JP2020106273A - Deflection measuring device using pipe - Google Patents

Deflection measuring device using pipe Download PDF

Info

Publication number
JP2020106273A
JP2020106273A JP2018241947A JP2018241947A JP2020106273A JP 2020106273 A JP2020106273 A JP 2020106273A JP 2018241947 A JP2018241947 A JP 2018241947A JP 2018241947 A JP2018241947 A JP 2018241947A JP 2020106273 A JP2020106273 A JP 2020106273A
Authority
JP
Japan
Prior art keywords
pipe
sensor
measuring device
conversion circuit
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018241947A
Other languages
Japanese (ja)
Other versions
JP7300635B2 (en
Inventor
山内常生
Tsuneo Yamauchi
丹羽章二
Shoji Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018241947A priority Critical patent/JP7300635B2/en
Publication of JP2020106273A publication Critical patent/JP2020106273A/en
Application granted granted Critical
Publication of JP7300635B2 publication Critical patent/JP7300635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide a deflection measuring device using a pipe capable of monitoring the amount of ground deformation and the amount of deflection of a structure of a landslide site.SOLUTION: The landslide measuring device is a landslide measuring device formed by connecting a plurality of non-conductive flexible pipes and includes a sensor device that has a sensor 13 extending in the axial direction of a pipe 11 and generates an output according to the amount of bending of the pipe, and further includes a monitor unit for monitoring an output from the sensor device of each pipe. When the pipe is deformed due to changes in the ground, the sensor is also deformed following the bending of the pipe. Since this sensor produces an output according to the amount of bending of the pipe, the amount of bending of the pipe can be determined by monitoring this output.SELECTED DRAWING: Figure 2

Description

本発明は地すべり地の地盤の変形量のモニタリングや構造物の撓み量のモニタリングができるパイプを用いる撓み測定装置に関する。 The present invention relates to a flexure measuring device using a pipe capable of monitoring the amount of deformation of the ground of a landslide site and the amount of flexure of a structure.

近年、気象庁により「記録的短時間大雨情報」や「土砂災害警戒情報」が各地で発表され、地すべり等の土砂災害の危険が高まっている。地すべり地ではその原因となる滑り層の変位を定量的、経時的に捉えることが極めて重要であるが、長期間の観測に耐える測定装置がなく、測定装置の開発もなされてこなかった。特許文献1の図5からも明らかなように、平成14年に出願された発明でも30年以上前に開発されたパイプ式歪計をボーリング孔に縦列に設置して使用することが前提にされている。このパイプ式歪計はVP管の表面にひずみゲージを貼り付ける構成で、地中に設置後2,3年経過すると湿気でセンサ部が機能しなくなる。しかし、測定装置をVP管の内部に収納する構成にすればセンサ部を湿気から保護できる。 In recent years, the Meteorological Agency has announced "record short-time heavy rainfall information" and "sediment disaster warning information" in various places, and the risk of sediment-related disasters such as landslides is increasing. In landslide areas, it is extremely important to quantitatively and temporally grasp the displacement of the slip layer, which is the cause, but there is no measuring device that can withstand long-term observation, and no measuring device has been developed. As is clear from FIG. 5 of Patent Document 1, the invention filed in 2002 is also premised on the pipe strain gauges developed more than 30 years ago, which are installed in tandem in the boring hole. ing. This pipe type strain gauge has a structure in which a strain gauge is attached to the surface of the VP pipe, and after a few years after installation in the ground, the sensor section will not function due to moisture. However, if the measuring device is housed inside the VP pipe, the sensor part can be protected from moisture.

また、道路や鉄道用のトンネル・橋梁等の老朽化が進み、構造物の異常な変形を事前に把握するために構造物の変形量のモニタリングが必要とされ、モニタリングのための発明がなされている(特許文献2)。しかしながら、湿気の高いトンネル内や風雨にさらされる橋梁等では測定環境が悪く長期間のモニタリングが難しい。変形量のモニタリングを長期間継続するためにはセンシング部分を構造物の内部、ないしは、構造物を構成する部材内部に設けることが望ましい。 In addition, the deterioration of structures such as tunnels and bridges for roads and railways is progressing, and it is necessary to monitor the amount of deformation of structures in order to understand abnormal deformation of structures in advance, and an invention for monitoring was made. (Patent Document 2). However, the measurement environment is bad and it is difficult to monitor for a long time in a humid tunnel or a bridge exposed to wind and rain. In order to continue monitoring the amount of deformation for a long period of time, it is desirable to provide the sensing portion inside the structure or inside a member that constitutes the structure.

特開2003−214812JP-A-2003-214812 特許5397767Patent 5397767

地滑り観測に土中に埋設するパイプ式歪計を利用する場合、パイプ内部で撓み量のセンシングができれば湿気でセンシング部分が劣化することはなく、長期間の観測ができる。パイプ式歪計は高感度であるが地盤が大きく変動する地滑り時にはスケールアウトすることも欠点である。ダイナミックレンジを広くすれば、地滑り時の撓み量の測定ができるし、VP管が破断するまで測定できれば地すべり時の記録が余すことなく残せることになりより好適である。 When a pipe strain gauge buried in the soil is used for landslide observation, if the amount of deflection can be sensed inside the pipe, moisture will not deteriorate the sensing part and long-term observation will be possible. The pipe strain gauge has high sensitivity, but it also has a drawback that it scales out during a landslide where the ground changes greatly. If the dynamic range is widened, the amount of flexure at the time of landslide can be measured, and if it is possible to measure until the VP pipe breaks, it is more preferable because the recording at the time of landslide can be left without being left over.

長く使用されてきたパイプ式歪計の場合、塩化ビニール(VP)製のパイプの外面にひずみゲージを接着した後、テープを巻き付ける方法でひずみゲージの防水をしている。このため、2,3年するとひずみゲージが劣化して使用できなくなる。さらに、ひずみゲージ用の信号線がパイプ外部に出ているためにVP管を設置する際には、VP管をボーリング孔に挿入しながら信号線も挿入する必要があり、信号線の処理が大変で設置工事に手間がかかる。 In the case of a pipe-type strain gauge that has been used for a long time, after the strain gauge is adhered to the outer surface of a pipe made of vinyl chloride (VP), the strain gauge is waterproofed by winding a tape. Therefore, after a few years, the strain gauge deteriorates and cannot be used. Furthermore, since the signal line for the strain gauge is exposed outside the pipe, when installing the VP pipe, it is necessary to insert the signal line while inserting the VP pipe into the boring hole, which makes the signal line processing difficult. It takes a lot of time for installation work.

ひずみゲージは小型であってVP管の外面に貼り付けた場合、その貼り付けた部分の変形しか測定できず(点測定に近い)、滑り層の滑りを測定するためには、できるだけ広範囲の地盤の変位情報を得ることが好ましく、測定範囲が広い線状的測定、さらに測定対象が広範囲になる面状的測定が望ましい。 The strain gauge is small, and when it is attached to the outer surface of the VP pipe, only the deformation of the attached portion can be measured (close to point measurement). It is preferable to obtain the displacement information of, and linear measurement with a wide measurement range, and planar measurement with a wide measurement target are desirable.

橋梁等の変形のモニタリングに使用されるセンサは、通常、橋梁等の構造物の外側に取りけられるため、湿気等の影響を受けやすく長期間測定を継続することは難しい。ステンレスパイプ等の内部においてパイプの撓み量のセンシングができれば、センシング部分を内蔵したパイプを老朽化したトンネルの天井や側壁に取り付け撓み量のモニタリングすることができ、湿気でセンシング部分が劣化することはない。さらに、橋梁等の素材として使用されているパイプを、センシング部分を内蔵したパイプに交換し、内部でデジタル信号に変換すれば、橋梁等の撓み量のモニタリングができる。 Since a sensor used for monitoring the deformation of a bridge or the like is usually mounted on the outside of a structure such as a bridge, it is easily affected by moisture and the like and it is difficult to continue the measurement for a long period of time. If the amount of bending of a pipe can be sensed inside a stainless steel pipe, etc., the pipe with the built-in sensing portion can be attached to the ceiling or sidewall of an aged tunnel to monitor the amount of bending, and moisture does not deteriorate the sensing portion. Absent. Furthermore, if the pipe used as a material for a bridge or the like is replaced with a pipe having a built-in sensing portion and converted into a digital signal inside, the amount of bending of the bridge or the like can be monitored.

VP管内部やステンレスパイプの内部にセンシング装置を内蔵するとともにデジタル信号に変換すれば、複数のセンサを内蔵したパイプを連結し、共通の信号線でデータを伝送でき、少ない信号線で多点のモニタリングができる。 By incorporating a sensing device inside the VP pipe or inside the stainless pipe and converting it into a digital signal, the pipes containing multiple sensors can be connected and data can be transmitted via a common signal line, and a small number of signal lines can be used for multiple points. Can be monitored.

そこで本発明者等は,地盤の変位による可撓性パイプの変位を検出する場合、パイプの長軸に沿った広い範囲で検出する方法がよいと考え、可撓性の導電性シートを線状センサとして利用する発明に想到した。可撓性の導電性シートは張力の作用で伸長すると可撓性のシート内部に混ぜ合わされたフィラーと呼ばれる微粉末状の導電物質の相対的な距離が離れるため、結果として可撓性の導電性シートの抵抗値が大きくなる性質がある。したがって、パイプの外面や内面に可撓性の導電性の導電性シートを接着しパイプと一体となった状態でパイプを曲げれば、パイプの湾曲と共に可撓性の導電性シートが変形し、可撓性の導電性シートの抵抗値が変化する。この性質を利用すれば、パイプが受ける長軸方向の曲がりによる変位量を可撓性の導電性シートの抵抗値の変化として検出できる。可撓性の導電性シートであればパイプの内面に接着することが可能で電子回路や信号線をパイプ内部に収納できる。信号線がパイプ内部に収納できれば、パイプを設置する際に信号線の処理が簡単になる効果がある。 Therefore, the inventors of the present invention think that a method of detecting a displacement of the flexible pipe due to the displacement of the ground in a wide range along the long axis of the pipe is preferable, and the flexible conductive sheet is linear. The invention for use as a sensor has been conceived. When the flexible conductive sheet is stretched by the action of tension, the relative distance of the fine powdery conductive material called a filler mixed inside the flexible sheet increases, resulting in the flexible conductive sheet. It has the property of increasing the resistance value of the sheet. Therefore, if the flexible conductive sheet is bonded to the outer surface or the inner surface of the pipe and the pipe is bent in a state where it is integrated with the pipe, the flexible conductive sheet is deformed as the pipe bends, The resistance value of the flexible conductive sheet changes. By utilizing this property, the amount of displacement of the pipe due to bending in the long axis direction can be detected as a change in the resistance value of the flexible conductive sheet. A flexible conductive sheet can be adhered to the inner surface of the pipe, and electronic circuits and signal lines can be stored inside the pipe. If the signal line can be housed inside the pipe, the signal line can be easily processed when the pipe is installed.

また、トンネルや橋梁等の撓み量のモニタリングにはステンレスパイプ等の金属製のパイプ内部で撓み量を測定する発明に想到した。ステンレスパイプ等の金属製のパイプ内部であれば、完全にシールドとされた環境下であり、センシング信号のデジタル化に好適である。撓み量の測定はパイプの軸方向に配置した細長い電極の容量変化を利用する。対になった電極の1カ所(例えば端や中央)をパイプの側面に固定する配置にする。撓みが生じると電極が相対的に移動し、対になった電極間の電気容量が変化するから、容量の変化から撓み量の変化が分かる。 Further, the inventors have come up with the invention of measuring the bending amount inside a metal pipe such as a stainless pipe for monitoring the bending amount of a tunnel or a bridge. The inside of a metal pipe such as a stainless pipe is in a completely shielded environment and is suitable for digitizing a sensing signal. The measurement of the amount of bending utilizes the capacitance change of the elongated electrodes arranged in the axial direction of the pipe. One pair (for example, the end or the center) of the paired electrodes is fixed to the side surface of the pipe. When the bending occurs, the electrodes move relatively and the electric capacitance between the paired electrodes changes, so that the change in the bending amount can be known from the change in the capacitance.

地滑り地では長さ1m程度のVP管の中央にひずみゲージを貼りつけたパイプ式歪計をボーリング孔に縦列に配置し、深度別にVP管の撓み量の測定をしている。しかしながら、各VP管の中央に貼られたひずみゲージによる点測定で撓み量を検出するため、ひずみゲージ近傍の地盤が大きく変形した場合や、ひずみゲージの正面に小石があった場合など、測定された撓み量は局所的な影響を受けやすい欠点があった。 In landslide areas, pipe type strain gauges with a strain gauge attached to the center of a VP pipe with a length of about 1 m are arranged in tandem in the borehole to measure the amount of deflection of the VP pipe by depth. However, since the amount of deflection is detected by the point measurement with a strain gauge attached to the center of each VP pipe, it is measured when the ground near the strain gauge is greatly deformed or when there are pebbles in front of the strain gauge. The amount of flexure has a drawback that it is easily affected locally.

この発明はかかる課題を解決するためになされた。この発明の第1の局面は次のよう規定される。すなわち,
複数の非導電性の可撓性パイプを連結してなる地滑り測定装置であって、
前記パイプは軸方向に伸展されたセンサを備えるセンサ装置であって、前記パイプの撓み量に応じた出力を生成するセンサ装置を備え、
前記各パイプのセンサ装置からの出力をモニタするモニタ部を更に備えてなる地滑り測定装置。
The present invention has been made to solve such problems. The first aspect of the present invention is defined as follows. That is,
A landslide measuring device formed by connecting a plurality of non-conductive flexible pipes,
The pipe is a sensor device that includes a sensor that is extended in the axial direction, and includes a sensor device that generates an output according to the amount of bending of the pipe.
The landslide measuring device further comprising a monitor unit for monitoring the output from the sensor device of each pipe.

上記第1の局面によれば、可撓性パイプはその軸方向に伸展されたセンサを備える。従って、地盤の変動等によりパイプが変形すると、このパイプの撓みに追従してセンサも変形する。このセンサはパイプの撓み量に応じた出力を生成するので、この出力をモニタすることでパイプの撓み量を特定できる。パイプの撓み量は地盤の変動に追従しているので、このようにして特定されたパイプの撓み量は地盤の変動量を表している。即ち、前もってパイプの撓み量とセンサの出力との関係を取得して保存しておき、その関係を参照すれば出力の変化から撓み量が求められる。
地盤の変動が局所的であり、その結果パイプにかかる力も局所的である場合であっても、可撓性のパイプは全体的に変形するので、地盤変動がパイプの範囲内のとき、換言すれば地盤変動がパイプにわずかでも干渉すれば、これを確実に測定できる。
According to the first aspect, the flexible pipe includes the sensor extended in the axial direction. Therefore, when the pipe is deformed due to the fluctuation of the ground or the like, the sensor is also deformed following the bending of the pipe. Since this sensor produces an output according to the amount of bending of the pipe, the amount of bending of the pipe can be specified by monitoring this output. Since the amount of bending of the pipe follows the fluctuation of the ground, the amount of bending of the pipe thus specified represents the amount of fluctuation of the ground. That is, the relationship between the bending amount of the pipe and the output of the sensor is acquired and stored in advance, and the bending amount can be obtained from the change in the output by referring to the relationship.
Even if the ground movement is local and, as a result, the force on the pipe is also local, the flexible pipe will be totally deformed, so when the ground movement is within the range of the pipe, in other words For example, if the ground movement slightly interferes with the pipe, it can be reliably measured.

この発明の第2の局面は次のよう規定される.すなわち,
前記センサ装置は可撓性導電体と、該可撓性導電体の電気抵抗の変化を周波数の変化に変換する変換回路とを備える、第1の局面に記載の地滑り測定装置。
上記の第2の局面で規定する、電気抵抗を周波数の変換する変換回路は専ら抵抗とコンデンサから構成されるので、簡易な構造でかつ安価に提供できる。簡単の構造の回路は出力が安定してかつ耐久性も確保しやすい。また、出力をデジタル化することにより高精度化が図れ、測定レンジの幅も広くなる。可撓性導電体の材料マトリックスを高分子材料(ゴム、エラストマー)としたとき、その靭性は例えば合成樹脂製からなる可撓性パイプのそれに比べて高くなる。従って、可撓性パイプが破損するまで、即ち可撓性パイプの変形限界においても、可撓性導電体からなるセンサはその変形量に応じた出力(抵抗変化)を生成可能である。広い測定レンジを有する変換回路であれば、かかる撓性パイプの大きな変形、即ち可撓性導電体の大きな抵抗変化にも対応可能である。
The second aspect of the present invention is defined as follows. That is,
The landslide measuring device according to the first aspect, wherein the sensor device includes a flexible conductor and a conversion circuit that converts a change in electric resistance of the flexible conductor into a change in frequency.
Since the conversion circuit for converting the frequency of the electric resistance, which is defined in the above second aspect, is composed exclusively of the resistance and the capacitor, it can be provided with a simple structure and at a low cost. The circuit with a simple structure has stable output and is easy to secure durability. Further, by digitizing the output, high accuracy can be achieved and the range of the measurement range can be widened. When the material matrix of the flexible conductor is a polymer material (rubber, elastomer), its toughness is higher than that of a flexible pipe made of synthetic resin, for example. Therefore, until the flexible pipe is broken, that is, even at the deformation limit of the flexible pipe, the sensor made of the flexible conductor can generate an output (change in resistance) according to the amount of deformation. A conversion circuit having a wide measurement range can cope with such a large deformation of the flexible pipe, that is, a large resistance change of the flexible conductor.

なお、前もってパイプの撓み量と電気抵抗(導電率)の関係を取得して保存しておき、その関係を参照すれば電気抵抗(導電率)の変化から撓み量が求められる。
可撓性導電体の電気抵抗に対する外乱の影響を避けるため可撓性導電体は防水処理されることが好ましい。
The relationship between the amount of bending of the pipe and the electric resistance (conductivity) is acquired and stored in advance, and the amount of bending can be obtained from the change in the electric resistance (conductivity) by referring to the relationship.
The flexible conductor is preferably waterproofed to avoid the influence of disturbance on the electric resistance of the flexible conductor.

この発明の第3の局面は次のよう規定される.すなわち、
前記センサ装置は対向した一対の電極と、該一対の電極間の電気容量の変化を周波数の変化に変換する変換回路とを備える、第1の局面に記載の地滑り測定装置。
このように規定される第3の局面の変換回路は、第2の局面のものと同様の作用を備える。即ち、電気容量を周波数に変換する変換回路は専ら抵抗とコンデンサから構成されるので、簡易な構造でかつ安価に提供できる。簡単の構造の回路は出力が安定してかつ耐久性も確保しやすい。また、出力をデジタル化することにより高精度化が図れ、測定レンジの幅も広くなる。
The third aspect of the present invention is defined as follows. That is,
The landslide measuring device according to the first aspect, wherein the sensor device includes a pair of electrodes facing each other, and a conversion circuit that converts a change in electric capacitance between the pair of electrodes into a change in frequency.
The conversion circuit of the third aspect defined in this way has the same operation as that of the second aspect. That is, since the conversion circuit for converting the electric capacity into the frequency is composed exclusively of the resistor and the capacitor, it can be provided with a simple structure and at a low cost. The circuit with a simple structure has stable output and is easy to secure durability. Further, by digitizing the output, high accuracy can be achieved and the range of the measurement range can be widened.

第2及び第3の局面で採用される変換回路はパイプの撓み具合に応じて固有の周期の電気信号(周波数信号)を出力する。その結果、かかる変換回路を備えたパイプを連続させたとき、一のパイプの変換回路が他のパイプの変換回路に干渉するおそれがあることに気がついた。
かかる干渉を予防するため、前記各パイプのセンサ装置は、少なくとも隣接する他のパイプのセンサ装置がオフの状態で、前記出力を生成することが好ましい(第4の局面)。
The conversion circuit employed in the second and third aspects outputs an electric signal (frequency signal) having a unique cycle according to the degree of bending of the pipe. As a result, when a pipe provided with such a conversion circuit is made continuous, it has been found that the conversion circuit of one pipe may interfere with the conversion circuit of another pipe.
In order to prevent such interference, it is preferable that the sensor device of each pipe generate the output when at least the sensor devices of other adjacent pipes are in the off state (fourth aspect).

上記の第4の局面によれば、パイプに備えられたセンサ装置の変換回路が周波数信号を生成る際、隣接するセンサ装置は停止状態でそこからは何ら周波数信号は出力されていない、よって、パイプに備えられたセンサ装置の出力は何ら外乱を受けることがなく、地盤変動に基づくパイプの変形量を正確に出力する。
外乱を確実に排除するためには、隣接するパイプに備えられたセンサ装置をオフにした後、所定の時間をおいて(時定数を考慮して)、測定対象のパイプのセンサ装置をオンとする。
According to the above-mentioned fourth aspect, when the conversion circuit of the sensor device provided in the pipe generates the frequency signal, the adjacent sensor device is in the stopped state and no frequency signal is output therefrom. The output of the sensor device provided in the pipe is not subjected to any disturbance, and the amount of deformation of the pipe based on ground deformation is accurately output.
In order to reliably eliminate disturbance, after turning off the sensor device provided in the adjacent pipe, after a predetermined time (taking into consideration the time constant), turn on the sensor device of the pipe to be measured. To do.

なお、複数のパイの連結体において、1つのパイプのセンサ装置をオンにするときは他の全てのパイプのセンサ装置をオフとしておくことが、より精密な測定をする見地からは、好ましい。ただ、本発明者らの検討によれば、隣接するパイプのセンサ装置をオフとしておけば、地滑りによる変形の測定に要求される精度からは十分であった
縦列でパイプを設置したとき、各パイプに制御線等の信号線を地表に設けられたロガー等の解析装置と接続していては、信号線の処理が大変で設置経費が膨大になる。そこで、
In addition, when the sensor device for one pipe is turned on in the connected body of a plurality of pies, it is preferable to turn off the sensor devices for all other pipes from the viewpoint of more accurate measurement. However, according to the study by the present inventors, if the sensor devices of the adjacent pipes are turned off, the accuracy required for the measurement of deformation due to landslide was sufficient. If the signal line such as the control line is connected to the analysis device such as the logger provided on the ground surface, the processing of the signal line is difficult and the installation cost becomes huge. Therefore,

この発明の第5の局面は次のよう規定される.すなわち、
前記各パイプへ通される共通信号線が更に備えられ、
前記各センサ装置の変換回路は防水連結部内に収納され、
該防水連結部は下側解放のケースであって前記変換回路を収納するケースと該ケース内に充填される非導電性かつ防水性の充填材を備え、
前記共通信号線及び前記変換回路と前記センサとの接続線が前記ケースの下側開口部から前記ケース内に導入されて前記変換回路に繋がれる、第2〜4の局面の何れかに記載の地滑り測定装置。
The fifth aspect of the present invention is defined as follows. That is,
Further, a common signal line passing through each of the pipes is further provided,
The conversion circuit of each of the sensor devices is housed in a waterproof joint,
The waterproof connecting portion is a lower open case, and includes a case for accommodating the conversion circuit and a non-conductive and waterproof filling material filled in the case.
The connection line between the common signal line and the conversion circuit and the sensor is introduced into the case from the lower opening of the case and is connected to the conversion circuit. Landslide measuring device.

上記の第5の局面によれば、連結した各パイプをボーリング孔に縦列に設置し、共通信号線を介して各パイプからの信号をモニタする地表に設置されたモニタ部に伝送する。この場合、パイプの連結体内へ水が浸入することを完全に防止することはできない。例えば、地表付近のパイプに亀裂が入りその亀裂からパイプ内部に浸水することがあるからである。そこで、パイプ内の電気部品の防水が必要なる。 According to the fifth aspect described above, the connected pipes are installed in tandem in the boring hole, and the signals from the pipes are transmitted to the monitor unit installed on the ground for monitoring the signals from the pipes via the common signal line. In this case, it is not possible to completely prevent water from entering the connected body of pipes. This is because, for example, a pipe near the surface of the earth may be cracked and water may enter the inside of the pipe through the crack. Therefore, it is necessary to waterproof the electric parts in the pipe.

ここに、各パイプのセンサ装置の変換回路を下側解放のケースである防水連結部内に設けてこれに共通信号線に接続し、そのケース内を非導電性かつ防水性の充填材で充填すると上部から浸水あった場合でも、防水連結部に水が浸透することがない。よって、パイプ内の電気部品に対する防水が確保できる。 Here, the conversion circuit of the sensor device of each pipe is provided in the waterproof connection part that is the lower open case, connected to the common signal line, and the case is filled with a non-conductive and waterproof filler. Even if there is water from the top, water will not penetrate into the waterproof joint. Therefore, it is possible to ensure the waterproofness of the electric parts in the pipe.

パイプ内の電気部品(変換回路)そのものの防水、およびこれと配線との接続部の防水対策は、既述の第5の局面で対応できている。勿論、可撓性導電体からなるセンサ自体にも耐水性は不可欠である。そこで、
この発明の第6の局面は次のよう規定される.すなわち、
前記可撓性導電体はリボン状の部材であり、防水留め具で前記パイプの周面に固定され、
該防水留め具は前記リボン状の可撓性導電体の裏打ち部材と前記可撓性部材の周縁に配置される枠状体とを備えてなり、前記枠状体は前記裏打ち部材の表面と前記パイプの表面に水密に固定される、第2の局面に記載の地滑り測定装置。
The waterproofing of the electric parts (conversion circuit) itself in the pipe and the waterproofing measure of the connecting portion between this and the wiring can be dealt with in the fifth aspect described above. Of course, water resistance is also essential for the sensor itself made of a flexible conductor. Therefore,
The sixth aspect of the present invention is defined as follows. That is,
The flexible conductor is a ribbon-shaped member, which is fixed to the peripheral surface of the pipe with a waterproof fastener.
The waterproof fastener comprises a backing member made of the ribbon-shaped flexible conductor and a frame-shaped body arranged at a peripheral edge of the flexible member, the frame-shaped body being provided on the surface of the backing member and the frame-shaped body. The landslide measuring device according to the second aspect, which is watertightly fixed to the surface of the pipe.

上記の第6の局面によれば、センサを構成する可撓性導電体をリボン状とすることによりセンサが薄くなる。よって、小径のパイプにも配設可能となる。かかるリボン状のセンサの防水構造として、裏打ち部材と枠状体で構成される防水留め具はこれを薄く形成する構造として好適である。
なお、リボン状の可撓性導電体をパイプの外側に水密に取り付けた場合は、パイプに穴を開けてリード線をパイプの内部に引き込みパイプ内部の変換回路に接続する。そして、リボン状の可撓性導電体の抵抗値の変化をRC発振回路で周波数の変化に変換し、その周波数の変化から可撓性パイプの撓み量を求める。
According to the sixth aspect, the sensor is thinned by forming the flexible conductor forming the sensor into a ribbon shape. Therefore, it is possible to arrange even a small diameter pipe. As a waterproof structure for such a ribbon-shaped sensor, a waterproof fastener composed of a backing member and a frame-like body is suitable as a structure for thinly forming it.
When the ribbon-shaped flexible conductor is attached to the outside of the pipe in a watertight manner, a hole is made in the pipe, the lead wire is drawn into the pipe, and connected to the conversion circuit inside the pipe. Then, a change in the resistance value of the ribbon-shaped flexible conductor is converted into a change in frequency by the RC oscillation circuit, and the amount of bending of the flexible pipe is obtained from the change in frequency.

この発明の第7の局面は次のよう規定される。すなわち、
前記対向した一対の電極は、少なくともその対向面が絶縁材料で被覆された導電性部材であり、パイプの内周面の第1の位置で固定される第1の電極と、第2の位置で固定される第2の電極とを備えてなり、前記の第1の位置と前記の第2の位置とがパイプの軸方向に平行な投影面内で重なることなく配置される、第3の局面に記載の地滑り測定装置。
The seventh aspect of the present invention is defined as follows. That is,
The pair of electrodes facing each other is a conductive member having at least its facing surface coated with an insulating material, and has a first electrode fixed at a first position on the inner peripheral surface of the pipe and a second electrode at a second position. A third aspect, comprising a fixed second electrode, wherein the first position and the second position are arranged without overlapping in a projection plane parallel to the axial direction of the pipe. The landslide measuring device described in.

上記の第7の局面によれば導電性部材からなる一対の電極がパイプの軸方向に平行に配置され、パイプ内面に対するそれぞれの固定位置がパイプの軸方向において異なっている。これにより、パイプが撓んだとき第1の電極と第2の電極との間隔に変化が生じる。パイプを撓ませる外力はパイプの軸方向全域に均等に加えられるものではないので、パイプの変形は軸方向に全て均一ではないからである。よって、電極の相対位置が変化すれば両者の間の電気容量が変化する。なお、各電極の対向面は絶縁材料で被覆されているので、パイプの変形に伴い両者が接触してもショートすることがない。
前もってパイプの撓み量と電気容量の関係を取得して保存しておき、その関係を参照すれば電気容量の変化から撓み量が求められる。ここに、パイプの撓み量とは、無負荷状態のパイプに対する変形後のパイプの最大変化量(軸垂直方向の)を指す。容量の変化は第6の局面と同様にRC回路により周波数に変換し、その周波数の変化から可撓性パイプの撓み量を求める。
According to the seventh aspect described above, the pair of electrodes made of a conductive member are arranged in parallel to the axial direction of the pipe, and the respective fixing positions with respect to the inner surface of the pipe are different in the axial direction of the pipe. This causes a change in the distance between the first electrode and the second electrode when the pipe bends. This is because the external force for bending the pipe is not uniformly applied to the entire region in the axial direction of the pipe, so that the deformation of the pipe is not uniform in the axial direction. Therefore, if the relative position of the electrodes changes, the electric capacitance between the two changes. Since the facing surface of each electrode is covered with an insulating material, even if the two come into contact with each other due to the deformation of the pipe, no short circuit occurs.
The relationship between the amount of bending of the pipe and the electric capacity is acquired and stored in advance, and by referring to the relationship, the amount of bending can be obtained from the change in the electric capacity. Here, the bending amount of the pipe refers to the maximum change amount (in the direction perpendicular to the axis) of the pipe after deformation with respect to the pipe in the unloaded state. The change in capacitance is converted to a frequency by the RC circuit as in the sixth aspect, and the amount of bending of the flexible pipe is obtained from the change in frequency.

上記第7の局面では軸方向に伸展させた一対の電極による容量変化から可撓性パイプの撓み量を求めたが、各センサパイプを縦列に設置して第6の局面と同様の方式で共通信号線と接続すれば、深度別に地盤の変形量が求められる。
地滑り地に埋設して使用する場合は、各電極を防水仕様とすることが好ましい。そのためには、防水性かつ絶縁性を備えた合成樹脂材料等(例えば、フッ素樹脂)で各電極の全面を被覆することが好ましい。
In the seventh aspect, the flexure amount of the flexible pipe is obtained from the capacitance change due to the pair of electrodes extended in the axial direction. However, the sensor pipes are arranged in tandem and the same method as in the sixth aspect is used. If it is connected to the communication line, the amount of deformation of the ground can be calculated for each depth.
When buried in a landslide area and used, it is preferable that each electrode be waterproof. For that purpose, it is preferable to cover the entire surface of each electrode with a waterproof and insulating synthetic resin material or the like (for example, fluororesin).

図1はこの発明の実施例の地滑り測定装置を示す模式図である。FIG. 1 is a schematic diagram showing a landslide measuring apparatus according to an embodiment of the present invention. 図2はパイプの構成を示す模式図である。FIG. 2 is a schematic view showing the structure of the pipe. 図3はリボン状の可撓性導電体とその防水留め具を示す展開図である。FIG. 3 is a development view showing a ribbon-shaped flexible conductor and its waterproof fastener. 図4は抵抗変化に基づくセンサの構造を示す断面図である。FIG. 4 is a sectional view showing the structure of the sensor based on the resistance change. 図5は他のセンサの構造を示す断面図である。FIG. 5 is a sectional view showing the structure of another sensor. 図6は容量変化に基づくセンサの構造を示す断面図である。FIG. 6 is a sectional view showing the structure of the sensor based on the capacitance change. 図7は容量変化に基づく他のセンサの構造を示す断面図である。FIG. 7 is a sectional view showing the structure of another sensor based on the change in capacitance. 図8は容量変化に基づく他のセンサの構造を示す断面図である。FIG. 8 is a cross-sectional view showing the structure of another sensor based on the capacitance change. 図9は抵抗変化又は容量変化を周波数に変換する変換回路(発振回路)を示す。FIG. 9 shows a conversion circuit (oscillation circuit) for converting resistance change or capacity change into frequency. 図10は試験例のVP40の撓み量と抵抗値の変化の割合の関係を示す図であるFIG. 10 is a diagram showing the relationship between the amount of bending of the VP 40 and the rate of change in resistance value in the test example. 図11は試験例のデータを測定する測定装置の模式図である。FIG. 11 is a schematic diagram of a measuring device that measures the data of the test example.

この発明の地滑り測定装置1を図1に示す。この測定装置1はモニタ部としてのデータ・解析装置5とパイプユニット10の連結体とを備えてなる。データ・解析装置5はコンピュータ装置を備え、共通信号線7を介して送られてくる各パイプユニット10からの出力信号を予め定められたプログラムにより処理して、パイプユニット10の変形を検出する。パイプユニット10の変形は地盤の変動を表している。
パイプユニット10の連結体はボーリング穴に挿入される。
The landslide measuring apparatus 1 of this invention is shown in FIG. This measuring device 1 comprises a data/analysis device 5 as a monitor and a connected body of pipe units 10. The data/analysis device 5 includes a computer device, processes an output signal from each pipe unit 10 sent via the common signal line 7 by a predetermined program, and detects a deformation of the pipe unit 10. The deformation of the pipe unit 10 represents the fluctuation of the ground.
The connected body of the pipe unit 10 is inserted into the boring hole.

パイプユニット10の詳細構造を図2に示す。
パイプユニット10は非導電性かつ可撓性の材料から形成されるパイプ本体11を備える。非導電性かつ可撓性のある材料としてVP等の合成樹脂を挙げることができる。パイプ本体11の上下端には他のパイプ本体11へ連結するためのねじが螺設されている。
パイプ本体11の内周面の一側に軸方向へ伸展したセンサ13の全体が密着されている。これにより、パイプ本体11の変形にセンサ13の変形が追従する。このセンサ13には後述するようにリボン状の導電性高分子が用いられる。センサ13の両端は配線15、16を介して変換回路21に連結される。
The detailed structure of the pipe unit 10 is shown in FIG.
The pipe unit 10 includes a pipe body 11 formed of a non-conductive and flexible material. Examples of the non-conductive and flexible material include synthetic resin such as VP. Screws for connecting to another pipe body 11 are screwed on the upper and lower ends of the pipe body 11.
The entire sensor 13 extending in the axial direction is in close contact with one side of the inner peripheral surface of the pipe body 11. As a result, the deformation of the sensor 13 follows the deformation of the pipe body 11. A ribbon-shaped conductive polymer is used for the sensor 13 as described later. Both ends of the sensor 13 are connected to the conversion circuit 21 via wirings 15 and 16.

パイプ本端11の内周面には防水連結部20が固定される。この防水連結部20は下側のみが解放した、即ち上側は閉じられた筒状部材であり、パイプ本体11と同一若しくは同種の合成樹脂材料で形成される。両者を同一の若しくは同種の材料で形成することにより、両者の接合が容易になる。
防水連結部20の内部には変換回路21が収納されている。この変換回路21には共通信号線7、センサ13からの信号線15、16が連結される。防止連結部20には絶縁性でかつ耐水性の充填材を隙間なく充填する。かかる充填材として、ウレタンなどの合成樹脂を用いることができる。
パイプ本体10を地下水の存在する地盤に埋入するときは、パイプ本体10内に図示しない重り若しくは水より比重の高い充填剤を入れて、パイプ本体10自体の浮き上がりを防止する。
A waterproof connecting portion 20 is fixed to the inner peripheral surface of the pipe main end 11. The waterproof connecting portion 20 is a tubular member that is open only on the lower side, that is, the upper side is closed, and is made of the same or the same kind of synthetic resin material as the pipe body 11. By forming both of them with the same or the same kind of material, it becomes easy to join them.
A conversion circuit 21 is housed inside the waterproof connecting portion 20. The common signal line 7 and the signal lines 15 and 16 from the sensor 13 are connected to the conversion circuit 21. The preventive connecting portion 20 is filled with an insulating and water-proof filler without any gap. As the filler, synthetic resin such as urethane can be used.
When the pipe body 10 is buried in the ground where groundwater exists, a weight (not shown) or a filler having a higher specific gravity than water is put in the pipe body 10 to prevent the pipe body 10 itself from rising.

図3、図4に、センサ13をパイプ本体11の内周面へ付設する構成の一例を示す。
センサ13はリボン状の可撓性導電体131を備え、この可撓性導電体131を防水留め具で保護する。この防水留め具は枠状体135と裏打ち部材134とから構成される。可撓性導電体131は枠状体135の内孔136に隙間無く収納される。裏打ち部材134の外縁は枠状体135の外縁と一致する。ここに、枠状体135及び裏打ち部材134はパイプ本体11と同一若しくは同種の熱可塑性樹脂(耐水、防水性のあるもの)で形成し、これらを相互に水密に接着若しくは融着する。これにより、可撓性導電体131は外部環境から絶縁され、もって、出力される導電性の変化は専らその変形のみに起因することとなる。
3 and 4 show an example of a configuration in which the sensor 13 is attached to the inner peripheral surface of the pipe body 11.
The sensor 13 includes a ribbon-shaped flexible conductor 131, and the flexible conductor 131 is protected by a waterproof fastener. This waterproof fastener is composed of a frame-like body 135 and a backing member 134. The flexible conductor 131 is housed in the inner hole 136 of the frame-like body 135 without any gap. The outer edge of the backing member 134 coincides with the outer edge of the frame body 135. Here, the frame-shaped body 135 and the backing member 134 are formed of the same or the same type of thermoplastic resin (waterproof and waterproof) as the pipe body 11, and these are watertightly bonded or fused to each other. As a result, the flexible conductor 131 is insulated from the external environment, so that the change in the output conductivity is due solely to its deformation.

枠状体135及び裏打ち部材134はそれぞれ薄肉のパイプの一部を切り出して形成することができる。即ち枠状体135を切り出すパイプはパイプ本体11へ隙間なく挿入可能なものである。そして、このパイプの厚さは可撓性導電体131の厚さと同じとする。このパイプに対し、裏打ち部材134を切り出すパイプは隙間なく挿入可能である。そして各パイプを同じ熱可塑性樹脂(例えば塩化ビニル樹脂)製とする。各パイプの肉厚は薄いので、薄い防水留め具を得られる。 The frame-shaped body 135 and the backing member 134 can each be formed by cutting out a part of a thin-walled pipe. That is, the pipe for cutting out the frame-like body 135 can be inserted into the pipe body 11 without a gap. The thickness of this pipe is the same as the thickness of the flexible conductor 131. A pipe for cutting out the backing member 134 can be inserted into this pipe without a gap. Then, each pipe is made of the same thermoplastic resin (for example, vinyl chloride resin). Since the thickness of each pipe is thin, a thin waterproof fastener can be obtained.

図5には可撓性導電体131をシート部材138で被覆した例を示す。このシート部材138は、パイプ本体11と同一若しくは同種の材料からなり、シート部材138の外周がパイプ本体11の内周面へ水密に接着若しくは融着される。
図5に示す構造によれば、図3、4に示す構造に比べて、構造が簡素化されるので、製造コストを削減できる。
かかる可撓性導電体131はパイプ本体11の外周面へ配設してもよい。
FIG. 5 shows an example in which the flexible conductor 131 is covered with a sheet member 138. The sheet member 138 is made of the same or similar material as the pipe body 11, and the outer periphery of the sheet member 138 is watertightly adhered or fused to the inner peripheral surface of the pipe body 11.
According to the structure shown in FIG. 5, the structure is simplified as compared with the structures shown in FIGS. 3 and 4, so that the manufacturing cost can be reduced.
The flexible conductor 131 may be arranged on the outer peripheral surface of the pipe body 11.

図6に他のセンサ40の例を示す。
このセンサ40はパイプ本体11の変形を容量変化に変換する。パイプ本体11の軸方向に伸展した一対の平板状の電極41、42は相互に近接しかつ平行に配置されている。第1の電極41はパイプ本体11の内周面へ第1の連結体45を介して固定される。パイプ本体11においてその対向する位置に第2の電極42が第2の連結体46を介して固定される。第1の連結体45と第2の連結体46はパイプ本体11の軸方向において異なる高さに固定される。これにより、図6(B)に示すように、パイプ本体11が変形したとき、第1と第2の電極の重なる面積が小さくなる。これにより、第1の電極と第2の電気容量が変化する。
FIG. 6 shows an example of another sensor 40.
The sensor 40 converts the deformation of the pipe body 11 into a capacitance change. The pair of flat plate-shaped electrodes 41, 42 extending in the axial direction of the pipe body 11 are arranged in close proximity to each other and in parallel. The first electrode 41 is fixed to the inner peripheral surface of the pipe body 11 via the first connecting body 45. The second electrode 42 is fixed to the opposing position of the pipe body 11 via the second connecting body 46. The first connecting body 45 and the second connecting body 46 are fixed at different heights in the axial direction of the pipe body 11. As a result, as shown in FIG. 6B, when the pipe body 11 is deformed, the overlapping area of the first and second electrodes is reduced. As a result, the first electrode and the second capacitance change.

図7に他の例のセンサ50を示す。このセンサ50も一対の平板状の電極51、52からなる。第1の電極51は連結体55及び56で両持ちはりの状態でパイプ本体11に連結される。他方、第2の電極52は、第1の電極51と平行であり、連結部材58で片持ちはりの状態でパイプ本体11の内周面に固定される。第2の電極52の連結体58の位置が他の連結体55、56の位置とパイプ本体11の軸方向において異なっている。これにより、パイプ本体11に荷重がかかると、図7(B)に示すように、第1の電極51と第2の電極52との間隔が変化し、両者間の電気容量が変化する。
図7の例では、第1の電極51の下縁が連結部材56の側面へ挿入されている。これにより、連結体56の上縁が第1の電極51と第2の電極52のスペーサとなって、両者の接触を防止する。
FIG. 7 shows a sensor 50 of another example. This sensor 50 also comprises a pair of flat electrodes 51, 52. The first electrode 51 is connected to the pipe main body 11 by the connecting members 55 and 56 in a double-supported state. On the other hand, the second electrode 52 is parallel to the first electrode 51, and is fixed to the inner peripheral surface of the pipe body 11 in a cantilevered state by a connecting member 58. The position of the connecting body 58 of the second electrode 52 is different from the positions of the other connecting bodies 55 and 56 in the axial direction of the pipe body 11. As a result, when a load is applied to the pipe main body 11, as shown in FIG. 7B, the distance between the first electrode 51 and the second electrode 52 changes, and the electric capacitance between the two changes.
In the example of FIG. 7, the lower edge of the first electrode 51 is inserted into the side surface of the connecting member 56. As a result, the upper edge of the coupling body 56 serves as a spacer for the first electrode 51 and the second electrode 52, preventing contact between the two.

図8に他のセンサ60の例を示す。このセンサ60は平板状の第1の電極61と、第1の電極61を、間隔をあけて、挟むように配置される断面U字状の電極62から構成される。第1の電極61は連結体65により片持ちはりの状態でパイプ本体11の内周面に固定されている。第2の電極62は連結体68により片持ちはりの状態でパイプ本体11の内周面に固定されている。連結体65と連結体68とが、パイプ本体11の軸方向に異なった位置にある。これにより、パイプ本体11に荷重がかかると、図8(B)に示すように、第1の電極61が上方にスライドし、両者間の重なる面積が変化し電気容量が変化する。
図8(B)に示すように、第1の電極61と第2の電極62との間隔が変化し、両者間の電気容量が変化する。
FIG. 8 shows an example of another sensor 60. The sensor 60 is composed of a flat plate-shaped first electrode 61 and an electrode 62 having a U-shaped cross section, which is arranged so as to sandwich the first electrode 61 with a space therebetween. The first electrode 61 is fixed to the inner peripheral surface of the pipe body 11 in a cantilevered state by a connecting body 65. The second electrode 62 is fixed to the inner peripheral surface of the pipe body 11 in a cantilevered state by a connecting body 68. The connecting body 65 and the connecting body 68 are located at different positions in the axial direction of the pipe body 11. As a result, when a load is applied to the pipe body 11, the first electrode 61 slides upward as shown in FIG. 8B, the overlapping area between the two changes, and the electric capacity changes.
As shown in FIG. 8B, the distance between the first electrode 61 and the second electrode 62 changes, and the electric capacitance between them changes.

この例のセンサ60では、図8(B)に示すように、第1の電極61と第2の電極62とが接触することがある。両電極61と62とが電気的に接続すると、両電極間に電気容量は生じないので、この例では第1の電極61の表面は絶縁性の材料、好ましくは防水性も有する材料で、被覆されている。かかる材料としてフッ素樹脂(ポリテトラエチレン)を挙げられる。
図6、図7の例の電極においても、少なくとも一方の電極において、他方の電極との対向面を絶縁性の材料(好ましくは防水性も有する材料)で被覆することが好ましい。
図6〜図8のセンサ30、40、50を構成する一対の電極にはそれぞれ配線が接続され、図2に示すようにこの配線は変換回路に接続される。
In the sensor 60 of this example, as shown in FIG. 8B, the first electrode 61 and the second electrode 62 may come into contact with each other. When the two electrodes 61 and 62 are electrically connected, no electric capacitance is generated between the two electrodes. Therefore, in this example, the surface of the first electrode 61 is covered with an insulating material, preferably a waterproof material. Has been done. Examples of such a material include fluororesin (polytetraethylene).
Also in the electrodes of the examples of FIGS. 6 and 7, it is preferable that at least one of the electrodes has a surface facing the other electrode coated with an insulating material (preferably also a material having waterproofness).
Wiring is connected to each of the pair of electrodes forming the sensors 30, 40, and 50 of FIGS. 6 to 8, and this wiring is connected to the conversion circuit as shown in FIG.

図9に変換回路の例を示す。
かかる変換回路は、その抵抗R1を可撓性導電体131と置き換えることで、可撓性導電体131の電気抵抗の変化を周波数の変化に変換する変換回路となる。
他方、かかる変換回路は、そのキャパシタをセンサ30、40及び50を構成する電極に置き換えることで、各センサ30、40及び50の電気容量の変化を周波数の変化に変換する変換回路となる。
各パイプユニット10において、その防水連結部20にそれぞれ変換回路21が収納されている。この変換回路21は共通信号線7に繋がれて、その出力(周波数)がデータ・解析装置5へ送信される。
FIG. 9 shows an example of the conversion circuit.
By replacing the resistance R1 with the flexible conductor 131, such a conversion circuit becomes a conversion circuit that converts a change in the electric resistance of the flexible conductor 131 into a change in frequency.
On the other hand, such a conversion circuit becomes a conversion circuit that converts a change in the electric capacitance of each of the sensors 30, 40 and 50 into a change in the frequency by replacing the capacitor with the electrodes that form the sensors 30, 40 and 50.
In each pipe unit 10, a conversion circuit 21 is housed in the waterproof connecting portion 20. The conversion circuit 21 is connected to the common signal line 7, and its output (frequency) is transmitted to the data/analysis device 5.

なお、各パイプユニット10の変換回路21は共通信号線7に直列接続されているので、送られてくる出力の発信元を特定する必要がある。
図9(A)に示す回路では、出力先にシャッタ回路を設け、それぞれ所定のタイミングで出力が共通信号線7へ入力されるようする。データ・解析装置5は当該所定のタイミングに応じて送られてくる出力の発信元を特定する。他方、図9(B)に示す回路では、シュミット回路の入力ポート2の入力元にシャッタ回路を設け、それぞれ所定のタイミングでオン信号が入力されるようにすればよい。
Since the conversion circuit 21 of each pipe unit 10 is connected in series to the common signal line 7, it is necessary to specify the source of the output to be sent.
In the circuit shown in FIG. 9A, a shutter circuit is provided at the output destination so that the output is input to the common signal line 7 at a predetermined timing. The data/analysis device 5 identifies the source of the output sent at the predetermined timing. On the other hand, in the circuit shown in FIG. 9B, a shutter circuit may be provided at the input source of the input port 2 of the Schmitt circuit so that an ON signal is input at each predetermined timing.

図9に示す変換発振は微弱な電磁波を出力し、この電磁波が他の発振回路に干渉するおそれがある。そこで、パイプユニット10の連結体において1つのパイプの変換回路のみを発信させ、他のパイプの変換回路は停止状態とすることが好ましい。少なくとも、1つのパイプユニット10の変換回路21を発振させるときは、発信タイミングの所定時間前から隣接するパイプの発振回路は停止させておく。なお、変換回路のオン、オフタイミングは、図示しない電源回路からの電源供給を制御することによる。図9(B)の回路ではポート2へのH信号の入力タイミングで制御可能である。
このように、少なくも隣接するパイプ10の変換回路21を停止しておくことにより、それからの干渉を受けることがない。従って、稼働中の変換回路21の出力はパイプ本体11の変形量を正確に反映したものとなる。
The converted oscillation shown in FIG. 9 outputs a weak electromagnetic wave, which may interfere with other oscillation circuits. Therefore, it is preferable that in the connected body of the pipe units 10, only the conversion circuits of one pipe are transmitted and the conversion circuits of the other pipes are stopped. When oscillating the conversion circuit 21 of at least one pipe unit 10, the oscillation circuits of the adjacent pipes are stopped from a predetermined time before the transmission timing. The on/off timing of the conversion circuit is controlled by controlling power supply from a power supply circuit (not shown). In the circuit of FIG. 9B, control can be performed at the input timing of the H signal to port 2.
As described above, by stopping the conversion circuits 21 of the adjacent pipes 10 at least, the interference from the conversion circuits 21 is not received. Therefore, the output of the converting circuit 21 in operation accurately reflects the deformation amount of the pipe body 11.

以下、図10は、パイプ本体11の撓み量と抵抗値の変化との関係を測定する装置を示す。具体的には、長さ900mmで幅10mmの可撓性導電体を長さ1000mmのVP40(外径48、内径40)の内面に貼りつけ、VP40の両端に近い部分を固定し、中央を油圧ジャッキで押し上げて変形させ、センサシートの電気抵抗の変化を周波数変化として測定した。
図11は、図10で測定されたデータから、VP40の撓み量と抵抗値の変化の割合の関係を示す図である。撓み量が僅かであっても抵抗値が大きく変わることが分る。
Hereinafter, FIG. 10 shows an apparatus for measuring the relationship between the amount of bending of the pipe body 11 and the change in resistance value. Specifically, a flexible conductor having a length of 900 mm and a width of 10 mm is attached to the inner surface of a VP40 (outer diameter 48, inner diameter 40) having a length of 1000 mm, the portions near both ends of the VP40 are fixed, and the central portion is hydraulically operated. It was pushed up by a jack to be deformed, and a change in electric resistance of the sensor sheet was measured as a frequency change.
FIG. 11 is a diagram showing the relationship between the amount of deflection of the VP 40 and the rate of change in resistance value, based on the data measured in FIG. It can be seen that the resistance value changes greatly even if the bending amount is small.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当事者が容易に想到できる範囲で変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments and examples of the invention. Modifications are also included in the present invention within the scope that can be easily conceived by the parties without departing from the scope of the claims.

1 地滑り測定装置5 データ・解析装置
7 共通信号線
10 パイプユニット
11 パイプ本体
20 防水連結部
21 変換回路
13、40、50、60 センサ
131 可撓性導電体
134 裏打ち部材
135 枠状体
41、51、52 第1の電極
42、52、62 第2の電極
1 landslide measuring device 5 data/analyzing device 7 common signal line 10 pipe unit 11 pipe body 20 waterproof joint 21 conversion circuit 13, 40, 50, 60 sensor 131 flexible conductor 134 backing member 135 frame-like body 41, 51 , 52 first electrode 42, 52, 62 second electrode

Claims (7)

複数の非導電性の可撓性パイプを連結してなる地滑り測定装置であって、
前記パイプはれ軸方向に伸展されたセンサを備えるセンサ装置であって、前記パイプの撓み量に応じた出力を生成するセンサ装置を備え、
前記各パイプのセンサ装置からの出力をモニタするモニタ部を更に備えてなる地滑り測定装置。
A landslide measuring device formed by connecting a plurality of non-conductive flexible pipes,
A sensor device including a sensor extended in the pipe slack axis direction, the sensor device generating an output according to a bending amount of the pipe,
The landslide measuring device further comprising a monitor unit for monitoring the output from the sensor device of each pipe.
前記センサ装置は前記可撓性パイプの軸方向に伸展された可撓性導電体と、
該可撓性導電体の電気抵抗の変化を周波数の変化に変換する変換回路とを備える、請求項1に記載の地滑り測定装置。
The sensor device is a flexible conductor extending in the axial direction of the flexible pipe,
The landslide measuring device according to claim 1, further comprising a conversion circuit that converts a change in electric resistance of the flexible conductor into a change in frequency.
前記センサ装置は前記可撓性パイプの軸方向に伸展され、対向した一対の電極と、
該一対の電極間の電気容量の変化を周波数の変化に変換する変換回路とを備える、請求項1に記載の地滑り測定装置。
The sensor device is extended in the axial direction of the flexible pipe, and a pair of electrodes facing each other,
The landslide measuring device according to claim 1, further comprising a conversion circuit that converts a change in electric capacitance between the pair of electrodes into a change in frequency.
前記パイプのセンサ装置は、少なくとも隣接する他のパイプのセンサ装置がオフの状態で、前記出力を生成する、請求項2又は3に記載の地滑り装置。 4. A landslide device according to claim 2 or 3, wherein the pipe sensor device produces the output when at least another adjacent pipe sensor device is off. 前記各パイプへ通される共通信号線が更に備えられ、
前記各センサ装置の変換回路は防水連結部を介して前記共通信号線に繋がれ、
該防水連結部は下側解放のケースであって前記変換回路を内蔵するケースと該ケース内に充填される非導電性かつ防水性の充填材を備え、
前記共通信号線及び前記変換回路と前記可撓性導電体若しくは一対の電極との連結線は、前記ケースの下側開口部から前記ケース内に導入されて前記変換回路に繋がれる、請求項2〜4の何れかに記載の地滑り測定装置。
Further, a common signal line passing through each of the pipes is further provided,
The conversion circuit of each of the sensor devices is connected to the common signal line via a waterproof connection part,
The waterproof connecting portion is a case that is open on the lower side, and includes a case that incorporates the conversion circuit and a non-conductive and waterproof filler that is filled in the case.
The connection line between the common signal line and the conversion circuit and the flexible conductor or the pair of electrodes is introduced into the case from the lower opening of the case and connected to the conversion circuit. The landslide measuring device in any one of -4.
前記可撓性導電体はリボン状の部材であり、防水留め具で前記パイプの周面に固定され、
該防水留め具は前記リボン状の可撓性導電体の裏打ち部材と前記可撓性部材の周縁に配置される枠状体とを備えてなり、前記枠状体は前記裏打ち部材の表面と前記パイプの表面に水密に固定される、請求項2に記載の地滑り測定装置。
The flexible conductor is a ribbon-shaped member, which is fixed to the peripheral surface of the pipe with a waterproof fastener.
The waterproof fastener comprises a backing member made of the ribbon-shaped flexible conductor and a frame-shaped body arranged at a peripheral edge of the flexible member, the frame-shaped body being provided on the surface of the backing member and the frame-shaped body. The landslide measuring device according to claim 2, which is watertightly fixed to the surface of the pipe.
前記対向した一対の電極は、少なくともその対向面が絶縁材料で被覆された導電性部材であり、パイプの内周面の第1の位置で固定される第1の電極と、第2の位置で固定される第2の電極とを備えてなり、前記の第1の位置と前記の第2の位置とがパイプの軸方向に平行な投影面内で重なることなく配置される、請求項3に記載の地滑り測定装置。 The pair of electrodes facing each other is a conductive member having at least its facing surface coated with an insulating material, and has a first electrode fixed at a first position on the inner peripheral surface of the pipe and a second electrode at a second position. The second electrode is fixed, and the first position and the second position are arranged without overlapping in a projection plane parallel to the axial direction of the pipe. The landslide measuring device described.
JP2018241947A 2018-12-26 2018-12-26 Deflection measuring device using a pipe Active JP7300635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241947A JP7300635B2 (en) 2018-12-26 2018-12-26 Deflection measuring device using a pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241947A JP7300635B2 (en) 2018-12-26 2018-12-26 Deflection measuring device using a pipe

Publications (2)

Publication Number Publication Date
JP2020106273A true JP2020106273A (en) 2020-07-09
JP7300635B2 JP7300635B2 (en) 2023-06-30

Family

ID=71448741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241947A Active JP7300635B2 (en) 2018-12-26 2018-12-26 Deflection measuring device using a pipe

Country Status (1)

Country Link
JP (1) JP7300635B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197298A (en) * 1997-01-14 1998-07-31 Keisoku Gihan Kk Method for measuring variable state of baserock, slope soil structure and civil engineering structure
JP2004114752A (en) * 2002-09-24 2004-04-15 Denso Corp Pedestrian hitting protective device for vehicle and hitting part detector for vehicle
JP2005300519A (en) * 2004-03-19 2005-10-27 Nippon Soken Inc Sensor device
JP2008040835A (en) * 2006-08-07 2008-02-21 Nippon System Kaihatsu Kk Position measurement sensor and position measurement method
JP2013061558A (en) * 2011-09-14 2013-04-04 Olympus Corp Endoscope device
JP2016121975A (en) * 2014-12-25 2016-07-07 ヤマハ株式会社 Distortion detection sensor element and external force detection array module
JP2017083200A (en) * 2015-10-23 2017-05-18 バンドー化学株式会社 Capacitance type sensor sheet and sensor device
JP2018096797A (en) * 2016-12-12 2018-06-21 バンドー化学株式会社 Extensible structure, manufacturing method of extensible structure, and sensor component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197298A (en) * 1997-01-14 1998-07-31 Keisoku Gihan Kk Method for measuring variable state of baserock, slope soil structure and civil engineering structure
JP2004114752A (en) * 2002-09-24 2004-04-15 Denso Corp Pedestrian hitting protective device for vehicle and hitting part detector for vehicle
JP2005300519A (en) * 2004-03-19 2005-10-27 Nippon Soken Inc Sensor device
JP2008040835A (en) * 2006-08-07 2008-02-21 Nippon System Kaihatsu Kk Position measurement sensor and position measurement method
JP2013061558A (en) * 2011-09-14 2013-04-04 Olympus Corp Endoscope device
JP2016121975A (en) * 2014-12-25 2016-07-07 ヤマハ株式会社 Distortion detection sensor element and external force detection array module
JP2017083200A (en) * 2015-10-23 2017-05-18 バンドー化学株式会社 Capacitance type sensor sheet and sensor device
JP2018096797A (en) * 2016-12-12 2018-06-21 バンドー化学株式会社 Extensible structure, manufacturing method of extensible structure, and sensor component

Also Published As

Publication number Publication date
JP7300635B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
Dong et al. Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology
US20220221355A1 (en) Sensing fibers for structural health monitoring
US20130054156A1 (en) Strain measuring and monitoring device
US20120125118A1 (en) System for monitoring structural assets
US10641679B2 (en) Leakage detection system and leakage detection method
JP6143225B2 (en) Ground stress sensor and earth pressure detection device
KR101828520B1 (en) Integrated monitoring system and the method for dangerous weak structure using the integrated triggering of electrical resistivity monitoring and earthquake data, and drone images
CA2689196A1 (en) Water detector
KR100380180B1 (en) A Sensor for the Monitoring System of Liner Breakage at Landfill
TWI697605B (en) Device and method for predicting location of structural damage
JP2020106273A (en) Deflection measuring device using pipe
KR101437959B1 (en) Extensometer Using Distributed Time Domain Reflectometery Sensor
JP2019002773A (en) Capacitance type level measuring device
US4357573A (en) Method of surveying sub-sea pipeline
CN107782284A (en) A kind of Dam Deformation Monitoring system
JP7503440B2 (en) Dike monitoring system and measuring equipment
RU2330238C2 (en) Device and method for monitoring technical condition of tunnels
GB2420856A (en) Downhole corrosion monitor
CN216246921U (en) Stress sensor
KR100380179B1 (en) Outside Leakage Detection System for Landfill Liner
CN108332822A (en) For interfering water-level probe and system and method in formula optical fiber water level monitoring system
JP6657603B2 (en) Strain sensors and monitoring systems
US6925398B2 (en) Water measurement apparatus and methods
KR101845202B1 (en) Apparatus for measuring geotechnical information
CN109443231B (en) Stress-free meter based on optical fiber sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7300635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150