Comparative Example 1 比較例1の1/4λ板の波長λに対する位相差Δ(λ)Phase difference Δ(λ) with respect to the wavelength λ of the ¼λ plate of Comparative Example 1 実施例1の1/4λ板の波長λに対する軸方向θ(λ)Axial direction θ(λ) with respect to the wavelength λ of the ¼λ plate of the first embodiment 比較例2の1/4λ板の概略Outline of 1/4λ plate of Comparative Example 2 比較例2の1/4λ板の波長λに対する位相差Δ(λ)Phase difference Δ(λ) with respect to the wavelength λ of the ¼λ plate of Comparative Example 2 実施例2の1/4λ板の波長λに対する軸方向θ(λ)Axial direction θ(λ) with respect to the wavelength λ of the ¼λ plate of the second embodiment

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の偏光取得素子100の簡易的な構成を示す概略図である。 FIG. 1 is a schematic diagram showing a simple configuration of a polarization acquisition element 100 of the present invention.

図1に示す通り、偏光取得素子100は、積層型1/4λ板10、可変位相板20、偏光板30からなる。 As shown in FIG. 1, the polarization acquisition element 100 includes a laminated ¼λ plate 10, a variable phase plate 20, and a polarizing plate 30.

図2は、積層型1/4λ板10の簡易的な構成を示す概略図である。 FIG. 2 is a schematic diagram showing a simple configuration of the laminated 1/4 λ plate 10.

積層型1/4λ板は、複屈折を有する材料が、複数層(図2ではn層)積層された構成を持つ。また、積層構造をそれぞれ、層1、層2、・・・層nとすると、隣接する層同士の軸方向は、互いに異なるよう配置されている。つまり、1<k≦nを満たす整数kに対して、層k−1と層kの軸方向θk−1とθは互いに異なるよう配置されている。ここで、「軸」とは、位相板の進相軸または遅相軸を示し、「軸方向θ」とはxy平面における「軸」とx軸とのなす角度を0度以上180度未満で示す。なお、以下の説明では、1/4λ板および可変位相板の軸は、進相軸の方向として記載する。 The laminated ¼λ plate has a structure in which a plurality of layers (n layers in FIG. 2) of materials having birefringence are laminated. Further, when the laminated structure is layer 1, layer 2,... Layer n, the layers are arranged so that the axial directions of the adjacent layers are different from each other. That is, for the integer k that satisfies 1<k≦n, the axial directions θ k−1 and θ k of the layer k−1 and the layer k are different from each other. Here, the “axis” indicates the fast axis or the slow axis of the phase plate, and the “axial direction θ” means that the angle between the “axis” and the x axis in the xy plane is 0 degrees or more and less than 180 degrees. Show. In the following description, the axes of the ¼λ plate and the variable phase plate are described as the direction of the fast axis.

また、積層型1/4λ板10の位相差および軸方向は波長依存性を有する。ここで、積層型1/4λ板10の波長λでの位相差をΔ(λ)、軸方向θ(λ)と表わし、積層型1/4λ板10の各層の位相差をΔ(λ)Δ(λ)、・・・・Δ(λ)と表わすと、ジョーンズ行列を用いて次式(1)の関係が成り立つ。 Further, the phase difference and the axial direction of the laminated 1/4λ plate 10 have wavelength dependence. Here, the phase difference at the wavelength λ of the laminated ¼λ plate 10 is expressed as Δ(λ) and the axial direction θ(λ), and the phase difference of each layer of the laminated ¼λ plate 10 is Δ 1 (λ). delta 2 (lambda), when expressed as ···· Δ n (λ), the following relation (1) holds with Jones matrix.

R(−θ(λ))C(Δ(λ))R(θ(λ))
=R(−θ)C(Δ(λ))R(θ)・・・R(−θ)C(Δ(λ))R(θ
R(−θ)C(Δ(λ))R(θ) …(1)
なお、式(1)のR(θ)およびC(Δ)はそれぞれ次式(2)および(3)で表わされる。
R(-θ(λ))C(Δ(λ))R(θ(λ))
=R(-[theta] n )C([Delta] n ([lambda]))R([theta] n )... R(-[theta] 2 )C([Delta] 2 ([lambda]))R([theta] 2 ).
R(-[theta] 1 )C([Delta] 1 ([lambda]))R([theta] 1 ) (1)
Note that R(θ) and C(Δ) in the equation (1) are represented by the following equations (2) and (3), respectively.

本発明では、上述のような積層型1/4λ板10の位相差Δ(λ)と軸方向θ(λ)を適切に設定し、可変位相板20および偏光板30と組合せて用いることで、広帯域の波長に対して偏光取得性能を発揮できることを見出した。 In the present invention, by appropriately setting the phase difference Δ(λ) and the axial direction θ(λ) of the laminated 1/4 λ plate 10 as described above, and using them in combination with the variable phase plate 20 and the polarizing plate 30, It has been found that the polarization acquisition performance can be exhibited for a wide range of wavelengths.

以下、まず本発明の実施例の説明の前に、特開2016−145924に記載された、可変位相差板を用いた偏光情報取得について説明した後、本発明の構成例についてより詳細に説明する。 Hereinafter, before describing the embodiments of the present invention, the polarization information acquisition using the variable retardation plate described in JP-A-2016-145924 will be described first, and then the configuration example of the present invention will be described in more detail. ..

可変位相板を用いた偏光情報取得について
図13は、特開2016−145924号公報に開示された偏光取得素子200の構成例の概略を示す。また、図14に、偏光取得素子200を構成する各素子の軸方向の一例を示す。
Regarding Acquisition of Polarization Information Using Variable Phase Plate FIG. 13 shows an outline of a configuration example of the polarization acquisition element 200 disclosed in JP-A-2016-145924. In addition, FIG. 14 shows an example of the axial direction of each element constituting the polarization acquisition element 200.

偏光取得素子200では、1/4λ板11板と可変位相板21の軸が略45度をなすように、1/4λ板11と偏光板31の透過軸が略平行をなすように配置される。 In the polarization acquisition element 200, the quarter-wave plate 11 and the variable phase plate 21 are arranged so that the axes thereof are substantially 45 degrees, and the quarter-wave plate 11 and the polarizing plate 31 are substantially parallel to each other in transmission axis. ..

可変位相板21の位相差を0λ、1/4λ、1/2λ・・・と変えることで、偏光取得素子200を透過する偏光方向を変えることができる。 By changing the phase difference of the variable phase plate 21 to 0λ, 1/4λ, 1/2λ..., The polarization direction of the light transmitted through the polarization acquisition element 200 can be changed.

図15は、偏光取得素子200に直線偏光が入射したとき、可変位相板21の位相差ΔLCと、偏光取得素子10を透過する光強度Iの関係を示す。なお、図15では、各素子表面での反射や吸収の影響を無視した理想状態での光強度を示している。 FIG. 15 shows the relationship between the phase difference Δ LC of the variable phase plate 21 and the light intensity I transmitted through the polarization acquisition element 10 when linearly polarized light enters the polarization acquisition element 200. Note that FIG. 15 shows the light intensity in an ideal state in which the influence of reflection and absorption on the surface of each element is ignored.

図15から、入射する直線偏光の方向に応じて、位相差ΔLCと光強度Iの関係が変化することが分かる。直線偏光の方向をαとすると、位相差ΔLCと光強度Iの関係は、次式(4)を満たす。 It can be seen from FIG. 15 that the relationship between the phase difference Δ LC and the light intensity I changes depending on the direction of the incident linearly polarized light. Assuming that the direction of linearly polarized light is α, the relationship between the phase difference Δ LC and the light intensity I satisfies the following expression (4).

I=cos(π/4−πΔLC−α)…(4)
同様に、図16に示す楕円偏光が入射した場合には、位相差ΔLCと光強度の関係は、
次式(5)を満たす。
I=cos 2 (π/4−πΔ LC −α) (4)
Similarly, when the elliptically polarized light shown in FIG. 16 is incident, the relationship between the phase difference Δ LC and the light intensity is
The following expression (5) is satisfied.

I=Acos(π/4−πΔLC−α)+B…(5)
式(5)より、ΔLCを3値以上に変えて光強度Iを測定することで、偏光情報A,B,αを算出することができる。
I=Acos 2 (π/4−πΔ LC −α)+B... (5)
From the formula (5), the polarization information A, B, and α can be calculated by changing the Δ LC to three or more values and measuring the light intensity I.

以上の説明では、1/4λ板11の位相差Δ1/4λ=0.25の場合について説明した。以下、1/4λ板11の位相差に波長依存性がある場合を想定し、その位相差Δ1/4λが0.25からずれた場合について考える。なお、特許文献2では、1/4λ板11の位相差が偏光取得性能に与える具体的な記述はない。 In the above description, the case where the phase difference Δ 1/4λ =0.25 of the 1/4λ plate 11 is described. Hereinafter, it is assumed that the phase difference of the ¼λ plate 11 has wavelength dependency, and the case where the phase difference Δ 1/4λ deviates from 0.25 will be considered. In Patent Document 2, there is no specific description that the phase difference of the ¼λ plate 11 gives to the polarization acquisition performance.

図17〜図18に、偏光取得素子200に直線偏光が入射したとき、可変位相板21の位相差ΔLCと、偏光取得素子11を透過する光強度Iの関係を示す。なお図17には、1/4λ板11の位相差Δ1/4λが、設計値通り(0.25)のときを破線で、位相差Δ1/4λが0.38のときを実線で表記する。また、図18には、位相差Δ1/4λが0.50のときを実線で表記する。図17〜図18より、位相差Δ1/4λが設計値からずれると、入射偏光の角度に応じて可変位相板21の位相差ΔLCに対する光強度Iの変動幅が低下することが分かる。また、入射偏光角度に応じて光強度Iのピーク位置(つまり、最大値、最小値をとるΔLCの値)も変化することが分かる。 17 to 18 show the relationship between the phase difference Δ LC of the variable phase plate 21 and the light intensity I transmitted through the polarization acquisition element 11 when linearly polarized light enters the polarization acquisition element 200. In FIG. 17, the phase difference Δ 1/4λ of the 1/4λ plate 11 is indicated by a broken line when the design value is (0.25), and the solid line is indicated when the phase difference Δ 1/4λ is 0.38. To do. Further, in FIG. 18, the case where the phase difference Δ 1/4 λ is 0.50 is indicated by a solid line. From FIGS. 17 to 18, it can be seen that when the phase difference Δ 1/4 λ deviates from the design value, the fluctuation range of the light intensity I with respect to the phase difference Δ LC of the variable phase plate 21 decreases according to the angle of the incident polarized light. Further, it can be seen that the peak position of the light intensity I (that is, the value of Δ LC having the maximum value and the minimum value) also changes according to the incident polarization angle.

図19〜図20に、1/4λ板の位相差Δ1/4λがそれぞれ0.38および0.50のときの、入射偏光と検出偏光を示す。なお、ここで検出偏光とは、図19〜図20に示す光強度Iから、式(5)をもとに入射偏光を推定したものである。 19 to 20 show incident polarized light and detected polarized light when the phase difference Δ 1/4λ of the 1/4λ plate is 0.38 and 0.50, respectively. Here, the detected polarization is the incident polarization estimated from the light intensity I shown in FIGS. 19 to 20 based on the equation (5).

図19〜図20より、位相差Δ1/4λが設計値からずれることにより、算出される光の偏光度や角度がずれ、正しい偏光情報が取得できないことが分かる。また、Δ1/4λが0.50になると、偏光方向αの検出が不可能になることが分かる。 It can be seen from FIGS. 19 to 20 that the phase difference Δ 1/4 λ deviates from the design value and the calculated polarization degree or angle of the light deviates, and correct polarization information cannot be acquired. Further, it can be seen that when Δ 1/4 λ becomes 0.50, it becomes impossible to detect the polarization direction α.

以上より、図13に示す偏光取得素子200は、1/4λ板11に波長分散がある場合、偏光情報を正しく取得することができない。広い波長域で偏光情報を取得する場合、この問題が顕著になり、例えば可視〜近赤外のような広い範囲での偏光情報を正しく取得することは難しい。特に、使用波長域の最大波長λmaxと最小波長λminが、λmax/λmin>2を満たす波長域で偏光情報を取得する場合、通常の1/4λでは偏光情報を正しく取得することが難しい。 From the above, the polarization acquisition element 200 shown in FIG. 13 cannot correctly acquire polarization information when the 1/4 λ plate 11 has wavelength dispersion. This problem becomes noticeable when acquiring polarization information in a wide wavelength range, and it is difficult to correctly acquire polarization information in a wide range such as visible to near infrared. In particular, when the polarization information is acquired in the wavelength range in which the maximum wavelength λmax and the minimum wavelength λmin of the used wavelength range satisfy λmax/λmin>2, it is difficult to correctly acquire the polarization information in the normal 1/4λ.

本発明の構成例について
以上の課題を解決するために、本発明の偏光取得素子100は、積層型1/4λ板10を用いる。上述したとおり、積層型1/4λ板10は、複屈折を有する材料が、軸方向を変えて積層された構成からなる。通常、波長板は波長に対して位相差が変化するが、この積層型1/4λ板は、位相差に加えて軸方向が波長に対して変化する。そのため、波長に対する位相差の変化量および軸方向の変化量をそれぞれ最適化することにより、使用波長域内の最大波長λmaxおよび最小波長λminがλmax/λmin>2を満たす広帯域で正しく偏光情報を取得することができる。ここで、本発明では、可視と近赤外や可視と近紫外の波長域を取得することを想定しており、具体的にはλminが430nm以下、λmaxが900nm以上となるような広波長域で正しく偏光情報を取得することができる。
Configuration Example of the Present Invention In order to solve the above problems, the polarization acquisition element 100 of the present invention uses the laminated type 1/4λ plate 10. As described above, the laminated ¼λ plate 10 has a structure in which materials having birefringence are laminated in different axial directions. Normally, the phase difference of the wave plate changes with respect to the wavelength, but in the laminated 1/4λ plate, the axial direction changes with respect to the wavelength in addition to the phase difference. Therefore, by optimizing the amount of change in the phase difference with respect to the wavelength and the amount of change in the axial direction, respectively, the polarization information can be correctly acquired in a wide band in which the maximum wavelength λmax and the minimum wavelength λmin in the use wavelength range satisfy λmax/λmin>2. be able to. Here, in the present invention, it is assumed that the visible and near-infrared or the visible and near-ultraviolet wavelength ranges are acquired, and specifically, a wide wavelength range in which λmin is 430 nm or less and λmax is 900 nm or more. Polarization information can be acquired correctly with.

以下、積層型1/4λ板10の軸方向θ1/4λが設計値(以下、90度)からずれた場合について考える。 Hereinafter, consider a case where the axial direction θ 1/4λ of the laminated 1/4λ plate 10 deviates from the design value (hereinafter, 90 degrees).

図3〜図4に、偏光取得素子100に直線偏光が入射したとき、可変位相板20の位相差ΔLCと、偏光取得素子10を透過する光強度Iの関係を示す。なお図3には、積層型1/4λ板10の軸方向θ1/4λが、設計値通り(90度)のときを破線で、軸方向θ1/4λが85度のときを実線で表記する。また、図4には、軸方向θ1/4λが80度のときを図5には、軸方向θ1/4λが75度のときを実線で表記する。 3 to 4 show the relationship between the phase difference Δ LC of the variable phase plate 20 and the light intensity I transmitted through the polarization acquisition element 10 when linearly polarized light enters the polarization acquisition element 100. In FIG. 3, when the axial direction θ 1/4λ of the laminated type 1/4λ plate 10 is as designed (90 degrees), a broken line is shown, and when the axial direction θ 1/4λ is 85 degrees, a solid line is shown. To do. Further, FIG. 4 shows a case where the axial direction θ 1/4 λ is 80 degrees, and FIG. 5 shows a case where the axial direction θ 1/4 λ is 75 degrees.

図3〜5より、軸方向θ1/4λが設計値(90度)からずれると、可変位相板21の位相差ΔLCに対する光強度Iのピーク位置が変化することが分かる。ただし、位相差Δ1/4λが変化する場合(図17〜図18)と比較すると、入射偏光角度に応じたピーク位置の変化が少ないことが分かる。入射偏光角度に応じたピーク位置の変化が少ない領域では、ピーク位置の変化量を入射偏光角度に依らない定数(一定)とみなすことができる。 3 to 5 that the peak position of the light intensity I with respect to the phase difference Δ LC of the variable phase plate 21 changes when the axial direction θ 1/4 λ deviates from the design value (90 degrees). However, as compared with the case where the phase difference Δ 1/4 λ changes (FIGS. 17 to 18), it can be seen that the change in the peak position according to the incident polarization angle is small. In a region where the change in the peak position depending on the incident polarization angle is small, the amount of change in the peak position can be regarded as a constant (constant) that does not depend on the incident polarization angle.

ピーク位置の変化量が定数の場合、式(5)を用いて異なる3つのΔLCから偏光情報A,B,αを算出する際、取得する偏光状態A,Bは影響を受けない。一方、偏光状態αは影響を受けるが、ピーク位置の変化量が定数であるため、ピーク位置の変化量を事前に測定することで補正することができる。補正方法は、例えば既知の直線偏光を入射して式(5)から得られる角度と実際の角度を比較して算出したズレ量を補正項として保持し、測定の際そのズレ量を元に角度αを補正すればよい。 When the amount of change in the peak position is a constant, the polarization states A and B to be acquired are not affected when the polarization information A, B, and α are calculated from the three different Δ LC using Expression (5). On the other hand, the polarization state α is affected, but since the amount of change in the peak position is a constant, it can be corrected by measuring the amount of change in the peak position in advance. The correction method is, for example, holding the deviation amount calculated by comparing the angle obtained from equation (5) with the known linearly polarized light and the actual angle, and holding the deviation amount as the correction term, and based on the deviation amount at the time of measurement, It suffices to correct α.

以上より、軸方向θ1/4λが設計値からずれることによって発生するピーク位置の変化は、偏光情報を取得する際には許容可能であることが分かる。 From the above, it can be seen that the change in the peak position caused by the deviation of the axial direction θ 1/4 λ from the design value is permissible when acquiring the polarization information.

次に、軸方向θ1/4λが設計値からずれることによって発生する変動幅の低下について考える。図3〜図5より、軸方向θ1/4λが設計値からずれるに従って、変動幅の低下が顕著になることが分かる。ただし、位相差Δ1/4λが変化する場合(図17〜図18)と比較すると、変動幅の低下は少ないことが分かる。 Next, consideration will be given to the reduction of the fluctuation range caused by the deviation of the axial direction θ 1/4 λ from the design value. It is understood from FIGS. 3 to 5 that the variation width becomes more remarkable as the axial direction θ 1/4 λ deviates from the design value. However, as compared with the case where the phase difference Δ 1/4 λ changes (FIGS. 17 to 18 ), it can be seen that the variation width is less reduced.

変動幅の低下は入射偏光方向に依存するため、上述のピーク位置のように一様に補正することができない。しかし、変動幅の低下が大きい場合には、補正なしに偏光情報を取得しようとすると、偏光情報A,B,αの精度が低下する。そのため、偏光取得精度の低下を防ぐためには、変動幅の低下が少ない範囲内で軸方向θ1/4λを設定しておく必要がある。 Since the decrease in the fluctuation range depends on the incident polarization direction, it cannot be uniformly corrected like the above-mentioned peak position. However, if the variation width is largely reduced, the accuracy of the polarization information A, B, and α will be reduced if the polarization information is acquired without correction. Therefore, in order to prevent the deterioration of the polarization acquisition accuracy, it is necessary to set the axial direction θ 1/4 λ within a range in which the fluctuation range is less decreased.

ここで、変動幅の低下は、例えば偏光度(DOP)を用いて評価することができる。なお、偏光度(DOP)は、次式(6)で表わすことができる。 Here, the reduction of the fluctuation range can be evaluated using, for example, the degree of polarization (DOP). The degree of polarization (DOP) can be expressed by the following equation (6).

DOP=(Imax−Imin)/(Imax+Imin)…(6)
また、式(6)中のImax、Iminは、光強度Iから算出した偏光情報A,Bを用いて、Imax=A+B、Imin=Bにより求めることができる。
DOP=(Imax-Imin)/(Imax+Imin) (6)
Further, Imax and Imin in the equation (6) can be obtained by Imax=A+B and Imin=B using the polarization information A and B calculated from the light intensity I.

鋭意検討の結果、偏光情報の精度を十分確保するためには、偏光度の低下は10%未満に抑えることが好ましく、さらに好ましくは5%未満、より好ましくは2%未満に抑えることが必要になることが分かった。図6に、直線偏光が入射した場合の、軸方向θ1/4λのずれ量δθ=θ1/4λ−90と取得される最小偏光度の関係を示す。なお、偏光度は入射偏光の角度およびδθに依存するため、最小偏光度を図示する。 As a result of diligent studies, in order to sufficiently secure the accuracy of polarization information, it is necessary to suppress the decrease in polarization degree to less than 10%, more preferably less than 5%, and more preferably less than 2%. I found out. FIG. 6 shows the relationship between the deviation amount δθ=θ 1/4λ −90 in the axial direction θ 1/4λ and the minimum degree of polarization obtained when linearly polarized light is incident. Since the degree of polarization depends on the angle of incident polarization and δθ, the minimum degree of polarization is shown.

図6より、軸方向θ1/4λのズレ量δθが−12度以上12度以下であれば、偏光度の低下が10%未満、さらに−8度以上8度以下であれば、偏光度の低下量は5%未満、−5度以上5度以下であれば偏光度の低下量は2%未満に抑えられることが分かる。使用波長域内の波長に対して上記条件を満たすためには、使用波長域内の任意の波長λにおける軸方向θ(λ)が
|θ(λ)―90|<12(deg)
を満たすことが好ましく、
|θ(λ)−90|<8(deg)
を満たすことがさらに好ましく、
|θ(λ)―90)|<5(deg)
を満たすことがより好ましい。
From FIG. 6, if the deviation amount δθ in the axial direction θ 1/4 λ is −12 degrees or more and 12 degrees or less, the decrease in the polarization degree is less than 10%, and if −8 degrees or more and 8 degrees or less, the polarization degree It can be seen that the amount of decrease is less than 5%, and the amount of decrease in polarization degree can be suppressed to less than 2% if it is -5 degrees or more and 5 degrees or less. In order to satisfy the above condition for the wavelength in the use wavelength range, the axial direction θ(λ) at an arbitrary wavelength λ in the use wavelength range is |θ(λ)−90|<12(deg)
Preferably satisfies
|θ(λ)-90|<8 (deg)
More preferably,
|θ(λ)-90)|<5 (deg)
It is more preferable to satisfy.

一方、1/4λ板の位相差Δ1/4λが設計値からずれる場合は、図17〜18に示す通り光強度Iの変動幅とピーク位置が入射偏光角度に応じて変化する。軸方向θ1/4λの場合は、ピーク位置のズレ量は定数とみなすことができたが、位相差Δ1/4λの場合は、ピーク位置と変動幅の両方が入射偏光角度に応じて変化する。そのため、十分な精度で偏光情報を取得するためには、変動幅の低下をより低く抑える必要がある。本発明では、十分な精度を得るために、変動幅を5%未満に抑えることが好ましく、さらに好ましくは2%未満に抑えることが必要であることを見出した。 On the other hand, when the phase difference Δ 1/4λ of the 1/4λ plate deviates from the design value, the fluctuation range and the peak position of the light intensity I change according to the incident polarization angle, as shown in FIGS. In the case of the axial direction θ 1/4 λ , the shift amount of the peak position could be regarded as a constant, but in the case of the phase difference Δ 1/4 λ, both the peak position and the fluctuation range change depending on the incident polarization angle. .. Therefore, in order to acquire the polarization information with sufficient accuracy, it is necessary to further suppress the decrease in fluctuation range. In the present invention, it has been found that in order to obtain sufficient accuracy, it is necessary to suppress the fluctuation range to less than 5%, more preferably less than 2%.

図7に、直線偏光が入射した場合の位相差Δ1/4λのズレ量δΔ1/4λ=Δ1/4λ−0.25と取得される最小偏光度の関係を示す。図7より使用波長域の任意の波長λに対して、1/4λ板の位相差Δ(λ)は、
|Δ(λ)―0.25|<0.05
を満たすことが好ましく
|Δ(λ)―0.25|<0.02
を満たすことがより好ましい。
FIG. 7 shows the relationship between the deviation amount δΔ 1/4λ = Δ 1/4λ −0.25 of the phase difference Δ 1/4λ when linearly polarized light is incident and the minimum degree of polarization obtained. From FIG. 7, the phase difference Δ(λ) of the 1/4λ plate with respect to an arbitrary wavelength λ in the used wavelength range is
│Δ(λ)-0.25│<0.05
It is preferable to satisfy |Δ(λ)-0.25|<0.02
It is more preferable to satisfy.

本発明では1/4λの位相差Δ(λ)が上述の条件をλmax/λmin>2の広い波長域で満たすためには軸方向θ(λ)と設計値からのずれを許容する必要があることが分かった。なお、軸方向のずれ量は1degより大きいことが好ましく、2deg以上にすることがより好ましい。以上から、軸方向θ(λ)は、
1<|θ(λ)―90|<12(deg)
を満たすことが好ましく、
1<|θ(λ)−90|<8(deg)
を満たすことがより好ましく
1<|θ(λ)―90)|<5(deg)
を満たすことがさらに好ましい。
In the present invention, in order for the phase difference Δ(λ) of ¼λ to satisfy the above condition in a wide wavelength range of λmax/λmin>2, it is necessary to allow the deviation from the axial direction θ(λ) and the design value. I found out. The amount of displacement in the axial direction is preferably larger than 1 deg, more preferably 2 deg or more. From the above, the axial direction θ (λ) is
1<|θ(λ)−90|<12 (deg)
Preferably satisfies
1<|θ(λ)−90|<8 (deg)
It is more preferable to satisfy 1<|θ(λ)−90)|<5 (deg)
It is more preferable to satisfy.

なお、以上の説明では軸方向θ(λ)の設計値が90度であることを想定して記載したが、設計値は90度に限定されるものではない。本発明の1/4λ板は、可変位相板に対して45度をなす方向に設置されればよく、可変位相板の方向に応じて設計値は変化する。よって、任意の設計値θ(deg)対して、軸方向が上述の範囲内に設定されていることが好ましく、
1(deg)<|θ(λ)−θ|<12(deg)
を満たすことが好ましく
1(deg)<|θ(λ)−θ|<8(deg)
を満たすことがより好ましく
1(deg)<|θ(λ)−θ|<5(deg)
を満たすことがさらに好ましい。
In the above description, the design value in the axial direction θ(λ) is assumed to be 90 degrees, but the design value is not limited to 90 degrees. The ¼ λ plate of the present invention may be installed in a direction forming 45 degrees with respect to the variable phase plate, and the design value changes depending on the direction of the variable phase plate. Therefore, it is preferable that the axial direction is set within the above range for an arbitrary design value θ 0 (deg),
1(deg)<|θ(λ)−θ 0 |<12(deg)
It is preferable to satisfy 1 (deg)<|θ(λ)−θ 0 |<8 (deg)
It is more preferable to satisfy 1(deg)<|θ(λ)−θ 0 |<5(deg)
It is more preferable to satisfy.

また、λmax/λmin>2を満たす波長域で、上記のθ(λ)およびΔ(λ)の条件を満たす1/4λ板を作成するためには、1/4λ板は5層以上であることが好ましい。
これは、5層未満になると、広帯域の波長域に対してΔ(λ)の条件を満たすことが難しくなるためである。
Further, in order to create a ¼ λ plate satisfying the above conditions of θ(λ) and Δ(λ) in a wavelength range satisfying λmax/λmin>2, the ¼λ plate should have 5 or more layers. Is preferred.
This is because if the number of layers is less than 5, it is difficult to satisfy the condition of Δ(λ) in the wavelength range of the wide band.

さらに、鋭意検討の結果、上記のθ(λ)およびΔ(λ)の条件を満たすために、1/4λ板を構成する層のうち、最も偏光板側に配置される層nと最も偏光板から遠い側に配置される層1の位相差Δおよび位相差Δはλmax、λminに対して、それぞれ Further, as a result of earnest studies, in order to satisfy the above-mentioned conditions of θ(λ) and Δ(λ), the layer n which is arranged closest to the polarizing plate and the most polarizing plate among the layers constituting the ¼λ plate. The phase difference Δ n and the phase difference Δ 1 of the layer 1 arranged on the side farther from the

を満たすことが好ましいことが分かった。また、層nおよび層1を除いた層2〜層n−1の位相差Δ2、・・・・Δn−1は、それぞれ It has been found that it is preferable to satisfy .. .DELTA.n-1 of the layers 2 to n-1 excluding the layer n and the layer 1, respectively.

を満たすことが好ましいことが分かった。なお、各層の位相差が上記条件を満たせば、層1と層nや、層2〜層n−1はそれぞれ別の位相差であってもよい。ただし、より単純な構成とするために、層1と層nを同じ位相差、層2〜層n−1を同じ位相差にすることがより好ましい。また、層1〜層nを構成する材料は、複屈折を有する材料であれば特に限定されず、任意の材料を選定して使用することができる。ただし、より単純な構成とするために、層1〜層nを同じ材料で構成することがより好ましい。 It has been found that it is preferable to satisfy In addition, if the phase difference of each layer satisfies the above conditions, the layer 1 and the layer n, or the layers 2 to n-1 may have different phase differences. However, in order to make the structure simpler, it is more preferable that the layer 1 and the layer n have the same retardation and the layers 2 to n-1 have the same retardation. Further, the material forming the layers 1 to n is not particularly limited as long as it has birefringence, and any material can be selected and used. However, in order to make the structure simpler, it is more preferable that the layers 1 to n are made of the same material.

上述の偏光取得素子を用いて画像を取得するためには、光学系と偏光取得素子と固体撮像素子を有する撮像装置を用いればよい。偏光取得素子の可変位相板の位相差を3値以上の異なる状態として、それぞれの状態で画像を取得することで、偏光状態の異なる複数の画像を撮影する。このとき、偏光取得素子の使用波長域は、撮像装置で取得する波長域に一致させればよい。 In order to acquire an image using the above-mentioned polarization acquisition element, an imaging device having an optical system, a polarization acquisition element, and a solid-state imaging element may be used. By setting the phase difference of the variable phase plate of the polarization acquisition element to three or more different states and acquiring images in each state, a plurality of images with different polarization states are captured. At this time, the wavelength range used by the polarization acquisition element may be matched with the wavelength range acquired by the imaging device.

偏光情報を取得するためには、上記撮像装置と画像処理手段を有する偏光情報取得装置を用いて、撮影した複数画像と式(5)をもとに偏光情報A,B,αを算出すればよい。また、偏光情報A,B,αは固体撮像素子の画素毎に算出する。なお、画像処理手段は、撮像装置内の処理部として装置内部に設けても良い。その場合、画像取得から偏光情報の算出までの一連の処理を撮像装置内で実施することができる。また、画像処理手段は、撮像装置の外部に別途設けても良く、例えばPC等の情報処理装置を画像処理手段とすることができる。その場合には、撮像装置で撮影した複数画像は、一度、記憶媒体(例えばフラッシュメモリやSDカード、CFカード等)に記憶し、外部の画像処理手段に読み込めば良い。もしくは、WiFi等の無線技術を用いて、撮像装置から画像処理手段に直接画像データ送信してもよい。 In order to acquire the polarization information, the polarization information A, B, and α are calculated by using the polarization information acquisition device having the image pickup device and the image processing means based on the plurality of captured images and the formula (5). Good. Further, the polarization information A, B, and α are calculated for each pixel of the solid-state image sensor. The image processing means may be provided inside the apparatus as a processing unit inside the image pickup apparatus. In that case, a series of processes from image acquisition to calculation of polarization information can be performed in the imaging device. The image processing means may be separately provided outside the imaging device, and an information processing device such as a PC may be used as the image processing means. In that case, a plurality of images taken by the imaging device may be stored in a storage medium (for example, a flash memory, an SD card, a CF card, etc.) once and read into an external image processing means. Alternatively, the image data may be directly transmitted from the imaging device to the image processing means by using a wireless technology such as WiFi.

また、偏光情報取得装置は補正処理手段を有することが望ましい。補正処理手段は、補正係数を用いて偏光情報αを補正する。補正係数は、例えば上述のように、既知の偏光を入射して、測定される角度αと入射偏光の角度を比較することで取得すればよい。なお、補正係数は、撮影の度に取得する必要はなく、事前に取得しておいた値を補正処理手段の中に記憶し、撮影の際は記憶していた補正係数を読み出して使用すればよい。 Further, it is desirable that the polarization information acquisition device has a correction processing unit. The correction processing means corrects the polarization information α using the correction coefficient. The correction coefficient may be acquired by, for example, injecting a known polarized light and comparing the measured angle α with the angle of the incident polarized light, as described above. Note that the correction coefficient does not have to be acquired each time shooting is performed. If a value acquired in advance is stored in the correction processing unit and the stored correction coefficient is read and used at the time of shooting. Good.

固体撮像素子としては、例えばCMOSやCCDを使用することができる。また、固体撮像素子の各画素に透過する波長を制限するフィルター(カラーフィルタ)を設け、画素毎に異なる帯域の光の情報を取得してもよい。このような複数の帯域の光の情報を取得する、つまり、複数のカラーチャンネルを設ける場合、カラーチャンネルの例としては、例えば赤、緑、青、近赤外(RGBIR)や赤、緑、青、近紫外(RGBUV)、または、その組合せが考えられる。なお、偏光取得素子の使用波長帯域は、固体撮像素子で取得するカラーチャンネルの波長域に対応させておけばよく、例えば上述のRGBIRの場合には、使用波長帯域は凡そ400nm〜1100nmとなる。なお、複数のカラーチャンネルを設ける場合には、上述の補正手段はカラーチャンネル毎に最適な補正係数を用いてαを補正することが好ましい。 As the solid-state image sensor, for example, CMOS or CCD can be used. In addition, a filter (color filter) that limits the wavelength of light that passes through each pixel of the solid-state image sensor may be provided to obtain information on light in different bands for each pixel. In the case of acquiring information of light in a plurality of bands as described above, that is, in the case of providing a plurality of color channels, examples of color channels include, for example, red, green, blue, near infrared (RGBIR) and red, green, blue. , Near ultraviolet (RGBUV), or a combination thereof. The wavelength band used by the polarization acquisition element may correspond to the wavelength band of the color channel acquired by the solid-state image sensor. For example, in the case of RGBIR described above, the wavelength band used is about 400 nm to 1100 nm. When a plurality of color channels are provided, it is preferable that the correction means described above corrects α by using an optimum correction coefficient for each color channel.

なお、上述の説明では、偏光取得素子が理想状態と仮定して説明したが、実際の素子では、表面反射や吸収、散乱等の影響により透過率が理想状態より低下する。そのため、必要に応じて、偏光取得素子の透過率を事前に測定して理想状態とのズレを補正する処理を上記補正手段に付与してもよい。 In the above description, the polarization acquisition element is assumed to be in an ideal state, but in an actual element, the transmittance is lower than the ideal state due to the influence of surface reflection, absorption, scattering and the like. Therefore, if necessary, a process of measuring the transmittance of the polarization acquisition element in advance and correcting the deviation from the ideal state may be added to the correction means.

本発明の実施例1の偏光取得素子100は、図1に示す通り積層型1/4λ板10と、可変位相板20と偏光板30からなる。積層型1/4λ板10は、1軸性の複屈折を持つ材料を、軸方向を変えて5層積層した構成を持つ。 The polarization acquisition element 100 according to the first embodiment of the present invention includes a laminated ¼λ plate 10, a variable phase plate 20 and a polarizing plate 30, as shown in FIG. The laminated ¼λ plate 10 has a structure in which five layers of materials having uniaxial birefringence are laminated by changing the axial direction.

また、本発明の可変位相板はVA方式の液晶からなる。液晶分子は、上下の電極層にかかる印加電圧に応じて液晶分子の配向を制御することで、透過光に所定の位相差を付与することができる。 The variable phase plate of the present invention is made of VA type liquid crystal. The liquid crystal molecules can impart a predetermined phase difference to the transmitted light by controlling the orientation of the liquid crystal molecules according to the applied voltage applied to the upper and lower electrode layers.

さらに、本実施例の偏光板は、吸収型の偏光板である。偏光板に、不要光を反射するもの、例えばワイヤーグリッド偏光子のような偏光板を用いると、反射された不要光が迷光やゴースト光となって画像によくない影響を及ぼすため撮像装置の構成としては好ましくない。また、ゴースト光になることを極力防ぐためには、偏光板は使用波長域に対して、透過軸と直交する方向に振動する偏光のうち、50%以上を吸収する特性を有することが好ましい。 Further, the polarizing plate of this example is an absorption type polarizing plate. When a polarizing plate such as a wire grid polarizer that reflects unnecessary light is used as the polarizing plate, the reflected unnecessary light becomes stray light or ghost light and adversely affects the image. Is not preferable. In order to prevent the light from becoming ghost light as much as possible, it is preferable that the polarizing plate has a characteristic of absorbing 50% or more of the polarized light vibrating in the direction orthogonal to the transmission axis with respect to the used wavelength range.

ここで、図8に、積層型1/4λ板を構成する各層(光入射側から、層1、層2、・・・層5とする)の軸方向と位相差を示す。なお、位相差は600nmでの値を表記する。また、図9に積層型1/4λ板10の波長λに対する位相差Δ(λ)を示し、図10に積層型1/4λ板10の波長λに対する軸方向θ(λ)を示す。なお、積層型1/4λ板10の位相差Δ(λ)および軸方向θ(λ)は式(1)を用いて算出した。 Here, FIG. 8 shows the axial direction and phase difference of each layer (layer 1, layer 2,... Layer 5 from the light incident side) constituting the laminated 1/4λ plate. The phase difference is shown at 600 nm. 9 shows the phase difference Δ(λ) with respect to the wavelength λ of the laminated ¼λ plate 10, and FIG. 10 shows the axial direction θ(λ) with respect to the wavelength λ of the laminated ¼λ plate 10. The phase difference Δ(λ) and the axial direction θ(λ) of the laminated 1/4λ plate 10 were calculated using the equation (1).

図9より本実施例の積層型1/4λ板10は、400nm〜1200nmにおいて、|Δ(λ)―0.25|<0.02を満たすことが分かる。また、図10より400nm〜1200nmの任意の波長λに対して、
2(deg)<|θ(λ)−90|<5(deg)
を満たすことが分かる。これより、本発明の偏光取得素子は400〜1200nmの使用波長に対して、精度良く偏光情報を取得可能であることが分かる。
[比較例1]
本発明の比較例1の偏光取得素子は、実施例1の偏光取得素子と1/4λ板を除き同じ構成を持つ。本比較例の1/4λ板(図21に概略を示す)は、実施例1の積層型1/4λ板の各層を構成する材料と同じ複屈折材料からなる1層構成の波長板である。実施例1と同様に、1/4λ板の位相差Δ(λ)および軸方向θ(λ)を図22、図23に示す。図23から、本比較例の1/4λ板は、400〜1200nmにおいて、θ(λ)=0であり軸方向のズレは発生しない。一方、図22より、|Δ(λ)―0.25|>0.1となり、位相差のズレが大きくなることが分かる。通常、波長分散を持つ材料を1層のみから構成した波長板は、図22に示すように、波長に対する位相差の変化が大きくなる。よって、本発明のように広い波長域で偏光情報を取得する場合には、偏光情報の取得精度が低下するためふさわしくない。
[比較例2]
本発明の比較例2の偏光取得素子も、実施例1の偏光取得素子と1/4λ板を除き同じ構成を持つ。本比較例の1/4λ板は、異なる波長分散を持つ2種類の材料を、互いの軸がなす角度が垂直になるように積層した構成を持つ。本比較例の波長板の構成を図24に示す。また、実施例1、比較例1と同様に、1/4λ板の位相差Δ(λ)および軸方向θ(λ)を図25、図26に示す。図26から、本比較例の1/4λ板は、比較例1と同様400〜1200nmにおいて、θ(λ)=0であり軸方向のズレは発生しない。一方、図25より、400〜750nmでは|Δ(λ)―0.25|<0.05となり、この波長域では精度良く偏光情報を取得可能であることがわかる。ただし、波長域が800nmを超えると、|Δ(λ)―0.25|>0.05となり、400〜1200nmでは、|Δ(λ)―0.25|>0.10と位相差のズレが大きくなることが分かる。本比較例より、異なる複屈折率材料を軸方向が垂直となるように2層積層した波長板は、λmax/λmin<2となる波長域では十分の精度で偏光情報を取得できるが、λmax/λmin>2を超える広帯域では、取得精度が低下してしまうことが分かる。
It can be seen from FIG. 9 that the laminated ¼λ plate 10 of this example satisfies |Δ(λ)−0.25|<0.02 at 400 nm to 1200 nm. Further, from FIG. 10, for an arbitrary wavelength λ of 400 nm to 1200 nm,
2(deg)<|θ(λ)−90|<5(deg)
It turns out that From this, it is understood that the polarization acquisition element of the present invention can accurately acquire polarization information with respect to the used wavelength of 400 to 1200 nm.
[Comparative Example 1]
The polarization acquisition element of Comparative Example 1 of the present invention has the same configuration as the polarization acquisition element of Example 1 except for the ¼λ plate. The ¼λ plate of this comparative example (schematically shown in FIG. 21) is a wave plate having a single-layer structure made of the same birefringent material as the material forming each layer of the laminated 1/4λ plate of Example 1. Similar to the first embodiment, the phase difference Δ(λ) and the axial direction θ(λ) of the ¼λ plate are shown in FIGS. 22 and 23. From FIG. 23, in the ¼λ plate of this comparative example, θ(λ)=0 at 400 to 1200 nm, and no axial deviation occurs. On the other hand, from FIG. 22, it can be seen that |Δ(λ)−0.25|>0.1 and the phase difference shift increases. Normally, in a wave plate composed of a single layer of a material having wavelength dispersion, the change in the phase difference with respect to the wavelength becomes large as shown in FIG. Therefore, when acquiring the polarization information in a wide wavelength range as in the present invention, the accuracy of acquiring the polarization information decreases, which is not suitable.
[Comparative example 2]
The polarization acquisition element of Comparative Example 2 of the present invention also has the same configuration as the polarization acquisition element of Example 1 except for the ¼λ plate. The ¼λ plate of this comparative example has a structure in which two kinds of materials having different wavelength dispersions are laminated so that the angles formed by their axes are perpendicular to each other. The structure of the wave plate of this comparative example is shown in FIG. Further, similar to Example 1 and Comparative Example 1, the phase difference Δ(λ) and the axial direction θ(λ) of the ¼λ plate are shown in FIGS. 25 and 26. From FIG. 26, the 1/4 λ plate of this comparative example has θ(λ)=0 at 400 to 1200 nm as in Comparative example 1, and no axial deviation occurs. On the other hand, from FIG. 25, |Δ(λ)−0.25|<0.05 is obtained in the range of 400 to 750 nm, and it is understood that the polarization information can be acquired with high precision in this wavelength range. However, when the wavelength range exceeds 800 nm, |Δ(λ)−0.25|>0.05, and in the range of 400 to 1200 nm, |Δ(λ)−0.25|>0.10, which is a phase difference shift. It can be seen that According to this comparative example, a wavelength plate in which two layers of different birefringent materials are laminated so that their axial directions are perpendicular to each other can obtain polarization information with sufficient accuracy in a wavelength range where λmax/λmin<2. It can be seen that the acquisition accuracy deteriorates in a wide band exceeding λmin>2.

本発明の実施例2撮像装置および偏光情報取得装置について述べる。 Example 2 of the present invention An image pickup apparatus and a polarization information acquisition apparatus will be described.

まず、撮像装置1000の概略を図11に示す。 First, an outline of the image pickup apparatus 1000 is shown in FIG.

本発明の撮像装置1000は、交換レンズ101、偏光取得フィルタ100およびデジタルカメラ102からなる。偏光取得フィルタ100は上述の偏光取得素子を具備し、デジタルカメラ102は画素が2次元配列されたCMOSセンサーを有する。 The image pickup apparatus 1000 of the present invention includes an interchangeable lens 101, a polarization acquisition filter 100, and a digital camera 102. The polarization acquisition filter 100 includes the above-mentioned polarization acquisition element, and the digital camera 102 includes a CMOS sensor in which pixels are two-dimensionally arranged.

偏光情報を取得するために、偏光取得フィルタ100はデジタルカメラ102より物体側(光入射側)に設置する。本実施例の偏光取得フィルタ100は、交換レンズ101やデジタルカメラ102に着脱可能な機構を設け、光学レンズ101とデジタルカメラ102の間や光学レンズ101より物体側に配置する構成としている。このように、着脱可能な機構を有することで、共通の着脱機構を有するさまざまな交換レンズ101、デジタルカメラ102と組合せて使用することができる。 In order to acquire the polarization information, the polarization acquisition filter 100 is installed on the object side (light incident side) of the digital camera 102. The polarization acquisition filter 100 of the present embodiment is provided with a mechanism that can be attached to and detached from the interchangeable lens 101 and the digital camera 102, and is arranged between the optical lens 101 and the digital camera 102 or on the object side of the optical lens 101. As described above, by having the detachable mechanism, it can be used in combination with various interchangeable lenses 101 and digital cameras 102 having a common detachable mechanism.

本発明の固体撮像素子は、カラーチャンネルを4つ(青、緑、赤、近赤外)備える。図12に、本発明のデジタルカメラ102の固体撮像素子における画素配列の一例を示す。なお、図12中のR、G、B、IRがそれぞれ赤、緑、青、近赤外の波長域に対応している。本実施例の撮像装置で画像を取得することにより、カラーの偏光画像を取得する。 The solid-state image sensor of the present invention has four color channels (blue, green, red, near infrared). FIG. 12 shows an example of a pixel array in the solid-state image sensor of the digital camera 102 of the present invention. Note that R, G, B, and IR in FIG. 12 correspond to red, green, blue, and near-infrared wavelength regions, respectively. A color polarization image is acquired by acquiring an image with the imaging device of the present embodiment.

本発明の偏光情報取得装置は、取得したカラーの偏光画像を用いて、不図示の画像処理手段により偏光情報A,B,αを算出する。なお、偏光情報は、各カラーチャンネル、各画素ごとに算出する。また、本発明の偏光情報取得装置は補正処理手段を有する。補正処理手段は、各カラーチャンネルに応じた補正係数δα、δα、δα、δαIR、を元に算出した偏光情報のうちαを補正する。 The polarization information acquisition device of the present invention calculates polarization information A, B, and α by an image processing unit (not shown) using the acquired color polarization image. The polarization information is calculated for each color channel and each pixel. Further, the polarization information acquisition device of the present invention has a correction processing means. The correction processing means corrects α of the polarization information calculated based on the correction coefficients δα R , δα G , δα B , and δα IR corresponding to each color channel.

以上、本発明に好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

10 積層型1/4λ板、20 可変位相板、30 偏光板、
100 偏光取得素子、101 交換レンズ、102 デジタルカメラ、
1000 撮像装置
10 laminated 1/4λ plate, 20 variable phase plate, 30 polarizing plate,
100 polarization acquisition element, 101 interchangeable lens, 102 digital camera,
1000 imaging device

Claims (11)

異なる偏光状態を取得する偏光取得素子であって、
使用波長域の最大波長λmaxおよび最小波長λminが、
λmax/λmin>2
を満たすとき、
複屈折を有する材料が、進相軸もしくは遅相軸を面内方向にずらして積層された積層型の1/4λ板と、
位相差を2値以上に変更可能な可変位相板と、
偏光板と、を有し、
該可変位相板の進相軸もしくは遅相軸と該偏光板の透過軸とのなす角度が略45度に配置され、
該可変位相板の進相軸もしくは遅相軸と該積層型の1/4λ板の特定波長での進相軸もしくは遅相軸のなす角度が略45度に配置されることを特徴とする偏光取得素子。
A polarization acquisition element for acquiring different polarization states,
The maximum wavelength λmax and the minimum wavelength λmin in the operating wavelength range are
λmax/λmin>2
When satisfying,
A laminated type 1/4 λ plate in which a material having birefringence is laminated by shifting the fast axis or the slow axis in the in-plane direction,
A variable phase plate that can change the phase difference into two or more values,
And a polarizing plate,
The angle formed by the fast axis or slow axis of the variable phase plate and the transmission axis of the polarizing plate is arranged at about 45 degrees,
Polarized light characterized in that an angle formed by a fast axis or a slow axis of the variable phase plate and a fast axis or a slow axis at a specific wavelength of the laminated type ¼λ plate is arranged at about 45 degrees. Acquisition element.
前記積層型の1/4λ板の面内位相差Δ(λ)が、使用波長域内の任意の波長λに対して
|Δ(λ)―0.25|<0.05
を満たすことを特徴とする請求項1に記載の偏光取得素子。
The in-plane retardation Δ(λ) of the laminated type ¼λ plate is |Δ(λ)−0.25|<0.05 with respect to an arbitrary wavelength λ within the used wavelength range.
The polarized light acquisition element according to claim 1, wherein
前記積層型の1/4λ板の進相軸の角度θ(λ)が使用波長域内の任意の波長λに対して
1(deg)<|θ(λ)−θ|<12(deg)
を満たすことを特徴とする請求項1又は2に記載の偏光取得素子。
ただし、θは、進相軸の設計値とする。
The angle θ(λ) of the fast axis of the laminated ¼λ plate is 1 (deg)<|θ(λ)−θ 0 |<12 (deg) with respect to an arbitrary wavelength λ within the wavelength range used.
The polarized light acquisition element according to claim 1 or 2, characterized in that:
However, θ 0 is a design value of the fast axis.
前記積層型の1/4λ板は、5層以上であることを特徴とする請求項1乃至3の何れか一項に記載の偏光取得素子。 The polarization acquisition element according to any one of claims 1 to 3, wherein the laminated ¼λ plate has five or more layers. 前記積層型の1/4λ板を構成する層のうち最も可変位相板側に配置される層と可変位相板側から最も遠い側に配置される層の位相差Δa(nm)が
を満たすことを特徴とする請求項1乃至4の何れか一項に記載の偏光取得素子。
A phase difference Δa (nm) between a layer arranged on the most variable phase plate side and a layer arranged on the farthest side from the variable phase plate side among the layers constituting the laminated type ¼λ plate is
The polarization acquisition element according to any one of claims 1 to 4, which satisfies the following condition.
前記積層型1/4λ板を構成する層のうち最も可変位相板側に配置される層および最も可変位相板側に配置される層を除く層の位相差Δbが
を満たすことを特徴とする請求項1乃至5の何れか一項に記載の偏光取得素子。
The phase difference Δb of the layers excluding the layer arranged closest to the variable phase plate and the layer arranged closest to the variable phase plate among the layers constituting the laminated ¼λ plate has
The polarization acquisition element according to any one of claims 1 to 5, which satisfies the following condition.
前記最大波長λmaxおよび最小波長λminが、
λmin<430(nm)
λmax>850(nm)
を満たすことを特徴とする請求項1乃至6の何れか一項に記載の偏光取得素子。
The maximum wavelength λmax and the minimum wavelength λmin are
λmin<430 (nm)
λmax>850 (nm)
The polarization acquisition element according to any one of claims 1 to 6, which satisfies the following condition.
光学系と、
請求項1乃至7の何れか一項に記載の偏光取得素子と、
固体撮像素子と、
を有することを特徴とする撮像装置。
Optical system,
A polarization acquisition element according to any one of claims 1 to 7,
A solid-state image sensor,
An imaging device comprising:
請求項8に記載の撮像装置と、
画像処理手段と、
を有し、
該画像処理手段は、偏光取得素子の状態が3つ以上の異なる状態で取得した画像から偏光情報A、B、αを算出することを特徴とする偏光情報取得装置。
ただし、Aは最大光強度、Bは最小光強度、αは最大光強度を有する角度とする。
An image pickup apparatus according to claim 8;
Image processing means,
Have
The polarization information acquisition device, wherein the image processing means calculates polarization information A, B, and α from images acquired in three or more different states of the polarization acquisition element.
However, A is the maximum light intensity, B is the minimum light intensity, and α is the angle having the maximum light intensity.
さらに、補正処理手段を有し、
該補正処理手段は、補正係数を用いて前記αを補正することを特徴とする請求項9に記載の偏光情報取得装置。
Furthermore, it has a correction processing means,
The polarization information acquisition apparatus according to claim 9, wherein the correction processing unit corrects the α using a correction coefficient.
カラーチャンネル毎にαを補正することを特徴とする請求項10に記載の偏光情報取得装置。 11. The polarization information acquisition device according to claim 10, wherein α is corrected for each color channel.
JP2018241910A 2018-12-26 2018-12-26 Image capturing device Pending JP2020106563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241910A JP2020106563A (en) 2018-12-26 2018-12-26 Image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241910A JP2020106563A (en) 2018-12-26 2018-12-26 Image capturing device

Publications (1)

Publication Number Publication Date
JP2020106563A true JP2020106563A (en) 2020-07-09

Family

ID=71448882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241910A Pending JP2020106563A (en) 2018-12-26 2018-12-26 Image capturing device

Country Status (1)

Country Link
JP (1) JP2020106563A (en)

Similar Documents

Publication Publication Date Title
JP6482308B2 (en) Optical apparatus and imaging apparatus
JP5320735B2 (en) Imaging device
US8305578B1 (en) Imaging polarimeter
US10768497B2 (en) Hyperspectral imaging system
US10334140B2 (en) Image processing apparatus, image pickup apparatus, and image processing method
JP6679366B2 (en) Optical device and imaging device
JP6869655B2 (en) Optical equipment and imaging equipment
WO2009139133A1 (en) Optical distortion measurement apparatus
CN105300523A (en) Polarization calibration method of light field polarization imaging system
JP6746404B2 (en) Polarization information acquisition device, polarization information acquisition method, program and recording medium
US10911681B2 (en) Display control apparatus and imaging apparatus
US20160173834A1 (en) Plasmonic polarization-sensitive image sensor
JP2020106563A (en) Image capturing device
JP2017058559A (en) Optical device and imaging device
JP6704766B2 (en) Optical device and imaging device
JP2008020231A (en) Method and device for measuring optical main axis distribution
JP2017191989A (en) Imaging apparatus, control device, control method, control program, and recording medium
Llull et al. Lens array Stokes imaging polarimeter
JP6597618B2 (en) Control device, imaging device, and liquid crystal low-pass filter control method
US20230171480A1 (en) Image processing apparatus, image pickup apparatus, and image processing method
JP6873621B2 (en) Optical equipment and imaging equipment
WO2022170559A1 (en) Polarization image sensor and photographing device
JP2021005002A (en) Imaging apparatus
JP2003167219A (en) Optical low pass filter and camera
JP2018017864A (en) Imaging device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125