JP2020104445A - Resin mold - Google Patents

Resin mold Download PDF

Info

Publication number
JP2020104445A
JP2020104445A JP2018246820A JP2018246820A JP2020104445A JP 2020104445 A JP2020104445 A JP 2020104445A JP 2018246820 A JP2018246820 A JP 2018246820A JP 2018246820 A JP2018246820 A JP 2018246820A JP 2020104445 A JP2020104445 A JP 2020104445A
Authority
JP
Japan
Prior art keywords
resin mold
inorganic powder
resin
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018246820A
Other languages
Japanese (ja)
Other versions
JP7236028B2 (en
Inventor
憲吾 島田
Kengo Shimada
憲吾 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoraku Co Ltd
Original Assignee
Kyoraku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoraku Co Ltd filed Critical Kyoraku Co Ltd
Priority to JP2018246820A priority Critical patent/JP7236028B2/en
Publication of JP2020104445A publication Critical patent/JP2020104445A/en
Application granted granted Critical
Publication of JP7236028B2 publication Critical patent/JP7236028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

To provide a resin mold which can be produced easily, is free from restriction of resin materials to use, and has excellent heat conduction and durability.SOLUTION: Disclosed herein is a resin mold having a multilayer constitution of at least 3 layers. When a rate of an inorganic powder involved in an inner layer being in contact with the innermost resin molding is shown as A%, a rate of an inorganic powder involved in an intermediate layer is shown as B% and a rate of an inorganic powder involved in the outer layer is shown as C%, these rates satisfy A>B>C. The inorganic powder is e.g., a metal powder, and the metal powder is, e.g., aluminum powder. Each layer is composed of, e.g., a chemical wood.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂材料を成形する際に金属製の金型の代わりに用いられる樹脂型に関するものであり、特に、冷却効率や耐久性に優れた新規な樹脂型に関する。 The present invention relates to a resin mold used in place of a metal mold when molding a resin material, and particularly to a novel resin mold having excellent cooling efficiency and durability.

ブロー成形等の樹脂成形品の成形においては、アルミニウム等の金属材料からなる金型が広く用いられている。ただし、金属製の金型は高価であるため、例えば試作用の成形型として、一部、樹脂製の成形型(いわゆる樹脂型)も検討されている。樹脂型は、樹脂材料を主体として形成されるため、金属材料からなる金型に比べて安価であり、試作用の型として使用した場合に、コストを大幅に削減することができる。 A mold made of a metal material such as aluminum is widely used for molding a resin molded product such as blow molding. However, since metal molds are expensive, for example, as a prototype mold, a resin mold (so-called resin mold) is also being studied. Since the resin mold is formed mainly of a resin material, it is cheaper than a mold made of a metal material, and the cost can be significantly reduced when it is used as a prototype mold.

ただし、樹脂型は熱伝導率や耐久性等が金属製の金型に比べて不十分であり、その用途は多くて50ショット程度の少数試作用に限定されている。多数生産では、耐久性等の点で不安が多い。 However, the resin mold is insufficient in thermal conductivity, durability and the like as compared with a metal mold, and its application is limited to a small number of prototypes of about 50 shots at most. When producing a large number of products, there are many concerns about durability.

このような状況から、樹脂型に金属粉末を添加して、熱伝導率や耐久性を改善する試みがなされている。例えば特許文献1には、溶融樹脂を流し込んだ後に硬化させて樹脂製型を形成する樹脂製型の製造方法において、溶融樹脂に金属粉末を添加するとともに、溶融樹脂の粘度を低下させた後に硬化させることで、キャビティ周囲部の金属粉の濃度を高めることが開示されている。 Under such circumstances, attempts have been made to improve the thermal conductivity and durability by adding metal powder to the resin mold. For example, in Patent Document 1, in a method of manufacturing a resin mold in which a molten resin is poured and then cured to form a resin mold, a metal powder is added to the molten resin, and the viscosity of the molten resin is reduced and then cured. It is disclosed that by doing so, the concentration of the metal powder around the cavity is increased.

特許文献1に記載される技術で作製される樹脂型は、前記の通り、キャビティ周囲部の金属粉の濃度が高いことから、樹脂製型を用いて製品を射出成形するときの冷却効率を高めることができ、製品を射出成形するときの製造効率に優れると共に、キャビティ周囲部の剛性を高めることができる。 As described above, the resin mold manufactured by the technique described in Patent Document 1 has a high concentration of metal powder in the cavity peripheral portion, and thus enhances cooling efficiency when injection molding a product using the resin mold. It is possible to improve the manufacturing efficiency at the time of injection molding a product, and to increase the rigidity of the cavity peripheral portion.

特開2009−255361号公報JP, 2009-255361, A

しかしながら、特許文献1記載の技術では、樹脂型の作製に特殊な製法が必要であり、金属粉末の分布を適正に制御することも難しい。さらに、溶融樹脂の粘度をコントロールする必要があることから、使用できる樹脂材料も制約される可能性がある。 However, in the technique described in Patent Document 1, a special manufacturing method is required to manufacture the resin mold, and it is difficult to appropriately control the distribution of the metal powder. Further, since it is necessary to control the viscosity of the molten resin, the resin material that can be used may be limited.

本発明は、前述の従来の実情に鑑みて提案されたものであり、簡単に作製することができ、使用する樹脂材料等にも制約が加わることがなく、しかも熱伝導や耐久性に優れた樹脂型を提供することを目的とする。 The present invention was proposed in view of the above-mentioned conventional circumstances, can be easily manufactured, does not impose restrictions on the resin material used, and is excellent in heat conduction and durability. The purpose is to provide a resin mold.

前述の目的を達成するために、本発明の樹脂型は、少なくとも3層からなる多層構成の樹脂型であって、最も内側の樹脂成形品と接する内側層に含まれる無機粉末の割合をA%、中間層に含まれる無機粉末の割合をB%、外側層に含まれる無機粉末の割合をC%とした時に、A>B>Cであることを特徴とする。 In order to achieve the above-mentioned object, the resin mold of the present invention is a resin mold having a multi-layered structure composed of at least three layers, and the proportion of the inorganic powder contained in the inner layer in contact with the innermost resin molded product is A%. When the proportion of the inorganic powder contained in the intermediate layer is B% and the proportion of the inorganic powder contained in the outer layer is C%, A>B>C.

本発明の樹脂型においては、多層構造を採用し、キャビティが形成され成形される樹脂材料と接する内側層に熱伝導に優れる無機粉末を添加している。無機粉末の添加は、耐久性を向上する上でも有効である。ただし、例えば無機粉末を添加した内側層と、無機粉末を添加していない外側層の2層構成とすると、試作を重ねた際に、これら2層の物性(熱伝導率等)の差異に起因して、樹脂型に亀裂が入ったり破損したりすることがあることがわかってきた。例えば、ブロー成形用の比較的大型の樹脂型の場合、内側層を複数個に分割して形成し、これを接着剤で一体化することにより樹脂型として汲組み上げることが行われるが、このような場合に分割された内側層間に亀裂が入ることがある。 In the resin mold of the present invention, a multilayer structure is adopted, and an inorganic powder having excellent thermal conductivity is added to the inner layer in contact with the resin material in which the cavity is formed and molded. The addition of inorganic powder is also effective in improving durability. However, for example, if a two-layer structure of an inner layer to which an inorganic powder is added and an outer layer to which an inorganic powder is not added is used, it is caused by a difference in physical properties (heat conductivity etc.) of these two layers when trial production is repeated. It has become clear that the resin mold may be cracked or damaged. For example, in the case of a relatively large resin mold for blow molding, the inner layer is divided into a plurality of parts, which are then assembled with an adhesive to form a resin mold. In some cases, cracks may occur between the divided inner layers.

そこで、本発明の樹脂型では、無機粉末を含む内側層と、無機粉末を含まない(あるいは無機粉末の含有量が少ない)外側層の間に、これらの中間の割合で無機粉末を含む中間層を介在させている。中間層を介在させることで、各層間の物性の差異が緩和され、亀裂や破損の発生が抑えられる。 Therefore, in the resin mold of the present invention, an intermediate layer containing an inorganic powder in an intermediate ratio between the inner layer containing the inorganic powder and the outer layer not containing the inorganic powder (or having a small content of the inorganic powder). Is intervening. By interposing the intermediate layer, the difference in the physical properties between the layers is relaxed, and the occurrence of cracks and damages is suppressed.

また、本発明の樹脂型は、多層構成とするとともに、各層に含まれる無機粉末の割合を調整することで、必要な熱伝導性や耐久性を確保するようにしている。各層は、無機粉末の配合割合を変えるだけで簡単に形成することができ、無機粉末の分布を適正なものとするための特殊な工程は必要ない。したがって、使用する樹脂材料も何ら制約されることはない。 Further, the resin mold of the present invention has a multi-layered structure and adjusts the ratio of the inorganic powder contained in each layer to ensure the required thermal conductivity and durability. Each layer can be easily formed simply by changing the blending ratio of the inorganic powder, and no special process is required to make the distribution of the inorganic powder proper. Therefore, the resin material used is not limited at all.

本発明によれば、簡単に作製することができ、使用する樹脂材料にも制約が加わることがなく、しかも熱伝導や耐久性に優れた樹脂型を提供することが可能である。 According to the present invention, it is possible to provide a resin mold which can be easily manufactured, does not impose restrictions on the resin material used, and is excellent in heat conduction and durability.

本発明を適用した樹脂型の層構成の一例を示す概略断面図である。It is an outline sectional view showing an example of the layer composition of the resin type to which the present invention is applied. 樹脂型を内側層側から見た時の概略正面図である。It is a schematic front view when the resin mold is seen from the inner layer side.

以下、本発明を適用した樹脂型の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a resin mold to which the present invention is applied will be described in detail with reference to the drawings.

図1は本実施形態の樹脂型1を示すものである。本実施形態の樹脂型1は、図1に示す通り3層構造とされており、内側から順に内側層11、中間層12、外側層13が形成されている。内側層11にはキャビティが形成されており、溶融樹脂(ブロー成形ではパリソン)がこのキャビティ形状に倣って賦形される。 FIG. 1 shows a resin mold 1 of this embodiment. The resin mold 1 of the present embodiment has a three-layer structure as shown in FIG. 1, and an inner layer 11, an intermediate layer 12, and an outer layer 13 are formed in this order from the inside. A cavity is formed in the inner layer 11, and a molten resin (parison in blow molding) is shaped according to the shape of the cavity.

本実施形態の樹脂型1は、ブロー成形用の樹脂型であり、図2に示すように、内側層11が複数個(ここでは6個)に分割され、各分割ピース11a〜11fをそれぞれ成形加工した後に、これを組み合わせて接着することで内側層11が構成されている。 The resin mold 1 of the present embodiment is a resin mold for blow molding, and as shown in FIG. 2, the inner layer 11 is divided into a plurality of pieces (here, six pieces), and the divided pieces 11a to 11f are formed respectively. After processing, the inner layer 11 is formed by combining and bonding these.

なお、中間層12や外側層13は、本実施形態では分割されていないが、例えば中間層12を内側層11と同様に分割形成することも可能である。 The intermediate layer 12 and the outer layer 13 are not divided in this embodiment, but the intermediate layer 12 may be divided and formed similarly to the inner layer 11, for example.

本実施形態の樹脂型1では、内側層11、中間層12、外側層13のいずれもが安価な樹脂材料を主体として形成されている。樹脂材料としては任意の樹脂材料を使用することができるが、機械的特性等の点でケミカルウッド(いわゆるケミウッド)等が好適である。 In the resin mold 1 of this embodiment, all of the inner layer 11, the intermediate layer 12, and the outer layer 13 are formed mainly of an inexpensive resin material. Although any resin material can be used as the resin material, chemical wood (so-called chemi wood) or the like is preferable in terms of mechanical properties and the like.

ケミカルウッドは、例えば自動車や家電部品の試作デザインモデルを製作する場合に使用される切削加工性、寸法精度に優れた樹脂製の板であり、人工木材とも称される。ケミカルウッドは、通常、結合剤となる液状樹脂に中空ビーズや無機質充填剤、着色剤等を配合しモールド内で板状に硬化させることで形成される。そして、例えばウレタン系ケミカルウッドは、その見掛け比重が0.3〜0.8程度であり、かなりの微細な空隙を内在する。ウレタン系ケミカルウッドには、中空ビーズや切削性に悪影響を及ぼさない無機質充填剤が配合されており、非常に切削加工がし易く、また樹脂系で吸湿性が小さいため比較的寸法精度が良好である。 The chemical wood is a plate made of resin having excellent machinability and dimensional accuracy, which is used when, for example, producing a prototype design model for automobiles and home electric appliances, and is also called artificial wood. The chemical wood is usually formed by mixing a liquid resin as a binder with hollow beads, an inorganic filler, a coloring agent and the like and curing the mixture into a plate in a mold. And, for example, urethane-based chemical wood has an apparent specific gravity of about 0.3 to 0.8 and has a fairly fine void therein. Urethane-based chemical wood contains hollow beads and an inorganic filler that does not adversely affect the machinability. It is very easy to cut, and the resin-based wood has a low hygroscopic property, so the dimensional accuracy is relatively good. is there.

ケミカルウッドとしては、前記ウレタン系ケミカルウッドの他、エポキシ系ケミカルウッド等もあり、これらのいずれを用いてもよい。各種ケミカルウッドが市販されており、例えば三洋化成社製、商品名サンモジュール、ランプ社製、商品名ラクツール等が代表例である。 As the chemical wood, there are epoxy chemical wood and the like in addition to the urethane chemical wood, and any of these may be used. Various chemical woods are commercially available, and typical examples are Sanyo Chemical Co., Ltd., trade name Sun Module, Lamp Co., trade name Lactool, and the like.

ただし、樹脂型1を構成する内側層11を樹脂材料(ケミカルウッド)のみで作製すると、熱伝導率や耐久性が不十分となるおそれがあることから、本実施形態の樹脂型1では、内側層11に熱伝道性に優れた無機粉末を添加することとする。溶融樹脂と直接的に接する内側層11に無機粉末を添加すれば、成形中の冷却効率を高めることができ、成形効率を向上することができる。また、内側層11に無機粉末を添加することで、ケミカルウッド単独で形成した場合に比べて耐久性を高めることができる。 However, if the inner layer 11 forming the resin mold 1 is made of only a resin material (chemical wood), the thermal conductivity and durability may be insufficient. Therefore, in the resin mold 1 of the present embodiment, Inorganic powder having excellent heat conductivity is added to the layer 11. By adding the inorganic powder to the inner layer 11 that is in direct contact with the molten resin, the cooling efficiency during molding can be increased and the molding efficiency can be improved. Further, by adding the inorganic powder to the inner layer 11, it is possible to improve the durability as compared with the case of forming the chemical wood alone.

添加する無機粉末としては、熱伝導率に優れたものであれば如何なるものであってもよく、金属粉末や酸化チタン、アルミナ、窒化アルミニウム、窒化ホウ素等を例示することができる。これらの中では、熱伝導率等の各種物性の観点から、金属粉末が最適である。金属粉末としては、各種金属の粉末を挙げることができるが、性能、コスト等の点からアルミニウム粉末が最適である。 The inorganic powder to be added may be any one as long as it has excellent thermal conductivity, and examples thereof include metal powder, titanium oxide, alumina, aluminum nitride, and boron nitride. Among these, metal powder is most suitable from the viewpoint of various physical properties such as thermal conductivity. As the metal powder, powders of various metals can be mentioned, but aluminum powder is most suitable in terms of performance, cost and the like.

内側層11における無機粉末の添加量は、要求される性能や添加する無機粉末の種類により適宜設定すればよいが、例えば無機粉末として金属粉末(アルミニウム粉末)を添加する場合には、添加量を10質量%〜30質量%程度とすることが好ましい。金属粉末の添加量が10質量%未満であると、熱伝導率や耐久性等の性能が不十分になるおそれがある。逆に添加量が30質量%を越えても性能的には飽和してしまい、コスト増を招くことになるので、30質量%を上限とする。 The addition amount of the inorganic powder in the inner layer 11 may be appropriately set depending on the required performance and the type of the inorganic powder to be added. For example, when the metal powder (aluminum powder) is added as the inorganic powder, the addition amount is It is preferably about 10% by mass to 30% by mass. If the addition amount of the metal powder is less than 10% by mass, the performance such as thermal conductivity and durability may be insufficient. On the contrary, if the addition amount exceeds 30% by mass, the performance will be saturated and the cost will increase, so the upper limit is 30% by mass.

一方、内側層11とは反対の外側層13は、成形に対する影響が少なく、熱伝導率や耐久性等の性能も内側層11ほどは要求されない。そこで、外側層13に関しては、安価なケミカルウッドを使用して、金属粉末等の無機粉末は添加しないか、あるいは内側層11に比べて僅かな添加量とする。 On the other hand, the outer layer 13, which is the opposite of the inner layer 11, has little influence on molding, and performance such as thermal conductivity and durability is not required as much as the inner layer 11. Therefore, with respect to the outer layer 13, inexpensive chemical wood is used, and the inorganic powder such as metal powder is not added, or the amount thereof is smaller than that of the inner layer 11.

ただし、金属粉末等の無機粉末を所定量含む内側層11と金属粉末等の無機粉末を含まない(あるいは含有量が極めて少ない)外側層13を接する形にすると(内側層11と外側層13の2層構成にすると)、これらの物性値(熱伝導率等)の相違により、樹脂型1に亀裂等が生ずるおそれがある。そこで、本実施形態の樹脂型1では、内側層11と外側層13の間に中間層12を介在させ、3層構造としている。 However, when the inner layer 11 containing a predetermined amount of inorganic powder such as a metal powder and the outer layer 13 containing no inorganic powder such as a metal powder (or having a very small content) are in contact with each other (of the inner layer 11 and the outer layer 13). In the case of a two-layer structure), the resin mold 1 may be cracked due to the difference in these physical property values (heat conductivity, etc.). Therefore, the resin mold 1 of the present embodiment has a three-layer structure in which the intermediate layer 12 is interposed between the inner layer 11 and the outer layer 13.

ここで、中間層12は、内側層11と外側層13の繋ぎの役割を有するものであり、内側層11の無機粉末の含有量と外側層13の無機粉末の含有量の中間の含有量で無機粉末を含有することで、内側層11と外側層13の物性差を緩和する役割を果たす。 Here, the intermediate layer 12 has a role of connecting the inner layer 11 and the outer layer 13, and has an intermediate content between the content of the inorganic powder of the inner layer 11 and the content of the inorganic powder of the outer layer 13. By containing the inorganic powder, it plays a role of relaxing the physical property difference between the inner layer 11 and the outer layer 13.

すなわち、内側層に含まれる無機粉末の割合をA%、中間層に含まれる無機粉末の割合をB%、外側層に含まれる無機粉末の割合をC%とした時に、A>B>Cとする。例えば内側層11の金属粉末(アルミニウム粉末)の含有量が20質量%、外側層13の金属粉末(アルミニウム粉末)の含有量が0質量%である場合に、中間層12の金属粉末(アルミニウム粉末)の含有量を10質量%とする。なお、内側層11の金属粉末(アルミニウム粉末)の含有量の設定範囲を考えると、中間層12の金属粉末(アルミニウム粉末)の含有量は、5質量%〜15質量%程度である。 That is, when the ratio of the inorganic powder contained in the inner layer is A%, the ratio of the inorganic powder contained in the intermediate layer is B%, and the ratio of the inorganic powder contained in the outer layer is C%, A>B>C. To do. For example, when the content of the metal powder (aluminum powder) of the inner layer 11 is 20 mass% and the content of the metal powder (aluminum powder) of the outer layer 13 is 0 mass %, the metal powder (aluminum powder) of the intermediate layer 12 is ) Content is 10 mass %. Considering the setting range of the content of the metal powder (aluminum powder) of the inner layer 11, the content of the metal powder (aluminum powder) of the intermediate layer 12 is about 5% by mass to 15% by mass.

これにより、無機粉末を含有する樹脂型1に発生する亀裂や破損を防止することができる。中間層12を形成しないと、熱伝導率の差等に起因して亀裂や剥離等が生じ易くなる。 As a result, it is possible to prevent cracks and damages that occur in the resin mold 1 containing the inorganic powder. If the intermediate layer 12 is not formed, cracks and peeling are likely to occur due to the difference in thermal conductivity and the like.

樹脂型1の層構成としては、前述の3層構造に限られるものではなく、例えば4層以上として、内側から外側に向って無機粉末の含有量が次第に少なくなるように設定することも可能である。ただし、層数が増えるとコスト増の要因となるので、3層構造とすることが最も実用的である。 The layer structure of the resin mold 1 is not limited to the above-mentioned three-layer structure. For example, four layers or more may be set so that the content of the inorganic powder gradually decreases from the inside to the outside. is there. However, since the increase in the number of layers causes a cost increase, it is most practical to use a three-layer structure.

本実施形態においてはブロー成形用の樹脂型について説明したが、その他の成形型として用いても良い(例えば、射出成形用の成形型)。ただし、本実施形態の樹脂型は、例えばコスト優先で樹脂型を選択し、且つ生産数も多量にする必要がある場合に大きな効果が見込まれることから、ブロー成形に用いるのが好ましいが、その中でも発泡ブロー成形に好ましく適用できる。発泡樹脂の成形温度が未発泡樹脂の成形温度よりも低いためである(例えばポリプロピレンの場合、未発泡での成形温度は200℃程度であるのに対して、発泡での成形温度は160〜170℃程度である)。樹脂型は熱伝導率が低く、樹脂を冷却する能力が金型よりも低いが、発泡樹脂の場合は成形温度が初めから低いので、成形サイクルが未発泡の樹脂に比べてそれほど長くならない。 Although the resin mold for blow molding has been described in the present embodiment, it may be used as another molding mold (for example, a molding mold for injection molding). However, the resin mold of the present embodiment is preferably used for blow molding because a large effect can be expected when it is necessary to select the resin mold in consideration of cost and to increase the number of products to be produced. Above all, it can be preferably applied to foam blow molding. This is because the molding temperature of the foamed resin is lower than the molding temperature of the unfoamed resin (for example, in the case of polypropylene, the molding temperature of unfoamed is about 200° C., while the molding temperature of foamed is 160 to 170). C is about). The resin mold has a low thermal conductivity and a lower ability to cool the resin than the mold, but in the case of the foamed resin, the molding temperature is low from the beginning, so that the molding cycle is not so long as compared with the unfoamed resin.

本実施形態の樹脂型1において、樹脂型1に金属粉末等の無機粉末を添加することは、試作時の耐久性向上に有効であるが、成形品と接する内側層11のみに無機粉末を添加するようにしているので、材料費も削減することができる。さらに、前述の通り、樹脂型1を多層構成とすることで熱伝導率の差異による亀裂、破壊等を防ぐ効果も狙えるが、この現象は大きい製品や試作期間が長いほど発生する傾向にあるので、このような場合に効果が大きい。 In the resin mold 1 of the present embodiment, addition of an inorganic powder such as a metal powder to the resin mold 1 is effective in improving the durability during trial manufacture, but the inorganic powder is added only to the inner layer 11 that is in contact with the molded product. Therefore, the material cost can be reduced. Furthermore, as described above, the resin mold 1 having a multi-layered structure can also be aimed at the effect of preventing cracks, breakage, etc. due to the difference in thermal conductivity, but this phenomenon tends to occur with larger products and longer trial production periods. In such a case, the effect is great.

加えて、本実施形態の樹脂型1は、多層構成を採用することで、その作製が簡単なものとなっており、特殊な工法を採用する必要がなく、使用する材料に制約が加わることもない。 In addition, the resin mold 1 of the present embodiment can be easily manufactured by adopting a multi-layer structure, and it is not necessary to employ a special construction method, and the material to be used may be restricted. Absent.

以上、本発明の実施形態について説明してきたが、本発明がこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能であることは言うまでもない。 Although the embodiment of the present invention has been described above, it is needless to say that the present invention is not limited to this embodiment and various modifications can be made without departing from the gist of the present invention.

以下、本発明の実施例について、具体的な実験結果に基づいて説明する。 Hereinafter, examples of the present invention will be described based on specific experimental results.

実施例1
ウレタン系ケミカルウッドを用いて3層構成の樹脂型を作製した。内側層には、無機粉末としてアルミニウム粉末を20質量%添加した。外側層には、無機粉末は添加していない。中間層には、無機粉末としてアルミニウム粉末を10質量%添加した。本実施例では内側層は6分割されている。
Example 1
A resin mold having a three-layer structure was prepared using urethane chemical wood. 20 mass% of aluminum powder was added as an inorganic powder to the inner layer. No inorganic powder was added to the outer layer. Aluminum powder was added to the intermediate layer as an inorganic powder in an amount of 10% by mass. In this embodiment, the inner layer is divided into six parts.

比較例1
ウレタン系ケミカルウッドを用いて2層構成の樹脂型を作製した。内側層には、無機粉末としてアルミニウム粉末を20質量%添加した。外側層には、無機粉末は添加していない。内側層は6分割されている。
Comparative Example 1
A resin mold having a two-layer structure was produced using urethane chemical wood. 20 mass% of aluminum powder was added as an inorganic powder to the inner layer. No inorganic powder was added to the outer layer. The inner layer is divided into six.

比較例2
ウレタン系ケミカルウッドを用いて単層6分割構成の樹脂型を作製した。無機粉末は添加していない。
Comparative example 2
A resin mold having a single-layer 6-division structure was prepared using urethane chemical wood. No inorganic powder was added.

比較例3
ウレタン系ケミカルウッドを用いて単層6分割構成の樹脂型を作製した。無機粉末としてアルミニウム粉末を20質量%添加した。
Comparative Example 3
A resin mold having a single-layer 6-division structure was prepared using urethane chemical wood. 20 mass% of aluminum powder was added as an inorganic powder.

評価
これら実施例及び比較例について、熱伝導率、耐久性、亀裂や破損の発生状況、作製コストについて調べた。結果を表1に示す。
Evaluation These examples and comparative examples were examined for thermal conductivity, durability, occurrence of cracks and breakage, and production cost. The results are shown in Table 1.

Figure 2020104445
Figure 2020104445

表1から明らかな通り、3層構成にしアルミニウム粉末の各層への添加量を適正なものとした実施例1では、熱伝導率や耐久性に優れ、例えば6分割された内側層の各ピース間等に亀裂が発生することもなく、作製コストの点でも有利な樹脂型を実現できることがわかる。これに対して、アルミニウム粉末を含有する内側層とアルミニウム粉末を含有しない外側層を直接的に接するようにした比較例1では、熱伝導率や耐久性の点では問題なかったが、亀裂や破損の発生が見られた。単層の比較例2,3では、全ての性能を確保することが難しい。 As is apparent from Table 1, in Example 1 in which the amount of aluminum powder added to each layer is three layers and the amount of aluminum powder is appropriate, the thermal conductivity and durability are excellent. It can be seen that a resin mold, which is advantageous in terms of manufacturing cost, can be realized without causing cracks in the above. On the other hand, in Comparative Example 1 in which the inner layer containing the aluminum powder and the outer layer not containing the aluminum powder were brought into direct contact with each other, there was no problem in terms of thermal conductivity and durability, but cracks and breakage occurred. Was observed. In the single-layer comparative examples 2 and 3, it is difficult to secure all performances.

1 樹脂型
11 内側層
11a〜11f 分割ピース
12 中間層
13 外側層
1 Resin Mold 11 Inner Layers 11a to 11f Divided Piece 12 Intermediate Layer 13 Outer Layer

Claims (7)

少なくとも3層からなる多層構成の樹脂型であって、
最も内側の樹脂成形品と接する内側層に含まれる無機粉末の割合をA%、中間層に含まれる無機粉末の割合をB%、外側層に含まれる無機粉末の割合をC%とした時に、A>B>Cであることを特徴とする樹脂型。
A resin type having a multi-layered structure including at least three layers,
When the proportion of the inorganic powder contained in the inner layer in contact with the innermost resin molded product is A%, the proportion of the inorganic powder contained in the intermediate layer is B%, and the proportion of the inorganic powder contained in the outer layer is C%, A resin mold characterized in that A>B>C.
前記無機粉末は金属粉末であることを特徴とする請求項1記載の樹脂型。 The resin mold according to claim 1, wherein the inorganic powder is a metal powder. 前記金属粉末がアルミニウム粉末であることを特徴とする請求項2記載の樹脂型。 The resin mold according to claim 2, wherein the metal powder is aluminum powder. 前記各層は、ケミカルウッドにより形成されていることを特徴とする請求項1から3のいずれか1項記載の樹脂型。 The resin mold according to any one of claims 1 to 3, wherein each of the layers is made of chemical wood. ブロー成形用であることを特徴とする請求項1から4のいずれか1項記載の樹脂型。 The resin mold according to any one of claims 1 to 4, which is for blow molding. 発泡ブロー成形用であることを特徴とする請求項5記載の樹脂型。 The resin mold according to claim 5, which is for foam blow molding. 内側層は複数個に分割されていることを特徴とする請求項1から6のいずれか1項記載の樹脂型。 The resin mold according to any one of claims 1 to 6, wherein the inner layer is divided into a plurality of pieces.
JP2018246820A 2018-12-28 2018-12-28 Resin mold Active JP7236028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246820A JP7236028B2 (en) 2018-12-28 2018-12-28 Resin mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246820A JP7236028B2 (en) 2018-12-28 2018-12-28 Resin mold

Publications (2)

Publication Number Publication Date
JP2020104445A true JP2020104445A (en) 2020-07-09
JP7236028B2 JP7236028B2 (en) 2023-03-09

Family

ID=71447855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246820A Active JP7236028B2 (en) 2018-12-28 2018-12-28 Resin mold

Country Status (1)

Country Link
JP (1) JP7236028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044551A1 (en) 2021-09-24 2023-03-30 Instituto Hercílio Randon Inorganic composite, use, mechanical shaping tool, mould, manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120612A (en) * 1986-11-10 1988-05-25 Honda Motor Co Ltd Mold for synthetic resin foam
JPH04104432U (en) * 1991-02-20 1992-09-09 本田技研工業株式会社 Vacuum molding mold
JPH09277369A (en) * 1996-02-15 1997-10-28 Terada:Kk Resin composition for vacuum forming mold
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin
JP2015112764A (en) * 2013-12-10 2015-06-22 株式会社ブリヂストン Molding die of expansion-molded article, and production method of the die

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120612A (en) * 1986-11-10 1988-05-25 Honda Motor Co Ltd Mold for synthetic resin foam
JPH04104432U (en) * 1991-02-20 1992-09-09 本田技研工業株式会社 Vacuum molding mold
JPH09277369A (en) * 1996-02-15 1997-10-28 Terada:Kk Resin composition for vacuum forming mold
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin
JP2015112764A (en) * 2013-12-10 2015-06-22 株式会社ブリヂストン Molding die of expansion-molded article, and production method of the die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044551A1 (en) 2021-09-24 2023-03-30 Instituto Hercílio Randon Inorganic composite, use, mechanical shaping tool, mould, manufacturing method

Also Published As

Publication number Publication date
JP7236028B2 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
CN104662355B (en) Pressure vessel and production method therefor
CN202909391U (en) Golf ball
CN105504707B (en) A kind of PBT plastic of heat conduction toughening flame-proof enhancing and preparation method thereof
JP2020104445A (en) Resin mold
CN107501866A (en) A kind of metal-resin composite die material and preparation method thereof
CN104658917B (en) A kind of preparation method of the metal-based compound electronics packaging part containing high-volume fractional SiC
KR101875703B1 (en) Composition of filament for 3D printer
CN106553290A (en) A kind of high-precision reflector composite shaping moudle structure and its moulding technique
CN103085260B (en) Felt manufacturing technology
TW201341167A (en) Manufacturing method for impeller and fan with the impeller
JP6587136B2 (en) Mold and mold manufacturing method
JP2699234B2 (en) Wood base material and manufacturing method
JP2017200986A (en) Thermoplastic resin composition, molded article, and method for producing molded article
CN103342942A (en) Resin mixed liquor coating based on three-dimensional printing resin mould printing technology
JP6322999B2 (en) Foam molding
KR20160117652A (en) Heat conductive polyamide resin composition and molded article using thereof
KR100765985B1 (en) Thermoplastic resin composition for rotational molding process using rubber mold and resin composition by the method
CN204829136U (en) Blowing counter weight base
JP2019015227A (en) Manufacturing method for cylinder block
CN103717271B (en) Comprise golf and the manufacture method of the blend of the acid polymer of highly neutralization
JPS6229460B2 (en)
JP2020040299A (en) Method for manufacturing high thermal conductive resin member, and resin member manufactured using the manufacturing method
KR100393737B1 (en) In-case for kimchee refrigerator and method for making the same
KR102540884B1 (en) Geopolymer composition for 3d printing and method for 3d printing using the same
TWI580567B (en) Method and article for forming metal / ceramic article with no laser sintering powder lumping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7236028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150