JP2020105429A - Modified cellulose fiber, dispersion liquid thereof, and method for producing the same - Google Patents

Modified cellulose fiber, dispersion liquid thereof, and method for producing the same Download PDF

Info

Publication number
JP2020105429A
JP2020105429A JP2018246845A JP2018246845A JP2020105429A JP 2020105429 A JP2020105429 A JP 2020105429A JP 2018246845 A JP2018246845 A JP 2018246845A JP 2018246845 A JP2018246845 A JP 2018246845A JP 2020105429 A JP2020105429 A JP 2020105429A
Authority
JP
Japan
Prior art keywords
acid
cellulose
cellulose fiber
modified
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018246845A
Other languages
Japanese (ja)
Other versions
JP7292641B2 (en
Inventor
昌浩 森田
Masahiro Morita
昌浩 森田
晋一 小野木
Shinichi Onoki
晋一 小野木
大井 秀一
Shuichi Oi
秀一 大井
憲治 船木
Kenji Funaki
憲治 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Tohoku University NUC
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Tohoku University NUC
Priority to JP2018246845A priority Critical patent/JP7292641B2/en
Publication of JP2020105429A publication Critical patent/JP2020105429A/en
Application granted granted Critical
Publication of JP7292641B2 publication Critical patent/JP7292641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

To provide cellulose fibers which are modified so as to be dispersed in a hydrophobic solvent, polymer, or the like, and have an average fiber diameter of 1-500 nm; and a method for producing the same.SOLUTION: The modified cellulose fibers having the average fiber diameter of 1-500 nm have carboxyl groups at C6 positions of at least a part of structural units of cellulose, wherein ions derived from a metal salt are ionically bonded to at least a part of the carboxyl groups. The metal salt is represented by the formula: M(OH)m-n(OOCR)n, where M represents a multivalent metal having a valence of 2 or more; m represents an integer corresponding to the valence of the metal M, and n represents an integer of 1 to m; and R represents a hydrocarbon group.SELECTED DRAWING: Figure 5

Description

この発明は、変性された微細セルロース繊維(以下「CNF」ともいう。)に関し、より詳細には、疎水性の溶媒や高分子等に分散させるために使用できる平均繊維径が1〜500nmの変性されたセルロース繊維、当該繊維を非水系溶媒に分散させた分散液及び当該繊維の製造方法に関する。 The present invention relates to a modified fine cellulose fiber (hereinafter, also referred to as “CNF”), and more specifically, a modified average fiber diameter of 1 to 500 nm that can be used for dispersing in a hydrophobic solvent or polymer. The present invention relates to the obtained cellulose fiber, a dispersion liquid in which the fiber is dispersed in a non-aqueous solvent, and a method for producing the fiber.

セルロース繊維を酸化して親水性にすることにより、解繊を容易にする技術が開発されて以降(非特許文献1、特許文献1)、繊維径が数nm〜数百nmの微細セルロース繊維を用いた用途が拡大した。
しかし、このような微細化されたセルロース繊維は親水性であるため、疎水性の溶媒や疎水性の高分子に分散させることが困難であったため、このような用途に用いるために、微細化されて親水性のセルロース繊維を疎水化する技術が開発されてきた(特許文献2〜4等)。
Since the technology for facilitating the defibration by developing the hydrophilicity by oxidizing the cellulose fibers (Non-patent Document 1, Patent Document 1), fine cellulose fibers having a fiber diameter of several nm to several hundreds nm have been developed. The applications used have expanded.
However, since such micronized cellulose fibers are hydrophilic, it was difficult to disperse them in a hydrophobic solvent or a hydrophobic polymer, and thus micronized for use in such applications. Technology for making hydrophilic cellulose fibers hydrophobic has been developed (Patent Documents 2 to 4, etc.).

特開2008-1728JP2008-1728 特開2011-140738JP2011-140738 特開2012-21081JP2012-21081 国際公開WO2013/077354International publication WO2013/077354

Biomacromolecule vol.7 No.6, 2006 1687-1691Biomacromolecule vol.7 No.6, 2006 1687-1691

本願発明は、疎水性の溶媒や高分子等に分散させるために変性された平均繊維径が1〜500nmのセルロース繊維、その分散液及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a cellulose fiber having an average fiber diameter of 1 to 500 nm modified for dispersion in a hydrophobic solvent or polymer, a dispersion thereof, and a method for producing the same.

従来セルロース繊維を疎水化するためにセルロース表面に炭化水素基などの疎水基を導入することが知られているが(特許文献2〜4等)、本発明においては、セルロース繊維を疎水性の溶媒や高分子等に分散させるための、新規な変性方法を開発した。
即ち、本発明は、少なくとも一部のセルロース構成単位のC6位にカルボキシル基を有する平均繊維径が1〜500nmのセルロース繊維であって、該カルボキシル基の少なくとも一部に金属塩に由来するイオンがイオン結合し、該金属塩が下式
M(OH)m−n(OOCR)
(式中、Mは原子価が2以上の多価金属を表し、mは金属Mの原子価に相当する整数を表し、nは1〜mの整数を表し、Rは炭化水素基を表す。)で表される変性セルロース繊維である。
また、本発明は、少なくとも一部のセルロース構成単位のC6位にカルボキシル基を有する平均繊維径が1〜500nmのセルロース繊維を、その分散液中で、金属塩で処理する工程から成る、該カルボキシル基の少なくとも一部に該金属塩に由来するイオンがイオン結合した変性セルロース繊維の製造方法であって、該金属塩が下式
M(OH)m−n(OOCR)
(式中、Mは原子価が2以上の多価金属を表し、mは金属Mの原子価に相当する整数を表し、nは1〜mの整数を表し、Rは炭化水素基を表す。)で表される製造方法である。
It is known to introduce a hydrophobic group such as a hydrocarbon group onto the surface of cellulose in order to make the cellulose fiber hydrophobic (Patent Documents 2 to 4, etc.), but in the present invention, the cellulose fiber is a hydrophobic solvent. We have developed a new denaturing method to disperse it into polymers and polymers.
That is, the present invention is a cellulose fiber having an average fiber diameter of 1 to 500 nm having a carboxyl group at the C6 position of at least a part of the cellulose constitutional unit, and an ion derived from a metal salt is present in at least a part of the carboxyl group. An ionic bond is formed, and the metal salt is represented by the following formula: M(OH) mn (OOCR) n
(In the formula, M represents a polyvalent metal having a valence of 2 or more, m represents an integer corresponding to the valence of the metal M, n represents an integer of 1 to m, and R represents a hydrocarbon group. ) Is a modified cellulose fiber represented by.
Further, the present invention comprises a step of treating a cellulose fiber having an average fiber diameter of 1 to 500 nm having a carboxyl group at the C6 position of at least a part of the cellulose constitutional unit with a metal salt in the dispersion liquid. A method for producing a modified cellulose fiber in which ions derived from the metal salt are ion-bonded to at least a part of groups, wherein the metal salt is represented by the following formula: M(OH) mn (OOCR) n
(In the formula, M represents a polyvalent metal having a valence of 2 or more, m represents an integer corresponding to the valence of the metal M, n represents an integer of 1 to m, and R represents a hydrocarbon group. ) Is a manufacturing method.

製造例1で得たCNFのFTIRチャートを示す。The FTIR chart of CNF obtained in manufacture example 1 is shown. 実施例1で得た変性CNFのFTIRチャートを示す。1 shows an FTIR chart of modified CNF obtained in Example 1. 実施例2で得た変性CNFのFTIRチャートを示す。4 shows an FTIR chart of modified CNF obtained in Example 2. 実施例3で得た変性CNFのFTIRチャートを示す。4 shows an FTIR chart of modified CNF obtained in Example 3. 変性CNF分散液を示す図である。Aは実施例1、Bは実施例2、Cは実施例3、Dは実施例4、Eは実施例5、Fは実施例6、Gは比較例1のものを示す。It is a figure which shows a modified CNF dispersion liquid. A is the example 1, B is the example 2, C is the example 3, D is the example 4, E is the example 5, F is the example 6, and G is that of the comparative example 1.

本発明のセルロース繊維の平均繊維径は1〜500nm、好ましくは1〜100nm、より好ましくは1〜10nmであり、その少なくとも一部のセルロース構成単位(化1(a))のC6位にカルボキシル基を有する。化1(b)はカルボキシル化されたセルロース、化1(c)はカルボキシメチル化されたセルロースを示す。

Figure 2020105429
このようなセルロース繊維は、例えば、下記のようにして用意することができる。 The average fiber diameter of the cellulose fiber of the present invention is 1 to 500 nm, preferably 1 to 100 nm, more preferably 1 to 10 nm, and a carboxyl group at the C6 position of at least a part of the cellulose structural unit (Chemical formula 1(a)). Have. Chemical formula 1(b) represents carboxylated cellulose, and chemical formula 1(c) represents carboxymethylated cellulose.
Figure 2020105429
Such cellulose fibers can be prepared, for example, as follows.

(セルロース原料)
アニオン変性セルロースを製造するためのセルロース原料としては、例えば、植物性材料(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物性材料(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものを挙げることができ、それらのいずれも使用できる。好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
(Cellulose raw material)
Examples of the cellulose raw material for producing anion-modified cellulose include plant materials (for example, wood, bamboo, hemp, jute, kenaf, agricultural land waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleaching). Kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) thermomechanical pulp (TMP), recycled pulp , Waste paper, etc.), animal materials (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (acetobacter)), products derived from microorganisms, and the like, and any of them can be used. Is a plant- or microorganism-derived cellulose fiber, more preferably a plant-derived cellulose fiber.

(カルボキシル化)
本発明において、カルボキシル化セルロース(酸化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法でカルボキシル化(酸化)することにより得ることができる。特に限定されるものではないが、カルボキシル化の際には、カルボキシル化セルロースナノファイバーの絶乾重量に対して、カルボキシル基の量が好ましくは0.05〜6mmol/g、より好ましくは0.6〜2.0mmol/g、更に好ましくは1.0mmol/g〜2.0mmol/gになるように調整する。
(Carboxylated)
In the present invention, carboxylated cellulose (also referred to as oxidized cellulose) can be obtained by carboxylating (oxidizing) the above cellulose raw material by a known method. Although not particularly limited, at the time of carboxylation, the amount of the carboxyl group is preferably 0.05 to 6 mmol/g, more preferably 0.6 with respect to the absolute dry weight of the carboxylated cellulose nanofibers. ˜2.0 mmol/g, more preferably 1.0 mmol/g to 2.0 mmol/g.

カルボキシル化(酸化)方法の一例として、セルロース原料を、N−オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(−COOH)又はカルボキシレート基(−COO−)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5重量%以下が好ましい。 As an example of a carboxylation (oxidation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. A method can be given. By this oxidation reaction, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (-COOH) or a carboxylate group (-COO-) on the surface. Can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by weight or less.

N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6−テトラメチルピペリジン−1−オキシラジカル(TEMPO)及びその誘導体(例えば、4−ヒドロキシTEMPO)が挙げられる。 The N-oxyl compound means a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it is a compound that promotes the desired oxidation reaction. Examples thereof include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (for example, 4-hydroxy TEMPO).

N−オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01〜10mmolが好ましく、0.01〜1mmolがより好ましく、0.05〜0.5mmolがさらに好ましい。また、反応系に対し0.1〜4mmol/L程度がよい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is still more preferable, relative to 1 g of absolutely dried cellulose. Moreover, about 0.1 to 4 mmol/L is preferable for the reaction system.

臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物及びヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。 Bromides are compounds containing bromine, examples of which include alkali metal bromides that can dissociate and ionize in water. Further, iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected within a range that can accelerate the oxidation reaction. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol, per 1 g of absolutely dried cellulose.

酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸又はそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムは好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロースに対して、0.5〜500mmolが好ましく、0.5〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolが最も好ましい。また、例えば、N−オキシル化合物1molに対して1〜40molが好ましい。 As the oxidizing agent, known ones can be used, for example, halogen, hypohalous acid, halogenous acid, perhalogenic acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite, which is inexpensive and has a low environmental load, is preferable. The appropriate amount of the oxidant used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol per 1 g of absolutely dried cellulose. .. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.

セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4〜40℃が好ましく、また15〜30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8〜12、好ましくは10〜11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。 In the cellulose oxidation step, the reaction can proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40°C, and may be room temperature of about 15 to 30°C. Since a carboxyl group is generated in the cellulose as the reaction progresses, the pH of the reaction solution is lowered. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at 8 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because it is easy to handle and side reactions are unlikely to occur.

酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5〜6時間、例えば、0.5〜4時間程度である。 The reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 to 6 hours, for example, 0.5 to 4 hours.

また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一又は異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 The oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtering after the completion of the reaction in the first step again under the same or different reaction conditions, the reaction efficiency due to the reaction by the salt produced as a by-product in the reaction in the first step is not increased. Can be well oxidized.

カルボキシル化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50〜250g/mであることが好ましく、50〜220g/mであることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100重量部とした際に、0.1〜30重量部であることが好ましく、5〜30重量部であることがより好ましい。オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 As another example of the carboxylation (oxidation) method, there may be mentioned a method in which a gas containing ozone and a cellulose raw material are brought into contact with each other to be oxidized. By this oxidation reaction, at least the 2- and 6-position hydroxyl groups of the glucopyranose ring are oxidized and the cellulose chain is decomposed. Ozone concentration in the ozone containing gas is preferably 50 to 250 g / m 3, more preferably 50~220g / m 3. The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by weight, and more preferably 5 to 30 parts by weight, when the solid content of the cellulose raw material is 100 parts by weight. The ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C. Although the ozone treatment time is not particularly limited, it is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the conditions of the ozone treatment are within these ranges, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of the oxidized cellulose becomes good. After performing the ozone treatment, an additional oxidizing treatment may be performed using an oxidizing agent. The oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples thereof include chlorine-based compounds such as chlorine dioxide and sodium chlorite, and oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like. For example, an additional oxidization treatment can be performed by dissolving these oxidizing agents in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the solution.

(カルボキシメチル化)
カルボキシメチル化方法の一例としては、セルロースを発底原料にし、マーセル化剤と混合してマーセル化処理を行った後、エーテル化剤を用いてエーテル化処理を行うことによりアニオン変性セルロースを得ることができる。溶媒としては水単独、又は3〜20重量倍の低級アルコール、具体的にはメタノール、エタノール、N−プロピルアルコール、イソプロピルアルコール、N−ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合物と水の混合媒体を使用する。なお、低級アルコールの混合割合は、60〜95重量%である。マーセル化剤としては発底原料のグルコース残基当たり0.5〜20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。また、マーセル化剤は5〜70重量%、より好ましくは30〜60重量%の水溶液を用いる。エーテル化剤としては、モノクロロ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸メチル、モノクロロ酢酸エチル及びモノクロロ酢酸イソプロピルなどが挙げられる。これのうち、原料の入手しやすさという点でモノクロロ酢酸、モノクロロ酢酸ナトリウムが好ましい。発底原料のグルコース残基当たり0.05〜10.0倍モルのエーテル化剤を、5〜70重量%、好ましくは30〜60重量%のエーテル化剤の水溶液を用いる。この際、発底原料であるセルロースの持込水分から最終的に投入するすべての薬品の水溶液の水を合算した際の、セルロース絶乾固形分に対するセルロース絶乾固形分と水の合計重量(液比)が1.0〜4.0となるように調節する。
(Carboxymethylation)
An example of a carboxymethylation method is to obtain anion-modified cellulose by using cellulose as a bottoming raw material, mixing with a mercerizing agent to perform mercerizing treatment, and then performing etherification using an etherifying agent. You can As the solvent, water alone or 3 to 20 times by weight lower alcohol, specifically methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol, etc., or two kinds thereof A mixed medium of the above mixture and water is used. The mixing ratio of the lower alcohol is 60 to 95% by weight. As the mercerizing agent, 0.5 to 20 times mol of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide, is used per glucose residue of the bottoming raw material. The mercerizing agent is an aqueous solution of 5 to 70% by weight, more preferably 30 to 60% by weight. Examples of the etherifying agent include monochloroacetic acid, sodium monochloroacetate, methyl monochloroacetate, ethyl monochloroacetate, isopropyl monochloroacetate and the like. Of these, monochloroacetic acid and sodium monochloroacetate are preferable from the viewpoint of easy availability of raw materials. An aqueous solution of an etherifying agent in an amount of 5 to 70% by weight, preferably 30 to 60% by weight, is used in an amount of 0.05 to 10.0 times the molar amount of the etherifying agent per glucose residue in the bottoming raw material. At this time, the total weight of the cellulosic solids and water relative to the cellulosic solids when the water of all the chemicals to be finally added is added from the water taken in from the bottoming raw material cellulose (liquid Ratio) to be 1.0 to 4.0.

マーセル化処理は、反応器を反応温度0〜50℃、好ましくは10〜40℃に調節し、セルロースを混合しながらマーセル化剤の水溶液を添加し、反応時間15分〜8時間、好ましくは30分〜3時間撹拌することにより行う。これにより、アルカリセルロースを得る。その後、反応器中のアルカリセルロースにエーテル化剤の水溶液を投入し、温度を一定に保ったまま15分〜4時間撹拌し、その後、反応温度30〜90℃、好ましくは40〜80℃、かつ反応時間30分〜10時間、好ましくは1時間〜4時間、エーテル化反応を行い、カルボキシメチル化セルロースを得る。
このカルボキシメチル化セルロース繊維のカルボキシル基含有量は好ましくは0.05〜6mmol/g、より好ましくは0.1〜2.0mmol/gである。
In the mercerization treatment, the reaction temperature of the reactor is adjusted to 0 to 50° C., preferably 10 to 40° C., the aqueous solution of the mercerizing agent is added while mixing the cellulose, and the reaction time is 15 minutes to 8 hours, preferably 30. It is performed by stirring for 3 minutes to 3 hours. Thereby, alkali cellulose is obtained. Then, the aqueous solution of the etherifying agent was added to the alkali cellulose in the reactor and stirred for 15 minutes to 4 hours while keeping the temperature constant, and then the reaction temperature was 30 to 90°C, preferably 40 to 80°C, and The etherification reaction is carried out for a reaction time of 30 minutes to 10 hours, preferably 1 hour to 4 hours to obtain carboxymethylated cellulose.
The carboxyl group content of this carboxymethylated cellulose fiber is preferably 0.05 to 6 mmol/g, more preferably 0.1 to 2.0 mmol/g.

(解繊)
これらのセルロース繊維を解繊する際に用いる装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いることができる。解繊の際にはアニオン変性セルロースの水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧又は超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊及び分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、前記水分散体に予備処理を施してもよい。
(Defibration)
The device used for defibrating these cellulose fibers is not particularly limited, but a high speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type device or the like can be used. At the time of defibration, it is preferable to apply a strong shearing force to the anion-modified cellulose aqueous dispersion. In particular, for efficient defibration, it is preferable to use a wet high-pressure or ultra-high-pressure homogenizer that can apply a pressure of 50 MPa or more and a strong shearing force to the water dispersion. The pressure is more preferably 100 MPa or more, further preferably 140 MPa or more. In addition, prior to the defibration and dispersion treatment with a high-pressure homogenizer, if necessary, a known treatment such as a high-speed shear mixer, stirring, emulsification, even if subjected to a preliminary treatment to the aqueous dispersion, using a dispersing device Good.

固液分離の方法としては、公知のものを用いることができ、例えば、遠心式、真空式、加圧式のタイプの装置を使用することができ、これらの複数を組み合わせて使用することもできる。 As a solid-liquid separation method, a known method can be used. For example, a centrifugal type, a vacuum type, or a pressure type device can be used, and a plurality of these can also be used in combination.

乾燥方法としては、公知のものを用いることができ、例えば、スプレイドライ、圧搾、風乾、熱風乾燥、及び真空乾燥を挙げることができる。乾燥装置は、特に限定されないが、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、ベルト乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等を単独で又は2つ以上組み合わせて用いることができる。 As the drying method, known methods can be used, and examples thereof include spray drying, pressing, air drying, hot air drying, and vacuum drying. The drying device is not particularly limited, but it is a continuous tunnel drying device, band drying device, vertical drying device, vertical turbo drying device, multi-stage disc drying device, aeration drying device, rotary drying device, airflow drying device, sprayer. Dryer dryer, spray dryer, cylinder dryer, drum dryer, belt dryer, screw conveyor dryer, rotary dryer with heating tube, vibration transport dryer, batch-type box dryer, aeration dryer, vacuum The box type drying device, the stirring drying device and the like can be used alone or in combination of two or more.

本発明の変性セルロース繊維(変性CNF)は、その少なくとも一部のセルロース構成単位(化1(a))のC6位にカルボキシル基を有するが、このカルボキシル基の少なくとも一部に金属塩に由来するイオンがイオン結合することにより変性され、この金属塩は疎水基を有する。
本発明で用いる金属塩は下式で表される。
M(OH)m−n(OOCR)
式中、Mは原子価が2以上、好ましくは2又は3の多価金属であり、具体的には、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムなどの2価の金属、アルミニウム、鉄、マンガン、クロム、ビスマスなどの3価の金属、スズ、チタンなどの4価の金属が挙げられる。
mは金属Mの原子価に相当する整数を表し、2以上の整数である。
nは1〜mの整数を表す。
The modified cellulose fiber (modified CNF) of the present invention has a carboxyl group at the C6 position of at least a part of the cellulose constitutional unit (Chemical Formula 1(a)), and at least a part of this carboxyl group is derived from a metal salt. The ions are modified by ionic bonding, and the metal salt has a hydrophobic group.
The metal salt used in the present invention is represented by the following formula.
M(OH) m-n (OOCR) n
In the formula, M is a polyvalent metal having a valence of 2 or more, preferably 2 or 3, and specifically, divalent metals such as zinc, magnesium, calcium, strontium, barium and radium, aluminum, iron, Examples thereof include trivalent metals such as manganese, chromium and bismuth, and tetravalent metals such as tin and titanium.
m represents an integer corresponding to the valence of the metal M and is an integer of 2 or more.
n represents an integer of 1 to m.

Rは、疎水基であり、炭化水素基を表す。この炭化水素基としては脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基等が挙げられるが、好ましくは脂肪族炭化水素基及び芳香族炭化水素基、より好ましくは脂肪族炭化水素基である。疎水基の炭素数は好ましくは1〜30、より好ましくは7〜18、更に好ましくは13〜18である。
この脂肪族炭化水素基としては、直鎖又は分岐の、好ましくは直鎖の、飽和又は不飽和の、好ましくは飽和の炭化水素基であり、好ましくはアルキル基である。
この芳香族炭化水素基としては、アリール基及びアラルキル基が挙げられ、例えば、ベンゼン、ビフェニル、テルフェニル、ナフタレン、アントラセン等が挙げられる。
これらの基には、水酸基、ハロゲン原子、アルコキシ基などの置換基を有してもよいが、置換基としては、短鎖アルキル基や短鎖アリール基等の疎水性の置換基が好ましい。
R is a hydrophobic group and represents a hydrocarbon group. Examples of this hydrocarbon group include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an alicyclic hydrocarbon group, and the like, preferably an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and more preferably an aliphatic hydrocarbon group. It is a hydrogen group. The carbon number of the hydrophobic group is preferably 1 to 30, more preferably 7 to 18, and further preferably 13 to 18.
The aliphatic hydrocarbon group is a linear or branched, preferably linear, saturated or unsaturated, preferably saturated hydrocarbon group, preferably an alkyl group.
Examples of this aromatic hydrocarbon group include an aryl group and an aralkyl group, and examples thereof include benzene, biphenyl, terphenyl, naphthalene, and anthracene.
These groups may have a substituent such as a hydroxyl group, a halogen atom or an alkoxy group, but the substituent is preferably a hydrophobic substituent such as a short chain alkyl group or a short chain aryl group.

この金属塩に含まれる酸アニオン(RCOO)としては、例えば、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、2−エチルヘキサン酸、ネオデカン酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、リグニセリン酸、セロチン酸、モンタン酸、メリシン酸、ミリストレイン酸、パルミトレイン酸、サピエン酸、オレイン酸、エライジン酸、バクセン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸、リノール酸、エイコサジエン酸、ドコサジエン酸、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸、ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸、ドコサヘキサエン酸、安息香酸、トルイル酸、桂皮酸等カルボキシルアニオンを用いることができる。 Examples of the acid anion (RCOO ) contained in this metal salt include, for example, lauric acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, 2-ethylhexanoic acid, neodecanoic acid, arachidic acid, henicosyl acid, Behenic acid, lignoceric acid, cerotic acid, montanic acid, melissic acid, myristoleic acid, palmitoleic acid, sapienoic acid, oleic acid, elaidic acid, vaccenic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, linole Acid, eicosadienoic acid, docosadienoic acid, linolenic acid, pinolenic acid, eleostearic acid, mead acid, dihomo-γ-linolenic acid, eicosatrienoic acid, stearidonic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid, boceopentaene Carboxyl anions such as acid, eicosapentaenoic acid, ozbondic acid, sardine acid, tetracosapentaenoic acid, docosahexaenoic acid, benzoic acid, toluic acid and cinnamic acid can be used.

このような金属塩に由来するイオンは、セルロース繊維のカルボキシル基にイオン結合するが、該カルボキシル基は、カルボキシル化されたセルロース(化1(b))においてはセルロース構成単位(化1(a))のC6位に、カルボキシメチル化されたセルロース(化1(c))においてはセルロース構成単位(化1(a))のC6位並びにC2位及び/又はC3位に存在する。 The ion derived from such a metal salt is ionically bonded to the carboxyl group of the cellulose fiber, and in the carboxylated cellulose (Chemical formula 1(b)), the carboxyl group is a cellulose structural unit (Chemical formula 1(a)). In the carboxymethylated cellulose (Chemical Formula 1(c)), the C6 position and the C2 position and/or the C3 position of the cellulose constitutional unit (Chemical Formula 1(a)) are present.

このようなセルロース繊維のカルボキシル基において、金属塩に由来するイオンは、次式で表されるイオン結合をしていると考えられる。
セルロース−COO:Mm+:(RCOOm−1
式中、「セルロース−COO」はセルロース構成単位のC6位等のカルボキシイオンを表し、「Mm+」は金属塩由来の金属イオンを表し、「RCOO」は金属塩由来のカルボキシイオンを表し、Rは上記で定義したとおりである。「:」はイオン結合を表し、即ち、「セルロース−COO」と「Mm+」とはイオン結合し、「Mm+」と「RCOO」とはイオン結合している。
このようなイオン結合を行う方法には、特に限定は無いが、例えば、CNFと金属塩を含有する化合物を混合・撹拌する、これらを超音波で処理する、又はこれらをホモジナイザー等の分散機で処理する、これらを混錬機を用いて混錬する等の工程が挙げられるが、これらに限定されない。更に、CNF、金属ハロゲン化物及び脂肪酸等の塩を溶媒中で反応させる、CNF、脂肪酸等、アンモニア及び金属塩を溶媒中で反応させる、等の方法を採用してもよい。また、これらの処理を行う際、反応を効率的にするため、加熱してもよい。
In such a carboxyl group of the cellulose fiber, the ions derived from the metal salt are considered to have an ionic bond represented by the following formula.
Cellulose -COO -: M m +: ( RCOO -) m-1
Wherein "cellulose -COO -" represents a carboxy ions C6 position or the like of the cellulose structural unit, "M m +" represents a metal ion derived from the metal salt, "RCOO -" represents a carboxy ions from metal salts , R are as defined above. ":" Denotes an ionic bond, i.e., "cellulose -COO -" and ionically bonded to the "M m +", and "M m +" "RCOO -" and are ionically bonded.
The method for performing such ionic bonding is not particularly limited, but for example, mixing and stirring CNF and a compound containing a metal salt, treating them with ultrasonic waves, or treating them with a disperser such as a homogenizer. Examples of the treatment include, but are not limited to, steps of treating, kneading these using a kneader, and the like. Further, a method of reacting a salt of CNF, a metal halide, a fatty acid or the like in a solvent, a reaction of CNF, a fatty acid, etc., an ammonia and a metal salt in a solvent, or the like may be adopted. Further, when these treatments are carried out, heating may be carried out in order to make the reaction efficient.

このCNFのカルボキシル基の疎水基による変性割合は、変性前に検出されたカルボキシル基に対して好ましくは10%以上、より好ましくは40%以上である。
本発明の変性セルロース繊維は、当業者の公知な成形方法又は公知な材料や液状物と混合又は複合又は含侵等の手段により、インキ、塗料への添加剤、増粘剤、樹脂複合化、ゴム複合化、フィルム、化粧品、粘着剤、オイルのレオコン剤、セパレータ、多孔質膜、洗浄剤、フィルター、離形剤、有機ELなどの用途に使用することができる。
The modification ratio of the carboxyl group of the CNF with the hydrophobic group is preferably 10% or more, more preferably 40% or more, with respect to the carboxyl group detected before the modification.
The modified cellulose fiber of the present invention is a known molding method of a person skilled in the art or a means such as mixing or complexing with a known material or liquid material, or an impregnation agent, a thickener, a resin composite, an additive to a coating material, It can be used in applications such as rubber compounding, films, cosmetics, adhesives, oil rheocon agents, separators, porous membranes, cleaning agents, filters, mold release agents, and organic EL.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
(i) セルロース繊維の赤外(FTIR)スペクトルは、フーリエ変換型赤外分光光度計(JASCO社製:FT/IR-350)を用いて測定した。
(ii) セルロース繊維の繊維形態は、原子間力顕微鏡(AFM)を用いて、ランダムに選んだ200本の繊維について解析した。
(iii) セルロース繊維のカルボキシル基含有量は以下の方法で測定した。セルロース繊維の0.5重量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:カルボキシル基量〔mmol/gセルロース繊維〕=a〔ml〕×0.05/セルロース繊維質量〔g〕。
(iv) セルロース繊維分散液の粘度について、この分散液を金属石鹸の重量を除いた固形分1%に調整し、25℃で、B型粘度計(東機産業社製)を用いて、No.4ローターで、回転数60rpm及び回転数6rpm、3分後のB型粘度(mPa・s)を測定した。変性CNF分散品の粘度が回転数60rpmで10mPa・s以上ならセルロース繊維が良好に分散しているといえる。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not intended to be limited thereto.
(i) The infrared (FTIR) spectrum of the cellulose fiber was measured using a Fourier transform infrared spectrophotometer (FT/IR-350 manufactured by JASCO).
(ii) The fiber morphology of the cellulose fiber was analyzed using an atomic force microscope (AFM) for 200 randomly selected fibers.
(iii) The carboxyl group content of the cellulose fiber was measured by the following method. 60 ml of 0.5% by weight slurry of cellulose fiber (aqueous dispersion) was prepared and adjusted to pH 2.5 by adding 0.1 M hydrochloric acid aqueous solution, and then pH was adjusted to 11 by adding 0.05 N sodium hydroxide aqueous solution. The electric conductivity was measured until the temperature reached a certain value, and the amount was calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid with a gradual change in electric conductivity using the following formula: Amount of carboxyl group [mmol/g Cellulose fiber]=a [ml]×0.05/cellulose fiber mass [g].
(iv) Regarding the viscosity of the cellulose fiber dispersion, the dispersion was adjusted to a solid content of 1% excluding the weight of the metal soap, and the viscosity was measured at 25° C. using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.). . The B-type viscosity (mPa·s) after 3 minutes was measured with a 4-rotor at a rotation speed of 60 rpm and a rotation speed of 6 rpm. If the viscosity of the modified CNF dispersion is 10 mPa·s or more at a rotation speed of 60 rpm, it can be said that the cellulose fibers are well dispersed.

製造例1
<カルボキシル基含有CNFの製造>
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで酸化されたパルプ(以下「TEMPO酸化パルプ」という。)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分であった。
水酸化ナトリウムを水100重量部に対し5重量部溶解させた水酸化ナトリウム水溶液に、上記の工程で得られたTEMPO酸化パルプを5重量部添加し、30℃で30分撹拌してアルカリ処理した。アルカリ処理後のTEMPO酸化パルプ絶乾重量に対し100倍量の水を用いて、30℃で30分間洗浄し、遠心分離機(タナベウィルテック社製)を用いて固液分離を行った。この時のアルカリ処理済TEMPO酸化パルプの固形分は40%であった。
上記の工程で得られたアルカリ処理済TEMPO酸化パルプを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で5回解繊処理を行い、TEMPO酸化微細セルロース繊維分散液を得た(以下「TEMPO酸化CNF」という。)。得られたTEMPO酸化CNFは、平均繊維径が4nm、アスペクト比が150であった。
得られたTEMPO酸化CNFに塩酸を添加し、pH2.5に調整した後十分に水洗して、酸型のTEMPO酸化CNFを得た。得られたTEMPO酸化CNFのカルボキシル基量は1.60mmol/gであった。
Production example 1
<Production of carboxyl group-containing CNF>
Bleached unbeaten kraft pulp from softwood (whiteness 85%) 500 g (absolute dryness) was added to 780 mg of TEMPO (Sigma Aldrich) and 500 ml of an aqueous solution in which sodium bromide 75.5 g was dissolved, until the pulp was uniformly dispersed. It was stirred. An aqueous sodium hypochlorite solution was added to the reaction system at 6.0 mmol/g to start the oxidation reaction. Although the pH in the system was lowered during the reaction, the pH was adjusted to 10 by sequentially adding a 3M sodium hydroxide aqueous solution. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain an oxidized pulp (hereinafter referred to as "TEMPO oxidized pulp"). The pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes.
5 parts by weight of the TEMPO oxidized pulp obtained in the above step was added to an aqueous solution of sodium hydroxide in which 5 parts by weight of sodium hydroxide was dissolved in 100 parts by weight of water, and the mixture was stirred at 30° C. for 30 minutes for alkali treatment. .. It was washed with 100 times amount of water with respect to the absolute dry weight of TEMPO oxidized pulp after alkali treatment for 30 minutes at 30° C., and solid-liquid separation was performed using a centrifuge (Tanabe Wiltech Co., Ltd.). At this time, the solid content of the alkali-treated TEMPO oxidized pulp was 40%.
The alkali-treated TEMPO oxidized pulp obtained in the above step was adjusted to 1.0% (w/v) with water, and fibrillated 5 times with an ultrahigh pressure homogenizer (20°C, 150 MPa) to obtain TEMPO oxidized fine particles. A cellulose fiber dispersion was obtained (hereinafter referred to as "TEMPO oxidized CNF"). The obtained TEMPO-oxidized CNF had an average fiber diameter of 4 nm and an aspect ratio of 150.
Hydrochloric acid was added to the obtained TEMPO-oxidized CNF to adjust the pH to 2.5, and then it was sufficiently washed with water to obtain an acid-type TEMPO-oxidized CNF. The amount of carboxyl groups in the obtained TEMPO-oxidized CNF was 1.60 mmol/g.

<疎水性溶媒への溶媒置換>
疎水性溶媒としてトルエンを使用し、上記で得られたCNFの分散媒をトルエンへ溶媒置換した。
上記で得た1.4wt%の酸型TEMPO酸化CNF混合液107.1gを、アセトンに懸濁した後、ろ過脱液することを5回繰り返し、酸型TEMPO酸化CNFのアセトン置換品を得た。これを更にトルエンに懸濁した後、ろ過脱液することを5回繰り返しトルエン置換品を得た。このトルエン置換品を室温に一晩静置しておくとCNFの沈殿が観察された。
製造例1で得られたCNFのFTIRチャートを図1に示す。図1のチャートにおいて、1714cm-1付近の吸収が観察されることから、CNFのカルボキシル基が酸型になっていることが確認できる。
<Solvent replacement with a hydrophobic solvent>
Toluene was used as the hydrophobic solvent, and the CNF dispersion medium obtained above was solvent replaced with toluene.
After suspending 107.1 g of the 1.4 wt% acid-type TEMPO-oxidized CNF mixed solution obtained above in acetone, filtration and draining were repeated 5 times to obtain an acetone-substituted product of the acid-type TEMPO-oxidized CNF. .. This was further suspended in toluene and then filtered and drained to obtain a toluene-substituted product, which was repeated 5 times. When this toluene-substituted product was allowed to stand at room temperature overnight, precipitation of CNF was observed.
An FTIR chart of CNF obtained in Production Example 1 is shown in FIG. In the chart of FIG. 1, since absorption around 1714 cm −1 is observed, it can be confirmed that the carboxyl group of CNF is in the acid form.

実施例1
製造例1で得たトルエン置換品(CNF固形分1.5g相当)に、CNFのカルボキシ基に対して同当量となるよう、モノステアリン酸アルミニウム(富士フィルム和光純薬社製)を0.83g添加し、ホモディスパーを用いて8000rpmで10分間撹拌した。前記撹拌物をさらに、超高圧ホモジナイザーを用いて20℃、80MPaで1回処理し、更に20℃、150MPaで2回処理した。得られたCNFを変性CNFといい、その分散液を変性CNF分散品という。
実施例1で得られた変性CNFのFTIRチャートを図2に示す。本チャートにおいて、CNFのカルボキシル基が酸型に由来する1718cm-1付近の吸収が、製造例1(図1)のものより低くなっている一方で、カルボキシル基が塩型に由来する1588cm-1付近の吸収が観察されることから、CNFのカルボキシル基が酸型が塩型に変換されていることが確認できる。更に、製造例1(図1)で僅かに確認されていたセルロース由来のC-Hの収縮に由来する2873cm-1付近の吸収についても、ステアリン酸が導入されたことにより2917cm-1及び2849cm-1付近の吸収が明確に確認されていることから、ステアリン酸基が導入されていることが確認できる。
Example 1
0.83 g of aluminum monostearate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to the toluene-substituted product (corresponding to 1.5 g of CNF solid content) obtained in Production Example 1 so as to have the same equivalent weight to the carboxy group of CNF. The mixture was added and stirred with a homodisper at 8000 rpm for 10 minutes. The agitated product was further treated with an ultrahigh pressure homogenizer at 20° C. and 80 MPa once, and further at 20° C. and 150 MPa twice. The obtained CNF is called modified CNF, and the dispersion is called modified CNF dispersion.
The FTIR chart of the modified CNF obtained in Example 1 is shown in FIG. In this chart, the absorption at the vicinity of 1718 cm -1 in which the carboxyl group of CNF is derived from the acid form is lower than that in Production Example 1 (Fig. 1), while the absorption of the carboxyl group in the salt form is 1588 cm -1. Since absorption in the vicinity is observed, it can be confirmed that the acid group of the carboxyl group of CNF is converted to the salt type. Furthermore, regarding the absorption at around 2873 cm −1, which was derived from the shrinkage of CH derived from cellulose, which was slightly confirmed in Production Example 1 (FIG. 1), the introduction of stearic acid caused the absorption at around 2917 cm −1 and 2849 cm −1. It is confirmed that the stearic acid group has been introduced since the absorption of is clearly confirmed.

実施例2
実施例1で用いたモノステアリン酸アルミニウム0.83gの代わりにジステアリン酸アルミニウム(富士フィルム和光純薬社製)を1.47g添加した以外は、実施例1と同様にして、変性CNF分散品を得た。実施例2で得られた変性CNFのFTIRチャートを図5に示す。
Example 2
A modified CNF dispersion was prepared in the same manner as in Example 1 except that 1.47 g of aluminum distearate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added in place of 0.83 g of aluminum monostearate used in Example 1. Obtained. The FTIR chart of the modified CNF obtained in Example 2 is shown in FIG.

実施例3
実施例1で用いたモノステアリン酸アルミニウム0.83gの代わりにトリステアリン酸アルミニウム(富士フィルム和光純薬社製)を2.1g添加した以外は、実施例1と同様にして、変性CNF分散品を得た。実施例3で得られた変性CNFのFTIRチャートを図4に示す。
Example 3
Modified CNF dispersion obtained in the same manner as in Example 1 except that 2.1 g of aluminum tristearate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added in place of 0.83 g of aluminum monostearate used in Example 1. Got The FTIR chart of the modified CNF obtained in Example 3 is shown in FIG.

実施例4
実施例1で用いたモノステアリン酸アルミニウム0.83gの代わりにステアリン酸亜鉛(富士フィルム和光純薬社製)を1.52g添加した以外は、実施例1と同様にして、変性CNF分散品を得た。
Example 4
A modified CNF dispersion was prepared in the same manner as in Example 1 except that 1.52 g of zinc stearate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added instead of 0.83 g of aluminum monostearate used in Example 1. Obtained.

実施例5
実施例1で用いたモノステアリン酸アルミニウムの0.83g代わりに2−エチルヘキサン酸亜鉛(ナカライテスク社製)を0.84g添加した以外は、実施例1と同様にして、変性CNF分散品を得た。
Example 5
A modified CNF dispersion was prepared in the same manner as in Example 1, except that 0.84 g of zinc 2-ethylhexanoate (manufactured by Nacalai Tesque) was added instead of 0.83 g of the aluminum monostearate used in Example 1. Obtained.

実施例6
実施例1で用いたモノステアリン酸アルミニウム0.83gの代わりにネオデカン酸ビスマス(富士フィルム和光純薬社製)を1.74g添加した以外は、実施例1と同様にして、変性CNF分散品を得た。
Example 6
A modified CNF dispersion was prepared in the same manner as in Example 1 except that 1.74 g of bismuth neodecanoate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added in place of 0.83 g of aluminum monostearate used in Example 1. Obtained.

比較例1
実施例1で用いたモノステアリン酸アルミニウム0.83gの代わりにステアリン酸ナトリウム(富士フィルム和光純薬社製)を0.74g添加した以外は、実施例1と同様にして、変性CNF分散品の製造を試みたが、ホモディスパーを用いて8000rpmで10分間撹拌しても全く分散せず、沈殿が生じ、解繊処理を行うことができなかった。更に、超高圧ホモジナイザーを用いて20℃、80MPaで1回処理し、更に20℃、150MPaで2回処理しても同様であった。
Comparative Example 1
A modified CNF dispersion was prepared in the same manner as in Example 1 except that 0.74 g of sodium stearate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added instead of 0.83 g of aluminum monostearate used in Example 1. The production was tried, but even if it was stirred at 8000 rpm for 10 minutes using a homodisper, it was not dispersed at all, precipitation was generated, and defibration treatment could not be performed. Furthermore, it was the same when the treatment was performed once at 20° C. and 80 MPa using an ultrahigh pressure homogenizer, and further twice at 20° C. and 150 MPa.

上記で得た変性CNF分散品のトルエン分散性を下記基準で評価した:
○:CNF分散液は良好に分散し、底に何も溜まらなかった。
△:CNF分散液はCNFが膨潤し分散して、沈殿を生じなかった。
×:CNF分散液は全く分散せず、沈殿が生じた。
評価が○又は△であれば、分散性は良好といえる。
The modified CNF dispersions obtained above were evaluated for toluene dispersibility according to the following criteria:
◯: The CNF dispersion was well dispersed and nothing was collected at the bottom.
(Triangle|delta): CNF swelled and disperse|distributed and the CNF dispersion liquid did not produce precipitation.
X: The CNF dispersion did not disperse at all, and precipitation occurred.
If the evaluation is ◯ or Δ, it can be said that the dispersibility is good.

変性に用いた金属塩と変性CND分散液の分散性を下表に示し、各分散液を図5に示す。

Figure 2020105429
The dispersibility of the metal salt used for modification and the modified CND dispersion is shown in the table below, and each dispersion is shown in FIG.
Figure 2020105429

実施例1〜6の変性CNFは、トルエンへの分散が良好であり、特に実施例1〜3は粘度も上昇していることから分散性が特に良好であった。一方、比較例1の変性CNFは、トルエンへの溶媒置換後に撹拌しても解繊することができなかった。
実施例1〜6の変性CNFは、比較例1の変性CNFに比べて、十分に疎水化されているといえる。
The modified CNFs of Examples 1 to 6 were excellent in dispersibility in toluene, and particularly in Examples 1 to 3, the dispersibility was particularly good because the viscosity was also increased. On the other hand, the modified CNF of Comparative Example 1 could not be defibrated by stirring even after the solvent was replaced with toluene.
It can be said that the modified CNFs of Examples 1 to 6 are sufficiently hydrophobized as compared with the modified CNF of Comparative Example 1.

Claims (5)

少なくとも一部のセルロース構成単位のC6位にカルボキシル基を有する平均繊維径が1〜500nmのセルロース繊維であって、該カルボキシル基の少なくとも一部に金属塩に由来するイオンがイオン結合し、該金属塩が下式
M(OH)m−n(OOCR)
(式中、Mは原子価が2以上の多価金属を表し、mは金属Mの原子価に相当する整数を表し、nは1〜mの整数を表し、Rは炭化水素基を表す。)で表される変性セルロース繊維。
An average fiber diameter having a carboxyl group at the C6 position of at least a part of the cellulose constitutional unit is a cellulose fiber having an average fiber diameter of 1 to 500 nm, and an ion derived from a metal salt is ionically bonded to at least a part of the carboxyl group to form the metal. The salt has the following formula: M(OH) mn (OOCR) n
(In the formula, M represents a polyvalent metal having a valence of 2 or more, m represents an integer corresponding to the valence of the metal M, n represents an integer of 1 to m, and R represents a hydrocarbon group. ) A modified cellulose fiber represented by.
前記カルボキシル基含有変性セルロース繊維が、酸化セルロース繊維又はカルボキシメチル化セルロース繊維である請求項1に記載の変性セルロース繊維。 The modified cellulose fiber according to claim 1, wherein the modified cellulose fiber containing a carboxyl group is an oxidized cellulose fiber or a carboxymethylated cellulose fiber. 前記変性セルロース繊維が解繊されている請求項1又は2に記載の変性セルロース繊維。 The modified cellulose fiber according to claim 1 or 2, wherein the modified cellulose fiber is defibrated. 請求項1〜3のいずれか一項に記載の変性セルロース繊維を非水系溶媒に分散させた分散液。 A dispersion liquid in which the modified cellulose fiber according to any one of claims 1 to 3 is dispersed in a non-aqueous solvent. 少なくとも一部のセルロース構成単位のC6位にカルボキシル基を有する平均繊維径が1〜500nmのセルロース繊維を、その分散液中で、金属塩で処理する工程から成る、該カルボキシル基の少なくとも一部に該金属塩に由来するイオンがイオン結合した変性セルロース繊維の製造方法であって、該金属塩が下式
M(OH)m−n(OOCR)
(式中、Mは原子価が2以上の多価金属を表し、mは金属Mの原子価に相当する整数を表し、nは1〜mの整数を表し、Rは炭化水素基を表す。)で表される製造方法。
At least a part of the carboxyl groups, which comprises a step of treating a cellulose fiber having a carboxyl group at the C6 position of at least a part of the cellulose structural unit and having an average fiber diameter of 1 to 500 nm with a metal salt in the dispersion liquid. A method for producing a modified cellulose fiber in which ions derived from the metal salt are ionically bonded, wherein the metal salt is represented by the following formula: M(OH) mn (OOCR) n
(In the formula, M represents a polyvalent metal having a valence of 2 or more, m represents an integer corresponding to the valence of the metal M, n represents an integer of 1 to m, and R represents a hydrocarbon group. ) The manufacturing method represented by.
JP2018246845A 2018-12-28 2018-12-28 Modified cellulose fiber, its dispersion and its production method Active JP7292641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246845A JP7292641B2 (en) 2018-12-28 2018-12-28 Modified cellulose fiber, its dispersion and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246845A JP7292641B2 (en) 2018-12-28 2018-12-28 Modified cellulose fiber, its dispersion and its production method

Publications (2)

Publication Number Publication Date
JP2020105429A true JP2020105429A (en) 2020-07-09
JP7292641B2 JP7292641B2 (en) 2023-06-19

Family

ID=71448276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246845A Active JP7292641B2 (en) 2018-12-28 2018-12-28 Modified cellulose fiber, its dispersion and its production method

Country Status (1)

Country Link
JP (1) JP7292641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118792A1 (en) * 2020-12-01 2022-06-09 東亞合成株式会社 Vinyl chloride resin composition and method for manufacturing same, and molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089948A1 (en) * 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
JP2012126787A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous gel composition
JP2018111768A (en) * 2017-01-11 2018-07-19 日信工業株式会社 Fiber material and method for producing fiber material, and composite material and method for producing composite material
WO2018216474A1 (en) * 2017-05-24 2018-11-29 日本製紙株式会社 Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089948A1 (en) * 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
JP2012126787A (en) * 2010-12-14 2012-07-05 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous gel composition
JP2018111768A (en) * 2017-01-11 2018-07-19 日信工業株式会社 Fiber material and method for producing fiber material, and composite material and method for producing composite material
WO2018216474A1 (en) * 2017-05-24 2018-11-29 日本製紙株式会社 Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磯貝明: "TEMPO酸化セルロースナノファイバーの調製と特性解析", 東京大学農学部演習林報告, vol. 126, JPN6019036103, February 2012 (2012-02-01), pages 1 - 43, ISSN: 0004958287 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118792A1 (en) * 2020-12-01 2022-06-09 東亞合成株式会社 Vinyl chloride resin composition and method for manufacturing same, and molded body

Also Published As

Publication number Publication date
JP7292641B2 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
JP4503674B2 (en) Method for producing cellulose nanofiber and oxidation catalyst for cellulose
JP6698644B2 (en) Anion-modified cellulose nanofiber dispersion and composition
JP6601900B2 (en) Method for producing cellulose nanofiber dispersion and method for redispersing dried cellulose nanofiber solids
JP5329279B2 (en) Method for producing cellulose nanofiber
JP6452161B2 (en) Crude oil recovery additive
JP2015134873A (en) Method for producing dry solid of anion-modified cellulose nanofibers
JP5426209B2 (en) Method for removing organic oxidation catalyst remaining in oxidized pulp
JP6452160B2 (en) Additive for drilling mud
WO2017131084A1 (en) Anionically-modified cellulose nanofiber dispersion liquid and production method therefor
JP7095065B2 (en) Dehydration method of chemically modified pulp dispersion
JP2017025235A (en) Piping friction resistance reduction agent and transport medium
WO2018216474A1 (en) Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers
JP7292641B2 (en) Modified cellulose fiber, its dispersion and its production method
JP2023109972A (en) Dry solid of carboxyl group-containing modified cellulose fiber and manufacturing method thereof
WO2020050015A1 (en) Oxidized cellulose nanofibers and dispersion of oxidized cellulose nanofibers
JP2013067904A (en) Method for washing and dehydrating oxidized pulp
JP2014193580A (en) Laminate
JP6276550B2 (en) Method for producing oxidized cellulose
JP6675852B2 (en) Method for producing anion-modified cellulose nanofiber
JP7316750B2 (en) Method for producing hydrophobized cellulose nanofiber dispersion
JP2019094482A (en) Composition containing cellulose nanofibers and halloysite nanotubes, and film and composite containing the same
JP7432390B2 (en) Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same
JP2013067906A (en) Method for washing and dehydrating oxidized pulp
JP2020105248A (en) Hydrophobized fine cellulose fiber
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7292641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150