JP2020098024A - Pipe for air conditioning drain, air conditioning drain piping and method for producing pipe for air conditioning drain - Google Patents

Pipe for air conditioning drain, air conditioning drain piping and method for producing pipe for air conditioning drain Download PDF

Info

Publication number
JP2020098024A
JP2020098024A JP2019192098A JP2019192098A JP2020098024A JP 2020098024 A JP2020098024 A JP 2020098024A JP 2019192098 A JP2019192098 A JP 2019192098A JP 2019192098 A JP2019192098 A JP 2019192098A JP 2020098024 A JP2020098024 A JP 2020098024A
Authority
JP
Japan
Prior art keywords
air conditioning
conditioning drain
layer
drain pipe
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019192098A
Other languages
Japanese (ja)
Other versions
JP6680940B1 (en
Inventor
慶 吉山
Kei YOSHIYAMA
慶 吉山
憲史 大迫
Norifumi Osako
憲史 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61909912&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020098024(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Application granted granted Critical
Publication of JP6680940B1 publication Critical patent/JP6680940B1/en
Publication of JP2020098024A publication Critical patent/JP2020098024A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a pipe for an air conditioning drain that easily can prevent water permeation into a foamed layer.SOLUTION: A pipe for an air conditioning drain 10' has a cylindrical foamed layer 2 containing vinyl chloride resin (B), and a non-foamed inner layer 1 provided on the inner surface of the foamed layer 2 and containing vinyl chloride resin (A). The foamed layer 2 has a closed-cell ratio of 45% or more, a fusing strength of the foamed layer 2 and the non-foamed inner layer 3 is 1.5 MPa or more, and the foamed layer 2 has an average cell diameter of 30 μm or more and 400 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、空調ドレン用管に関する。 The present invention relates to an air conditioning drain pipe.

空調ドレン用管として、断熱性に優れたものが要求されている。このような空調ドレン用管としては、ポリ塩化ビニルを含み、発泡層とその内面に積層された非発泡内層を有する管が好ましく用いられる。
しかしながら、従来の空調ドレン用管では、管継手部分において発泡層の端部が露出しているため、端部から水が浸透しやすいという問題があった。発泡層に水が浸透することにより熱交換率が上がり、断熱効果が低下する。
As an air conditioning drain pipe, one with excellent heat insulation is required. As such an air conditioning drain pipe, a pipe containing polyvinyl chloride and having a foam layer and a non-foam inner layer laminated on the inner surface thereof is preferably used.
However, in the conventional air conditioning drain pipe, there is a problem that water easily penetrates from the end portion because the end portion of the foam layer is exposed at the pipe joint portion. Water infiltration into the foam layer increases the heat exchange rate and reduces the heat insulating effect.

特許文献1では、発泡層の端部に接着剤を塗布して発泡層の端部を被覆することにより、発泡層への水の浸透を防止する方法が提案されている。
特許文献2では、環状弾性体を用いて発泡層への水の浸透を防止する方法が提案されている。
Patent Document 1 proposes a method of preventing the permeation of water into the foam layer by applying an adhesive to the end of the foam layer to cover the end of the foam layer.
Patent Document 2 proposes a method of preventing permeation of water into the foam layer by using an annular elastic body.

特開平7−68674号公報JP-A-7-68674 特開平9−184583号公報JP, 9-184583, A

しかし、特許文献1の方法では、接着剤を均一に塗布する必要があり作業が煩雑である。また、特許文献2の方法では、特殊な部材を使用する必要があり作業が煩雑である。 However, in the method of Patent Document 1, it is necessary to apply the adhesive evenly, and the work is complicated. Further, in the method of Patent Document 2, it is necessary to use a special member, and the work is complicated.

本発明の目的は、発泡層への水の浸透を容易に防止できる空調ドレン用管を提供することである。 An object of the present invention is to provide a pipe for an air conditioning drain which can easily prevent water from penetrating into the foam layer.

本願発明者らは、発泡層の発泡倍率、独立気泡率、平均気泡径、融着強度を特定の数値範囲にすることにより、上記課題を解決できることを見出した。
本発明は以下の態様を有する。
[1]塩化ビニル系樹脂(B)を含む筒状の発泡層と、
前記発泡層の内面に設けられ、塩化ビニル系樹脂(A)を含む非発泡内層と、を備える空調ドレン用管であって、
前記発泡層の独立気泡率が45%以上であり、
前記発泡層と前記非発泡内層との融着強度が1.5MPa以上であり、
前記発泡層の平均気泡径が30μm以上400μm以下である、空調ドレン用管。
[2]前記発泡層の独立気泡率が95%以下である、[1]に記載の空調ドレン用管。
[3]前記発泡層が錫化合物を含む、[1]又は[2]に記載の空調ドレン用管。
[4]前記発泡層は、発泡剤として炭化水素を含む、[1]ないし[3]のいずれか一項に記載の空調ドレン用管。
[5]前記塩化ビニル系樹脂(B)が平均重合度600以上800以下のポリ塩化ビニルである、[1]ないし[4]のいずれか一項に記載の空調ドレン用管。
[6][1]ないし[5]のいずれか一項に記載の空調ドレン用管と、管継手とで構成された空調ドレン配管であって、
前記管継手は内部に環状弾性体を備えないことを特徴とする空調ドレン配管。
[7][1]ないし[5]のいずれか一項に記載の空調ドレン用管の製造方法であって、
非発泡層用熱可塑性樹脂組成物を押出機により溶融混練して押出し、
揮発性発泡剤、分解型発泡剤、熱膨張性カプセルから選択されるうちの2種類以上を含む発泡剤があらかじめ配合された発泡層用熱可塑性樹脂組成物を押出機により溶融混練して押出し、
前記非発泡層用熱可塑性樹脂組成物および発泡層用熱可塑性樹脂組成物を金型に注入し、該金型内部で合流させて、未硬化の空調ドレン用管を成形し、
未硬化の空調ドレン用管を冷却して所定寸法に型成形する
ことを特徴とする空調ドレン用管の製造方法。
The inventors of the present application have found that the above problems can be solved by setting the expansion ratio, the closed cell ratio, the average cell diameter, and the fusion strength of the foam layer to a specific numerical range.
The present invention has the following aspects.
[1] A tubular foam layer containing a vinyl chloride resin (B),
A pipe for an air-conditioning drain, which is provided on the inner surface of the foam layer and comprises a non-foam inner layer containing a vinyl chloride resin (A),
The closed cell ratio of the foam layer is 45% or more,
The fusion bonding strength between the foam layer and the non-foam inner layer is 1.5 MPa or more,
A pipe for an air conditioning drain, wherein the foam layer has an average bubble diameter of 30 μm or more and 400 μm or less.
[2] The pipe for an air conditioning drain according to [1], wherein the foamed layer has a closed cell rate of 95% or less.
[3] The pipe for an air conditioning drain according to [1] or [2], wherein the foam layer contains a tin compound.
[4] The pipe for an air conditioning drain according to any one of [1] to [3], wherein the foam layer contains hydrocarbon as a foaming agent.
[5] The pipe for an air conditioning drain according to any one of [1] to [4], wherein the vinyl chloride resin (B) is polyvinyl chloride having an average degree of polymerization of 600 or more and 800 or less.
[6] An air-conditioning drain pipe including the air-conditioning drain pipe according to any one of [1] to [5] and a pipe joint,
An air conditioning drain pipe characterized in that the pipe joint does not have an annular elastic body inside.
[7] A method for manufacturing an air conditioning drain pipe according to any one of [1] to [5],
The thermoplastic resin composition for non-foamed layer is melt-kneaded and extruded by an extruder,
A thermoplastic resin composition for a foam layer in which a foaming agent containing two or more kinds selected from a volatile foaming agent, a decomposable foaming agent, and a heat-expandable capsule is preliminarily blended is melt-kneaded and extruded by an extruder,
The thermoplastic resin composition for a non-foamed layer and the thermoplastic resin composition for a foamed layer are injected into a mold and merged inside the mold to form an uncured air-conditioning drain pipe.
A method for manufacturing an air conditioning drain pipe, characterized by cooling an uncured air conditioning drain pipe and molding the pipe to a predetermined size.

本発明によれば、発泡層への水の浸透を容易に防止できる空調ドレン用管を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the pipe|tube for air-conditioning drains which can prevent penetration of water into a foam layer easily can be provided.

本発明の空調ドレン用管の一例を示す断面図である。It is sectional drawing which shows an example of the pipe for air conditioning drains of this invention. 融着強度を測定するための装置を示す正面図である。It is a front view which shows the apparatus for measuring fusion strength. 空調ドレン用管を製造するための製造装置の平面図である。It is a top view of a manufacturing device for manufacturing a pipe for air-conditioning drains. 空調ドレン用管を製造するための製造装置の正面図である。It is a front view of the manufacturing apparatus for manufacturing the pipe for air-conditioning drains. 空調ドレン用管の製造装置に用いる金型と管外面成形用チューブを示す構成図である。It is a block diagram which shows the metal mold|die used for the manufacturing apparatus of the pipe for air-conditioning drains, and the tube for tube outer surface formation. 満水試験装置の概略を示す正面図である。It is a front view which shows the outline of a full water test apparatus.

≪空調ドレン用管≫
本発明の空調ドレン用管は、塩化ビニル系樹脂(B)を含む筒状の発泡層と、前記発泡層の内面に設けられ、塩化ビニル系樹脂(A)を含む非発泡内層と、前記発泡層の外面に設けられ、塩化ビニル系樹脂(C)を含む非発泡外層と、を備える。
図1は、本発明の空調ドレン用管の一例を示す断面図である。図1に示すように、空調ドレン用管10’は、筒状の発泡層2と、発泡層2の内面に積層された非発泡内層1と、発泡層2の外面に積層された非発泡外層3と、を備える。
≪Air conditioning drain pipe≫
The air conditioning drain pipe of the present invention comprises a tubular foam layer containing a vinyl chloride resin (B), a non-foaming inner layer provided on the inner surface of the foam layer and containing a vinyl chloride resin (A), and the foam. A non-foamed outer layer provided on the outer surface of the layer and containing a vinyl chloride resin (C).
FIG. 1 is a sectional view showing an example of an air conditioning drain pipe of the present invention. As shown in FIG. 1, an air conditioning drain pipe 10 ′ has a tubular foam layer 2, a non-foam inner layer 1 laminated on the inner surface of the foam layer 2, and a non-foam outer layer laminated on the outer surface of the foam layer 2. 3 and.

空調ドレン用管10’は、施工現場において任意の長さに切断され、ソケットやエルボ、チーズ等の管継手(不図示)の受口に空調ドレン用管10’の端部を挿入することで接続される。空調ドレン用管10’と管継手とは、空調ドレン配管を構成する。そのため、管継手の受口内部において、空調ドレン用管10’の端面(切断面)には非発泡内層1、発泡層2、非発泡外層3がそれぞれ露出している。
空調ドレン用管10’は、発泡層2の独立気泡率が高く、管内部を流下するドレン排水が浸透しにくいため、従来の様に空調ドレン用管の端部に接着剤を均一に塗布したり、管継手の内部に環状弾性体を設けたりしなくともよい。
The air conditioning drain pipe 10' is cut to an arbitrary length at the construction site, and the end of the air conditioning drain pipe 10' is inserted into the socket of a pipe joint (not shown) such as a socket, elbow, or cheese. Connected. The air conditioning drain pipe 10' and the pipe joint constitute an air conditioning drain pipe. Therefore, the non-foamed inner layer 1, the foamed layer 2, and the non-foamed outer layer 3 are exposed at the end surface (cut surface) of the air conditioning drain pipe 10' inside the receiving port of the pipe joint.
The air-conditioning drain pipe 10' has a high closed-cell rate of the foam layer 2 and the drain drainage flowing down inside the pipe hardly penetrates. Therefore, the adhesive is uniformly applied to the end of the air-conditioning drain pipe as in the conventional case. Alternatively, the annular elastic body may not be provided inside the pipe joint.

空調ドレン用管10’の外径は、例えば、32mm以上100mm以下が好ましい。空調ドレン用管10’の内径は、例えば、19mm以上80mm以下が好ましい。非発泡内層1、発泡層2、非発泡外層3を合わせた空調ドレン用管10’の厚さは、例えば、6mm以上10mm以下が好ましい。 The outer diameter of the air conditioning drain pipe 10' is preferably 32 mm or more and 100 mm or less, for example. For example, the inner diameter of the air conditioning drain pipe 10' is preferably 19 mm or more and 80 mm or less. The thickness of the air conditioning drain pipe 10' including the non-foamed inner layer 1, the foamed layer 2, and the non-foamed outer layer 3 is preferably 6 mm or more and 10 mm or less, for example.

空調ドレン用管10’の縦弾性係数は、400MPa以上1500MPa以下が好ましく、500MPa以上1300MPa以下がより好ましく、600MPa以上1000MPa以下がさらに好ましい。
縦弾性係数を上記数値範囲内とすることにより、空調ドレン用管10’が外力を受けた際、曲げや伸びの変形を抑えつつ、これらの外力に柔軟に追従して空調ドレン用管10’が破壊されるのを防ぐことができる。
縦弾性係数は、縦弾性率、ヤング率とも呼ばれ、JIS K 7161−1:2014に従い、引張試験により得られる引張応力と引張ひずみから求められる。
縦弾性係数は、塩化ビニル系樹脂の重合度や発泡層の発泡倍率、非発泡内層1、発泡層2、非発泡外層3のそれぞれの厚さ等により調節することができる。
The longitudinal elastic modulus of the air conditioning drain pipe 10' is preferably 400 MPa or more and 1500 MPa or less, more preferably 500 MPa or more and 1300 MPa or less, and further preferably 600 MPa or more and 1000 MPa or less.
By setting the longitudinal elastic modulus within the above numerical range, when the air conditioning drain pipe 10′ receives an external force, the air conditioning drain pipe 10′ flexibly follows the external force while suppressing deformation of bending and elongation. Can be prevented from being destroyed.
The longitudinal elastic modulus is also called the longitudinal elastic modulus or Young's modulus, and is obtained from the tensile stress and the tensile strain obtained by the tensile test according to JIS K7161-1:2014.
The longitudinal elastic modulus can be adjusted by the degree of polymerization of the vinyl chloride resin, the foaming ratio of the foamed layer, the thickness of each of the non-foamed inner layer 1, the foamed layer 2 and the non-foamed outer layer 3, and the like.

<非発泡内層>
非発泡内層1は、塩化ビニル系樹脂(A)を含む。塩化ビニル系樹脂(A)としては、塩化ビニル単量体の単独重合体(ポリ塩化ビニル)でもよいし、塩化ビニル単量体と、該塩化ビニル単量体と共重合可能な他の単量体との共重合体であってもよい。
上記塩化ビニル単量体と共重合可能な他の単量体としては、例えば、エチレン、プロピレン、塩化アリル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、無水マレイン酸、アクリロニトリル等の単量体が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
塩化ビニル系樹脂(A)は単独で用いられてもよく、2種類以上が併用されてもよい。 非発泡内層1は塩化ビニル系樹脂(A)以外の熱可塑性樹脂を含んでいてもよい。該熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブテン、塩素化ポリエチレン、エチレン−プロピレン共重合体、エチレン−エチルアクリレート共重合体、ポリエチレンテレフタレート、ABS樹脂、アクリル樹脂等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
非発泡内層1において、樹脂の総質量に対する塩化ビニル系樹脂(A)の含有量は、80質量%以上95質量%以下が好ましく、85質量%以上90質量%以下がより好ましい。
<Non-foamed inner layer>
The non-foamed inner layer 1 contains a vinyl chloride resin (A). As the vinyl chloride resin (A), a homopolymer of vinyl chloride monomer (polyvinyl chloride) may be used, or a vinyl chloride monomer and another monomer which is copolymerizable with the vinyl chloride monomer. It may be a copolymer with the body.
Examples of the other monomer copolymerizable with the vinyl chloride monomer include ethylene, propylene, allyl chloride, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl acetate, maleic anhydride, acrylonitrile. And the like. These may be used alone or in combination of two or more.
The vinyl chloride resin (A) may be used alone or in combination of two or more kinds. The non-foamed inner layer 1 may contain a thermoplastic resin other than the vinyl chloride resin (A). Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, polybutene, chlorinated polyethylene, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer, polyethylene terephthalate, ABS resin and acrylic resin. These may be used alone or in combination of two or more.
In the non-foamed inner layer 1, the content of the vinyl chloride resin (A) with respect to the total mass of the resin is preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 90% by mass or less.

非発泡内層1の厚さは、1.0mm以上5.0mm以下が好ましく、1.5mm以上3.5mm以下がより好ましい。非発泡内層1の厚さを上記数値範囲内とすることにより、内部を流れるドレン排水が発泡層2へと浸透する恐れが無く、断熱性に優れた空調ドレン用管10’にできる。
一方、発泡層2の独立気泡率が高い場合、発泡層2自身がドレン排水の浸透を防ぐため、非発泡内層1としては厚さを0.6mm以上1.5mm以下としてもよく、空調ドレン用管10’を軽量にできる。また、発泡層2の厚さを厚くできるため、空調ドレン用管10’を断熱性に優れたものにできる。
The thickness of the non-foamed inner layer 1 is preferably 1.0 mm or more and 5.0 mm or less, and more preferably 1.5 mm or more and 3.5 mm or less. By setting the thickness of the non-foamed inner layer 1 within the above numerical range, there is no fear that the drainage drain flowing inside will penetrate into the foamed layer 2, and an air-conditioning drain pipe 10' having excellent heat insulating properties can be obtained.
On the other hand, when the closed-cell rate of the foam layer 2 is high, the thickness of the non-foam inner layer 1 may be 0.6 mm or more and 1.5 mm or less to prevent the drainage water from penetrating the drain layer itself. The tube 10' can be made lightweight. Further, since the thickness of the foam layer 2 can be increased, the air conditioning drain pipe 10 ′ can have excellent heat insulating properties.

<発泡層>
発泡層2は、塩化ビニル系樹脂(B)を含む樹脂と発泡剤とを含む発泡層用熱可塑性樹脂組成物を発泡させて形成される。塩化ビニル系樹脂(B)としては、塩化ビニル単量体の単独重合体(ポリ塩化ビニル)でもよいし、塩化ビニル単量体と、該塩化ビニル単量体と共重合可能な他の単量体との共重合体であってもよい。
上記塩化ビニル単量体と共重合可能な他の単量体としては、例えば、エチレン、プロピレン、塩化アリル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、無水マレイン酸、アクリロニトリル等の単量体が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
塩化ビニル系樹脂(B)は単独で用いられてもよく、2種類以上が併用されてもよい。 発泡層2は塩化ビニル系樹脂(B)以外の熱可塑性樹脂を含んでいてもよい。該熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブテン、塩素化ポリエチレン、エチレン−プロピレン共重合体、エチレン−エチルアクリレート共重合体、ポリエチレンテレフタレート、ABS樹脂、アクリル樹脂等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
発泡層2において、樹脂の総質量に対する塩化ビニル系樹脂(B)の含有量は、70質量%以上80質量%以下が好ましく、70質量%以上75質量%以下がより好ましい。
<Foam layer>
The foam layer 2 is formed by foaming a thermoplastic resin composition for a foam layer containing a resin containing a vinyl chloride resin (B) and a foaming agent. As the vinyl chloride resin (B), a homopolymer of vinyl chloride monomer (polyvinyl chloride) may be used, or a vinyl chloride monomer and another monomer which is copolymerizable with the vinyl chloride monomer. It may be a copolymer with the body.
Examples of the other monomer copolymerizable with the vinyl chloride monomer include ethylene, propylene, allyl chloride, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl acetate, maleic anhydride, acrylonitrile. And the like. These may be used alone or in combination of two or more.
The vinyl chloride resin (B) may be used alone or in combination of two or more kinds. The foam layer 2 may contain a thermoplastic resin other than the vinyl chloride resin (B). Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, polybutene, chlorinated polyethylene, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer, polyethylene terephthalate, ABS resin and acrylic resin. These may be used alone or in combination of two or more.
In the foam layer 2, the content of the vinyl chloride resin (B) with respect to the total weight of the resin is preferably 70% by mass or more and 80% by mass or less, and more preferably 70% by mass or more and 75% by mass or less.

塩化ビニル系樹脂(B)の質量平均分子量は、37500以上70000以下が好ましく、37500以上44000以下がより好ましい。
質量平均分子量は、ポリエチレングリコールを標準物質とするゲルパーミエーションクロマトグラフィーによる測定値である。
塩化ビニル系樹脂(B)がポリ塩化ビニルの場合、ポリ塩化ビニルの平均重合度は600以上800以下が好ましく、600以上700以下がより好ましい。
なお、平均重合度は、質量平均分子量をクロロエチレンの分子量で除することにより算出できる。
塩化ビニル系樹脂(B)は、塩化ビニル系樹脂(A)と同じでもよいし異なっていてもよい。
The mass average molecular weight of the vinyl chloride resin (B) is preferably 37500 or more and 70000 or less, and more preferably 37500 or more and 44000 or less.
The weight average molecular weight is a value measured by gel permeation chromatography using polyethylene glycol as a standard substance.
When the vinyl chloride resin (B) is polyvinyl chloride, the average degree of polymerization of polyvinyl chloride is preferably 600 or more and 800 or less, and more preferably 600 or more and 700 or less.
The average degree of polymerization can be calculated by dividing the mass average molecular weight by the molecular weight of chloroethylene.
The vinyl chloride resin (B) may be the same as or different from the vinyl chloride resin (A).

発泡層2には塩化ビニル系樹脂(B)以外の熱可塑性樹脂として、アクリル酸、メタクリル酸、アクリル酸エステル、又はメタクリル酸エステル(総称して、アクリル系高分子化合物という)が含まれていることが好ましい。アクリル系高分子が含まれていることにより、独立気泡率を向上し、さらに気泡径を微細にすることができる。
アクリル系高分子化合物の質量平均分子量は、300万以上600万以下が好ましく、400万以上500万以下がより好ましい。
発泡層2がアクリル系高分子化合物を含む場合、アクリル系高分子化合物の含有量は、塩化ビニル系樹脂(B)100質量部に対して、10質量部以上50質量部以下が好ましく、12質量部以上36質量部以下がより好ましく、18質量部以上24質量部以下がさらに好ましい。
発泡層2の厚さは、4.0mm以上10mm以下が好ましい。
The foamed layer 2 contains acrylic acid, methacrylic acid, acrylic acid ester, or methacrylic acid ester (collectively referred to as an acrylic polymer compound) as a thermoplastic resin other than the vinyl chloride resin (B). It is preferable. By including the acrylic polymer, the closed cell ratio can be improved and the cell diameter can be made finer.
The mass average molecular weight of the acrylic polymer compound is preferably 3,000,000 or more and 6,000,000 or less, and more preferably 4,000,000 or more and 5,000,000 or less.
When the foam layer 2 contains an acrylic polymer compound, the content of the acrylic polymer compound is preferably 10 parts by mass or more and 50 parts by mass or less, and 12 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (B). More preferably, it is 18 parts by mass or more and 24 parts by mass or less.
The thickness of the foam layer 2 is preferably 4.0 mm or more and 10 mm or less.

発泡剤としては、揮発性発泡剤、分解型発泡剤のいずれを使用してもよい。
揮発性発泡剤としては、例えば脂肪族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、エーテル、ケトン等が挙げられる。このうち脂肪族炭化水素としては、例えばプロパン、ブタン(ノルマルブタン、イソブタン)、ペンタン(ノルマルペンタン、イソペンタンなど)等が挙げられ、脂環族炭化水素としては、例えばシクロペンタン、シクロへキサン等が挙げられる。ハロゲン化炭化水素としては、例えばトリクロロフルオロメタン、トリクロロトリフルオロエタン、テトラフルオロエタン、クロロジフルオロエタン、ジフルオロエタン等のハロゲン化炭化水素等の1種又は2種以上が挙げられる。さらにエーテルとしては、例えばジメチルエーテル、ジエチルエーテル等が挙げられ、ケトンとしては、例えばアセトン、メチルエチルケトン等が挙げられる。
また分解型発泡剤としては、例えば重炭酸ナトリウム(炭酸水素ナトリウム)、炭酸ナトリウム、重炭酸アンモニウム、亜硝酸アンモニウム、アジド化合物、ホウ水素化ナトリウムなどの無機系発泡剤、アゾジカルボンアミド、アゾジカルボン酸バリウム、ジニトロソペンタメチレンテトラミンなどの有機系発泡剤が挙げられる。
また、上記炭化水素が熱可塑性樹脂内に内包された熱膨張性カプセルを用いてもよい。 その他、炭酸ガス、窒素、空気等のガスを発泡剤として用いてもよい。
これらは単独で用いられてもよく、2種類以上が併用されてもよい。
発泡剤の使用量は、塩化ビニル系樹脂(B)100質量部に対して、1質量部以上8質量部以下が好ましく、2質量部以上5質量部以下がより好ましい。
As the foaming agent, either a volatile foaming agent or a decomposable foaming agent may be used.
Examples of the volatile foaming agent include aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, ethers and ketones. Among them, examples of the aliphatic hydrocarbons include propane, butane (normal butane, isobutane), pentane (normal pentane, isopentane, etc.), and the alicyclic hydrocarbons include, for example, cyclopentane, cyclohexane and the like. Can be mentioned. Examples of the halogenated hydrocarbon include one or two or more halogenated hydrocarbons such as trichlorofluoromethane, trichlorotrifluoroethane, tetrafluoroethane, chlorodifluoroethane and difluoroethane. Further, examples of the ether include dimethyl ether and diethyl ether, and examples of the ketone include acetone and methyl ethyl ketone.
Examples of the decomposing foaming agent include inorganic foaming agents such as sodium bicarbonate (sodium hydrogen carbonate), sodium carbonate, ammonium bicarbonate, ammonium nitrite, azide compound, sodium borohydride, azodicarbonamide, barium azodicarboxylate. , Organic foaming agents such as dinitrosopentamethylenetetramine.
Moreover, you may use the heat-expandable capsule in which the said hydrocarbon was included in the thermoplastic resin. In addition, carbon dioxide gas, nitrogen, gas such as air may be used as the foaming agent.
These may be used alone or in combination of two or more.
The amount of the foaming agent used is preferably 1 part by mass or more and 8 parts by mass or less, and more preferably 2 parts by mass or more and 5 parts by mass or less, with respect to 100 parts by mass of the vinyl chloride resin (B).

発泡層2には、安定剤として鉛化合物(鉛系安定剤)、CaZn化合物(CaZn系安定剤)、錫化合物(錫系安定剤)等公知の安定剤が含まれていてもよい。特に、錫化合物を含む安定剤が含まれていることにより、樹脂の熱安定性を高めやすくなる。錫化合物としては、メルカプト系、ラウレート系、マレート系が好ましい。
これらの化合物の存在、及びその含有量は、誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分析法(ICP−AES)、ガスクロマトグラフ質量分析法(GC−MS)等により確認することができる。ICP−AESの場合、EN ISO17353:2004に準拠して測定できる。
発泡層2には、滑剤が含まれていてもよい。滑剤が含まれていることにより、金属面との滑り性や樹脂間の滑り性を保持しやすくなる。滑剤としては、エステル系、ポリエチレン系、酸化ポリエチレン系が好ましい。
The foamed layer 2 may include a known stabilizer such as a lead compound (lead stabilizer), a CaZn compound (CaZn stabilizer), a tin compound (tin stabilizer) as a stabilizer. In particular, the inclusion of a stabilizer containing a tin compound facilitates increasing the thermal stability of the resin. The tin compound is preferably a mercapto type, a laurate type, or a malate type.
The presence of these compounds and the content thereof are confirmed by inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-AES), gas chromatograph mass spectrometry (GC-MS) and the like. be able to. In the case of ICP-AES, it can be measured according to EN ISO 17353:2004.
The foam layer 2 may contain a lubricant. The inclusion of the lubricant makes it easier to maintain the slidability between the metal surface and the resin. As the lubricant, ester type, polyethylene type and polyethylene oxide type are preferable.

発泡層2の発泡倍率は、3.5倍以上10倍以下であり、4.5倍以上6.0倍以下が好ましい。
発泡倍率を上記数値範囲内とすることにより、高い断熱性を付与することができる。また、発泡倍率を上記数値範囲内とすることにより、空調ドレン用管10’を軽量にできる。
発泡倍率は、樹脂の種類又は量、発泡剤の種類又は量、製造条件等により調節することができる。
なお、発泡倍率は以下の方法で測定することができる。
[発泡倍率の測定方法]
空調ドレン用管10’から円周方向10mm以上、軸方向50mmを切り出し、非発泡内層1及び非発泡外層3をフライスで切削し、発泡層2だけを長さ約50mm程度の板状に加工したものを試験片とする。なお、試験片は内周方向に均等に4分割した点を中心に4個作成するものとする。
試験片をJIS K 7112:1999に従い、23℃±2℃で水置換式比重測定機で見かけ密度を小数点以下3桁まで求め、下記式(1)により発泡倍率を算出する。
m=γc/γ ・・・(1)
[式(1)中、mは発泡倍率であり、γは発泡層2の見かけ密度(g/cm)であり、γcは発泡層2の未発泡時の密度(g/cm)である。]
The expansion ratio of the foam layer 2 is 3.5 times or more and 10 times or less, and preferably 4.5 times or more and 6.0 times or less.
By setting the expansion ratio within the above numerical range, high heat insulation can be imparted. Further, by setting the expansion ratio within the above numerical range, the air conditioning drain pipe 10' can be made lightweight.
The expansion ratio can be adjusted according to the type or amount of resin, the type or amount of foaming agent, manufacturing conditions, and the like.
The expansion ratio can be measured by the following method.
[Measuring method of foaming ratio]
A 10 mm or more circumferential direction and 50 mm axial direction were cut out from the air conditioning drain pipe 10 ′, the non-foamed inner layer 1 and the non-foamed outer layer 3 were cut with a milling cutter, and only the foam layer 2 was processed into a plate shape having a length of about 50 mm. The thing is used as a test piece. It should be noted that four test pieces are prepared centering on points that are evenly divided into four in the inner peripheral direction.
According to JIS K 7112:1999, a test piece is used to obtain the apparent density up to 3 digits after the decimal point with a water displacement type specific gravity measuring machine at 23° C.±2° C., and the expansion ratio is calculated by the following formula (1).
m=γc/γ (1)
[In the formula (1), m is a foaming ratio, γ is an apparent density (g/cm 3 ) of the foamed layer 2, and γc is a density (g/cm 3 ) of the foamed layer 2 when not foamed. .. ]

発泡層2の独立気泡率は、45%以上であり、60%以上が好ましく、80%以上がより好ましい。独立気泡率の上限値は特に限定されず、実用的には95%以下とされ、100%であっても、90%以下であってもよい。
独立気泡率を上記数値範囲内とすることにより、コストを抑えつつ断熱性を向上させ、発泡層2への水の浸透を防止できる。また、発泡層2の独立気泡率が上記数値範囲内であると、後述する非発泡外層3の厚さを薄くしても外部から水が浸透しにくく、断熱性が低下するおそれが低い。
独立気泡率は、JIS K 7138:2006に準拠して測定される。
独立気泡率は、樹脂の種類又は量、発泡剤の種類又は量、製造条件等により調節することができる。
The closed cell ratio of the foam layer 2 is 45% or more, preferably 60% or more, and more preferably 80% or more. The upper limit of the closed cell rate is not particularly limited, and is practically 95% or less, and may be 100% or 90% or less.
By setting the closed cell ratio within the above numerical range, it is possible to improve the heat insulating property while suppressing the cost and prevent water from penetrating into the foam layer 2. Further, when the closed cell ratio of the foamed layer 2 is within the above numerical range, even if the thickness of the non-foamed outer layer 3 which will be described later is reduced, it is difficult for water to permeate from the outside, and the heat insulating property is less likely to deteriorate.
The closed cell rate is measured according to JIS K 7138:2006.
The closed cell ratio can be adjusted by the type or amount of resin, the type or amount of foaming agent, manufacturing conditions, and the like.

発泡層2と非発泡内層1との融着強度は1.5MPa以上であり、2.0MPa以上が好ましい。
融着強度を上記範囲内とすることにより、発泡層2と非発泡内層1とが剥離することを防止できる。
融着強度は、樹脂の種類又は量、発泡剤の種類又は量、製造条件等により調節することができる。
The fusion bonding strength between the foamed layer 2 and the non-foamed inner layer 1 is 1.5 MPa or more, preferably 2.0 MPa or more.
By setting the fusion strength within the above range, it is possible to prevent the foam layer 2 and the non-foam inner layer 1 from peeling off.
The fusion strength can be adjusted by the kind or amount of the resin, the kind or amount of the foaming agent, the manufacturing conditions and the like.

発泡層2の平均気泡径は、30μm以上400μm以下であり、50μm以上400μm以下が好ましく、50μm以上250μm以下がより好ましく、60μm以上200μm以下がさらに好ましい。
平均気泡径を上記数値範囲内とすることにより、断熱性を向上させ、発泡層2への水の浸透を防止できる。気泡が完全な独立気泡(独立気泡率が100%)でなく、気泡壁が一部連通していて水の浸透が可能であっても、平均気泡径を上記数値範囲とし、かつ、独立気泡率が上記数値範囲内であれば、水が発泡層2の内部深くまで浸透することは無く、実用において断熱性能が問題となることは無い。
平均気泡径の測定方法は、後述する。
平均気泡径は、樹脂の種類又は量、発泡剤の種類又は量、製造条件等により調節することができる。
The average cell diameter of the foam layer 2 is 30 μm or more and 400 μm or less, preferably 50 μm or more and 400 μm or less, more preferably 50 μm or more and 250 μm or less, and further preferably 60 μm or more and 200 μm or less.
By setting the average cell diameter within the above numerical range, it is possible to improve the heat insulating property and prevent the permeation of water into the foam layer 2. Even if the air bubbles are not completely closed cells (closed cell ratio is 100%), and even if some of the cell walls are connected to allow water to penetrate, the average cell diameter is within the above numerical range and the closed cell rate is Is within the above numerical range, water does not penetrate deep inside the foam layer 2, and the heat insulating performance does not pose a problem in practical use.
The method for measuring the average bubble diameter will be described later.
The average cell diameter can be adjusted by the type or amount of resin, the type or amount of foaming agent, manufacturing conditions, and the like.

<非発泡外層>
非発泡外層3は、塩化ビニル系樹脂(C)を含む。塩化ビニル系樹脂(C)としては、塩化ビニル単量体の単独重合体(ポリ塩化ビニル)でもよいし、塩化ビニル単量体と、該塩化ビニル単量体と共重合可能な他の単量体との共重合体であってもよい。
上記塩化ビニル単量体と共重合可能な他の単量体としては、例えば、エチレン、プロピレン、塩化アリル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、無水マレイン酸、アクリロニトリル等の単量体が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
塩化ビニル系樹脂(C)は単独で用いられてもよく、2種類以上が併用されてもよい。 非発泡外層3は塩化ビニル系樹脂(C)以外の熱可塑性樹脂を含んでいてもよい。該熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブテン、塩素化ポリエチレン、エチレン−プロピレン共重合体、エチレン−エチルアクリレート共重合体、ポリエチレンテレフタレート、ABS樹脂、アクリル樹脂等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。
非発泡外層3において、樹脂の総質量に対する塩化ビニル系樹脂(C)の含有量は、80質量%以上95質量%以下が好ましく、85質量%以上90質量%以下がより好ましい。
塩化ビニル系樹脂(C)は、塩化ビニル系樹脂(A)と同じでもよいし異なっていてもよい。
塩化ビニル系樹脂(C)は、塩化ビニル系樹脂(B)と同じでもよいし異なっていてもよい。
非発泡外層3の厚さは、0.6mm以上1.5mm以下が好ましく、1.0mm以上1.3mm以下がより好ましい。非発泡外層3の厚さを上記下限値以上とすることにより、外部からの衝撃に強い空調ドレン用管10’にできる。非発泡外層3の厚さを上記上限値以下とすることにより、空調ドレン用管10’を軽量にできる。また、発泡層2の厚さを厚くできるため、空調ドレン用管10’を断熱性に優れたものにできる。
外部からの衝撃により強くする場合には、非発泡外層3の厚さは、1.0mm以上5.0mm以下が好ましく、1.5mm以上3.5mm以下がより好ましい。
非発泡外層3には顔料が含まれていてもよい。顔料が含まれていることにより、外観を良好にできる。
<Non-foamed outer layer>
The non-foamed outer layer 3 contains a vinyl chloride resin (C). As the vinyl chloride resin (C), a homopolymer of vinyl chloride monomer (polyvinyl chloride) may be used, or a vinyl chloride monomer and another monomer which is copolymerizable with the vinyl chloride monomer. It may be a copolymer with the body.
Examples of the other monomer copolymerizable with the vinyl chloride monomer include ethylene, propylene, allyl chloride, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl acetate, maleic anhydride, acrylonitrile. And the like. These may be used alone or in combination of two or more.
The vinyl chloride resin (C) may be used alone or in combination of two or more kinds. The non-foamed outer layer 3 may contain a thermoplastic resin other than the vinyl chloride resin (C). Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, polybutene, chlorinated polyethylene, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer, polyethylene terephthalate, ABS resin and acrylic resin. These may be used alone or in combination of two or more.
In the non-foamed outer layer 3, the content of the vinyl chloride resin (C) with respect to the total weight of the resin is preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 90% by mass or less.
The vinyl chloride resin (C) may be the same as or different from the vinyl chloride resin (A).
The vinyl chloride resin (C) may be the same as or different from the vinyl chloride resin (B).
The thickness of the non-foamed outer layer 3 is preferably 0.6 mm or more and 1.5 mm or less, more preferably 1.0 mm or more and 1.3 mm or less. By setting the thickness of the non-foamed outer layer 3 to be equal to or more than the above lower limit value, it is possible to form the air conditioning drain pipe 10' that is resistant to external impact. By setting the thickness of the non-foamed outer layer 3 to be equal to or less than the above upper limit value, the air conditioning drain pipe 10' can be made lightweight. Further, since the thickness of the foam layer 2 can be increased, the air conditioning drain pipe 10 ′ can have excellent heat insulating properties.
In the case of strengthening by the impact from the outside, the thickness of the non-foamed outer layer 3 is preferably 1.0 mm or more and 5.0 mm or less, and more preferably 1.5 mm or more and 3.5 mm or less.
The non-foamed outer layer 3 may contain a pigment. By including the pigment, the appearance can be improved.

≪空調ドレン用管の製造方法≫
図3及び図4は、三層構造の空調ドレン用管10’を製造するための製造装置20の全体構成図である。製造装置20は、内外層押出機11、発泡層押出機12、金型13、冷却水槽15、引取機16、及び切断機17を備える。内外層押出機11、及び発泡層押出機12には金型13が接続されており、金型13には冷却水槽15が接続されている。冷却水槽15に引取機16が接続されており、引取機16には切断機17が接続されている。さらに、図3及び図4に示すように、ガスボンベ18と定量ポンプ19が発泡層押出機12に接続されていてもよい。
ガスボンベ18と定量ポンプ19は、発泡層押出機12のベント孔から、気体の発泡剤を供給するものである。
内外層押出機11は、非発泡内層1及び非発泡外層3を形成する非発泡層用熱可塑性樹脂組成物を溶融混練し、金型13に押し出すものである。
発泡層押出機12は、発泡層2を形成する発泡層用熱可塑性樹脂組成物を溶融混練し、金型13に押し出すものである。
金型13は、内外層押出機11から注入された非発泡層用熱可塑性樹脂組成物と、発泡層押出機12から注入された発泡層用熱可塑性樹脂組成物から、三層構造の未硬化の空調ドレン用管100’を成形するものである。
冷却水槽15には、未硬化の空調ドレン用管100’を所定寸法に成形するための管外面成形用チューブ14が取り付けられており、金型13で成形された未硬化の空調ドレン用管100’の外面を管外面成形用チューブ14に接触させた状態で冷却するものである。
引取機16は、冷却水槽15で冷却された空調ドレン用管10’を受け取るものである。
切断機17は、引取機16から送られてきた空調ドレン用管10’を所定の長さに切断するものである。
≪Manufacturing method for air conditioning drain pipes≫
3 and 4 are overall configuration diagrams of a manufacturing apparatus 20 for manufacturing an air conditioning drain pipe 10' having a three-layer structure. The manufacturing apparatus 20 includes an inner/outer layer extruder 11, a foam layer extruder 12, a mold 13, a cooling water tank 15, a take-off machine 16, and a cutting machine 17. A mold 13 is connected to the inner/outer layer extruder 11 and the foam layer extruder 12, and a cooling water tank 15 is connected to the mold 13. A pulling machine 16 is connected to the cooling water tank 15, and a cutting machine 17 is connected to the pulling machine 16. Further, as shown in FIGS. 3 and 4, the gas cylinder 18 and the metering pump 19 may be connected to the foam layer extruder 12.
The gas cylinder 18 and the metering pump 19 supply a gaseous foaming agent from the vent hole of the foaming layer extruder 12.
The inner/outer layer extruder 11 melt-kneads the thermoplastic resin composition for the non-foamed layer forming the non-foamed inner layer 1 and the non-foamed outer layer 3 and extrudes it into the mold 13.
The foam layer extruding machine 12 melts and kneads the thermoplastic resin composition for foam layer which forms the foam layer 2 and extrudes it into the mold 13.
The mold 13 is composed of a thermoplastic resin composition for a non-foamed layer injected from the inner and outer layer extruder 11 and a thermoplastic resin composition for a foamed layer injected from the foamed layer extruder 12, and is uncured with a three-layer structure. The air-conditioning drain pipe 100' is molded.
The cooling water tank 15 is provided with a tube 14 for forming an outer surface of the uncured air conditioning drain tube 100 ′ for molding the uncured air conditioning drain tube 100 ′ into a predetermined size, and the uncured air conditioning drain tube 100 formed by the mold 13. Is cooled in a state where the outer surface of the tube is in contact with the tube 14 for forming a tube outer surface.
The take-off machine 16 receives the air conditioning drain pipe 10 ′ cooled in the cooling water tank 15.
The cutting machine 17 cuts the air conditioning drain pipe 10 ′ sent from the take-off machine 16 into a predetermined length.

まず、非発泡層用熱可塑性樹脂組成物を内外層押出機11に供給し、溶融混練する。これとは別に、発泡層用熱可塑性樹脂組成物を発泡層押出機12に供給し、溶融混練する。このときガスを発泡剤として使用する場合には、発泡層用熱可塑性樹脂組成物を溶融混練しているところに、ガスボンベ18内のガスを定量ポンプ19のポンプ動作によりベント孔から供給する。固体又は液体の発泡剤を使用する場合には、発泡層用熱可塑性樹脂組成物に発泡剤をあらかじめ配合しておいてもよい。 First, the thermoplastic resin composition for the non-foamed layer is supplied to the inner/outer layer extruder 11 and melt-kneaded. Separately, the thermoplastic resin composition for foam layer is supplied to the foam layer extruder 12 and melt-kneaded. When gas is used as the foaming agent at this time, the gas in the gas cylinder 18 is supplied from the vent hole by the pump operation of the metering pump 19 while the thermoplastic resin composition for the foam layer is being melt-kneaded. When a solid or liquid foaming agent is used, the foaming agent may be pre-blended with the thermoplastic resin composition for foam layer.

そして、図5に示すように、内外層押出機11により溶融混練された非発泡層用熱可塑性樹脂組成物21と、発泡層押出機12により溶融混練された発泡層用熱可塑性樹脂組成物22を、金型13に注入し、金型13内部で合流させて、三層構造の未硬化の空調ドレン用管100’を成形する。未硬化の空調ドレン用管100’は、非発泡層用熱可塑性樹脂組成物21から形成される非発泡熱可塑性樹脂層31と、非発泡内層1及び非発泡外層3の間の、発泡層用熱可塑性樹脂組成物22から形成される発泡熱可塑性樹脂層32とから構成される。 Then, as shown in FIG. 5, the thermoplastic resin composition 21 for the non-foamed layer melt-kneaded by the inner and outer layer extruder 11 and the thermoplastic resin composition 22 for the foamed layer melt-kneaded by the foamed layer extruder 12. Are poured into the mold 13 and merged inside the mold 13 to form an uncured air conditioning drain pipe 100′ having a three-layer structure. The uncured air conditioning drain pipe 100 ′ is for a foam layer between the non-foaming thermoplastic resin layer 31 formed from the non-foaming layer thermoplastic resin composition 21 and the non-foaming inner layer 1 and the non-foaming outer layer 3. A foamed thermoplastic resin layer 32 formed from the thermoplastic resin composition 22.

さらに、三層構造の未硬化の空調ドレン用管100’を金型13より吐出すると、発泡熱可塑性樹脂層32の樹脂が発泡する。未硬化の空調ドレン用管100’を管外面成形用チューブ14内に挿入し、未硬化の空調ドレン用管100’は所定寸法に型成形されながら冷却水槽15内で冷却されて空調ドレン用管10’となる。さらに、冷却成形された空調ドレン用管10’を引取機16に引き渡して切断機17に送り、切断機17において所定の長さに切断する。 Further, when the uncured air conditioning drain pipe 100 ′ having a three-layer structure is discharged from the mold 13, the resin of the foamed thermoplastic resin layer 32 foams. An uncured air conditioning drain pipe 100 ′ is inserted into the pipe outer surface forming tube 14, and the uncured air conditioning drain pipe 100 ′ is cooled in the cooling water tank 15 while being molded to a predetermined size, and is then conditioned. 10'. Further, the cooling-molded air conditioning drain pipe 10 ′ is delivered to the take-off machine 16 and sent to the cutting machine 17, where it is cut into a predetermined length.

金型13で成形するときの温度は、140℃以上200℃以下が好ましく、160℃以上190℃以下がより好ましい。
金型で成形するときの時間は、10分以上30分以下が好ましく、10分以上20分以下がより好ましい。
The temperature for molding with the mold 13 is preferably 140° C. or higher and 200° C. or lower, and more preferably 160° C. or higher and 190° C. or lower.
The time for molding with a mold is preferably 10 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

以下に表中の成分を説明する。
なお、表中の各成分の含有量は、発泡層のポリ塩化ビニルを100質量部としたときの質量部を表す。
<塩化ビニル系樹脂(B)>
・A−1:ポリ塩化ビニル(重合度640、徳山積水工業社製、商品名「TS−640M」)。
・A−2:ポリ塩化ビニル(重合度800、徳山積水工業社製、商品名「TS−800E」)。
・A−3:ポリ塩化ビニル(重合度500、大洋塩ビ社製、商品名「TH−500」)。・A−4:ポリ塩化ビニル(重合度1000、徳山積水工業社製、商品名「TS−1000R」)。
<アクリル系高分子化合物>
・B−1:アクリル系高分子化合物(質量平均分子量300万、三菱レイヨン社製、商品名「P−530A」)。
・B−2:アクリル系高分子化合物(質量平均分子量:400万、三菱レイヨン社製、商品名「P−531A」)。
・B−3:アクリル系高分子化合物(質量平均分子量:500万、カネカ社製、商品名「PA−40」)。
・B−4:アクリル系高分子化合物(質量平均分子量:100万、カネカ社製、商品名「PA−20」)。
・B−5:アクリル系高分子化合物(質量平均分子量:800万、カネカ社製、商品名「PA−60」)。
<発泡剤>
・C−1:重曹(永和化成工業社製、商品名「セルボンSC−855」)。
・C−2:熱膨張性カプセル(徳山積水工業社製、商品名「アドバンセル EM501」)。
・C−3:アゾジカルボンアミド(永和化成工業社製、商品名「ビニホールAC」)。
<塩化ビニル系樹脂(A)、及び(C)>
・ポリ塩化ビニル(重合度1000、徳山積水工業社製、商品名「TS−1000R」)。
The components in the table will be described below.
In addition, the content of each component in the table represents parts by mass when the polyvinyl chloride in the foam layer is 100 parts by mass.
<Vinyl chloride resin (B)>
-A-1: Polyvinyl chloride (polymerization degree 640, manufactured by Tokuyama Sekisui Industry Co., Ltd., trade name "TS-640M").
-A-2: Polyvinyl chloride (polymerization degree 800, manufactured by Tokuyama Sekisui Industry Co., Ltd., trade name "TS-800E").
-A-3: Polyvinyl chloride (polymerization degree 500, manufactured by Taiyo PVC Co., Ltd., trade name "TH-500"). -A-4: Polyvinyl chloride (polymerization degree 1000, manufactured by Tokuyama Sekisui Industry Co., Ltd., trade name "TS-1000R").
<Acrylic polymer compound>
B-1: Acrylic polymer compound (mass average molecular weight 3,000,000, manufactured by Mitsubishi Rayon Co., Ltd., trade name "P-530A").
B-2: Acrylic polymer compound (mass average molecular weight: 4,000,000, manufactured by Mitsubishi Rayon Co., Ltd., trade name "P-531A").
B-3: Acrylic polymer compound (mass average molecular weight: 5,000,000, manufactured by Kaneka Corporation, trade name "PA-40").
B-4: Acrylic polymer compound (mass average molecular weight: 1,000,000, manufactured by Kaneka Corporation, trade name "PA-20").
B-5: acrylic polymer compound (mass average molecular weight: 8,000,000, manufactured by Kaneka Corporation, trade name "PA-60").
<Foaming agent>
C-1: baking soda (manufactured by Eiwa Chemical Industry Co., Ltd., trade name "Cerbon SC-855").
C-2: Thermally expandable capsule (Tokuyama Sekisui Industry Co., Ltd., trade name "Advancel EM501").
C-3: Azodicarbonamide (manufactured by Eiwa Chemical Industry Co., Ltd., trade name "Vinihol AC").
<Vinyl chloride resin (A) and (C)>
-Polyvinyl chloride (polymerization degree 1000, manufactured by Tokuyama Sekisui Industry Co., Ltd., trade name "TS-1000R").

(実施例1)
塩化ビニル系樹脂(B)A−1を100質量部と、錫系安定剤(大協化成工業社製、商品名「STX−80」)を2質量部と、アクリル系高分子化合物B−1を24質量部と、重曹C−1を2.2質量部とを混合して発泡層用熱可塑性樹脂組成物を調製した。
内・外層用の非発泡層用熱可塑性樹脂組成物として塩化ビニル系樹脂(A)、(C)100質量部に、錫系安定剤(大協化成工業社製、商品名「STX−80」)を2質量部混合した樹脂組成物を使用した。
これらの組成物を、図3〜5に示す内外層押出機11、発泡層押出機12、金型13、管外面成形用チューブ14が取り付けられた冷却水槽15、引取機16、切断機17とから構成されている製造装置を用いて押出成形を行った。
具体的には、非発泡層用熱可塑性樹脂組成物を190℃で内外層押出機11にて混練し、押出量40kg/hで金型13に注入した。また、発泡層用熱可塑性樹脂組成物を発泡層押出機12にて190℃で混練し、60kg/hにて金型13に注入した。金型13として、製品外径89mm、内径77mmの金型を用いた。金型13から吐出した組成物を、管外面成形用チューブ14内に挿入し、冷却水槽15内で冷却し、引取機16で引き取った後、切断機17で所定の長さに切断して三層構造の空調ドレン用管を得た。
(Example 1)
100 parts by mass of vinyl chloride resin (B) A-1, 2 parts by mass of tin stabilizer (trade name "STX-80" manufactured by Daikyo Kasei Co., Ltd.), and acrylic polymer compound B-1 Was mixed with 24 parts by mass of baking soda C-1 and 2.2 parts by mass of baking soda C-1 to prepare a thermoplastic resin composition for a foam layer.
100 parts by mass of vinyl chloride resin (A) and (C) as a thermoplastic resin composition for non-foaming layers for inner and outer layers, tin stabilizer (trade name "STX-80", manufactured by Daikyo Kasei Kogyo Co., Ltd.) The resin composition which mixed 2 mass parts of was used.
These compositions were used as an inner/outer layer extruder 11, a foam layer extruder 12, a mold 13, a cooling water tank 15 to which a tube 14 for tube outer surface molding is attached, a take-off machine 16, and a cutting machine 17 shown in FIGS. Extrusion molding was performed using a manufacturing apparatus configured from.
Specifically, the thermoplastic resin composition for a non-foamed layer was kneaded at 190° C. in the inner/outer layer extruder 11 and injected into the mold 13 at an extrusion rate of 40 kg/h. Further, the thermoplastic resin composition for foam layer was kneaded at 190° C. by the foam layer extruder 12 and injected into the mold 13 at 60 kg/h. As the mold 13, a mold having an outer diameter of 89 mm and an inner diameter of 77 mm was used. The composition discharged from the mold 13 is inserted into the tube 14 for molding the outer surface of the pipe, cooled in the cooling water tank 15, taken by the take-up machine 16, and then cut into a predetermined length by the cutting machine 17 to obtain three pieces. A layered pipe for air conditioning drain was obtained.

(実施例2〜8、比較例1〜6)
表1及び2に記載の成分に変更した以外は、実施例1と同様にして三層構造の空調ドレン用管を得た。
(Examples 2-8, Comparative Examples 1-6)
A three-layer air-conditioning drain pipe was obtained in the same manner as in Example 1 except that the components shown in Tables 1 and 2 were changed.

得られた各例の空調ドレン用管について、独立気泡率、平均気泡径、偏平試験、融着強度、発泡倍率、縦弾性係数、満水試験をそれぞれ以下の手順で測定した。 With respect to each of the obtained air conditioning drain pipes, the closed cell ratio, the average cell diameter, the flatness test, the fusion strength, the expansion ratio, the longitudinal elastic modulus, and the full water test were measured by the following procedures.

[独立気泡率の測定]
空調ドレン用管を約30mmの長さに切断し、周長約20mmとなるように周方向に切断し、NTカッターにて非発泡内層と非発泡外層を除去したものを試験片とした。
JIS K 7138:2006に従い、23℃±2℃で空気比較式比重計で体積を測定し、JIS K 7112:1999に従い、23℃±2℃で水置換式比重計で求めた体積を測定し、下記式(2)により独立気泡率を測定した。
Cc=(Va/Vaq)×100 ・・・(2)
[式(2)中、Ccは独立気泡率(%)であり、Vaは空気比較式体積(cm)であり、Vaqは水置換法体積(cm)である。]
得られた結果を表1、2に示す。
[Measurement of closed cell ratio]
A tube for an air-conditioning drain was cut into a length of about 30 mm, and was cut in the circumferential direction so that the peripheral length was about 20 mm, and the non-foamed inner layer and the non-foamed outer layer were removed by an NT cutter to obtain a test piece.
According to JIS K 7138:2006, the volume was measured with an air-comparison hydrometer at 23° C.±2° C., and according to JIS K 7112:1999, the volume obtained with a water displacement-type hydrometer was measured at 23° C.±2° C. The closed cell ratio was measured by the following formula (2).
Cc=(Va/Vaq)×100 (2)
[In the formula (2), Cc is a closed cell ratio (%), Va is an air comparison volume (cm 3 ), and Vaq is a water displacement method volume (cm 3 ). ]
The obtained results are shown in Tables 1 and 2.

[平均気泡径の測定]
JIS K 6400−1に従い、走査型電子顕微鏡(SEM)で撮影した空調ドレン用管の円周方向断面画像上に1800μm直線を引き、直線上の気泡数で割った値を気泡径とし1画像につき8本の直線、8データの平均値を平均気泡径とした。
[Measurement of average bubble diameter]
According to JIS K 6400-1, a 1800 μm straight line was drawn on the circumferential cross-sectional image of the air conditioning drain pipe photographed with a scanning electron microscope (SEM), and the value obtained by dividing by the number of bubbles on the straight line was taken as the bubble diameter per image. The average value of 8 straight lines and 8 data was defined as the average bubble diameter.

[偏平試験]
空調ドレン用管を長さ50mmに切断し、これを試験片とした。
試験片を23℃±2℃で1時間以上状態を調節した後、偏平試験機の2枚の圧縮板間にはさみ、管軸に直角の方向に偏平荷重が784N(80kgf)以上になるまで10mm/minの圧縮速度で圧縮し、試験片の割れ、ヒビの有無を確認し、以下の評価基準で評価した。
<評価基準>
○:割れ、ヒビがない。
×:割れ、ヒビがある。
得られた結果を表1、2に示す。
[Flat test]
The air conditioning drain pipe was cut into a length of 50 mm and used as a test piece.
After adjusting the condition of the test piece at 23 ℃ ± 2 ℃ for 1 hour or more, sandwich the test piece between the two compression plates of the flat tester, and 10 mm until the flat load becomes 784 N (80 kgf) or more in the direction perpendicular to the tube axis. The test piece was compressed at a compression speed of /min, and the presence or absence of cracks and cracks in the test piece was confirmed and evaluated according to the following evaluation criteria.
<Evaluation criteria>
◯: No cracks or cracks.
X: There are cracks and cracks.
The obtained results are shown in Tables 1 and 2.

[融着強度の測定]
空調ドレン用管を管軸に沿って20mmの管状に切り取ったものを試験片とした。
温度が23℃±2℃、湿度が常湿(45〜85%)の条件下、試験片43を図2に示す万能試験機40の抜き打ち治具41にセットして圧縮板間42にはさみ、管軸に直角の方向に毎分10mm/min±2mm/minの速さで圧縮し、非発泡内層と発泡層との融着面が剥離する際の最大荷重を求め、下記式(3)及び(4)で融着強度を算出した。 F=W/S ・・・(3)
S=3.14×d×L・・・(4)
[式(3)及び(4)中、Fは融着強度(MPa)であり、Wは最大荷重(N)であり、Sは融着面積(cm)であり、dは非発泡内層平均外径(cm)であり、Lは試験片長さ(cm)である。]
得られた結果を表1、2に示す。
[Measurement of fusion strength]
A test piece was obtained by cutting the air conditioning drain pipe into a 20 mm tubular shape along the pipe axis.
Under the condition that the temperature is 23° C.±2° C. and the humidity is normal humidity (45 to 85%), the test piece 43 is set on the punching jig 41 of the universal testing machine 40 shown in FIG. It is compressed at a rate of 10 mm/min±2 mm/min in a direction perpendicular to the tube axis, and the maximum load when the fusion-bonded surface between the non-foamed inner layer and the foamed layer is peeled off is obtained, and the following formula (3) and The fusion strength was calculated in (4). F=W/S (3)
S=3.14×d×L (4)
[In Formulas (3) and (4), F is the fusion strength (MPa), W is the maximum load (N), S is the fusion area (cm 2 ), and d is the non-foamed inner layer average. It is an outer diameter (cm), and L is a test piece length (cm). ]
The obtained results are shown in Tables 1 and 2.

[発泡倍率の測定]
空調ドレン用管から円周方向10mm以上、軸方向50mmを切り出し、非発泡内層及び非発泡外層をフライスで切削し、発泡層だけを長さ約50mm程度の板状に加工したものを試験片とした。なお、試験片は内周方向に均等に4分割した点を中心に4個作成した。
試験片をJIS K 7112:1999に従い、23℃±2℃で水置換式比重測定機で見かけ密度を小数点以下3桁まで求め、下記式(1)により発泡倍率を算出した。
m=γc/γ ・・・(1)
[式(1)中、mは発泡倍率であり、γは発泡層の見かけ密度(g/cm)であり、γcは発泡層の未発泡時の密度(g/cm)である。]
得られた結果の平均値を表1、2に示す。
[Measurement of foaming ratio]
A 10 mm or more circumferential direction and 50 mm axial direction were cut out from an air conditioning drain pipe, the non-foamed inner layer and the non-foamed outer layer were cut with a milling cutter, and only the foamed layer was processed into a plate shape with a length of about 50 mm as a test piece. did. In addition, four test pieces were created centering on a point equally divided into four in the inner peripheral direction.
According to JIS K 7112:1999, the test piece was used to obtain the apparent density up to 3 digits after the decimal point with a water displacement-type specific gravity measuring machine at 23° C.±2° C., and the expansion ratio was calculated by the following formula (1).
m=γc/γ (1)
[In the formula (1), m is a foaming ratio, γ is an apparent density (g/cm 3 ) of the foamed layer, and γc is a density (g/cm 3 ) of the foamed layer when not foamed. ]
The average values of the obtained results are shown in Tables 1 and 2.

[縦弾性係数]
JIS K 7161−1:2014に従い、温度15℃の条件下において縦弾性係数を測定した。得られた結果を表1、2に示す。
[Coefficient of longitudinal elasticity]
According to JIS K 7161-1:2014, the longitudinal elastic modulus was measured under the condition of a temperature of 15°C. The obtained results are shown in Tables 1 and 2.

[満水試験]
図6に満水試験装置の概略図を示す。
空調ドレン用管10’を長さL1(L1=2000mm)に切断し、これを試験片とした。
試験片の下端に他方が閉塞された管継手50を接続し、試験片の上端にも管継手51を接続し、管継手51の上部に水位を確認するための目盛がついた長さL2(L2=2000mm)のシリンダー60を接続し、満水試験装置70とする。なお、試験片の空調ドレン用管10’の両端の端面(切断面)には接着剤を塗布しなかった。
この満水試験装置70を、管継手50を下側にし、試験片の管軸が垂直になるように固定した後、試験片の下端の端面からの水位高さがL1+L2(L1+L2=4000mm)となるよう水を加え、試験片の下端の端面にL1+L2(L1+L2=4000mm)の水頭圧をかけた。
この状態で120分間保持した後の水位の低下量(水位の減少高さ)を測定し、以下の評価基準で評価した。
<評価基準>
○:水位の減少高さが0mm以上10mm未満。
△:水位の減少高さが10mm以上20mm未満。
×:水位の減少高さが20mm以上。
得られた結果を表1、2に示す。
[Fluid test]
FIG. 6 shows a schematic view of the full water test apparatus.
The air conditioning drain pipe 10′ was cut into a length L1 (L1=2000 mm), which was used as a test piece.
The lower end of the test piece is connected to the other closed pipe fitting 50, the upper end of the test piece is also connected to the pipe fitting 51, and the length L2 (the upper part of the pipe fitting 51 is provided with a scale for confirming the water level). L2=2000 mm) of the cylinder 60 is connected to form a full water test apparatus 70. No adhesive was applied to the end surfaces (cut surfaces) of both ends of the air conditioning drain pipe 10' of the test piece.
After fixing the pipe fitting 50 so that the pipe axis of the test piece is vertical, the water level tester 70 has a water level height of L1+L2 (L1+L2=4000 mm) from the end face of the lower end of the test piece. Water was added, and a water head pressure of L1+L2 (L1+L2=4000 mm) was applied to the lower end surface of the test piece.
The amount of decrease in the water level (height of decrease in the water level) after holding for 120 minutes in this state was measured and evaluated according to the following evaluation criteria.
<Evaluation criteria>
◯: The water level reduction height is 0 mm or more and less than 10 mm.
Δ: The height of decrease in water level is 10 mm or more and less than 20 mm.
X: The height of decrease in water level is 20 mm or more.
The obtained results are shown in Tables 1 and 2.

Figure 2020098024
Figure 2020098024

Figure 2020098024
Figure 2020098024

表1、2に示すように、実施例1〜8の空調ドレン用管は独立気泡率が45%以上であり、平均気泡径も小さいため、水を浸透しにくいものであった。
比較例1の空調ドレン用管は、独立気泡率が45%以上であるが、平均気泡径が500μmと大きいものであるため、水を浸透しやすいものであった。
比較例2〜5の空調ドレン用管は、独立気泡率が45%未満であり、連続気泡率が高く、水を浸透しやすいものであった。
比較例6の空調ドレン用管は、発泡層のアクリル系高分子化合物の含有量が多いため、外力に柔軟に追従できず、偏平試験でひびが生じた。
以上の結果から、本発明を適用した空調ドレン用管は、発泡層への水の浸透を容易に防止できることが判った。
As shown in Tables 1 and 2, the air-conditioning drain pipes of Examples 1 to 8 had a closed cell ratio of 45% or more and a small average cell diameter, and thus were difficult to permeate water.
The air-conditioning drain pipe of Comparative Example 1 had a closed cell ratio of 45% or more, but had a large average bubble diameter of 500 μm, and thus was easy to permeate water.
The air-conditioning drain pipes of Comparative Examples 2 to 5 had a closed cell rate of less than 45%, a high open cell rate, and easily permeated water.
Since the air conditioning drain pipe of Comparative Example 6 had a large content of the acrylic polymer compound in the foam layer, it could not flexibly follow the external force and cracked in the flatness test.
From the above results, it was found that the air conditioning drain pipe to which the present invention is applied can easily prevent water from penetrating into the foam layer.

1 非発泡内層
2 発泡層
3 非発泡外層
10’ 空調ドレン用管
1 Non-foaming inner layer 2 Foaming layer 3 Non-foaming outer layer 10' Air conditioning drain pipe

Claims (7)

塩化ビニル系樹脂(B)を含む筒状の発泡層と、
前記発泡層の内面に設けられ、塩化ビニル系樹脂(A)を含む非発泡内層と、を備える空調ドレン用管であって、
前記発泡層の独立気泡率が45%以上であり、
前記発泡層と前記非発泡内層との融着強度が1.5MPa以上であり、
前記発泡層の平均気泡径が30μm以上400μm以下である、空調ドレン用管。
A tubular foam layer containing vinyl chloride resin (B),
A pipe for an air-conditioning drain, which is provided on the inner surface of the foam layer and comprises a non-foam inner layer containing a vinyl chloride resin (A),
The closed cell ratio of the foam layer is 45% or more,
The fusion bonding strength between the foam layer and the non-foam inner layer is 1.5 MPa or more,
A pipe for an air conditioning drain, wherein the foam layer has an average bubble diameter of 30 μm or more and 400 μm or less.
前記発泡層の独立気泡率が95%以下である、請求項1に記載の空調ドレン用管。 The air conditioning drain pipe according to claim 1, wherein the foamed layer has a closed cell rate of 95% or less. 前記発泡層が錫化合物を含む、請求項1または2に記載の空調ドレン用管。 The air conditioning drain pipe according to claim 1 or 2, wherein the foam layer contains a tin compound. 前記発泡層は、発泡剤として炭化水素を含む、請求項1ないし3のいずれか一項に記載の空調ドレン用管。 The air conditioning drain pipe according to any one of claims 1 to 3, wherein the foam layer contains hydrocarbon as a foaming agent. 前記塩化ビニル系樹脂(B)が平均重合度600以上800以下のポリ塩化ビニルである、請求項1ないし4のいずれか一項に記載の空調ドレン用管。 The air conditioning drain pipe according to any one of claims 1 to 4, wherein the vinyl chloride resin (B) is polyvinyl chloride having an average degree of polymerization of 600 or more and 800 or less. 請求項1ないし5のいずれか一項に記載の空調ドレン用管と、管継手とで構成された空調ドレン配管であって、
前記管継手は内部に環状弾性体を備えないことを特徴とする空調ドレン配管。
An air-conditioning drain pipe comprising the air-conditioning drain pipe according to any one of claims 1 to 5 and a pipe joint,
An air conditioning drain pipe characterized in that the pipe joint does not have an annular elastic body inside.
請求項1ないし5のいずれか一項に記載の空調ドレン用管の製造方法であって、
非発泡層用熱可塑性樹脂組成物を押出機により溶融混練して押出し、
揮発性発泡剤、分解型発泡剤、熱膨張性カプセルから選択されるうちの2種類以上を含む発泡剤があらかじめ配合された発泡層用熱可塑性樹脂組成物を押出機により溶融混練して押出し、
前記非発泡層用熱可塑性樹脂組成物および発泡層用熱可塑性樹脂組成物を金型に注入し、該金型内部で合流させて、未硬化の空調ドレン用管を成形し、
未硬化の空調ドレン用管を冷却して所定寸法に型成形する
ことを特徴とする空調ドレン用管の製造方法。
A method for manufacturing an air conditioning drain pipe according to any one of claims 1 to 5,
The thermoplastic resin composition for non-foamed layer is melt-kneaded and extruded by an extruder,
A thermoplastic resin composition for a foam layer in which a foaming agent containing two or more kinds selected from a volatile foaming agent, a decomposable foaming agent, and a heat-expandable capsule is preliminarily blended is melt-kneaded and extruded by an extruder,
The thermoplastic resin composition for a non-foamed layer and the thermoplastic resin composition for a foamed layer are injected into a mold and merged inside the mold to form an uncured air-conditioning drain pipe.
A method for manufacturing an air conditioning drain pipe, characterized by cooling an uncured air conditioning drain pipe and molding the pipe to a predetermined size.
JP2019192098A 2016-09-30 2019-10-21 Air-conditioning drain pipe, air-conditioning drain pipe, and method for manufacturing air-conditioning drain pipe Active JP6680940B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016195204 2016-09-30
JP2016195204 2016-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017193113A Division JP7271078B2 (en) 2016-09-30 2017-10-02 Air conditioning drain pipe

Publications (2)

Publication Number Publication Date
JP6680940B1 JP6680940B1 (en) 2020-04-15
JP2020098024A true JP2020098024A (en) 2020-06-25

Family

ID=61909912

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017193113A Active JP7271078B2 (en) 2016-09-30 2017-10-02 Air conditioning drain pipe
JP2019192098A Active JP6680940B1 (en) 2016-09-30 2019-10-21 Air-conditioning drain pipe, air-conditioning drain pipe, and method for manufacturing air-conditioning drain pipe
JP2022084129A Pending JP2022119873A (en) 2016-09-30 2022-05-23 Air-conditioning drain pipe and method of manufacturing the same
JP2024017439A Pending JP2024056801A (en) 2016-09-30 2024-02-07 Air conditioning drain pipe

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017193113A Active JP7271078B2 (en) 2016-09-30 2017-10-02 Air conditioning drain pipe

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022084129A Pending JP2022119873A (en) 2016-09-30 2022-05-23 Air-conditioning drain pipe and method of manufacturing the same
JP2024017439A Pending JP2024056801A (en) 2016-09-30 2024-02-07 Air conditioning drain pipe

Country Status (1)

Country Link
JP (4) JP7271078B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099647A (en) * 2017-11-30 2019-06-24 株式会社クボタケミックス Production method of resin pipe, resin pipe, and pipeline connection structure
WO2020189141A1 (en) * 2019-03-20 2020-09-24 積水化学工業株式会社 Pipe material for air-conditioning drain
JP7269133B2 (en) * 2019-08-28 2023-05-08 積水化学工業株式会社 multilayer pipe
JP7479877B2 (en) 2020-03-12 2024-05-09 積水化学工業株式会社 Multilayer Pipe
JP7410759B2 (en) 2020-03-12 2024-01-10 積水化学工業株式会社 multilayer pipe
KR102511355B1 (en) * 2021-04-08 2023-03-17 은종하 Insulation cover for piping and manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217934A (en) * 1993-06-21 1995-08-18 Sekisui Chem Co Ltd Drain pipe, fitting for drain pipe and drain piping using them
JP2007283733A (en) * 2006-04-20 2007-11-01 Sekisui Chem Co Ltd Vinyl chloride-based foamed resin tube, its manufacturing device, and manufacturing method
WO2014091867A1 (en) * 2012-12-12 2014-06-19 日本ゼオン株式会社 Vinyl chloride resin composition for powder molding, vinyl chloride resin molded article and laminate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300537A (en) * 1995-05-11 1996-11-19 Sekisui Chem Co Ltd Fiber-reinforced thermoplastic resin foam
JPH1016035A (en) * 1996-07-02 1998-01-20 Sekisui Chem Co Ltd Forming device and manufacture of tubular thermoplastic resin foam using this device
JPH11227028A (en) * 1998-02-13 1999-08-24 Sekisui Chem Co Ltd Production of composite pipe
JP2001038831A (en) * 1999-07-29 2001-02-13 Pentel Corp Production of metal pipe having resin layer on inner surface
JP2001079916A (en) * 1999-09-10 2001-03-27 Achilles Corp Method for expansion molding of thermoplastic resin
JP2002067145A (en) * 2000-08-30 2002-03-05 Sekisui Chem Co Ltd Method for manufacturing biaxially stretched multilayered synthetic resin pipe
JP2002089755A (en) * 2000-09-18 2002-03-27 Mitsubishi Plastics Ind Ltd Three-layer foam pipe
JP2003221513A (en) * 2002-01-31 2003-08-08 Pentel Corp Resin structure and writing material using the resin structure
US7223456B2 (en) * 2004-03-18 2007-05-29 Noveon, Inc. Flexible laminated plastic pipe having a chlorinated poly(vinyl chloride) hollow core
US20070292647A1 (en) * 2006-06-16 2007-12-20 Princell Charles M Lap and seam seal closure system for foam pipe insulation
KR100947259B1 (en) * 2010-01-06 2010-03-11 원진테크 주식회사 Pvc pipe preventing dew condensation for air conditioner
JP2015096314A (en) * 2013-11-15 2015-05-21 積水化学工業株式会社 Method of producing thermoplastic resin foam, thermoplastic resin foam and multi-laye tube using the thermoplastic resin foam
JP2015101053A (en) 2013-11-27 2015-06-04 積水化学工業株式会社 Multilayer molding die, molding method for multilayer molding, and multilayer tube
JP6580814B2 (en) * 2014-07-23 2019-09-25 積水化学工業株式会社 Manufacturing method of hollow tube
JP7217934B2 (en) 2018-12-13 2023-02-06 市光工業株式会社 vehicle lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217934A (en) * 1993-06-21 1995-08-18 Sekisui Chem Co Ltd Drain pipe, fitting for drain pipe and drain piping using them
JP2007283733A (en) * 2006-04-20 2007-11-01 Sekisui Chem Co Ltd Vinyl chloride-based foamed resin tube, its manufacturing device, and manufacturing method
WO2014091867A1 (en) * 2012-12-12 2014-06-19 日本ゼオン株式会社 Vinyl chloride resin composition for powder molding, vinyl chloride resin molded article and laminate

Also Published As

Publication number Publication date
JP2022119873A (en) 2022-08-17
JP2018059707A (en) 2018-04-12
JP2024056801A (en) 2024-04-23
JP6680940B1 (en) 2020-04-15
JP7271078B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6680940B1 (en) Air-conditioning drain pipe, air-conditioning drain pipe, and method for manufacturing air-conditioning drain pipe
TWI707900B (en) Thermoplastic polyurethane foam particles, and thermoplastic polyurethane foam particle molded body
TW592930B (en) A method for producing a polymer or copolymer multilayer foam and a polymer or copolymer multilayer foam
JP5116448B2 (en) Open cell foam and method for producing the same
JP7284860B2 (en) Air conditioning drain pipe
JP2004249680A (en) Foam molding and its manufacturing method
JP6580814B2 (en) Manufacturing method of hollow tube
KR102661361B1 (en) Thermally insulated medium pipes having hfo-containing cell gas
JP7277216B2 (en) Joint structure
JP7254577B2 (en) Piping material
JP4597288B2 (en) Foam molded body and method for producing the same
JP2002089755A (en) Three-layer foam pipe
JP6943597B2 (en) Foam pipe fittings and their manufacturing methods
JP7016937B2 (en) Manufacturing method of foamed resin molded product and foamed resin molded product
JPH10226729A (en) Polyethylene resin mixture foam and production thereof
JP7470098B2 (en) Air conditioning drain piping material
JP6802746B2 (en) Plumbing
JP7413461B2 (en) hollow circular tube
JP7410759B2 (en) multilayer pipe
JP2023003786A (en) Resin composition, foam molded body and multilayer pipe
JP2007145987A (en) Extruded foam of cyclic olefin copolymer resin and method for producing the same
JP2021032387A (en) Multilayer pipe
CN115989144A (en) Multilayer foamed polyethylene resin sheet, laminated paper for glass plate, and process for producing multilayer foamed polyethylene resin sheet
JP2021080937A (en) Pipe joint and piping structure
US20010018119A1 (en) Foamed sheet and method for producting the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200319

R151 Written notification of patent or utility model registration

Ref document number: 6680940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157