JP2020106064A - Diagnosis method for gate valve and gate valve diagnosis system - Google Patents

Diagnosis method for gate valve and gate valve diagnosis system Download PDF

Info

Publication number
JP2020106064A
JP2020106064A JP2018243841A JP2018243841A JP2020106064A JP 2020106064 A JP2020106064 A JP 2020106064A JP 2018243841 A JP2018243841 A JP 2018243841A JP 2018243841 A JP2018243841 A JP 2018243841A JP 2020106064 A JP2020106064 A JP 2020106064A
Authority
JP
Japan
Prior art keywords
valve
pressure
sluice
diagnosing
sluice valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243841A
Other languages
Japanese (ja)
Inventor
泰太郎 吉田
Yasutaro Yoshida
泰太郎 吉田
雅司 ▲高▼橋
雅司 ▲高▼橋
Masashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018243841A priority Critical patent/JP2020106064A/en
Publication of JP2020106064A publication Critical patent/JP2020106064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

To provide a diagnosis method for a gate valve capable of diagnosing a failure of the gate valve without stopping operation of the gate valve, and a gate valve diagnosis system.SOLUTION: The present invention relates to a diagnosis method for a gate valve 1 for diagnosing a failure of the gate valve 1 in which a guide rail 20 for guiding a valve body 4 which opens/closes a flow channel 3 in an opening/closing direction is provided within a valve box 2. The valve box 2 comprises a valve box main body part 7 including a flow channel 3, and a bonnet part 8. The valve body 4 is moved in the opening/closing direction in slide contact with the guide rail 20 by a fluid pressure type actuation device 6, rushes into the valve box main body part 7 at a closing position to shut down the flow channel 3 and leaves the inside of the valve box main body part 7 to the inside of the bonnet part 8 at an opening position. The present invention also relates to the method and a gate valve diagnosis system in which an actuation pressure of the actuation device 6 for moving the valve body 4 in the opening/closing direction is detected and the failure of the gate valve 1 is diagnosed on the basis of a change in the detected actuation pressure.SELECTED DRAWING: Figure 5

Description

本発明は、例えば、ディスク状の弁体を有する仕切弁の診断方法及び仕切弁診断システムに関する。 The present invention relates to, for example, a diagnosing method for a sluice valve having a disc-shaped valve body and a sluice valve diagnosing system.

従来、この種の仕切弁としては、例えば、特許文献1に示すような仕切弁がある。特許文献1に示す仕切弁は、弁箱内に、流路を開閉する弁体(ゲート)と、弁体を開閉方向へ案内する案内装置とが設けられている。弁箱は、流路を有する弁箱本体部と、弁箱本体部の外周部に形成されたボンネット部とを有している。案内装置は、4箇所に設置されたガイド部材からなる。ガイド部材はそれぞれ、開閉方向のガイド摺動区間に設置されており、弁箱の内面に溶接によって固着されている。 Conventionally, as a sluice valve of this type, for example, there is a sluice valve as shown in Patent Document 1. The gate valve disclosed in Patent Document 1 is provided with a valve body (gate) that opens and closes a flow path and a guide device that guides the valve body in an opening and closing direction in a valve box. The valve box has a valve box main body having a flow path, and a bonnet portion formed on an outer peripheral portion of the valve box main body. The guide device includes guide members installed at four locations. Each of the guide members is installed in a guide sliding section in the opening/closing direction, and is fixed to the inner surface of the valve box by welding.

特許文献1に示すような従来の仕切弁においては、弁体の開閉を所定時間毎に繰り返し行う。そのため、弁体の移動によりシート部の摩耗や損傷のおそれがある。また、従来の仕切弁においては、弁体を開いた場合には、高温の流体が弁箱本体内及びボンネット部内に流入し、弁体を閉じた場合には、流体の温度より低い窒素ガスがボンネット部内に満たされる。そのため、弁体を開閉することでガイド部材と弁箱との間に温度差が生じ、この温度差により弁箱に対してガイド部材を固着する溶接部が損傷するおそれがある。このようなことから、従来の仕切弁においては、定期的にシート部及びガイド部材の点検或いは交換を行う必要がある。 In the conventional sluice valve as disclosed in Patent Document 1, opening and closing of the valve element is repeated every predetermined time. Therefore, the movement of the valve element may cause the seat portion to be worn or damaged. Further, in the conventional sluice valve, when the valve body is opened, high-temperature fluid flows into the valve body and the bonnet portion, and when the valve body is closed, nitrogen gas lower than the fluid temperature is generated. Filled inside the bonnet. Therefore, opening and closing the valve element causes a temperature difference between the guide member and the valve box, and this temperature difference may damage the welded portion that fixes the guide member to the valve box. For this reason, in the conventional sluice valve, it is necessary to regularly inspect or replace the seat portion and the guide member.

特開2014−080996号公報JP, 2014-080996, A

しかしながら、従来の仕切弁において、シート部及びガイド部材の点検或いは交換を行うためには、弁箱本体及びボンネット部の内部状態を確認する必要がある。そのため、弁箱本体及びボンネット部の内部状態を確認するためだけに、仕切弁の運転を停止させなければならないという問題があった。特に、複数の仕切弁を同時に運転させる設備においてシート部及びガイド部材の点検或いは交換を行う場合には、個々の仕切弁の状態に関わらず、その運転を停止させなければならないため、設備全体における仕切弁の運転効率が悪くなるという問題があった。 However, in the conventional gate valve, in order to inspect or replace the seat portion and the guide member, it is necessary to confirm the internal states of the valve box body and the bonnet portion. Therefore, there is a problem that the operation of the sluice valve must be stopped only to check the internal states of the valve box body and the bonnet portion. In particular, when inspecting or replacing the seat part and the guide member in equipment that operates multiple sluice valves at the same time, the operation must be stopped regardless of the state of each sluice valve. There was a problem that the operating efficiency of the gate valve deteriorates.

本発明は、仕切弁の運転を停止させることなく仕切弁の不具合を診断可能な仕切弁の診断方法を提供することを目的とする。 An object of the present invention is to provide a diagnosing method of a sluice valve capable of diagnosing a malfunction of the sluice valve without stopping operation of the sluice valve.

上記目的を達成するために、本発明の仕切弁の診断方法は、弁箱内に、流路を開閉する弁体を開閉方向へ案内するガイド部材が設けられ、弁箱は、流路を有する弁箱本体部と、ボンネット部とを有し、弁体は、流体圧式の作動装置により前記ガイド部材に摺接しながら開閉方向へ移動し、閉位置において弁箱本体部内に突入して流路を遮断し、開位置において弁箱本体部内からボンネット部内に退入する仕切弁の不具合を診断する仕切弁の診断方法であって、前記弁体を開閉方向に移動させるための前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて前記仕切弁の不具合を診断する方法である。 In order to achieve the above object, in the method for diagnosing a sluice valve of the present invention, a guide member that guides a valve body that opens and closes a flow path in an opening and closing direction is provided in the valve box, and the valve box has a flow path. The valve body has a valve body and a bonnet, and the valve body moves in the opening/closing direction while slidingly contacting the guide member by a fluid pressure type actuating device, and at the closed position, the valve body projects into the valve body to form a flow path. A method for diagnosing a sluice valve that shuts off and retreats from the inside of the valve box body into the hood at the open position, the operating pressure of the actuating device for moving the valve body in the opening/closing direction. Is detected and the malfunction of the sluice valve is diagnosed based on the detected change in the operating pressure.

これによると、弁体を開閉方向に移動させるための作動装置における作動圧の変化に基づいて仕切弁の不具合を診断するため、仕切弁の運転を停止させることなく仕切弁の状態を推定できる。 According to this, since the malfunction of the sluice valve is diagnosed based on the change of the working pressure in the actuating device for moving the valve body in the opening/closing direction, the state of the sluice valve can be estimated without stopping the operation of the sluice valve.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて前記ガイド部材の表面状態を診断する方法である。 The method for diagnosing a sluice valve of the present invention is the method for diagnosing a sluice valve according to the method for diagnosing the surface pressure of the guide member based on a change in the operating pressure detected by detecting the operating pressure of the operating device. is there.

これによると、作動装置の作動圧の変化に基づいてガイド部材の表面状態を診断するため、仕切弁の運転を停止させることなくガイド部材の表面状態を推定できる。 According to this, since the surface condition of the guide member is diagnosed based on the change in the operating pressure of the actuator, the surface condition of the guide member can be estimated without stopping the operation of the sluice valve.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて、前記弁箱に対して取り付けられる前記ガイド部材の取付状態を診断する方法である。 The method for diagnosing a sluice valve according to the present invention is the method for diagnosing a sluice valve, wherein the operating pressure of the operating device is detected, and the guide attached to the valve box is based on a change in the detected operating pressure. This is a method of diagnosing the attachment state of the member.

これによると、作動装置の作動圧の変化に基づいて、弁箱に対して取り付けられるガイド部材の取付状態を診断するため、仕切弁の運転を停止させることなくガイド部材の取付状態を推定できる。 According to this, the attachment state of the guide member attached to the valve box is diagnosed based on the change in the operating pressure of the actuator, so that the attachment state of the guide member can be estimated without stopping the operation of the sluice valve.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記弁体を閉位置から開位置まで移動させる際の前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて前記仕切弁のシート部の不具合を診断する方法である。 The method for diagnosing a sluice valve of the present invention is the method for diagnosing a sluice valve, wherein the operating pressure of the actuating device when moving the valve body from a closed position to an open position is detected, and a change in the detected operating pressure is detected. Is a method of diagnosing a defect in the seat portion of the sluice valve.

これによると、弁体を閉位置から開位置まで移動させる際における作動装置の作動圧の変化に基づいて仕切弁のシート部の不具合を診断するため、仕切弁の運転を停止させることなく仕切弁のシート部の状態を推定できる。 According to this, since the malfunction of the seat part of the sluice valve is diagnosed based on the change in the operating pressure of the actuating device when the valve body is moved from the closed position to the open position, the sluice valve can be operated without stopping the sluice valve. The state of the seat part of can be estimated.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記弁体が前記閉位置にある場合に、前記ボンネット部に供給されるパージガスの供給圧力と前記ボンネット部の内部におけるパージガスの圧力との圧力差を検出し、検出される前記圧力差の変化に基づいて、前記ボンネット部から、前記シート部と前記弁体との間隙を通って前記流路に漏れるパージガスの漏れ量を推定し、推定される前記パージガスの漏れ量に基づいて前記シート部の不具合を診断する方法である。 The method for diagnosing a sluice valve according to the present invention is the method for diagnosing a sluice valve, wherein, when the valve body is in the closed position, the supply pressure of the purge gas supplied to the bonnet portion and the purge gas inside the bonnet portion. The pressure difference between the pressure and the pressure difference is detected, and based on the change in the detected pressure difference, the leak amount of the purge gas leaked from the bonnet portion to the flow path through the gap between the seat portion and the valve body is determined. It is a method of estimating and diagnosing a defect in the seat portion based on the estimated leak amount of the purge gas.

これによると、ボンネット部に供給されるパージガスの供給圧力とボンネット部の内部におけるパージガスの圧力との圧力差の変化から推定されるパージガスの漏れ量に基づいてシート部の不具合を診断するため、仕切弁の運転を停止させることなくシート部の状態を推定できる。 According to this, since the defect of the seat part is diagnosed based on the leakage amount of the purge gas estimated from the change in the pressure difference between the supply pressure of the purge gas supplied to the bonnet part and the pressure of the purge gas inside the bonnet part, The state of the seat can be estimated without stopping the operation of the valve.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記弁体が前記ガイド部材に摺接しながら開閉方向へ移動する区間における前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて、前記ガイド部材の表面状態及び前記弁箱に対して取り付けられる前記ガイド部材の取付状態を診断する方法である。 The method for diagnosing a sluice valve of the present invention is the method for diagnosing a sluice valve, wherein the operating pressure of the actuating device in a section in which the valve body moves in the opening/closing direction while slidingly contacting the guide member is detected and detected. A method of diagnosing a surface state of the guide member and an attached state of the guide member attached to the valve box based on a change in operating pressure.

これによると、検出した前記作動装置の作動圧のデータの中から、上記区間におけるデータを抽出することで、前記ガイド部材の表面状態及び前記弁箱に対して取り付けられる前記ガイド部材の取付状態を推定できる。 According to this, by extracting the data in the above section from the detected operating pressure data of the operating device, the surface state of the guide member and the mounting state of the guide member attached to the valve box can be determined. Can be estimated.

本発明の仕切弁の診断方法は、上記の仕切弁の診断方法において、前記弁体が前記シート部に摺接しながら開閉方向へ移動する区間における前記作動装置の作動圧を検出し、検出される作動圧の変化に基づいて、前記シート部の表面状態を診断する方法である。 The method for diagnosing a sluice valve of the present invention is the method for diagnosing a sluice valve, wherein the actuation pressure of the actuating device is detected in a section in which the valve body moves in the opening/closing direction while slidingly contacting the seat portion, and is detected. A method of diagnosing the surface condition of the seat portion based on a change in operating pressure.

これによると、検出した前記作動装置の作動圧のデータの中から、上記区間におけるデータを抽出することで、前記シート部の表面状態を推定できる。 According to this, the surface state of the seat portion can be estimated by extracting the data in the section from the detected data of the operating pressure of the operating device.

本発明の仕切弁診断システムは、弁箱内に、流路を開閉する弁体を開閉方向へ案内するガイド部材が設けられ、弁箱は、流路を有する弁箱本体部と、ボンネット部とを有し、弁体は、流体圧式の作動装置により前記ガイド部材に摺接しながら開閉方向へ移動し、閉位置において弁箱本体部内に突入して流路を遮断し、開位置において弁箱本体部内からボンネット部内に退入する仕切弁の不具合を診断する仕切弁診断システムであって、前記弁体を開閉方向に移動させるための前記作動装置の作動圧を検出する作動圧検出装置と、前記作動圧検出装置によって検出される作動圧の変化に基づいて前記仕切弁の不具合を診断する仕切弁診断装置と、を備えるものである。 In the sluice valve diagnostic system of the present invention, a guide member that guides a valve body that opens and closes a flow path in an opening and closing direction is provided in the valve box, and the valve box includes a valve box main body section having a flow path and a bonnet section. The valve body moves in the opening/closing direction while slidingly contacting the guide member by a fluid pressure type actuating device, penetrates into the valve box main body at the closed position to block the flow path, and opens in the valve box main body. A sluice valve diagnostic system for diagnosing a malfunction of a sluice valve that retreats from the inside of the hood into the bonnet portion, wherein an actuation pressure detection device detects an actuation pressure of the actuation device for moving the valve element in the opening/closing direction, and A sluice valve diagnostic device for diagnosing a malfunction of the sluice valve based on a change in the actuation pressure detected by the actuation pressure detection device.

作動圧検出装置が検出する弁体の作動装置における作動圧の変化に基づいて、仕切弁診断装置が仕切弁の不具合を診断するため、仕切弁の運転を停止させることなく仕切弁の状態を推定できる。 The sluice valve diagnosis device diagnoses malfunctions of the sluice valve based on changes in the working pressure of the valve disc actuation device detected by the actuation pressure detection device, so the sluice valve status is estimated without stopping the sluice valve operation. it can.

以上のように本発明によると、弁体を開閉方向に移動させるための作動装置の作動圧の変化、及びパージガスの供給圧力とボンネット部内部におけるパージガスの圧力との圧力差の変化に基づいて仕切弁の不具合を診断するため、仕切弁の運転を停止させることなく仕切弁の状態を推定することができる。さらに、仕切弁の運転を停止させることなく仕切弁の状態を推定できることから、複数の仕切弁を同時に運転させる設備においてシート部及びガイド部材の点検或いは交換を行う場合に、個々の仕切弁の状態に応じて適切な処理時期を推定することができ、設備全体における仕切弁の運転効率を向上させることができる。 As described above, according to the present invention, the partitioning is performed based on the change in the operating pressure of the operating device for moving the valve element in the opening/closing direction and the change in the pressure difference between the supply pressure of the purge gas and the pressure of the purge gas inside the bonnet portion. Since the valve malfunction is diagnosed, the state of the sluice valve can be estimated without stopping the operation of the sluice valve. Further, since the state of the sluice valve can be estimated without stopping the operation of the sluice valve, the state of each sluice valve can be checked when the seat part and the guide member are inspected or replaced in the equipment that operates a plurality of sluice valves at the same time. It is possible to estimate an appropriate treatment time according to the above, and it is possible to improve the operation efficiency of the gate valve in the entire equipment.

本発明の実施の形態における仕切弁の斜視図である。It is a perspective view of the gate valve in an embodiment of the invention. 同仕切弁を流入口側から見た図であり、半分が外面を示し、残り半分が水平断面を示している。It is the figure which looked at the same sluice valve from the inflow port side, and half shows an outer surface and the other half shows a horizontal section. 図2におけるX−X矢視図である。It is a XX arrow line view in FIG. 同仕切弁の縦断面図であり、全閉状態を示す。It is a longitudinal cross-sectional view of the same gate valve, showing a fully closed state. 同仕切弁の診断を行う診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of the diagnostic device which diagnoses the same sluice valve. 同仕切弁の診断において、「案内レールの表面状態」、及び「案内レールの取付状態」を用いる診断方法を示すフロー図である。It is a flowchart which shows the diagnostic method which uses the "surface state of a guide rail" and the "attachment state of a guide rail" in the diagnosis of the same gate valve. 同仕切弁の診断の「案内レールの表面状態」、及び「案内レールの取付状態」を用いる診断方法における油圧シリンダのロッド側及びヘッド側の作動圧並びにその差圧の経時変化を示すグラフである。6 is a graph showing changes over time in the operating pressures on the rod side and head side of the hydraulic cylinder and the differential pressures thereof in a diagnostic method using the “surface condition of the guide rail” and the “mounting condition of the guide rail” in the diagnosis of the gate valve. .. 同仕切弁の診断の「案内レールの表面状態」、及び「案内レールの取付状態」を用いる診断方法における油圧シリンダのロッド側及びヘッド側の作動圧の差圧に対する移動平均の経時変化を示すグラフである。The graph which shows the time-dependent change of the moving average with respect to the differential pressure of the operating pressure of the rod side and the head side of the hydraulic cylinder in the diagnostic method using the "surface condition of the guide rail" and the "mounting condition of the guide rail" in the diagnosis of the same gate valve. Is. 同仕切弁の診断の「案内レールの表面状態」、及び「案内レールの取付状態」を用いる診断方法における油圧シリンダのロッド側及びヘッド側の作動圧の差圧に対する移動平均の経時変化並びにホテリング統計量から算出される異常値を示すグラフであって、異常値の数が所定値を越えた場合のグラフである。Time-dependent change of the moving average with respect to the differential pressure of the operating pressure on the rod side and the head side of the hydraulic cylinder in the diagnostic method using the "surface condition of the guide rail" and the "mounting condition of the guide rail" in the diagnosis of the sluice valve, and Hotelling statistics It is a graph which shows the abnormal value calculated from the quantity, when the number of abnormal values exceeds a predetermined value. 同仕切弁の診断の「案内レールの表面状態」、及び「案内レールの取付状態」を用いる診断方法における油圧シリンダのロッド側及びヘッド側の作動圧の差圧に対する移動平均の経時変化並びにホテリング統計量から算出される異常値を示すグラフであって、異常値の数が所定値以下の場合のグラフである。Time-dependent change of the moving average with respect to the differential pressure of the operating pressure on the rod side and the head side of the hydraulic cylinder in the diagnostic method using the "surface condition of the guide rail" and the "mounting condition of the guide rail" in the diagnosis of the sluice valve, and Hotelling statistics It is a graph which shows the abnormal value calculated from quantity, when the number of abnormal values is below a predetermined value. 同仕切弁の診断において、「シート部の表面状態」を用いる診断方法を示すフロー図である。It is a flowchart which shows the diagnostic method which uses the "surface state of a seat part" in the diagnosis of the same sluice valve.

以下、本発明における実施の形態を、図面を参照して説明する。まず、本発明の方法により診断される仕切弁1について説明する。図1から図4に示すように、仕切弁1は、弁箱2内に、上下方向の流路3を開閉する弁体4(ゲート)と、弁体4を開閉方向A、Bへ移動させるための作動装置6と、弁体4を開閉方向A、Bへ案内する案内装置5と、を有する。なお、開閉方向A、Bは流路3に直交する水平方向に設定されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the sluice valve 1 diagnosed by the method of the present invention will be described. As shown in FIGS. 1 to 4, the sluice valve 1 moves a valve body 4 (gate) that opens and closes a vertical passage 3 in a valve box 2 and a valve body 4 in opening and closing directions A and B. And an guiding device 5 for guiding the valve element 4 in the opening/closing directions A and B. The opening/closing directions A and B are set in the horizontal direction orthogonal to the flow path 3.

弁箱2は、内部に流路3を有する弁箱本体部7と、弁箱本体部7の外周部に形成されるボンネット部8(弁体収納部)と、を有する。弁箱本体部7は、上部に流入口9を有し、下部に流出口10を有する。 The valve box 2 has a valve box body portion 7 having a flow passage 3 inside, and a bonnet portion 8 (valve body storage portion) formed on an outer peripheral portion of the valve box body portion 7. The valve box main body 7 has an inflow port 9 in the upper part and an outflow port 10 in the lower part.

弁箱本体部7内にはシート部11が設けられる。図2に示すように、弁体4は、全閉位置Sにおいて、弁箱本体部7内に突入して流路3を遮断する。弁箱本体部7内とボンネット部8内とは連通している。弁体4は、全開位置Oにおいて、弁箱本体部7内からボンネット部8内に退入する。弁箱2には、パージガスの一例である窒素ガス19をボンネット部8内に注入するパージ用配管12が接続されている。窒素ガス19は、窒素ガス供給設備90(図5)から供給され、その供給圧力が供給圧力センサ91(図5)により検出される。図1に示すように、ボンネット部8の上部には、ボンネット部8の内部における窒素ガス19の圧力を検出するボンネット圧力センサ28が設けられている。 A seat portion 11 is provided in the valve box body portion 7. As shown in FIG. 2, at the fully closed position S, the valve body 4 rushes into the valve body 7 to shut off the flow path 3. The inside of the valve body 7 and the inside of the hood 8 communicate with each other. At the fully open position O, the valve body 4 retracts into the bonnet portion 8 from within the valve box body portion 7. A purge pipe 12 for injecting a nitrogen gas 19, which is an example of a purge gas, into the bonnet portion 8 is connected to the valve box 2. The nitrogen gas 19 is supplied from the nitrogen gas supply equipment 90 (FIG. 5), and the supply pressure is detected by the supply pressure sensor 91 (FIG. 5). As shown in FIG. 1, a bonnet pressure sensor 28 that detects the pressure of the nitrogen gas 19 inside the bonnet portion 8 is provided above the bonnet portion 8.

弁体4は、上下一対のダブルディスク13からなり、弁棒14の端部に連結されている。弁棒14は端部にウェッジ15を有する。ウェッジ15は、弁体4の閉方向Bの端部ほど縮小する楔型の部材であり、一対の傾斜面16を有する。これら傾斜面16は、ダブルディスク13に形成された受圧面17に当接する。また、図2に示すように、ダブルディスク13は、幅方向における両側部に、径方向外側へ突出した案内突片18を有する。なお、弁体4のダブルディスク13の幅方向と開閉方向A、Bと流路3の流路軸心方向とは互いに直交する。 The valve body 4 is composed of a pair of upper and lower double discs 13, and is connected to an end portion of a valve rod 14. The valve stem 14 has a wedge 15 at its end. The wedge 15 is a wedge-shaped member that contracts toward the end of the valve body 4 in the closing direction B, and has a pair of inclined surfaces 16. These inclined surfaces 16 contact a pressure receiving surface 17 formed on the double disk 13. In addition, as shown in FIG. 2, the double disc 13 has guide protrusions 18 that project outward in the radial direction on both sides in the width direction. The width direction of the double disk 13 of the valve body 4, the opening/closing directions A and B, and the flow path axial direction of the flow path 3 are orthogonal to each other.

作動装置6は流体圧式の駆動装置であり、所定の流体圧(油圧)の作用により弁体4を開閉方向A、Bに移動させるものである。作動装置6は油圧シリンダ25を有し、油圧シリンダ25の往復動により弁棒14を水平方向に移動させることで弁体4を水平方向に移動させる。作動装置6は、油圧シリンダ25のロッド側の作動圧(油圧)を検出するロッド側圧力センサ26と、油圧シリンダ25のヘッド側の作動圧(油圧)を検出するヘッド側圧力センサ27と、を有する。 The actuating device 6 is a fluid pressure type driving device, and moves the valve body 4 in the opening/closing directions A and B by the action of a predetermined fluid pressure (hydraulic pressure). The operating device 6 has a hydraulic cylinder 25, and the reciprocating motion of the hydraulic cylinder 25 moves the valve rod 14 in the horizontal direction to move the valve body 4 in the horizontal direction. The operating device 6 includes a rod-side pressure sensor 26 that detects a rod-side operating pressure (hydraulic pressure) of the hydraulic cylinder 25, and a head-side pressure sensor 27 that detects a head-side operating pressure (hydraulic pressure) of the hydraulic cylinder 25. Have.

案内装置5は開閉方向A、Bに長い四本の長尺状の案内レール20(「ガイド部材」の一例)からなる。各案内レール20はそれぞれ、開閉方向A、B(長手方向)において、弁箱2の内面に溶接されている。 The guide device 5 includes four long guide rails 20 (an example of a “guide member”) that are long in the opening/closing directions A and B. Each of the guide rails 20 is welded to the inner surface of the valve box 2 in the opening/closing directions A and B (longitudinal direction).

次に、上記構成における作用を説明する。
図2の仮想線及び図3に示すように、作動装置6を作動させることにより弁体4が全開位置Oに移動した場合、弁体4はボンネット部8内に退入し、例えば高温空気や軽質炭化水素等の高温の流体31が流路3を上流側から下流側へ流れる。この際、流体31の一部は弁箱本体部7内からボンネット部8内に流入する。
Next, the operation of the above configuration will be described.
As shown in the phantom line in FIG. 2 and in FIG. 3, when the valve body 4 is moved to the fully open position O by operating the operating device 6, the valve body 4 retreats into the bonnet portion 8 and, for example, high temperature air or A high-temperature fluid 31 such as light hydrocarbon flows through the flow path 3 from the upstream side to the downstream side. At this time, a part of the fluid 31 flows into the bonnet portion 8 from the inside of the valve box body portion 7.

また、図2の実線及び図4に示すように、作動装置6を作動させることにより弁体4が全閉位置Sに移動した場合、弁体4は弁箱本体部7内に突入し、ウェッジ15の傾斜面16がダブルディスク13の受圧面17に圧接し、ダブルディスク13がシート部11に押し付けられて流路3を遮断する。 Further, as shown by the solid line in FIG. 2 and FIG. 4, when the valve body 4 is moved to the fully closed position S by operating the actuating device 6, the valve body 4 plunges into the valve body 7 and the wedge The inclined surface 16 of 15 is pressed against the pressure receiving surface 17 of the double disk 13, and the double disk 13 is pressed against the seat portion 11 to block the flow path 3.

なお、弁体4が全開位置Oから全閉位置Sに移動する際、窒素ガス19がパージ用配管12からボンネット部8内に注入され、ボンネット部8内の流体31が窒素ガス19によって弁箱本体部7内に追い出され、ボンネット部8内が窒素ガス19で満たされる。この窒素ガス19の圧力は流体31の圧力よりも高圧であるため、流体31が全閉位置Sの弁体4の上流側からボンネット部8内に侵入することを防止することができる。従って、流体31が、全閉位置Sの弁体4の上流側からボンネット部8内を迂回して弁体4の下流側へ漏れることはない。弁体4が全閉状態の場合には、窒素ガス19は、弁体4の両方のダブルディスク13の間に形成される隙間に充填されている。 When the valve body 4 moves from the fully open position O to the fully closed position S, nitrogen gas 19 is injected into the bonnet portion 8 from the purging pipe 12, and the fluid 31 in the bonnet portion 8 is caused by the nitrogen gas 19 into the valve box. It is expelled into the main body portion 7 and the inside of the bonnet portion 8 is filled with the nitrogen gas 19. Since the pressure of the nitrogen gas 19 is higher than the pressure of the fluid 31, the fluid 31 can be prevented from entering the bonnet portion 8 from the upstream side of the valve body 4 at the fully closed position S. Therefore, the fluid 31 does not leak from the upstream side of the valve body 4 at the fully closed position S to the downstream side of the valve body 4 by bypassing the inside of the bonnet portion 8. When the valve body 4 is in the fully closed state, the nitrogen gas 19 is filled in the gap formed between both double disks 13 of the valve body 4.

次に、仕切弁1の診断方法について説明する。図5に示すように、仕切弁1の診断は、仕切弁診断システム40により行う。仕切弁診断システム40は、仕切弁1の不具合を診断するものであり、特に、案内レール20の表面状態、案内レール20の取付状態、仕切弁1のシート部11の不具合を診断する。仕切弁診断システム40は、設備内に設けられる複数の仕切弁1のそれぞれに接続され、接続される複数の仕切弁1について個別に診断を行う。なお、仕切弁診断システム40は、設備内に設けられる複数の仕切弁1のうち診断を行う仕切弁1のみに接続するものであっても構わない。 Next, a method of diagnosing the gate valve 1 will be described. As shown in FIG. 5, the gate valve 1 is diagnosed by the gate valve diagnosis system 40. The sluice valve diagnostic system 40 diagnoses a malfunction of the sluice valve 1, and particularly diagnoses a surface condition of the guide rail 20, a mounting condition of the guide rail 20, and a malfunction of the seat portion 11 of the sluice valve 1. The sluice valve diagnosis system 40 is connected to each of the plurality of sluice valves 1 provided in the facility, and individually diagnoses the plurality of sluice valves 1 connected. In addition, the sluice valve diagnosis system 40 may be connected to only the sluice valve 1 that performs diagnosis among the plurality of sluice valves 1 provided in the facility.

仕切弁診断システム40は、窒素ガス供給設備90からボンネット部8に供給される窒素ガス19の供給圧力、ボンネット部8の内部における窒素ガス19の圧力、及び油圧シリンダ25のロッド側及びヘッド側の作動圧(油圧)を検出する検出装置41(「作動圧検出装置」の一例)と、検出装置41の検出結果に基づいて仕切弁1の不具合を診断する仕切弁診断装置44と、を有する。検出装置41及び仕切弁診断装置44は、それぞれ通信制御部43、45を有し、これらを介して互いにデータの送受信を行う。なお、図5に示すように、本実施の形態においては、検出装置41と仕切弁診断装置44とを独立した装置とし、両装置間でデータの送受信を行う構成としているが、これに限定されるものではなく、検出装置と仕切弁診断装置とを一体の装置として構成しても構わない。また、検出装置41及び仕切弁診断装置44の各構成は、以下の構成に限定されるものではなく、検出される窒素ガス19の圧力及び油圧シリンダ25の作動圧(油圧)に基づいて仕切弁1の不具合を診断可能な構成であれば構わない。 The sluice valve diagnosis system 40 includes a supply pressure of the nitrogen gas 19 supplied from the nitrogen gas supply facility 90 to the bonnet portion 8, a pressure of the nitrogen gas 19 inside the bonnet portion 8, and a rod side and a head side of the hydraulic cylinder 25. The detection device 41 detects an operating pressure (hydraulic pressure) (an example of an “operating pressure detection device”), and a sluice valve diagnostic device 44 that diagnoses a malfunction of the sluice valve 1 based on a detection result of the detection device 41. The detection device 41 and the sluice valve diagnosis device 44 have communication control units 43 and 45, respectively, and transmit and receive data to and from each other via these. Note that, as shown in FIG. 5, in the present embodiment, the detection device 41 and the sluice valve diagnosis device 44 are independent devices, and data is transmitted and received between the two devices, but the present invention is not limited to this. Instead of this, the detection device and the sluice valve diagnosis device may be configured as an integrated device. The configurations of the detection device 41 and the sluice valve diagnostic device 44 are not limited to the following configurations, and the sluice valve is based on the detected pressure of the nitrogen gas 19 and the operating pressure (hydraulic pressure) of the hydraulic cylinder 25. Any configuration may be used as long as it is possible to diagnose the defect of item 1.

検出装置41は、油圧シリンダ25のロッド側の作動圧(油圧)を検出するロッド側圧力センサ26と、油圧シリンダ25のヘッド側の作動圧(油圧)を検出するヘッド側圧力センサ27と、ボンネット部8の内部における窒素ガス19の圧力(ボンネット圧)を検出するボンネット圧力センサ28と、窒素ガス供給設備90からボンネット部8に供給される窒素ガス19の供給圧力を検出する供給圧力センサ91と、各圧力センサ26、27、28、91によって検出される圧力値を記憶する検出側記憶部42と、検出側記憶部42において記憶される圧力値を仕切弁診断装置44に送信する検出側通信制御部43と、を主に備える。検出装置41は、各圧力センサ26、27、28、91によって、窒素ガス19の圧力或いは油圧シリンダ25の作動圧(油圧)を検出し、検出値を検出側記憶部42において記憶し、記憶した検出値を検出側通信制御部43を介して仕切弁診断装置44に送信する。 The detection device 41 includes a rod-side pressure sensor 26 that detects a rod-side operating pressure (hydraulic pressure) of the hydraulic cylinder 25, a head-side pressure sensor 27 that detects a head-side operating pressure (hydraulic pressure) of the hydraulic cylinder 25, and a bonnet. A bonnet pressure sensor 28 that detects the pressure (bonnet pressure) of the nitrogen gas 19 inside the portion 8, and a supply pressure sensor 91 that detects the supply pressure of the nitrogen gas 19 supplied from the nitrogen gas supply equipment 90 to the bonnet portion 8. , A detection-side storage unit 42 that stores the pressure value detected by each of the pressure sensors 26, 27, 28, and 91, and a detection-side communication that transmits the pressure value stored in the detection-side storage unit 42 to the sluice valve diagnostic device 44. The controller 43 is mainly provided. The detection device 41 detects the pressure of the nitrogen gas 19 or the operating pressure (hydraulic pressure) of the hydraulic cylinder 25 by the pressure sensors 26, 27, 28, 91, and stores the detected value in the detection side storage unit 42 and stores it. The detected value is transmitted to the sluice valve diagnosis device 44 through the detection side communication control unit 43.

仕切弁診断装置44は、検出装置41から送信される検出値を受信する処理側通信制御部45と、処理側通信制御部45によって受信された検出値を記憶する処理側記憶部46と、処理側記憶部46に記憶された検出値に基づいて仕切弁1の不具合を判定する判定部47と、判定部47が判定した判定結果を表示する表示部48と、を主に備える。仕切弁診断装置44は、検出装置41から送信される検出値を処理側通信制御部45により受信して処理側記憶部46に記憶し、記憶した検出値に基づいて判定部47が仕切弁1の不具合を判定し、判定結果を表示部48に表示する。 The sluice valve diagnostic device 44 includes a processing-side communication control unit 45 that receives the detection value transmitted from the detection device 41, a processing-side storage unit 46 that stores the detection value received by the processing-side communication control unit 45, and a processing. A determination unit 47 that determines a malfunction of the sluice valve 1 based on the detection value stored in the side storage unit 46, and a display unit 48 that displays the determination result determined by the determination unit 47 are mainly provided. In the sluice valve diagnostic device 44, the detection value transmitted from the detection device 41 is received by the processing-side communication control unit 45 and stored in the processing-side storage unit 46, and the determination unit 47 causes the sluice valve 1 to be stored based on the stored detection value. The failure is determined and the determination result is displayed on the display unit 48.

なお、検出装置41及び仕切弁診断装置44は、コンピュータ等で構成されるものに限定されることはなく、ネットワークを介したサーバ及びサーバ群であっても構わない。また、検出側記憶部42及び処理側記憶部46に記憶される検出値のデータは、仕切弁1の不具合を診断するためだけに用いられるものではなく、以下に述べる仕切弁1の不具合の具体的な診断方法において、異常判定に用いられる閾値(T1、T2、T3)を随時更新する際にも用いられる。 The detecting device 41 and the gate valve diagnosing device 44 are not limited to those configured by a computer or the like, and may be a server or a server group via a network. Further, the data of the detection values stored in the detection side storage unit 42 and the processing side storage unit 46 are not used only for diagnosing the malfunction of the sluice valve 1, but the specifics of the malfunction of the sluice valve 1 described below. In the conventional diagnostic method, it is also used when updating the thresholds (T1, T2, T3) used for abnormality determination as needed.

次に、仕切弁1の不具合の具体的な診断方法について説明する。仕切弁1の不具合の診断は、仕切弁1の不具合を判断するための特徴量を用いて行う。ここで、仕切弁1の不具合を判断するための特徴量とは、「案内レール20の表面状態」、「案内レール20の取付状態」、「シート部11の表面状態」、「ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量」、をいう。以下に、各特徴量を用いる仕切弁1の不具合の診断方法について説明する。なお、以下に示す仕切弁1の不具合の判断は、仕切弁診断システム40の仕切弁診断装置44の判定部47において行う。 Next, a specific method of diagnosing the malfunction of the gate valve 1 will be described. Diagnosis of the malfunction of the sluice valve 1 is performed by using the feature amount for determining the malfunction of the sluice valve 1. Here, the characteristic amount for determining the malfunction of the sluice valve 1 includes “surface state of the guide rail 20”, “mounting state of the guide rail 20”, “surface state of the seat portion 11”, “from the bonnet portion 8”. , The amount of leakage of the nitrogen gas 19 that leaks into the flow path 3 through the gap between the seat portion 11 and the valve body 4”. Hereinafter, a method of diagnosing a malfunction of the sluice valve 1 using each feature will be described. The determination of the malfunction of the sluice valve 1 described below is performed by the determination unit 47 of the sluice valve diagnosis device 44 of the sluice valve diagnosis system 40.

[案内レール20の表面状態、及び案内レール20の取付状態]
仕切弁1の不具合を判断するための特徴量である「案内レール20の表面状態」、及び「案内レール20の取付状態」を用いる診断では、案内レール20の表面状態、或いは、弁箱2に対する案内レールの取付状態(溶接状態)の優劣を判断することにより、案内レール20の不具合を診断する。「案内レール20の表面状態」、及び「案内レール20の取付状態」を用いる診断は、弁体4の開閉時における油圧シリンダ25のロッド側の作動圧(油圧)と、弁体4の開閉時における油圧シリンダ25のヘッド側の作動圧(油圧)と、の検出データに基づいて行う。具体的には、図6及び図7に示すように、まず、ロッド側圧力センサ26から検出される油圧シリンダ25のロッド側の作動圧と、ヘッド側圧力センサ27から検出される油圧シリンダ25のヘッド側の作動圧と、から両圧力の差圧を算出する(S1)。図8に示すように、算出した両圧力の差圧に対する移動平均を算出する(S2)。
[Surface condition of the guide rail 20 and mounting condition of the guide rail 20]
In the diagnosis using the "surface condition of the guide rail 20" and the "mounting condition of the guide rail 20" which are the characteristic quantities for judging the malfunction of the sluice valve 1, the surface condition of the guide rail 20 or the valve box 2 is detected. By determining the superiority or inferiority of the mounting state (welding state) of the guide rail, the malfunction of the guide rail 20 is diagnosed. The diagnosis using the "surface condition of the guide rail 20" and the "mounting condition of the guide rail 20" is performed by operating pressure (hydraulic pressure) on the rod side of the hydraulic cylinder 25 when the valve body 4 is opened and closed, and when the valve body 4 is opened and closed. And the operating pressure (hydraulic pressure) on the head side of the hydraulic cylinder 25 in the above. Specifically, as shown in FIGS. 6 and 7, first, the operating pressure on the rod side of the hydraulic cylinder 25 detected by the rod side pressure sensor 26 and the hydraulic cylinder 25 detected by the head side pressure sensor 27 are detected. The differential pressure between the two pressures is calculated from the operating pressure on the head side (S1). As shown in FIG. 8, a moving average for the calculated differential pressure between the two pressures is calculated (S2).

さらに、算出した両圧力の差圧の移動平均に対して、評価区間における両圧力の差圧の平均と分散を算出する(S3)。すなわち、算出した両圧力の差圧におけるデータのパターンを定量的に評価する。ここで、評価区間とは、「案内レール20の取付状態」を用いる場合には、弁体4が案内レール20に接して定常状態として摺動する区間(ガイド作動区間)のことである。 Further, with respect to the calculated moving average of the differential pressures of both pressures, the average and variance of the differential pressures of both pressures in the evaluation section are calculated (S3). That is, the data pattern at the calculated pressure difference between the two pressures is quantitatively evaluated. Here, the evaluation section is a section (guide operation section) in which the valve body 4 is in contact with the guide rail 20 and slides in a steady state when the "attachment state of the guide rail 20" is used.

上記両圧力の差圧の移動平均と、上記算出した両圧力の差圧の平均及び分散、からホテリング統計量を算出する(S4)。すなわち、検証する上記両圧力の差圧のデータの異常度合いを算出する。続いて、算出されたホテリング統計量から自由度1のカイ2乗分布の確率を計算し、過去の不具合データから正常X1、異常X2の確率値を定め、異常値Eを決定するための閾値として定める(S5)。さらに、上記閾値より小さくなる場合を異常値Eとし、上記評価区間における当該異常値Eの数をカウントする(S6)。そして、上記評価区間における異常値Eの数が所定値T1を超えたか否かを判断する(S7)。ここで、所定値T1とは、過去に上記(S1)から(S6)によりカウントされた上記異常値Eの数であって、「案内レール20の表面状態」或いは「案内レール20の取付状態」に不具合(異常)が生じた場合にカウントされた上記異常値Eの数から算出した値をいう。図9に示すように、上記評価区間における異常値Eの数(図9における黒色の点の数)が上記所定値T1を超えた場合(S7−Yes)には、「案内レール20の表面状態」或いは「案内レール20の取付状態」が異常であると判断する(S8)。すなわち、案内レール20に不具合が生じていると診断する。一方、図10に示すように、上記評価区間における異常値Eの数(図10における黒色の点の数)が上記所定値T1以下の場合(S7−No)には、「案内レール20の表面状態」或いは「案内レール20の取付状態」が正常であると判断する(S9)。すなわち、案内レール20に不具合は無いと診断する。 A Hotelling statistic is calculated from the moving average of the pressure difference between the two pressures and the average and variance of the calculated pressure difference between the pressures (S4). That is, the degree of abnormality of the data of the differential pressure between the two pressures to be verified is calculated. Next, the probability of the chi-square distribution with one degree of freedom is calculated from the calculated Hotelling statistic, the probability values of normal X1 and abnormal X2 are determined from past defect data, and as a threshold value for determining the abnormal value E. Define (S5). Further, when the value is smaller than the threshold value, the abnormal value E is set, and the number of the abnormal value E in the evaluation section is counted (S6). Then, it is determined whether or not the number of abnormal values E in the evaluation section exceeds a predetermined value T1 (S7). Here, the predetermined value T1 is the number of the abnormal value E counted in the above (S1) to (S6) in the past, and is the "surface state of the guide rail 20" or "mounting state of the guide rail 20". A value calculated from the number of abnormal values E counted when a problem (abnormality) occurs in the above. As shown in FIG. 9, when the number of abnormal values E in the evaluation section (the number of black points in FIG. 9) exceeds the predetermined value T1 (S7-Yes), “the surface state of the guide rail 20 is indicated. Alternatively, it is determined that the "mounting state of the guide rail 20" is abnormal (S8). That is, it is diagnosed that the guide rail 20 is defective. On the other hand, as shown in FIG. 10, when the number of abnormal values E in the evaluation section (the number of black points in FIG. 10) is not more than the predetermined value T1 (S7-No), “the surface of the guide rail 20 is detected. It is determined that the "state" or the "attachment state of the guide rail 20" is normal (S9). That is, it is diagnosed that the guide rail 20 has no defect.

このように、仕切弁1の不具合を判断するための特徴量である「案内レール20の表面状態」、及び「案内レール20の取付状態」を用いる診断は、油圧シリンダ25の作動圧(油圧)の検出データを用いたホテリング理論による異常検知(外れ値検知)により行う。また、当該診断は、特定の評価区間における油圧シリンダ25の作動圧(油圧)の検出データを用いて行う。 In this way, the diagnosis using the "surface condition of the guide rail 20" and the "mounting condition of the guide rail 20", which are the characteristic quantities for determining the malfunction of the sluice valve 1, is used for the operation pressure (hydraulic pressure) of the hydraulic cylinder 25. Anomaly detection (outlier detection) by Hotelling theory using the detection data of. In addition, the diagnosis is performed using detection data of the operating pressure (hydraulic pressure) of the hydraulic cylinder 25 in a specific evaluation section.

[シート部11の表面状態]
仕切弁1の不具合を判断するための特徴量である「シート部11の表面状態」を用いる診断では、シート部11の表面状態の優劣を判断することにより、シート部11の不具合を診断する。「シート部11の表面状態」を用いる診断は、油圧シリンダ25のロッド側の作動圧(油圧)と、油圧シリンダ25のヘッド側の作動圧(油圧)と、ボンネット部8の内部における窒素ガス19の圧力(ボンネット圧)と、の検出データに基づいて行う。なお、各検出データは、弁体4の開時(弁体4を全閉位置Sから全開位置Oまで移動させる際)におけるデータのみを用いる。
[Surface Condition of Seat Part 11]
In the diagnosis using the “surface condition of the seat portion 11 ”, which is a feature amount for determining the malfunction of the sluice valve 1, the malfunction of the seat portion 11 is diagnosed by determining the superiority or inferiority of the surface condition of the seat portion 11. Diagnosis using the "surface condition of the seat portion 11" is performed by operating pressure (hydraulic pressure) on the rod side of the hydraulic cylinder 25, operating pressure (hydraulic pressure) on the head side of the hydraulic cylinder 25, and nitrogen gas 19 inside the bonnet portion 8. Pressure (bonnet pressure) and the detection data of. In addition, as each detection data, only the data when the valve body 4 is opened (when the valve body 4 is moved from the fully closed position S to the fully open position O) is used.

具体的には、図11に示すように、ロッド側圧力センサ26から検出される油圧シリンダ25のロッド側の作動圧と、ヘッド側圧力センサ27から検出される油圧シリンダ25のヘッド側の作動圧と、から両圧力の差圧を算出する(S11)。算出した両圧力の差圧のシート摺動区間(弁体4がシート部11に接して摺動する区間)における平均圧力P1を算出する(S12)。算出した平均圧力P1と、油圧シリンダ25の受圧面積S1と、から弁体4の引抜力F1を以下の式(1)により算出する(S13)。
F1=P1×S1 式(1)
Specifically, as shown in FIG. 11, the operating pressure on the rod side of the hydraulic cylinder 25 detected by the rod side pressure sensor 26 and the operating pressure on the head side of the hydraulic cylinder 25 detected by the head side pressure sensor 27. From the above, the pressure difference between the two pressures is calculated (S11). The average pressure P1 in the seat sliding section (the section in which the valve body 4 slides in contact with the seat portion 11) of the calculated differential pressure between the two pressures is calculated (S12). From the calculated average pressure P1 and the pressure receiving area S1 of the hydraulic cylinder 25, the pulling force F1 of the valve body 4 is calculated by the following formula (1) (S13).
F1=P1×S1 Formula (1)

続いて、算出した弁体4の引抜力F1と、ボンネット部8の内部における窒素ガス19の圧力(ボンネット圧P2)と、弁箱本体部7の上部の流入口9側の圧力P3と、弁体4のダブルディスク13の受圧面積S2と、からシート摺動区間における弁体4の摩擦係数μ1を以下の式(2)により算出する(S14)。
μ1=F1/(2(P2−P3)×S2) 式(2)
Subsequently, the calculated pulling force F1 of the valve body 4, the pressure of the nitrogen gas 19 inside the bonnet portion 8 (bonnet pressure P2), the pressure P3 on the inlet 9 side of the upper portion of the valve body 7, and the valve From the pressure receiving area S2 of the double disk 13 of the body 4, the friction coefficient μ1 of the valve body 4 in the seat sliding section is calculated by the following equation (2) (S14).
μ1=F1/(2(P2-P3)×S2) Formula (2)

そして、ボンネット圧P2が所定値T2以下、且つ摩擦係数μ1が所定値T3以下であるか否かを判断する(S15)。ここで、所定値T2とは、過去に「シート部11の表面状態」に不具合(異常)が生じた場合に検出されたボンネット圧P2から算出した値である。また、所定値T3とは、過去からの測定データによって算出され、「シート部11の表面状態」に異常がなかった値の最大値である。 Then, it is determined whether the bonnet pressure P2 is less than or equal to the predetermined value T2 and the friction coefficient μ1 is less than or equal to the predetermined value T3 (S15). Here, the predetermined value T2 is a value calculated from the bonnet pressure P2 detected when a defect (abnormality) has occurred in the "surface state of the seat portion 11" in the past. Further, the predetermined value T3 is the maximum value of the values calculated from past measurement data and having no abnormality in the "surface condition of the sheet portion 11".

ボンネット圧P2が所定値T2以下且つ摩擦係数μ1が所定値T3以下の場合(S15−Yes)、「シート部11の表面状態」が異常であると判断する(S16)。すなわち、シート部11に不具合が生じていると診断する。一方、ボンネット圧P2が所定値T2以下、且つ摩擦係数μ1が所定値T3以下ではない場合(S15−No)には、さらに、ボンネット圧P2が所定値T2以下、又は摩擦係数μ1が所定値T3以下のいずれか一方に該当するか否かを判断する(S17)。ボンネット圧P2が所定値T2以下、又は摩擦係数μ1が所定値T3以下のいずれか一方に該当する場合(S17−Yes)には、「シート部11の表面状態」が異常に近い状態である(警告状態)と判断する(S18)。すなわち、シート部11が不具合の状態に近いと診断する。また、ボンネット圧P2が所定値T2以下、又は摩擦係数μ1が所定値T3以下のいずれにも該当しない場合(S17−No)には、「シート部11の表面状態」が正常であると判断する(S19)。すなわち、シート部11に不具合は無いと診断する。 When the bonnet pressure P2 is less than or equal to the predetermined value T2 and the friction coefficient μ1 is less than or equal to the predetermined value T3 (S15-Yes), it is determined that the "surface state of the seat portion 11" is abnormal (S16). That is, it is diagnosed that the seat portion 11 is defective. On the other hand, when the bonnet pressure P2 is equal to or less than the predetermined value T2 and the friction coefficient μ1 is not equal to or less than the predetermined value T3 (S15-No), the bonnet pressure P2 is further equal to or less than the predetermined value T2 or the friction coefficient μ1 is equal to the predetermined value T3. It is determined whether one of the following is applicable (S17). When the bonnet pressure P2 is equal to or less than the predetermined value T2 or the friction coefficient μ1 is equal to or less than the predetermined value T3 (S17-Yes), the "surface state of the seat portion 11" is in an abnormally close state ( It is determined to be a warning state (S18). That is, it is diagnosed that the seat portion 11 is close to the defective state. When the bonnet pressure P2 does not correspond to the predetermined value T2 or less or the friction coefficient μ1 does not correspond to the predetermined value T3 or less (S17-No), it is determined that the "surface state of the seat portion 11" is normal. (S19). That is, it is diagnosed that the seat portion 11 has no defect.

このように、仕切弁1の不具合を判断するための特徴量である「シート部11の表面状態」を用いる診断は、油圧シリンダ25のロッド側の作動圧(油圧)と、油圧シリンダ25のヘッド側の作動圧(油圧)と、ボンネット部8の内部における窒素ガス19の圧力(ボンネット圧)と、の検出データに基づいて、シート摺動区間における弁体4の摩擦係数μ1を求めることにより行う。また、当該診断は、特定の評価区間における油圧シリンダ25の作動圧(油圧)の検出データを用いて行う。 As described above, the diagnosis using the "surface state of the seat portion 11" which is the characteristic amount for determining the malfunction of the sluice valve 1 is performed by operating pressure (hydraulic pressure) on the rod side of the hydraulic cylinder 25 and the head of the hydraulic cylinder 25. The friction coefficient μ1 of the valve element 4 in the seat sliding section is obtained based on the detection data of the side operating pressure (hydraulic pressure) and the pressure of the nitrogen gas 19 inside the bonnet portion 8 (bonnet pressure). .. In addition, the diagnosis is performed using detection data of the operating pressure (hydraulic pressure) of the hydraulic cylinder 25 in a specific evaluation section.

[ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量]
仕切弁1の不具合を判断するための特徴量である「ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量」を用いる診断では、窒素ガス供給設備90からボンネット部8に供給される窒素ガス19の供給圧力と、ボンネット部8の内部における窒素ガス19の圧力と、の圧力差の変化に基づいて、シート部11と弁体4との隙間から漏れる窒素ガス19の漏れ量を推定することにより、シート部11の不具合を診断する。上記圧力差と、ボンネット部8から漏れる窒素ガス19の漏れ量と、の間には相関関係があり、上記圧力差が大きくなるほど、当該窒素ガス19の漏れ量は多くなる。そのため、上記圧力差の大小を検出することで、上記窒素ガス19の漏れ量の大小を推定することができる。
[Amount of Leakage of Nitrogen Gas 19 Leaking to the Flow Path 3 from the Bonnet Section 8 through the Gap between the Seat Section 11 and the Valve Body 4]
In the diagnosis using "amount of leakage of nitrogen gas 19 that leaks from the bonnet portion 8 through the gap between the seat portion 11 and the valve body 4 to the flow path 3" which is a characteristic amount for determining the malfunction of the sluice valve 1, Based on the change in pressure difference between the supply pressure of the nitrogen gas 19 supplied from the nitrogen gas supply equipment 90 to the bonnet portion 8 and the pressure of the nitrogen gas 19 inside the bonnet portion 8, the seat portion 11 and the valve body 4 are By estimating the amount of leakage of the nitrogen gas 19 leaking from the gap between and, the malfunction of the seat portion 11 is diagnosed. There is a correlation between the pressure difference and the leakage amount of the nitrogen gas 19 leaking from the bonnet portion 8. The larger the pressure difference, the larger the leakage amount of the nitrogen gas 19. Therefore, by detecting the magnitude of the pressure difference, the magnitude of the leakage amount of the nitrogen gas 19 can be estimated.

具体的には、弁体4の全閉時(弁体4が全閉位置Sにある場合)における窒素ガス供給設備90からボンネット部8に供給される窒素ガス19の供給圧力と、ボンネット部8の内部における窒素ガス19の圧力と、の圧力差を算出し、算出した圧力差が所定の圧力差以上であるか否かを算出する。ここで、所定の圧力差とは、過去にシート部11の不具合(異常)が生じた場合の上記圧力差によって算出される値である。 Specifically, when the valve body 4 is fully closed (when the valve body 4 is in the fully closed position S), the supply pressure of the nitrogen gas 19 supplied from the nitrogen gas supply equipment 90 to the bonnet portion 8 and the bonnet portion 8 The pressure difference between the pressure of the nitrogen gas 19 and the inside of the nitrogen gas is calculated, and whether or not the calculated pressure difference is equal to or larger than a predetermined pressure difference is calculated. Here, the predetermined pressure difference is a value calculated by the pressure difference when a defect (abnormality) of the seat portion 11 has occurred in the past.

算出された圧力差が所定の圧力差以上の場合には、「ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量」が所定の漏れ量以上であると推定される。すなわち、シート部11に不具合が生じていると診断する。ここで所定の漏れ量とは、過去にシート部11の不具合(異常)が生じた場合の上記圧力差から推定される窒素ガス19の漏れ量によって算出される値である。一方で、算出された圧力差が所定の圧力差より小さい場合には、「ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量」が所定の漏れ量より少ないと推定され、シート部11に不具合は無いと診断する。 When the calculated pressure difference is equal to or more than the predetermined pressure difference, the “leak amount of the nitrogen gas 19 that leaks from the bonnet portion 8 through the gap between the seat portion 11 and the valve body 4 to the flow path 3” is predetermined. It is estimated that the leak amount is equal to or more than the leak amount. That is, it is diagnosed that the seat portion 11 is defective. Here, the predetermined leak amount is a value calculated from the leak amount of the nitrogen gas 19 estimated from the pressure difference when a defect (abnormality) of the seat portion 11 has occurred in the past. On the other hand, when the calculated pressure difference is smaller than the predetermined pressure difference, “the leakage amount of the nitrogen gas 19 that leaks from the bonnet portion 8 through the gap between the seat portion 11 and the valve body 4 to the flow path 3” Is estimated to be less than a predetermined leakage amount, and it is diagnosed that the seat portion 11 has no defect.

このように、仕切弁1の不具合を判断するための特徴量である「ボンネット部8から、シート部11と弁体4との隙間を通って流路3に漏れる窒素ガス19の漏れ量」を用いる診断は、窒素ガス供給設備90からボンネット部8に供給される窒素ガス19の供給圧力と、ボンネット部8の内部における窒素ガス19の圧力と、の圧力差の変化に基づいて、ボンネット部8からシート部11を通って流路3に漏れる窒素ガス19の漏れ量を推定することにより行う。 As described above, the characteristic amount for determining the malfunction of the sluice valve 1 is the “amount of leakage of the nitrogen gas 19 that leaks from the bonnet portion 8 through the gap between the seat portion 11 and the valve body 4 into the flow path 3”. The diagnosis used is based on the change in the pressure difference between the supply pressure of the nitrogen gas 19 supplied from the nitrogen gas supply equipment 90 to the bonnet part 8 and the pressure of the nitrogen gas 19 inside the bonnet part 8, based on the change in pressure. This is performed by estimating the amount of leakage of the nitrogen gas 19 that leaks from the sheet to the flow path 3 through the sheet portion 11.

本実施の形態によると、弁体4を開閉方向に移動させるための作動装置6の作動圧の変化に基づいて仕切弁1の不具合を診断するため、仕切弁1の運転を停止させることなく仕切弁1の状態を判断することができる。さらに、仕切弁1の運転を停止させることなく仕切弁1の状態を判断できることから、複数の仕切弁1を同時に運転させる設備においてシート部11及び案内レール20の点検或いは交換を行う場合に、個々の仕切弁1の状態に応じてその運転を停止させることができ、設備全体における仕切弁1の運転効率を向上させることができる。 According to the present embodiment, since the malfunction of the sluice valve 1 is diagnosed based on the change in the operating pressure of the actuating device 6 for moving the valve body 4 in the opening/closing direction, the sluice valve 1 can be operated without stopping the operation of the sluice valve 1. The condition of the valve 1 can be determined. Furthermore, since the state of the sluice valve 1 can be determined without stopping the operation of the sluice valve 1, when the seat part 11 and the guide rail 20 are inspected or replaced in equipment that simultaneously operates a plurality of sluice valves 1, The operation of the sluice valve 1 can be stopped according to the state of the sluice valve 1, and the operation efficiency of the sluice valve 1 in the entire equipment can be improved.

なお、本実施の形態においては、仕切弁1の不具合を判断するための閾値(T1、T2、T3)を定め、その閾値に基づいて仕切弁1の不具合を診断しているが、これに限定されるものではなく、複数の仕切弁1においてそれぞれ検出される油圧シリンダ25の作動圧(ロッド側の作動圧とヘッド側の作動圧との差圧)或いは複数の仕切弁1においてそれぞれ算出されるシート摺動区間における弁体4の摩擦係数を、個々の仕切弁1間で相対的に比較することで、仕切弁1の不具合を診断しても構わない。 In the present embodiment, the thresholds (T1, T2, T3) for determining the malfunction of the sluice valve 1 are set, and the malfunction of the sluice valve 1 is diagnosed based on the threshold value. However, the present invention is not limited to this. The operating pressure of the hydraulic cylinder 25 (differential pressure between the rod-side operating pressure and the head-side operating pressure) detected in each of the plurality of sluice valves 1 or each of the plurality of sluice valves 1 is calculated. The malfunction of the sluice valve 1 may be diagnosed by relatively comparing the friction coefficient of the valve element 4 in the seat sliding section between the individual sluice valves 1.

本件実施の形態においては、検出装置41に供給圧力センサ91を設け、供給圧力センサ91が検出する圧力値を用いて、シート部11と弁体4との隙間から漏れる窒素ガス19の漏れ量を推定しているが、この構成に限定されるものではなく、検出装置41に供給圧力センサ91を設けず、検出装置41が、窒素ガス供給設備90より提供される窒素ガス19の供給圧力のデータ(圧力値)のみを受け取る構成としても構わない。 In the present embodiment, the supply pressure sensor 91 is provided in the detection device 41, and the pressure value detected by the supply pressure sensor 91 is used to determine the leakage amount of the nitrogen gas 19 leaking from the gap between the seat portion 11 and the valve body 4. Although it is estimated, the present invention is not limited to this configuration, the supply pressure sensor 91 is not provided in the detection device 41, and the detection device 41 supplies the data of the supply pressure of the nitrogen gas 19 provided from the nitrogen gas supply facility 90. It may be configured to receive only (pressure value).

1 仕切弁
2 弁箱
3 流路
4 弁体
6 作動装置
7 弁箱本体部
8 ボンネット部
11 シート部
19 窒素ガス(パージガス)
20 案内レール(ガイド部材)
A 開方向
B 閉方向
O 開位置
S 閉位置
1 Gate Valve 2 Valve Box 3 Flow Path 4 Valve Body 6 Actuator 7 Valve Box Body 8 Bonnet 11 Seat 19 Nitrogen Gas (Purge Gas)
20 Guide rail (guide member)
A Open direction B Close direction O Open position S Closed position

Claims (8)

弁箱内に、流路を開閉する弁体を開閉方向へ案内するガイド部材が設けられ、
弁箱は、流路を有する弁箱本体部と、ボンネット部とを有し、
弁体は、流体圧式の作動装置により前記ガイド部材に摺接しながら開閉方向へ移動し、閉位置において弁箱本体部内に突入して流路を遮断し、開位置において弁箱本体部内からボンネット部内に退入する仕切弁の不具合を診断する仕切弁の診断方法であって、
前記弁体を開閉方向に移動させるための前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて前記仕切弁の不具合を診断すること
を特徴とする仕切弁の診断方法。
A guide member for guiding the valve body that opens and closes the flow path in the opening and closing direction is provided in the valve box,
The valve box has a valve box body portion having a flow path and a bonnet portion,
The valve body moves in the opening/closing direction while slidingly contacting the guide member by a fluid pressure type operating device, penetrates into the valve box main body at the closed position to block the flow path, and from the valve box main body to the inside of the bonnet section at the open position. A method of diagnosing a sluice valve for diagnosing a malfunction of the sluice valve that retreats to
Detecting the operating pressure of the operating device for moving the valve element in the opening and closing direction,
A method of diagnosing a sluice valve, which comprises diagnosing a malfunction of the sluice valve based on a detected change in operating pressure.
前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて、前記ガイド部材の表面状態を診断すること
を特徴とする請求項1に記載の仕切弁の診断方法。
Detecting the operating pressure of the actuator,
The diagnosing method of the sluice valve according to claim 1, wherein the surface condition of the guide member is diagnosed based on a change in the detected operating pressure.
前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて、前記弁箱に対して取り付けられる前記ガイド部材の取付状態を診断すること
を特徴とする請求項1又は請求項2に記載の仕切弁の診断方法。
Detecting the operating pressure of the actuator,
The diagnosing method of the sluice valve according to claim 1 or 2, wherein the attachment state of the guide member attached to the valve box is diagnosed based on a change in the detected operating pressure.
前記弁体を閉位置から開位置まで移動させる際の前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて前記仕切弁のシート部の不具合を診断すること
を特徴とする請求項1から請求項3のいずれか1項に記載の仕切弁の診断方法。
Detecting the operating pressure of the actuator when moving the valve element from the closed position to the open position,
The diagnosing method of the sluice valve according to any one of claims 1 to 3, wherein a malfunction of a seat portion of the sluice valve is diagnosed based on a change in the detected operating pressure.
前記弁体が前記閉位置にある場合に、前記ボンネット部に供給されるパージガスの供給圧力と前記ボンネット部の内部におけるパージガスの圧力との圧力差を検出し、
検出される前記圧力差の変化に基づいて、前記ボンネット部から、前記シート部と前記弁体との間隙を通って前記流路に漏れるパージガスの漏れ量を推定し、
推定される前記パージガスの漏れ量に基づいて前記シート部の不具合を診断すること
を特徴とする請求項1から請求項4のいずれか1項に仕切弁の診断方法。
When the valve body is in the closed position, the pressure difference between the supply pressure of the purge gas supplied to the bonnet portion and the pressure of the purge gas inside the bonnet portion is detected,
Based on the change in the detected pressure difference, from the bonnet portion, the leakage amount of the purge gas that leaks into the flow path through the gap between the seat portion and the valve body is estimated,
The diagnosing method of the sluice valve according to any one of claims 1 to 4, wherein a malfunction of the seat portion is diagnosed on the basis of the estimated leak amount of the purge gas.
前記弁体が前記ガイド部材に摺接しながら開閉方向へ移動する区間における前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて、前記ガイド部材の表面状態及び前記弁箱に対して取り付けられる前記ガイド部材の取付状態を診断すること
を特徴とする請求項1から請求項5のいずれか1項に仕切弁の診断方法。
Detecting the operating pressure of the operating device in a section in which the valve body moves in the opening/closing direction while slidingly contacting the guide member,
6. The surface condition of the guide member and the mounting condition of the guide member mounted to the valve box are diagnosed based on the detected change in the working pressure. The method for diagnosing the sluice valve is described in item 1.
前記弁体が前記シート部に摺接しながら開閉方向へ移動する区間における前記作動装置の作動圧を検出し、
検出される作動圧の変化に基づいて、前記シート部の表面状態を診断すること
を特徴とする請求項1から請求項6のいずれか1項に仕切弁の診断方法。
Detecting the operating pressure of the operating device in the section in which the valve body moves in the opening and closing direction while slidingly contacting the seat portion,
The method for diagnosing a sluice valve according to any one of claims 1 to 6, wherein the surface state of the seat portion is diagnosed based on the detected change in the operating pressure.
弁箱内に、流路を開閉する弁体を開閉方向へ案内するガイド部材が設けられ、
弁箱は、流路を有する弁箱本体部と、ボンネット部とを有し、
弁体は、流体圧式の作動装置により前記ガイド部材に摺接しながら開閉方向へ移動し、閉位置において弁箱本体部内に突入して流路を遮断し、開位置において弁箱本体部内からボンネット部内に退入する仕切弁の不具合を診断する仕切弁診断システムであって、
前記弁体を開閉方向に移動させるための前記作動装置の作動圧を検出する作動圧検出装置と、
前記作動圧検出装置によって検出される作動圧の変化に基づいて前記仕切弁の不具合を診断する仕切弁診断装置と、
を備えること
を特徴とする仕切弁診断システム。
A guide member for guiding the valve body that opens and closes the flow path in the opening and closing direction is provided in the valve box,
The valve box has a valve box body portion having a flow path and a bonnet portion,
The valve body moves in the opening/closing direction while slidingly contacting the guide member by a fluid pressure type operating device, penetrates into the valve box main body at the closed position to block the flow path, and from the valve box main body to the inside of the bonnet section at the open position. Is a sluice valve diagnostic system for diagnosing malfunctions of the sluice valve that moves
An operating pressure detecting device for detecting an operating pressure of the operating device for moving the valve element in the opening/closing direction;
A sluice valve diagnostic device that diagnoses a malfunction of the sluice valve based on a change in the working pressure detected by the working pressure detection device,
A sluice valve diagnostic system comprising:
JP2018243841A 2018-12-27 2018-12-27 Diagnosis method for gate valve and gate valve diagnosis system Pending JP2020106064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243841A JP2020106064A (en) 2018-12-27 2018-12-27 Diagnosis method for gate valve and gate valve diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243841A JP2020106064A (en) 2018-12-27 2018-12-27 Diagnosis method for gate valve and gate valve diagnosis system

Publications (1)

Publication Number Publication Date
JP2020106064A true JP2020106064A (en) 2020-07-09

Family

ID=71450670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243841A Pending JP2020106064A (en) 2018-12-27 2018-12-27 Diagnosis method for gate valve and gate valve diagnosis system

Country Status (1)

Country Link
JP (1) JP2020106064A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119862A (en) * 1993-10-26 1995-05-12 Toshiba Corp Diagnosing device for air motor valve
JP2014080996A (en) * 2012-10-15 2014-05-08 Kubota Corp Gate valve for high temperature
US20160061335A1 (en) * 2014-08-26 2016-03-03 Z & J Technologies Gmbh Shut-off device and gate valve with a shut-off device
JP2017166621A (en) * 2016-03-17 2017-09-21 株式会社栗本鐵工所 Encapsulation type gate valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119862A (en) * 1993-10-26 1995-05-12 Toshiba Corp Diagnosing device for air motor valve
JP2014080996A (en) * 2012-10-15 2014-05-08 Kubota Corp Gate valve for high temperature
US20160061335A1 (en) * 2014-08-26 2016-03-03 Z & J Technologies Gmbh Shut-off device and gate valve with a shut-off device
JP2017166621A (en) * 2016-03-17 2017-09-21 株式会社栗本鐵工所 Encapsulation type gate valve

Similar Documents

Publication Publication Date Title
US10851814B2 (en) Valve signature diagnosis and leak test device
RU2378678C2 (en) Method and device for controlling regulating valve using control loop, as well as for detecting faults in said loop
US8768631B2 (en) Diagnostic method for detecting control valve component failure
US20230008702A1 (en) Device and method for detecting leakage of a hydraulic cylinder
TWI766052B (en) Vacuum valve comprising acoustic sensor
US9080924B2 (en) On board seat leakage detection system
JP2020106064A (en) Diagnosis method for gate valve and gate valve diagnosis system
EP1640699B1 (en) Apparatus and method for on-line detection of leaky valve seals and defective flow diverters
May et al. Hydraulic actuator internal leakage detection using cross-correlation time series analysis
KR102571200B1 (en) Evaluation method for impact of abnormal operation of pumps and valves
JP2020106418A (en) Valve body state monitoring device and fluid pressure driving device
IT202000017689A1 (en) SYSTEM FOR DIAGNOSTICS OF LEAKAGE LEAKS BETWEEN THE SEAT AND PLUG OF A VALVE
KR101409487B1 (en) System for detecting inside leakage of valve
US11852248B2 (en) Packing system and diagnostic method for a packing system of a valve assembly
US8864442B2 (en) Midspan packing pressure turbine diagnostic method
CN1987129A (en) Hydraulic linear actuating drive
US11578816B2 (en) Methods and systems for monitoring health of a valve
Kim et al. Development of IoT-based Safety Management Method through an Analysis of Structural Characteristics and Risk Factors for Industrial Valves
US20220333360A1 (en) System for monitoring backflow preventer condition
US11781937B1 (en) Valve seal integrity verification systems and methods
WO2017027001A1 (en) Multi-seat valve
Li et al. A review of recent valve health monitoring and diagnosis methods
JP2020148482A (en) Method for diagnosing failure of air clamp device
JPH01142204A (en) Valve rod gap abnormality detecting device of steam governing valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004