JP2020102539A - Piezoelectric composition and piezoelectric element - Google Patents

Piezoelectric composition and piezoelectric element Download PDF

Info

Publication number
JP2020102539A
JP2020102539A JP2018239913A JP2018239913A JP2020102539A JP 2020102539 A JP2020102539 A JP 2020102539A JP 2018239913 A JP2018239913 A JP 2018239913A JP 2018239913 A JP2018239913 A JP 2018239913A JP 2020102539 A JP2020102539 A JP 2020102539A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric composition
composition
oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018239913A
Other languages
Japanese (ja)
Other versions
JP7167700B2 (en
Inventor
主樹 深澤
Kazuki Fukasawa
主樹 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018239913A priority Critical patent/JP7167700B2/en
Priority to US16/715,010 priority patent/US11296273B2/en
Priority to CN201911307070.0A priority patent/CN111348909B/en
Priority to DE102019135245.2A priority patent/DE102019135245B9/en
Publication of JP2020102539A publication Critical patent/JP2020102539A/en
Application granted granted Critical
Publication of JP7167700B2 publication Critical patent/JP7167700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

To provide a piezoelectric composition having a high electric resistivity and a large piezoelectric constant.SOLUTION: A piezoelectric composition includes an oxide containing bismuth, barium, iron, and titanium, and silver. The oxide has a perovskite structure. The mass of oxide is represented as MABO3, and the mass of silver is represented as MAG. 100×MAG/MABO3 is 0.01 or more and 10.00 or less.SELECTED DRAWING: Figure 1

Description

本発明は、圧電組成物及び圧電素子に関する。 The present invention relates to a piezoelectric composition and a piezoelectric element.

現在実用化されている圧電組成物の大部分は、ジルコン酸鉛(PbZrO)及びチタン酸鉛(PbTiO)からなる固溶体(いわゆるPZT系圧電組成物)である。PZT系圧電組成物は主成分として多量の酸化鉛(PbO)を含む。酸化鉛は低温でも極めて揮発し易いため、圧電組成物又はこれを用いた圧電素子の製造過程では、多量の酸化鉛が大気中へ拡散してしまう。鉛は人体を害する環境汚染物質であるので、鉛を含有しない圧電組成物が求められている。 Most of the piezoelectric compositions currently put into practical use are solid solutions (so-called PZT-based piezoelectric compositions) made of lead zirconate (PbZrO 3 ) and lead titanate (PbTiO 3 ). The PZT-based piezoelectric composition contains a large amount of lead oxide (PbO) as a main component. Since lead oxide is extremely volatile even at low temperatures, a large amount of lead oxide will diffuse into the atmosphere during the manufacturing process of the piezoelectric composition or the piezoelectric element using the same. Since lead is an environmental pollutant that harms the human body, there is a need for a piezoelectric composition that does not contain lead.

鉛を含まない代表的な圧電組成物は、鉄酸ビスマス(BiFeO)である。例えば、下記特許文献1及び非特許文献1には、BiFeO及びチタン酸バリウム(BaTiO)からなる固溶体(BFO‐BTO系圧電組成物)が記載されている。しかし、従来のBFO‐BTO系圧電組成物の電気抵抗率は小さく、リーク電流がBFO‐BTO系圧電組成物において生じ易いため、従来のBFO‐BTO系圧電組成物は必ずしも十分な圧電性を有していない。例えば、分極処理後のBFO‐BTO系圧電組成物の圧電定数d33は、135pC/N程度である。下記特許文献2は、BiFeO、BiFe及びBi25FeO39を含む粉体から誘電体セラミックスを製造する方法を開示している。この製造方法によれば、誘電体セラミックス(圧電組成物)におけるリーク電流は低減される。しかし下記特許文献2では、誘電体セラミックスの具体的な圧電定数が報告されていない。 A typical lead-free piezoelectric composition is bismuth ferrate (BiFeO 3 ). For example, the following Patent Document 1 and Non-Patent Document 1 describe a solid solution (BFO-BTO piezoelectric composition) composed of BiFeO 3 and barium titanate (BaTiO 3 ). However, since the conventional BFO-BTO piezoelectric composition has a low electric resistivity and a leak current is easily generated in the BFO-BTO piezoelectric composition, the conventional BFO-BTO piezoelectric composition does not always have sufficient piezoelectricity. I haven't. For example, the piezoelectric constant d 33 of the BFO-BTO piezoelectric composition after the polarization treatment is about 135 pC/N. The following Patent Document 2 discloses a method for producing a dielectric ceramic from a powder containing BiFeO 3 , Bi 2 Fe 4 O 9 and Bi 25 FeO 39 . According to this manufacturing method, the leak current in the dielectric ceramics (piezoelectric composition) is reduced. However, Patent Document 2 below does not report a specific piezoelectric constant of the dielectric ceramics.

特開2009‐298621号公報JP-A-2009-298621 特許第6146453号公報Japanese Patent No. 6146453

Wei et.al, Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3‐BaTiO3 Ceramics, J. Am. Ceram. Soc., 96 [10] (2013) 3163‐3168.Wei et. al, Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3-BaTiO3 Ceramics, J. Am. Am. Ceram. Soc. , 96 [10] (2013) 3163-3168.

本発明は、高い電気抵抗率及び大きい圧電定数を有する圧電組成物及び当該圧電組成物を備える圧電素子を提供することを目的とする。 An object of the present invention is to provide a piezoelectric composition having a high electric resistivity and a large piezoelectric constant, and a piezoelectric element including the piezoelectric composition.

本発明の一側面に係る圧電組成物は、ビスマス、バリウム、鉄、及びチタンを含む酸化物と、銀と、を備え、酸化物がペロブスカイト構造を有し、酸化物の質量が、MABO3と表され、銀の質量が、MAGと表され、100×MAG/MABO3が、0.01以上10.00以下である。 A piezoelectric composition according to one aspect of the present invention includes an oxide containing bismuth, barium, iron, and titanium, and silver, the oxide has a perovskite structure, and the mass of the oxide is MABO3 . It is represented, the mass of silver is represented as M AG, and 100×M AG /M ABO3 is 0.01 or more and 10.00 or less.

本発明の一側面に係る圧電組成物は、バナジウム、ニオブ、タンタル、モリブデン、タングステン及びマンガンからなる群より選ばれる少なくとも一種の元素Dを更に含んでよい。 The piezoelectric composition according to one aspect of the present invention may further include at least one element D selected from the group consisting of vanadium, niobium, tantalum, molybdenum, tungsten, and manganese.

本発明の一側面に係る圧電組成物は、元素Dとして、少なくともニオブを更に含んでよい。 The piezoelectric composition according to one aspect of the present invention may further contain at least niobium as the element D.

元素Dの質量の合計値が、Mと表されてよく、100×M/MABO3が、0.00以上5.00以下であってよい。 The total mass value of the element D may be represented as M D, and 100×M D /M ABO3 may be 0.00 or more and 5.00 or less.

少なくとも一部の上記酸化物が、x[BiFeO]‐y[BaTiO]と表されてよく、xが、0.6以上0.8以下であってよく、yが、0.2以上0.4以下であってよく、x+yが、1であってよく、mが、0.96以上1.06以下であってよく、nが、0.96以上1.06以下であってよい。 At least a portion of the oxide, x [Bi m FeO 3] may be expressed as -y [Ba n TiO 3], x is may be 0.6 to 0.8, y is 0 .2 or more and 0.4 or less, x+y may be 1, m may be 0.96 or more and 1.06 or less, and n is 0.96 or more and 1.06 or less. You can

本発明の一側面に係る圧電素子は、上記の圧電組成物を備える。 A piezoelectric element according to one aspect of the present invention includes the above piezoelectric composition.

本発明によれば、高い電気抵抗率及び大きい圧電定数を有する圧電組成物及び当該圧電組成物を備える圧電素子が提供される。 According to the present invention, there are provided a piezoelectric composition having a high electric resistivity and a large piezoelectric constant, and a piezoelectric element including the piezoelectric composition.

図1は、本発明の一実施形態に係る圧電組成物に含まれる酸化物のペロブスカイト構造の単位胞の斜視図である。FIG. 1 is a perspective view of a unit cell of an oxide perovskite structure included in a piezoelectric composition according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る圧電素子の模式的な斜視図である。FIG. 2 is a schematic perspective view of the piezoelectric element according to the embodiment of the present invention.

以下、図面を参照しながら、本発明の好適な実施形態について説明する。本発明は下記実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.

本実施形態に係る圧電組成物は、ビスマス(Bi)、バリウム(Ba)、鉄(Fe)、及びチタン(Ti)を含む酸化物と、銀(Ag)と、を備える。説明の便宜のため、Bi、Ba、Fe及びTiを含む酸化物は、「BFO‐BTO」と表記される。BFO‐BTOはペロブスカイト構造を有する。BFO‐BTOは、ペロブスカイト構造の正方晶(tetragonal crystal)、ペロブスカイト構造の立方晶(cubic crystal)、及びペロブスカイト構造の菱面体晶(rhombohedral crystal)からなる群より選ばれる少なくとも一種の結晶を含んでよい。ペロブスカイト構造の単位胞の一例は、図1に示される。単位胞ucは、Aサイトに位置する元素A、Bサイトに位置する元素B及び酸素(O)からなっていてよい。元素Aは、Bi又はBaであってよい。元素Bは、Fe又はTiであってよい。 The piezoelectric composition according to this embodiment includes an oxide containing bismuth (Bi), barium (Ba), iron (Fe), and titanium (Ti), and silver (Ag). For convenience of description, the oxide containing Bi, Ba, Fe and Ti is referred to as “BFO-BTO”. BFO-BTO has a perovskite structure. BFO-BTO is at least one crystal selected from the group consisting of tetragonal crystals having a perovskite structure, cubic crystals having a perovskite structure, and rhombohedral crystals having a perovskite structure. .. An example of a unit cell having a perovskite structure is shown in FIG. The unit cell uc may be composed of the element A located at the A site, the element B located at the B site, and oxygen (O). Element A may be Bi or Ba. The element B may be Fe or Ti.

酸化物(BFO‐BTO)の質量は、MABO3と表される。Agの質量は、MAGと表される。MAGとは、Agの単体の質量と言い換えられる。100×MAG/MABO3は、0.01以上10.00以下である。100×MAG/MABO3が0.01以上10.00以下であることにより、圧電組成物は、高い電気抵抗率(ρ)と、大きい圧電定数(d33)を有することができる。その理由は以下の通りである。 The mass of oxide (BFO-BTO) is denoted as MABO3 . The mass of Ag is expressed as M AG . The M AG, translates into a single mass of Ag. 100×M AG /M ABO3 is 0.01 or more and 10.00 or less. When 100×M AG / MABO3 is 0.01 or more and 10.00 or less, the piezoelectric composition can have a high electrical resistivity (ρ) and a large piezoelectric constant (d 33 ). The reason is as follows.

BFO‐BTOのペロブスカイト構造を構成する一部の酸素は欠落し易い。つまり、ペロブスカイト構造では、酸素空孔が生じ易い。ペロブスカイト構造を構成する一部の酸素の欠落は、例えば、下記式1で表される。一つの酸素空孔(V ’’)が生じることに伴って、2つの電子(e)が生じる。したがって、圧電組成物が酸素空孔を含む場合、酸素空孔に起因するリーク電流が圧電組成物中に生じ易い。換言すれば、酸素空孔を含む圧電組成物の電気抵抗率は低い。その結果、圧電組成物に高い電圧を印加することが困難であり、圧電組成物は十分に分極されず、圧電組成物は大きい圧電定数を有することが困難である。しかし、本実施形態に係る圧電組成物はAgを含むため、BFO‐BTOのペロブスカイト構造のAサイトに位置するBaの一部が、Agで置換される。AgによるBaの置換は、例えば、下記式2で表される。式2中のAgBAは、Baに代わってペロブスカイト構造のAサイトに位置するAgである。ペロブスカイト構造を構成するBaの価数は2であり、Agの価数は1であるので、AgによるBaの置換に伴って、正孔(h)が生じる。そして、100×MAG/MABO3が0.01以上10.00以下であることにより、酸素空孔に起因する電子と、Agに起因する正孔とがバランスし易い。つまり、Agは電子のアクセプターとして機能する。その結果、圧電組成物の電気抵抗率は、100×MAG/MABO3が上記の範囲外である圧電組成物の電気抵抗率に比べて高まり、圧電組成物におけるリーク電流が抑制される。したがって、圧電組成物に高い電圧を印加することが可能であり、圧電組成物は十分に分極され、圧電組成物は大きい圧電定数を有することができる。例えば、100×MAG/MABO3が上記の範囲内であることにより、圧電組成物が140pC/N以上であるd33を有することができる。100×MAG/MABO3が0.01未満である場合、酸素空孔に起因する電子を、Agに起因する正孔によって十分に相殺することは困難である。100×MAG/MABO3が0.01以上10.00よりも大きい場合も、圧電組成物において電荷がバランスし難く、BFO‐BTOの結晶構造(ペロブスカイト構造)が過剰なAgによって損なわれ易く、圧電組成物の圧電定数が減少し易い。圧電組成物が高い電気抵抗率と大きい圧電定数を有し易いことから、100×MAG/MABO3は、好ましくは0.01以上5.00以下、さらに好ましくは、0.01以上0.50以下であってもよい。仮に圧電組成物がAgを含まず、価数が2である銅(Cu)を含む場合、圧電組成物が高い電気抵抗率を有することは困難であり、大きい圧電定数を有することは困難もある。ただし、圧電組成物は、Agに加えてCuを含んでもよい。圧電組成物に印加される電圧は、電界と言い換えられてよい。
O→V ’’+2e (1)
Ag→AgBA+h (2)
A part of oxygen that constitutes the perovskite structure of BFO-BTO is easily lost. That is, in the perovskite structure, oxygen vacancies are likely to occur. The lack of some oxygen constituting the perovskite structure is represented by the following formula 1, for example. Two electrons (e ) are generated in association with the generation of one oxygen vacancy (V O ). Therefore, when the piezoelectric composition contains oxygen vacancies, a leak current due to the oxygen vacancies is likely to occur in the piezoelectric composition. In other words, the piezoelectric composition containing oxygen vacancies has a low electric resistivity. As a result, it is difficult to apply a high voltage to the piezoelectric composition, the piezoelectric composition is not sufficiently polarized, and it is difficult for the piezoelectric composition to have a large piezoelectric constant. However, since the piezoelectric composition according to the present embodiment contains Ag, a part of Ba located at the A site of the perovskite structure of BFO-BTO is replaced with Ag. The substitution of Ba with Ag is represented by the following formula 2, for example. Ag BA in Formula 2 is Ag located at the A site of the perovskite structure instead of Ba. Since the valence of Ba forming the perovskite structure is 2, and the valence of Ag is 1, holes (h + ) are generated along with the substitution of Ba with Ag. When 100×M AG /M ABO3 is 0.01 or more and 10.00 or less, electrons due to oxygen vacancies and holes due to Ag are easily balanced. That is, Ag functions as an electron acceptor. As a result, the electric resistivity of the piezoelectric composition is higher than that of the piezoelectric composition having 100×M AG / MAB03 outside the above range, and the leak current in the piezoelectric composition is suppressed. Therefore, it is possible to apply a high voltage to the piezoelectric composition, the piezoelectric composition is sufficiently polarized, and the piezoelectric composition can have a large piezoelectric constant. For example, when 100×M AG / MABO3 is within the above range, the piezoelectric composition can have ad 33 of 140 pC/N or more. When 100×M AG /M ABO3 is less than 0.01, it is difficult to sufficiently offset the electrons due to oxygen vacancies by the holes due to Ag. Even when 100×M AG /M ABO3 is 0.01 or more and more than 10.00, it is difficult to balance the charges in the piezoelectric composition, and the crystal structure (perovskite structure) of BFO-BTO is easily damaged by excessive Ag, The piezoelectric constant of the piezoelectric composition tends to decrease. Since the piezoelectric composition tends to have a high electric resistivity and a large piezoelectric constant, 100×M AG / MAB03 is preferably 0.01 or more and 5.00 or less, more preferably 0.01 or more and 0.50 or less. It may be the following. If the piezoelectric composition does not contain Ag but contains copper (Cu) having a valence of 2, it is difficult for the piezoelectric composition to have a high electric resistivity, and it is also difficult for it to have a large piezoelectric constant. .. However, the piezoelectric composition may contain Cu in addition to Ag. The voltage applied to the piezoelectric composition may be paraphrased as an electric field.
O→V O +2e (1)
Ag → Ag BA +h + (2)

圧電組成物は、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)及びマンガン(Mn)からなる群より選ばれる少なくとも一種の元素Dを更に含んでよい。圧電組成物は、複数種の元素Dを含んでよい。元素Dの価数は、5又は6である。例えば、バナジウム、ニオブ及びタンタル其々の価数は5である。モリブデン、タングステン及びマンガン其々の価数は6である。圧電組成物が少なくとも一種の元素Dを含むことにより、圧電組成物の電気抵抗率(ρ)が高まり易く、圧電組成物の圧電定数(d33)が増加し易い。その理由は以下の通りである。ただし、圧電組成物が元素Dを含まない場合であっても、圧電組成物がAgを含むことにより、圧電組成物が高い電気抵抗率と大きい圧電定数を有することは可能である。 The piezoelectric composition may further include at least one element D selected from the group consisting of vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), and manganese (Mn). .. The piezoelectric composition may include multiple types of element D. The valence of the element D is 5 or 6. For example, vanadium, niobium, and tantalum each have a valence of 5. The valence of each of molybdenum, tungsten and manganese is 6. When the piezoelectric composition contains at least one element D, the electrical resistivity (ρ) of the piezoelectric composition is likely to increase, and the piezoelectric constant (d 33 ) of the piezoelectric composition is likely to increase. The reason is as follows. However, even if the piezoelectric composition does not contain the element D, it is possible that the piezoelectric composition has a high electric resistivity and a large piezoelectric constant because the piezoelectric composition contains Ag.

Biは揮発し易いため、圧電組成物の製造過程においてペロブスカイト構造のAサイトに位置する一部のBiが欠落する可能性がある。つまり、ペロブスカイト構造では、Biの空孔が生じる可能性がある。ペロブスカイト構造を構成する一部のBiの欠落は、例えば、下記式3で表される。ペロブスカイト構造を構成するBiの価数は3であるため、一つのBiの空孔(VBI ’’’)が生じることに伴って、3つの正孔(h)が生じる。したがって、圧電組成物がBiの空孔を含む場合、正孔に起因するリーク電流が圧電組成物中に生じ易い。換言すれば、圧電組成物がBiの空孔を含むことにより、圧電組成物の電気抵抗率は低下し易い。その結果、圧電組成物に高い電圧を印加し難く、圧電組成物が十分に分極され難く、圧電組成物の圧電定数が増加し難い。BFO‐BTOのペロブスカイト構造を構成するFeイオンの価数は3である。しかし、圧電組成物の製造過程において、Feイオンの価数が減少する可能性がある。Feイオンの価数の減少は、例えば、下記式4で表される。ペロブスカイト構造を構成するFeの価数は3であるため、Feの価数の減少に伴って、1つの正孔(h)が生じる。したがって、Feの価数の減少に伴って、正孔に起因するリーク電流が圧電組成物中に生じ易い。換言すれば、Feの価数の減少に伴って、圧電組成物の電気抵抗率は低下し易い。その結果、圧電組成物に高い電圧を印加し難く、圧電組成物が十分に分極され難く、圧電組成物の圧電定数が増加し難い。一方、圧電組成物が元素Dを含む場合、BFO‐BTOのペロブスカイト構造のBサイトに位置する元素の一部が、元素Dで置換される。Bサイトに位置する元素とは、例えばTiである。元素Dの価数が5である場合、元素DによるTiの置換は、例えば、下記式5で表される。元素Dのイオンの価数が6である場合、元素DによるTiの置換は、例えば、下記式6で表される。式4及び5中のDTIは、Tiに代わってペロブスカイト構造のBサイトに位置する元素Dである。ペロブスカイト構造を構成するTiの価数は4であり、元素Dの価数は5又は6であるので、元素DによるTiの置換に伴って、電子(e)が生じる。したがって、Biの空孔に起因する正孔、Feの価数の減少に起因する正孔、及び元素Dに由来する電子が、バランスし易い。つまり、元素Dは電子のドナーとして機能する。その結果、圧電組成物の電気抵抗率は、元素Dを含まない圧電組成物の電気抵抗率に比べて高まり易く、圧電組成物におけるリーク電流が抑制され易い。したがって、圧電組成物に高い電圧を印加し易く、圧電組成物は十分に分極され易く、圧電組成物は大きい圧電定数を有し易い。
Bi→VBI ’’’+3h (3)
Fe3+→Fe2++h (4)
D→DTI+e (5)
D→DTI+2e (6)
Since Bi easily volatilizes, there is a possibility that a part of Bi located at the A site of the perovskite structure will be lost during the manufacturing process of the piezoelectric composition. That is, in the perovskite structure, Bi vacancies may occur. The lack of some Bi constituting the perovskite structure is represented by, for example, Equation 3 below. Since the valence of Bi constituting the perovskite structure is 3, three holes (h + ) are generated along with the generation of one Bi vacancy (V BI ″″ ). Therefore, when the piezoelectric composition includes Bi holes, a leak current due to holes is likely to occur in the piezoelectric composition. In other words, since the piezoelectric composition contains the holes of Bi, the electric resistivity of the piezoelectric composition is likely to decrease. As a result, it is difficult to apply a high voltage to the piezoelectric composition, it is difficult to sufficiently polarize the piezoelectric composition, and it is difficult to increase the piezoelectric constant of the piezoelectric composition. The valence of Fe ions forming the perovskite structure of BFO-BTO is 3. However, the valence of Fe ions may decrease during the manufacturing process of the piezoelectric composition. The decrease in the valence of Fe ions is expressed by the following formula 4, for example. Since the valence of Fe constituting the perovskite structure is 3, one hole (h + ) is generated as the valence of Fe decreases. Therefore, as the valence of Fe decreases, a leak current due to holes easily occurs in the piezoelectric composition. In other words, as the valence of Fe decreases, the electrical resistivity of the piezoelectric composition tends to decrease. As a result, it is difficult to apply a high voltage to the piezoelectric composition, it is difficult to sufficiently polarize the piezoelectric composition, and it is difficult to increase the piezoelectric constant of the piezoelectric composition. On the other hand, when the piezoelectric composition contains the element D, a part of the element located at the B site of the perovskite structure of BFO-BTO is replaced with the element D. The element located at the B site is, for example, Ti. When the valence of the element D is 5, the substitution of Ti by the element D is represented by the following formula 5, for example. When the valence of the ion of the element D is 6, the substitution of Ti by the element D is represented by the following formula 6, for example. D TI in Formulas 4 and 5 is an element D located at the B site of the perovskite structure instead of Ti. Since the valence of Ti constituting the perovskite structure is 4, and the valence of the element D is 5 or 6, an electron (e ) is generated with the replacement of Ti with the element D. Therefore, holes due to the vacancies of Bi, holes due to the decrease in the valence of Fe, and electrons due to the element D are easily balanced. That is, the element D functions as an electron donor. As a result, the electric resistivity of the piezoelectric composition is likely to be higher than that of the piezoelectric composition not containing the element D, and the leak current in the piezoelectric composition is easily suppressed. Therefore, a high voltage is easily applied to the piezoelectric composition, the piezoelectric composition is easily polarized, and the piezoelectric composition is likely to have a large piezoelectric constant.
Bi→V BI ''' +3h + (3)
Fe 3+ →Fe 2+ +h + (4)
D → D TI + e - ( 5)
D→D TI +2e (6)

圧電組成物は、元素Dとして、少なくともニオブを更に含んでよい。ニオブを含む圧電組成物は、ニオブ以外の元素Dを含む圧電組成物に比べて、高い電気抵抗率を有し易い。したがって、ニオブを含む圧電組成物は、ニオブ以外の元素Dを含む圧電組成物に比べて、大きい圧電定数を有し易い。 The piezoelectric composition may further contain at least niobium as the element D. The piezoelectric composition containing niobium tends to have a high electric resistivity as compared with the piezoelectric composition containing the element D other than niobium. Therefore, the piezoelectric composition containing niobium tends to have a larger piezoelectric constant than the piezoelectric composition containing the element D other than niobium.

元素Dの質量の合計値は、Mと表されてよく、100×M/MABO3が、0.00以上5.00以下であってよい。Mとは、元素Dの単体の質量の合計値と言い換えられてよい。100×M/MABO3が、0.00以上5.00以下であることにより、Biの空孔に起因する正孔、Feの価数の減少に起因する正孔、及び元素Dに由来する電子が、バランスし易い。その結果、圧電組成物の電気抵抗率は、100×M/MABO3が上記の範囲外である圧電組成物の電気抵抗率に比べて高まり易く、圧電組成物におけるリーク電流が抑制され易い。したがって、圧電組成物に高い電圧を印加し易く、圧電組成物は十分に分極され易く、圧電組成物は大きい圧電定数を有し易い。例えば、100×M/MABO3が上記の範囲内であることにより、圧電組成物が150pC/N以上であるd33を有することができる。圧電組成物が高い電気抵抗率と大きい圧電定数を有し易いことから100×M/MABO3は、好ましくは0.01以上1.00以下、さらに好ましくは0.01以上0.10以下であってもよい。 The total mass value of the element D may be expressed as M D, and 100×M D /M ABO3 may be 0.00 or more and 5.00 or less. M D may be paraphrased as the total value of the mass of the element D alone. Since 100×M D /M ABO3 is 0.00 or more and 5.00 or less, the holes are derived from the holes of Bi, the holes are derived from the decrease of the valence of Fe, and the element D is derived. The electrons are easy to balance. As a result, the electric resistivity of the piezoelectric composition is likely to increase as compared with the electric resistivity of the piezoelectric composition in which 100×M D /M ABO3 is out of the above range, and the leak current in the piezoelectric composition is easily suppressed. Therefore, a high voltage is easily applied to the piezoelectric composition, the piezoelectric composition is easily polarized, and the piezoelectric composition is likely to have a large piezoelectric constant. For example, when 100×M D /M ABO3 is within the above range, the piezoelectric composition can have d 33 of 150 pC/N or more. Since the piezoelectric composition is likely to have a high electrical resistivity and a large piezoelectric constant, 100×M D /M ABO3 is preferably 0.01 or more and 1.00 or less, more preferably 0.01 or more and 0.10 or less. It may be.

圧電組成物が高い電気抵抗率と大きい圧電定数を有する理由は、必ずしも上記のメカニズムに限定されない。 The reason why the piezoelectric composition has a high electric resistivity and a large piezoelectric constant is not necessarily limited to the above mechanism.

少なくとも一部の酸化物(BFO‐BTO)は、下記化学式Aで表されてよい。下記化学式Aは化学式Bに等しい。
x[BiFeO]‐y[BaTiO] (A)
(BixmBayn)(FeTi)O (B)
x+yは1である。xは、0.6以上0.9以下、又は0.6以上0.8以下であってよい。yは、0.1以上0.4以下、又は0.2以上0.4以下であってよい。mは、0.96以上1.06以下であってよい。nは、0.96以上1.06以下であってよい。xが0.6以上0.8以下であり、yが0.2以上0.4以下である場合、電組成物は、高い電気抵抗率を有し易く、大きい圧電定数を有し易い。
At least some of the oxides (BFO-BTO) may be represented by the following chemical formula A. The following chemical formula A is equal to the chemical formula B.
x [Bi m FeO 3] -y [Ba n TiO 3] (A)
(Bi xm Ba yn) (Fe x Ti y) O 3 (B)
x+y is 1. x may be 0.6 or more and 0.9 or less, or 0.6 or more and 0.8 or less. y may be 0.1 or more and 0.4 or less, or 0.2 or more and 0.4 or less. m may be 0.96 or more and 1.06 or less. n may be 0.96 or more and 1.06 or less. When x is 0.6 or more and 0.8 or less and y is 0.2 or more and 0.4 or less, the electric composition tends to have a high electric resistivity and a large piezoelectric constant.

上記のMABO3とは、圧電組成物に含まれるBiFe、Ba及びTiの全ての元素が化学式Aで表される酸化物のみを構成するという仮定に基づく、x[BiFeO]‐y[BaTiO]の質量の計算値である。つまり、MABO3は、100×MAG/MABO3を規定するための計算上の値である。実際には、化学式A又は化学式Bにおける一部のBa又はBiが、Agで置換されてよい。化学式A又は化学式Bにおける一部のTi又はFeが、元素Dで置換されてよい。つまり、Bi、Ba、Fe及びTiを含む酸化物は、Agを更に含んでよい。Bi、Ba、Fe及びTiを含む酸化物は、Ag及び元素Dの両方を更に含んでもよい。圧電組成物は、BiFe、Ba、Ti、Ag及びOからなる一種の酸化物のみからなっていてよい。圧電組成物は、BiFe、Ba、Ti、Ag、元素D及びOからなる一種の酸化物のみからなっていてもよい。圧電組成物の一部は、BiFeOからなる相であってもよい。圧電組成物の一部は、BaTiOからなる相であってもよい。圧電組成物は、BiFe、Ba、Ti、Ag、元素D及びO以外の元素を、不純物又は添加物として含有していてもよい。例えば、圧電組成物は、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、アルミニウム(Al)、硫黄(S)、ジルコニウム(Zr)、珪素(Si)、リン(P)、銅(Cu)、亜鉛(Zn)及びハフニウム(Hf)からなる群より選ばれる少なくとも一種を含んでよい。本実施形態にかかる圧電組成物は、Pbを含まなくてよい。ただし、Pbを含む圧電組成物は、本実施形態の技術的範囲から必ずしも除外されない。 The above M ABO3, based on the assumption that constitute the only oxides Bi contained in the piezoelectric composition, Fe, all elements of Ba and Ti is represented by Chemical Formula A, x [Bi m FeO 3 ] - It is a calculated value of the mass of y[Ba n TiO 3 ]. That is, M ABO3 is a calculated value for defining 100×M AG /M ABO3 . In practice, some Ba or Bi in formula A or formula B may be replaced by Ag. Part of Ti or Fe in the chemical formula A or the chemical formula B may be replaced with the element D. That is, the oxide containing Bi, Ba, Fe and Ti may further contain Ag. The oxide containing Bi, Ba, Fe and Ti may further contain both Ag and the element D. The piezoelectric composition may consist of only one oxide consisting of Bi 2 , Fe, Ba, Ti, Ag and O 2. The piezoelectric composition may be composed of only one kind of oxide consisting of Bi , Fe, Ba, Ti, Ag, and elements D and O. A part of the piezoelectric composition may be a phase composed of Bi m FeO 3 . Some of the piezoelectric composition, may be a phase consisting Ba n TiO 3. The piezoelectric composition may contain elements other than Bi , Fe, Ba, Ti, Ag, and elements D and O as impurities or additives. For example, the piezoelectric composition includes sodium (Na), potassium (K), magnesium (Mg), aluminum (Al), sulfur (S), zirconium (Zr), silicon (Si), phosphorus (P), copper (Cu). ), zinc (Zn), and hafnium (Hf). The piezoelectric composition according to the present embodiment may not contain Pb. However, the piezoelectric composition containing Pb is not necessarily excluded from the technical scope of the present embodiment.

圧電組成物全体の平均的な組成は、例えば、蛍光X線分析法(XRF法)又は誘導結合プラズマ(ICP)発光分光法によって分析されてよい。圧電組成物の構造は、X線回折(XRD)法によって特定されてよい。 The average composition of the entire piezoelectric composition may be analyzed by, for example, X-ray fluorescence analysis (XRF method) or inductively coupled plasma (ICP) emission spectroscopy. The structure of the piezoelectric composition may be identified by X-ray diffraction (XRD) method.

図2に示されるように、本実施形態に係る圧電素子10は、基板2と、基板2の表面に重なる第一電極4と、第一電極4の表面に重なる圧電体6と、圧電体6の表面に重なる第二電極8と、を備える。圧電体6は、本実施形態に係る上記圧電組成物を含む。圧電体6は、圧電組成物の焼結体であってよい。圧電体6は、圧電組成物に加えて、他の成分を含んでもよい。図2に示される圧電体6は、薄い直方体であるが、圧電体6の形状及び寸法は限定されない。基板2は、例えば、金属、半導体、樹脂、ガラス又はセラミックスであってよい。第一電極4及び第二電極8が導電性を有する限り、第一電極4及び第二電極8其々の組成は限定されない。第一電極4及び第二電極8其々は金属単体又は合金であってよい。第一電極4及び第二電極8其々は、導電性を有する金属酸化物であってもよい。 As shown in FIG. 2, the piezoelectric element 10 according to the present embodiment includes a substrate 2, a first electrode 4 overlapping the surface of the substrate 2, a piezoelectric body 6 overlapping the surface of the first electrode 4, and a piezoelectric body 6. The second electrode 8 overlapping the surface of the. The piezoelectric body 6 includes the piezoelectric composition according to this embodiment. The piezoelectric body 6 may be a sintered body of a piezoelectric composition. The piezoelectric body 6 may include other components in addition to the piezoelectric composition. The piezoelectric body 6 shown in FIG. 2 is a thin rectangular parallelepiped, but the shape and dimensions of the piezoelectric body 6 are not limited. The substrate 2 may be, for example, metal, semiconductor, resin, glass or ceramics. The composition of each of the first electrode 4 and the second electrode 8 is not limited as long as the first electrode 4 and the second electrode 8 have conductivity. Each of the first electrode 4 and the second electrode 8 may be a simple metal or an alloy. Each of the first electrode 4 and the second electrode 8 may be a metal oxide having conductivity.

本実施形態に係る圧電素子の用途は、多岐にわたる。圧電素子は、例えば、圧電マイクロフォン、圧電トランス、ハーベスタ、発振子、共振子、又は音響多層膜であってよい。圧電素子は、例えば、圧電アクチュエータであってもよい。圧電アクチュエータは、ハプティクス(haptics)に用いられてよい。つまり、圧電アクチュエータは、皮膚感覚(触覚)によるフィードバックが求められる様々なデバイスに用いられてよい。皮膚感覚によるフィードバックが求められるデバイスとは、例えば、ウェアラブルデバイス、タッチパッド、ディスプレイ、又はゲームコントローラであってよい。圧電アクチュエータは、ヘッドアセンブリ、ヘッドスタックアセンブリ、又はハードディスクドライブに用いられてもよい。圧電アクチュエータは、例えば、プリンタヘッド、又はインクジェットプリンタ装置に用いられてもよい。圧電アクチュエータは、圧電スイッチに用いられてもよい。圧電素子は、例えば、圧電センサであってもよい。圧電センサは、例えば、ジャイロセンサ、圧力センサ、脈波センサ、超音波センサ、又はショックセンサに用いられてよい。上述された各圧電素子は、MEMSの一部又は全部であってよい。 The piezoelectric element according to the present embodiment has various uses. The piezoelectric element may be, for example, a piezoelectric microphone, a piezoelectric transformer, a harvester, an oscillator, a resonator, or an acoustic multilayer film. The piezoelectric element may be, for example, a piezoelectric actuator. Piezoelectric actuators may be used in haptics. That is, the piezoelectric actuator may be used for various devices that require feedback by skin sensation (tactile sensation). The device for which feedback by skin sense is required may be, for example, a wearable device, a touch pad, a display, or a game controller. Piezoelectric actuators may be used in head assemblies, head stack assemblies, or hard disk drives. The piezoelectric actuator may be used, for example, in a printer head or an inkjet printer device. Piezoelectric actuators may be used in piezoelectric switches. The piezoelectric element may be, for example, a piezoelectric sensor. The piezoelectric sensor may be used in, for example, a gyro sensor, a pressure sensor, a pulse wave sensor, an ultrasonic sensor, or a shock sensor. Each of the piezoelectric elements described above may be a part or all of the MEMS.

本実施形態に係る圧電組成物は、以下の製造方法によって製造されてよい。 The piezoelectric composition according to this embodiment may be manufactured by the following manufacturing method.

圧電組成物の製造では、出発原料から原料粉末(原料粒子)が調製される。原料粒子のプレス成形により、成形体が形成される。成形体の焼成により、焼結体が得られる。焼結体が分極処理を施されることより、圧電体が得られる。本実施形態に係る圧電組成物は、分極処理前の焼結体、及び分極処理後の焼結体の両方を意味する。以下、各工程の詳細は以下の通りである。 In manufacturing a piezoelectric composition, raw material powder (raw material particles) is prepared from a starting raw material. A compact is formed by press-molding the raw material particles. A sintered body is obtained by firing the molded body. The piezoelectric body is obtained by subjecting the sintered body to polarization treatment. The piezoelectric composition according to the present embodiment means both a sintered body before polarization treatment and a sintered body after polarization treatment. The details of each step are as follows.

造粒工程では、圧電組成物の出発原料が秤量される。複数種の出発原料が用いられてよい。出発原料は、BiFe、Ba、Ti及びAgを含む。出発原料は更に元素Dを含んでよい。出発原料は、各元素の単体(金属)、又は化合物であってよい。化合物とは、例えば、酸化物、炭酸塩、水酸化物、シュウ酸塩、又は硝酸塩等であってよい。各出発原料は、固体(例えば粉末)であってよい。各出発原料の秤量により、出発原料の全体におけるBi,Fe,Ba及びTiのモル比が、上記化学式AにおけるBi,Fe,Ba及びTiのモル比に調整されてよい。出発原料の全体におけるAgの質量は、100×MAG/MABO3が、0.01以上10.00以下であるように調整されてよい。出発原料の全体に元素Dの質量の合計値は、100×M/MABO3が、0.00以上5.00以下であるように調整されてよい。 In the granulation step, the starting material for the piezoelectric composition is weighed. Multiple types of starting materials may be used. The starting material comprises Bi , Fe, Ba, Ti and Ag. The starting material may further contain the element D. The starting material may be a simple substance (metal) of each element or a compound. The compound may be, for example, an oxide, carbonate, hydroxide, oxalate, nitrate or the like. Each starting material may be solid (eg powder). By weighing each starting material, the molar ratio of Bi, Fe, Ba and Ti in the whole starting material may be adjusted to the molar ratio of Bi, Fe, Ba and Ti in the above chemical formula A. The mass of Ag in the entire starting material may be adjusted so that 100×M AG / MABO3 is 0.01 or more and 10.00 or less. The total value of the mass of the element D in the entire starting material may be adjusted so that 100×M D /M ABO3 is 0.00 or more and 5.00 or less.

ビスマス化合物(Bi化合物)は、酸化ビスマス(Bi)、硝酸ビスマス(Bi又は(NO)等であってよい。鉄化合物(Fe化合物)は、酸化鉄(Fe)、塩化鉄(FeCl)、又は硝酸鉄(Fe(NO)等であってよい。バリウム化合物(Ba化合物)は、酸化バリウム(BaO)、炭酸バリウム(BaCO)、シュウ酸バリウム(CBaO)、酢酸バリウム((CHCOO)Ba)、硝酸バリウム(BaSO)、又はチタン酸バリウム(BaTiO)等であってよい。チタン化合物(Ti化合物)は、酸化チタン(TiO)等であってよい。Agの化合物は、AgO(酸化銀)であってよい。元素Dの化合物は、元素Dの酸化物であってよい。元素Dの酸化物は、例えば、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化モリブデン(MoO)、酸化タングステン(WO)及び酸化マンガン(MnO)からなる群より選ばれる少なくとも一種であってよい。 The bismuth compound (Bi compound) may be bismuth oxide (Bi 2 O 3 ), bismuth nitrate (Bi or (NO 3 ) 3 ), and the like. The iron compound (Fe compound) may be iron oxide (Fe 2 O 3 ), iron chloride (FeCl 3 ), iron nitrate (Fe(NO 3 ) 3 ), or the like. The barium compound (Ba compound) includes barium oxide (BaO), barium carbonate (BaCO 3 ), barium oxalate (C 2 BaO 4 ), barium acetate ((CH 3 COO) 2 Ba), barium nitrate (BaSO 4 ), Alternatively, it may be barium titanate (BaTiO 3 ). The titanium compound (Ti compound) may be titanium oxide (TiO 2 ). The Ag compound may be Ag 2 O (silver oxide). The compound of element D may be an oxide of element D. Examples of the oxide of the element D include vanadium oxide (V 2 O 5 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and It may be at least one selected from the group consisting of manganese oxide (MnO 3 ).

造粒工程では、上述した出発原料から原料粒子が調製される。組成が異なる複数種の原料粒子が調製されてもよい。原料粒子の調製方法は、例えば、以下の通りであってよい。 In the granulation step, raw material particles are prepared from the above-mentioned starting materials. Plural kinds of raw material particles having different compositions may be prepared. The method for preparing the raw material particles may be as follows, for example.

出発原料と溶媒とを混合することにより、スラリーが調製されてよい。ボールミル等を用いたスラリーの湿式混合により、スラリー中の出発原料が粉砕されてよい。スラリーの調製に用いる溶媒は、例えば、水であってよい。溶媒は、エタノール等のアルコールであってもよい。溶媒は、水とエタノールとの混合物であってよい。湿式混合後の出発原料は、スプレードライヤー等によって乾燥されてよい。 The slurry may be prepared by mixing the starting materials and the solvent. The starting materials in the slurry may be pulverized by wet mixing the slurry using a ball mill or the like. The solvent used to prepare the slurry may be, for example, water. The solvent may be an alcohol such as ethanol. The solvent may be a mixture of water and ethanol. The starting materials after the wet mixing may be dried by a spray dryer or the like.

粉砕された出発原料の混合物を成形することにより、仮成形体が形成される。仮成形体を酸化的雰囲気中で加熱(calcine)することにより、仮焼結体が得られる。酸化的雰囲気とは、例えば大気であってよい。仮焼きの温度は、700℃以上1050℃以下であってよい。仮焼きの時間は1〜3時間程度であってよい。仮焼結体の粉砕により、原料粒子が得られる。原料粒子と溶媒とを混合して、スラリーが調製されてよい。ボールミル等を用いたスラリーの湿式混合により、スラリー中の原料粒子が粉砕されてよい。この湿式混合により、原料粒子の一次粒子径の平均値が調整されてよい。原料粒子の一次粒子径の平均値は、例えば、0.01μm以上20μm以下であってよい。湿式混合後の原料粒子は、スプレードライヤー等によって乾燥されてよい。 A temporary molded body is formed by molding the crushed mixture of starting materials. A temporary sintered body is obtained by heating the temporary molded body in an oxidizing atmosphere. The oxidative atmosphere may be, for example, the atmosphere. The calcination temperature may be 700° C. or higher and 1050° C. or lower. The calcination time may be about 1 to 3 hours. Raw material particles are obtained by crushing the pre-sintered body. A slurry may be prepared by mixing the raw material particles and a solvent. The raw material particles in the slurry may be pulverized by wet mixing the slurry using a ball mill or the like. The average value of the primary particle diameter of the raw material particles may be adjusted by this wet mixing. The average primary particle diameter of the raw material particles may be, for example, 0.01 μm or more and 20 μm or less. The raw material particles after wet mixing may be dried by a spray dryer or the like.

原料粒子及びバインダーの混合物のプレス成形により、成形体が得られる。バインダーは、ポリビニルアルコール又はエチルセルロース等の有機バインダーであってよい。分散剤がバインダーに添加されていてよい。 A molded body is obtained by press molding a mixture of raw material particles and a binder. The binder may be an organic binder such as polyvinyl alcohol or ethyl cellulose. A dispersant may be added to the binder.

成形体を酸化的雰囲気中で焼成(sinter)することにより、焼結体が得られる。成形体の焼成前に、成形体の脱バインダー処理が行われてもよい。つまり、成形体の加熱により、成形体中のバインダーが分解されてよい。脱バインダー処理及び焼成は、連続して行われてもよい。脱バインダー処理及び焼成は、別々に行われてもよい。焼成温度は900℃以上1250℃以下であってよい。焼成時間は1時間以上8時間以下であってよい。 A sintered body is obtained by sintering the molded body in an oxidizing atmosphere. Before the firing of the molded body, the binder removal treatment of the molded body may be performed. That is, the binder in the molded body may be decomposed by heating the molded body. The binder removal treatment and the firing may be continuously performed. The debinding process and the firing may be performed separately. The firing temperature may be 900° C. or higher and 1250° C. or lower. The firing time may be 1 hour or more and 8 hours or less.

後述される分極処理に先立って、焼結体の切断により、焼結体からなる薄板が形成されてよい。焼結体の薄板の表面にラップ研磨が施されてよい。焼結体の切断には、カッター、スライサー又はダイシングソー等の切断機が用いられてよい。ラップ研磨後、焼結体の対向する一対の表面それぞれに、分極処理用の仮電極が形成される。仮電極は、真空蒸着法又はスパッタリングによって形成されてよい。仮電極は、塩化第二鉄溶液等を用いたエッチング処理によって容易に除去される。 Prior to the polarization treatment described below, a thin plate made of a sintered body may be formed by cutting the sintered body. Lapping may be performed on the surface of the thin plate of the sintered body. A cutter such as a cutter, a slicer or a dicing saw may be used to cut the sintered body. After lapping, temporary electrodes for polarization treatment are formed on each of a pair of opposing surfaces of the sintered body. The temporary electrode may be formed by vacuum vapor deposition or sputtering. The temporary electrode is easily removed by an etching process using a ferric chloride solution or the like.

分極処理では、焼結体を挟む一対の仮電極間に分極電界が印加される。分極処理では、焼結体が加熱されてよい。分極処理における焼結体の温度は、80℃以上300℃以下であってよい。分極電界が印加される時間は1分以上30分以下であってよい。分極電界は、焼結体の抗電界の0.9倍以上であってよい。 In the polarization process, a polarization electric field is applied between a pair of temporary electrodes that sandwich the sintered body. In the polarization process, the sintered body may be heated. The temperature of the sintered body in the polarization treatment may be 80° C. or higher and 300° C. or lower. The time for which the polarization electric field is applied may be 1 minute or more and 30 minutes or less. The polarization electric field may be 0.9 times or more the coercive electric field of the sintered body.

分極処理後、仮電極が焼結体から除去される。焼結体の加工により、所望の形状を有する圧電組成物(圧電体)が形成されてよい。 After the polarization treatment, the temporary electrode is removed from the sintered body. By processing the sintered body, a piezoelectric composition (piezoelectric body) having a desired shape may be formed.

以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。例えば、本発明に係る圧電組成物は、圧電薄膜であってもよい。 Although the preferred embodiment of the present invention has been described above, the present invention is not necessarily limited to the above-described embodiment. For example, the piezoelectric composition according to the present invention may be a piezoelectric thin film.

以下、本発明が、実施例及び比較例により詳細に説明される。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

(実施例1)
出発原料として、Biの粉末、Feの粉末、BaCOの粉末、TiOの粉末、及びAg(金属単体)の粉末が用いられた。出発原料の全体におけるBi,Fe,Ba及びTiのモル比が、下記化学式A1におけるBi,Fe,Ba及びTiのモル比に一致するように、BaCO、TiO、Bi及びFeが秤量された。実施例1の場合、化学式A1中のx及びyの値は、下記表1に示される値であった。100×MAG/MABO3が5.2であるように、Agが秤量された。MAGは、出発原料に含まれるAgの質量である。MABO3とは、出発原料に含まれるBiFe、Ba及びTiの全ての元素が下記化学式A1で表される酸化物のみを構成するという仮定に基づく、x[BiFeO]‐y[BaTiO]の質量の計算値である。以下では、100×MAG/MABO3が、αと表記される。
x[BiFeO]‐y[BaTiO] (A1)
(Example 1)
Bi 2 O 3 powder, Fe 2 O 3 powder, BaCO 3 powder, TiO 2 powder, and Ag (metal simple substance) powder were used as starting materials. The molar ratio of Bi, Fe, Ba, and Ti in the entire starting material is adjusted so that the molar ratio of Bi, Fe, Ba, and Ti in the following chemical formula A1 matches BaCO 3 , TiO 2 , Bi 2 O 3, and Fe 2 O 3 were weighed. In the case of Example 1, the values of x and y in the chemical formula A1 were the values shown in Table 1 below. Ag was weighed such that 100×M AG /M ABO3 was 5.2. M AG is the mass of Ag contained in the starting material. M ABO3 is x[BiFeO 3 ]-y[BaTiO 3 based on the assumption that all the elements of Bi , Fe, Ba and Ti contained in the starting material constitute only the oxide represented by the following chemical formula A1. ] Is the calculated value of the mass. In the following, 100×M AG /M ABO3 is expressed as α.
x[BiFeO 3 ]-y[BaTiO 3 ] (A1)

全ての出発原料と純水とが、ボールミルで10時間混合された。混合後の出発原料を乾燥した後、出発原料のプレス成形により、仮成形体が得られた。仮成形体を800℃で加熱することにより、仮焼成体が得られた。仮焼成体はボールミルで粉砕された。粉砕された仮焼結体を乾燥することにより、原料粒子が得られた。原料粒子及びバインダー(ポリビニルアルコール)の混合物のプレス成形により、成形体が得られた。成形体の加熱により、バインダーが除去された。脱バインダー処理後、成形体を1000℃の大気中で4時間焼成することにより、焼結体が得られた。焼結体とは、分極処理前の圧電組成物に相当する。 All starting materials and pure water were mixed in a ball mill for 10 hours. After the mixed starting material was dried, the starting material was press-molded to obtain a temporary molded body. A temporary fired body was obtained by heating the temporary formed body at 800°C. The calcined body was crushed with a ball mill. Raw material particles were obtained by drying the crushed temporary sintered body. A molded body was obtained by press molding a mixture of raw material particles and a binder (polyvinyl alcohol). The binder was removed by heating the molded body. After the binder removal treatment, the molded body was fired in the atmosphere of 1000° C. for 4 hours to obtain a sintered body. The sintered body corresponds to the piezoelectric composition before polarization treatment.

焼結体を、両面ラップ盤及びダイシングソーを用いて加工することにより、焼結体からなる板が形成された。加工後の焼結体の寸法は、縦16mm×横16mm×厚み0.5mmであった。 By processing the sintered body using a double-sided lapping machine and a dicing saw, a plate made of the sintered body was formed. The dimension of the sintered body after processing was 16 mm in length×16 mm in width×0.5 mm in thickness.

真空蒸着装置を用いて、Agからなる電極が焼結体の両面其々に形成された。各電極の厚みは1.5μmであった。各電極の寸法は、15mm×15mmであった。 Electrodes made of Ag were formed on both sides of the sintered body using a vacuum vapor deposition apparatus. The thickness of each electrode was 1.5 μm. The size of each electrode was 15 mm×15 mm.

一対の電極で挟まれた圧電組成物に直流電界を印加することにより、圧電組成物の電気抵抗率ρ(単位:Ω・cm)が測定された。直流電界は、0.1kV/cmであった。直流電界が圧電組成物へ印加された時間は、40秒であった。実施例1のρは、表1に示される。 By applying a DC electric field to the piezoelectric composition sandwiched between the pair of electrodes, the electrical resistivity ρ (unit: Ω·cm) of the piezoelectric composition was measured. The DC electric field was 0.1 kV/cm. The time for which the DC electric field was applied to the piezoelectric composition was 40 seconds. Ρ of Example 1 is shown in Table 1.

一対の電極で挟まれた焼結体に対して電界を印加することにより、焼結体を分極させた。焼結体に印加された電界の強度は、抗電界の1.5〜2倍であった。電界は15分間焼結体へ印加された。上記の分極処理は、温度が120℃であるシリコンオイル槽中で実施された。分極処理後、圧電組成物の電気抵抗率ρが再び測定された。分極処理後の実施例1の圧電組成物の電気抵抗率ρは、1×1012Ω・cm以上であった。後述される実施例2〜28の場合も、分極処理後の圧電組成物の電気抵抗率ρは、1×1012Ω・cm以上であった。 The sintered body was polarized by applying an electric field to the sintered body sandwiched by the pair of electrodes. The strength of the electric field applied to the sintered body was 1.5 to 2 times the coercive electric field. The electric field was applied to the sintered body for 15 minutes. The above polarization treatment was carried out in a silicon oil bath having a temperature of 120°C. After the polarization treatment, the electrical resistivity ρ of the piezoelectric composition was measured again. The electrical resistivity ρ of the piezoelectric composition of Example 1 after the polarization treatment was 1×10 12 Ω·cm or more. Also in Examples 2 to 28 described later, the electrical resistivity ρ of the piezoelectric composition after the polarization treatment was 1×10 12 Ω·cm or more.

以上の方法により、実施例1の圧電組成物が得られた。蛍光X線分析法に基づく分析の結果、圧電組成物におけるBi,Fe,Ba及びTiのモル比は、上記化学式A1におけるBi,Fe,Ba及びTiのモル比に一致した。化学式A1中のx及びyの値は、下記表1に示される値に一致した。圧電組成物におけるAgの質量の割合αは、下記表1に示される値に一致した。X線回折パターンにより、圧電組成物はペロブスカイト構造を有することが確認された。 The piezoelectric composition of Example 1 was obtained by the above method. As a result of an analysis based on a fluorescent X-ray analysis method, the molar ratio of Bi, Fe, Ba and Ti in the piezoelectric composition was in agreement with the molar ratio of Bi, Fe, Ba and Ti in the above chemical formula A1. The values of x and y in the chemical formula A1 agreed with the values shown in Table 1 below. The mass ratio α of Ag in the piezoelectric composition was in agreement with the values shown in Table 1 below. The X-ray diffraction pattern confirmed that the piezoelectric composition had a perovskite structure.

33メーターを用いて、実施例1の圧電組成物の圧電定数d33(単位:pC/N)が測定された。d33メーターは、JIS(Japanese Industrial Standards) R 1696に準拠したベルリンコート法により、d33を測定するための装置である。ベルリンコート法では、圧電組成物に振動を与えたときの圧電正効果を利用してd33を測定する。そのため、ベルリンコート法では、圧電組成物に電界を印加したときの圧電逆効果を利用する測定方法とは異なり、電歪の影響がなく、圧電組成物の本来のd33が得られる。実施例1のd33は、下記表1に示される値であった。 The piezoelectric constant d 33 (unit: pC/N) of the piezoelectric composition of Example 1 was measured using a d 33 meter. The d 33 meter is a device for measuring d 33 by the Berlin coat method based on JIS (Japan Industrial Standards) R 1696. In the Berlin coat method, d 33 is measured by utilizing the positive piezoelectric effect when vibration is applied to the piezoelectric composition. Therefore, in the Berlin coat method, unlike the measuring method using the piezoelectric inverse effect when an electric field is applied to the piezoelectric composition, there is no influence of electrostriction and the original d 33 of the piezoelectric composition can be obtained. The d 33 of Example 1 was the value shown in Table 1 below.

(実施例2〜28)
出発原料の秤量により実施例2〜28其々のx、y及びαが下記表1〜3に示される値に調整された。
(Examples 2 to 28)
The x, y and α of Examples 2 to 28 were adjusted to the values shown in Tables 1 to 3 below by weighing the starting materials.

実施例3〜28では、出発原料として元素Dの酸化物が更に用いられた。実施例3〜28其々の元素Dは、下記表1〜3に示される。実施例3〜28のいずれの場合においても、元素Dの酸化物の秤量により、100×M/MABO3が所定の値に調整された。Mは、出発原料に含まれる元素Dの質量の合計値である。以下では、100×M/MABO3が、βと表記される。実施例3〜28其々のβは、下記表1〜3に示される。実施例2では元素Dが用いられなかったので、実施例2のβはゼロであった。 In Examples 3 to 28, the oxide of the element D was further used as the starting material. The elements D of Examples 3 to 28 are shown in Tables 1 to 3 below. In each of Examples 3 to 28, 100×M D /M ABO3 was adjusted to a predetermined value by weighing the oxide of the element D. M D is the sum of the mass of the elements D contained in the starting material. In the following, the 100 × M D / M ABO3, is denoted as beta. Β of each of Examples 3 to 28 is shown in Tables 1 to 3 below. Since element D was not used in Example 2, β in Example 2 was zero.

上記の事項を除いて実施例1と同様の方法で、実施例2〜28其々の圧電組成物が作製された。 The piezoelectric compositions of Examples 2 to 28 were produced in the same manner as in Example 1 except for the above matters.

実施例1と同様の方法で、実施例2〜28其々の圧電組成物が分析された。実施例2〜28のいずれの場合においても、圧電組成物におけるBi,Fe,Ba及びTiのモル比は、上記化学式A1におけるBi,Fe,Ba及びTiのモル比に一致した。実施例2〜28のいずれの場合においても、化学式A1中のx及びyの値は、下記表1〜3に示される値に一致した。実施例2〜28のいずれの場合においても、圧電組成物におけるAgの質量の割合αは、下記表1〜3に示される値に一致した。実施例2〜28のいずれの場合においても、圧電組成物における元素Dの質量の割合βは、下記表1〜3に示される値に一致した。実施例2〜28のいずれの場合においても、圧電組成物はペロブスカイト構造を有することが確認された。 The piezoelectric compositions of Examples 2 to 28 were analyzed in the same manner as in Example 1. In any of Examples 2 to 28, the molar ratio of Bi, Fe, Ba and Ti in the piezoelectric composition was in agreement with the molar ratio of Bi, Fe, Ba and Ti in the chemical formula A1. In any of Examples 2 to 28, the values of x and y in the chemical formula A1 corresponded to the values shown in Tables 1 to 3 below. In any of Examples 2 to 28, the mass ratio α of Ag in the piezoelectric composition was in agreement with the values shown in Tables 1 to 3 below. In any of Examples 2 to 28, the mass ratio β of the element D in the piezoelectric composition was in agreement with the values shown in Tables 1 to 3 below. In each of Examples 2 to 28, it was confirmed that the piezoelectric composition had a perovskite structure.

実施例1と同様の方法で、実施例2〜28其々の圧電組成物の電気抵抗率ρが測定された。実施例2〜28其々の分極処理前のρは、表1〜3に示される。実施例1と同様の方法で、実施例2〜28其々の圧電組成物の圧電定数d33が測定された。実施例2〜28其々のd33は、下記表1〜3に示される。 The electrical resistivity ρ of each of the piezoelectric compositions of Examples 2 to 28 was measured in the same manner as in Example 1. Ρ before the polarization treatment of each of Examples 2 to 28 is shown in Tables 1 to 3. In the same manner as in Example 1, the piezoelectric constant d 33 of each of the piezoelectric compositions of Examples 2 to 28 was measured. The d 33 of each of Examples 2 to 28 is shown in Tables 1 to 3 below.

(比較例1〜8)
比較例1〜8のいずれの場合においても、出発原料としてAgは用いられなかった。比較例1〜8其々の出発原料の秤量では、x、y及びβが下記表4に示される値に調整された。比較例1では元素Dの酸化物が用いられなかったので、比較例1のβはゼロであった。
(Comparative Examples 1 to 8)
In any of Comparative Examples 1 to 8, Ag was not used as a starting material. In the weighing of the starting materials in each of Comparative Examples 1 to 8, x, y and β were adjusted to the values shown in Table 4 below. Since the oxide of the element D was not used in Comparative Example 1, β in Comparative Example 1 was zero.

上記の事項を除いて実施例1と同様の方法で、比較例1〜8其々の圧電組成物が作製された。 Piezoelectric compositions of Comparative Examples 1 to 8 were produced in the same manner as in Example 1 except for the above matters.

実施例1と同様の方法で、比較例1〜8其々の圧電組成物が分析された。比較例1〜8のいずれの場合においても、圧電組成物におけるBi,Fe,Ba及びTiのモル比は、上記化学式A1におけるBi,Fe,Ba及びTiのモル比に一致した。比較例1〜8のいずれの場合においても、化学式A1中のx及びyの値は、下記表4に示される値に一致した。比較例1〜8のいずれの場合においても、圧電組成物におけるAgの質量の割合αは、ゼロであった。比較例1〜8のいずれの場合においても、圧電組成物における元素Dの質量の割合βは、下記表4に示される値に一致した。比較例1〜8のいずれの場合においても、圧電組成物はペロブスカイト構造を有することが確認された。 The piezoelectric compositions of Comparative Examples 1 to 8 were analyzed in the same manner as in Example 1. In any of Comparative Examples 1 to 8, the molar ratio of Bi, Fe, Ba and Ti in the piezoelectric composition was in agreement with the molar ratio of Bi, Fe, Ba and Ti in the chemical formula A1. In each of Comparative Examples 1 to 8, the values of x and y in the chemical formula A1 matched the values shown in Table 4 below. In each of Comparative Examples 1 to 8, the mass ratio α of Ag in the piezoelectric composition was zero. In all cases of Comparative Examples 1 to 8, the mass ratio β of the element D in the piezoelectric composition was in agreement with the values shown in Table 4 below. In each of Comparative Examples 1 to 8, it was confirmed that the piezoelectric composition had a perovskite structure.

実施例1と同様の方法で、比較例1〜8其々の圧電組成物の電気抵抗率ρが測定された。比較例1〜8其々の分極処理前のρは、表4に示される。実施例1と同様の方法で、比較例1〜8其々の圧電組成物の圧電定数d33が測定された。比較例1〜8其々のd33は、下記表4に示される。 The electrical resistivity ρ of each of the piezoelectric compositions of Comparative Examples 1 to 8 was measured in the same manner as in Example 1. Table 4 shows ρ before the polarization treatment in each of Comparative Examples 1 to 8. The piezoelectric constant d 33 of each of the piezoelectric compositions of Comparative Examples 1 to 8 was measured by the same method as in Example 1. D 33 of each of Comparative Examples 1 to 8 is shown in Table 4 below.

下記表1〜4の判定のコラムに記載されたA、B、C及びDは、以下のように定義される。Aとは、ρが1.0×1012Ω・cm以上(1E+12Ω・cm以上)であり、d33が160pC/N以上であることを意味する。Bとは、ρが1.0×1012Ω・cm以上であり、d33が150pC/N以上160pC/N未満であることを意味する。Cとは、ρが1.0×1012Ω・cm以上であり、d33が140pC/N以上150pC/N未満であることを意味する。Dとは、ρが1.0×1012Ω・cm未満であり、d33が140pC/N未満であることを意味する。 A, B, C and D described in the judgment columns of Tables 1 to 4 below are defined as follows. A means that ρ is 1.0×10 12 Ω·cm or more (1E+ 12 Ω·cm or more), and d 33 is 160 pC/N or more. B means that ρ is 1.0×10 12 Ω·cm or more and d 33 is 150 pC/N or more and less than 160 pC/N. C means that ρ is 1.0×10 12 Ω·cm or more and d 33 is 140 pC/N or more and less than 150 pC/N. D means that ρ is less than 1.0×10 12 Ω·cm and d 33 is less than 140 pC/N.

本発明に係る圧電組成物は、例えば、圧電アクチュエータに用いられる。 The piezoelectric composition according to the present invention is used, for example, in a piezoelectric actuator.

2…基板、4…第一電極、6…圧電体(圧電組成物)、8…第二電極、uc…ペロブスカイト構造の単位胞。 2... Substrate, 4... First electrode, 6... Piezoelectric substance (piezoelectric composition), 8... Second electrode, uc... Unit cell of perovskite structure.

Claims (6)

ビスマス、バリウム、鉄、及びチタンを含む酸化物と、銀と、を備え、
前記酸化物がペロブスカイト構造を有し、
前記酸化物の質量が、MABO3と表され、
前記銀の質量が、MAGと表され、
100×MAG/MABO3が、0.01以上10.00以下である、
圧電組成物。
An oxide containing bismuth, barium, iron, and titanium; and silver,
The oxide has a perovskite structure,
The mass of the oxide is denoted MABO3 ,
The mass of the silver is expressed as M AG ,
100×M AG /M ABO3 is 0.01 or more and 10.00 or less,
Piezoelectric composition.
バナジウム、ニオブ、タンタル、モリブデン、タングステン及びマンガンからなる群より選ばれる少なくとも一種の元素Dを更に含む、
請求項1に記載の圧電組成物。
Further containing at least one element D selected from the group consisting of vanadium, niobium, tantalum, molybdenum, tungsten and manganese,
The piezoelectric composition according to claim 1.
元素Dとして、少なくともニオブを更に含む、
請求項1又は2に記載の圧電組成物。
As element D, at least niobium is further included,
The piezoelectric composition according to claim 1.
前記元素Dの質量の合計値が、Mと表され、
100×M/MABO3が、0.00以上5.00以下である、
請求項2又は3に記載の圧電組成物。
The total value of the mass of the element D is represented as M D,
100×M D /M ABO3 is 0.00 or more and 5.00 or less,
The piezoelectric composition according to claim 2.
少なくとも一部の前記酸化物が、x[BiFeO]‐y[BaTiO]と表され、
xが、0.6以上0.8以下であり、
yが、0.2以上0.4以下であり、
x+yが、1であり、
mが、0.96以上1.06以下であり、
nが、0.96以上1.06以下である、
請求項1〜4のいずれか一項に記載の圧電組成物。
At least a portion of the oxide is represented as x [Bi m FeO 3] -y [Ba n TiO 3],
x is 0.6 or more and 0.8 or less,
y is 0.2 or more and 0.4 or less,
x+y is 1, and
m is 0.96 or more and 1.06 or less,
n is 0.96 or more and 1.06 or less,
The piezoelectric composition according to claim 1.
請求項1〜5のいずれか一項に記載の圧電組成物を備える、
圧電素子。
A piezoelectric composition according to claim 1.
Piezoelectric element.
JP2018239913A 2018-12-21 2018-12-21 Piezoelectric composition and piezoelectric element Active JP7167700B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018239913A JP7167700B2 (en) 2018-12-21 2018-12-21 Piezoelectric composition and piezoelectric element
US16/715,010 US11296273B2 (en) 2018-12-21 2019-12-16 Piezoelectric composition and piezoelectric device
CN201911307070.0A CN111348909B (en) 2018-12-21 2019-12-18 Piezoelectric composition and piezoelectric element
DE102019135245.2A DE102019135245B9 (en) 2018-12-21 2019-12-19 PIEZOELECTRIC COMPOSITION AND PIEZOELECTRIC COMPONENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239913A JP7167700B2 (en) 2018-12-21 2018-12-21 Piezoelectric composition and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2020102539A true JP2020102539A (en) 2020-07-02
JP7167700B2 JP7167700B2 (en) 2022-11-09

Family

ID=70969307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239913A Active JP7167700B2 (en) 2018-12-21 2018-12-21 Piezoelectric composition and piezoelectric element

Country Status (4)

Country Link
US (1) US11296273B2 (en)
JP (1) JP7167700B2 (en)
CN (1) CN111348909B (en)
DE (1) DE102019135245B9 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062559B (en) * 2020-08-11 2021-10-08 同济大学 Antiferroelectric ceramic material and low-temperature sintering method thereof
CN113511687B (en) * 2021-07-23 2022-10-21 桂林电子科技大学 Wave-absorbing material and preparation method thereof
DE102022115666A1 (en) 2022-06-23 2023-12-28 Pi Ceramic Gmbh Piezoelectric material with a perovskite structure for high operating temperatures and its manufacturing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321975A (en) * 2001-02-22 2002-11-08 Tdk Corp Piezoelectric ceramic
JP2010254560A (en) * 2009-03-31 2010-11-11 Canon Inc Ceramic, piezoelectric device, and method for producing the device
JP2011181866A (en) * 2010-03-04 2011-09-15 Fujifilm Corp Laminated structure and piezoelectric device using the same
WO2013105507A1 (en) * 2012-01-13 2013-07-18 パナソニック株式会社 Actuator and method for driving same
US20170368574A1 (en) * 2015-01-16 2017-12-28 The Regents Of The University Of California Piezoelectric Transducers and Methods of Making and Using the Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298621A (en) 2008-06-11 2009-12-24 Osaka Prefecture Univ Piezoelectric material and piezoelectric element
JP5885931B2 (en) 2010-03-15 2016-03-16 キヤノン株式会社 Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
JP6146453B2 (en) 2010-03-15 2017-06-14 キヤノン株式会社 Bismuth iron oxide powder, method for producing the same, dielectric ceramics, piezoelectric element, liquid discharge head, and ultrasonic motor
JP5754660B2 (en) 2013-06-28 2015-07-29 セイコーエプソン株式会社 Piezoelectric material, piezoelectric element, liquid ejecting head, liquid ejecting apparatus, ultrasonic sensor, piezoelectric motor, and power generation apparatus
CN103708817B (en) * 2013-12-19 2015-07-29 桂林电子科技大学 A kind of high withstand voltage lead-free high-temperature ferroelectric ceramic and preparation method thereof
US9887347B2 (en) * 2015-11-27 2018-02-06 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator and electronic instrument using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321975A (en) * 2001-02-22 2002-11-08 Tdk Corp Piezoelectric ceramic
JP2010254560A (en) * 2009-03-31 2010-11-11 Canon Inc Ceramic, piezoelectric device, and method for producing the device
JP2011181866A (en) * 2010-03-04 2011-09-15 Fujifilm Corp Laminated structure and piezoelectric device using the same
WO2013105507A1 (en) * 2012-01-13 2013-07-18 パナソニック株式会社 Actuator and method for driving same
US20170368574A1 (en) * 2015-01-16 2017-12-28 The Regents Of The University Of California Piezoelectric Transducers and Methods of Making and Using the Same

Also Published As

Publication number Publication date
US11296273B2 (en) 2022-04-05
DE102019135245B4 (en) 2022-03-24
DE102019135245B9 (en) 2022-05-12
US20200203596A1 (en) 2020-06-25
CN111348909B (en) 2022-05-17
JP7167700B2 (en) 2022-11-09
DE102019135245A1 (en) 2020-06-25
CN111348909A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5256804B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5572998B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
CN111348909B (en) Piezoelectric composition and piezoelectric element
JP6919237B2 (en) Piezoelectric composition and piezoelectric element
JP6822214B2 (en) Piezoelectric compositions and piezoelectric elements
US9105845B2 (en) Piezoelectric ceramic comprising an oxide and piezoelectric device
JP2010105905A (en) Ferroelectric ceramic material
EP3000795A1 (en) Piezoelectric composition, piezoelectric element and sputtering target
JP6801513B2 (en) Piezoelectric compositions and piezoelectric elements
JP2002255644A (en) Ceramic material and piezoelectric element using the same
JP2013035746A (en) Ceramic composition and laminated ceramic electronic component including the same
JP2009102221A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive device
CN111454054B (en) Piezoelectric composition and piezoelectric element
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JPH11322422A (en) Piezoelectric ceramic material
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
WO2024070625A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP2010180073A (en) Piezoelectric porcelain composition and oscillator
WO2023026614A1 (en) Lead-free piezoelectric magnetic composition and piezoelectric element
WO2024070849A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP5115342B2 (en) Piezoelectric ceramic, piezoelectric element and multilayer piezoelectric element
JP2006193415A (en) Piezoelectric ceramic and piezoelectric element
JP2006193413A (en) Method of manufacturing piezoelectric porcelain and piezoelectric element
JP5115356B2 (en) Piezoelectric ceramic and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221010

R150 Certificate of patent or registration of utility model

Ref document number: 7167700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150