JP2020096416A - Power supply system and power supply method - Google Patents

Power supply system and power supply method Download PDF

Info

Publication number
JP2020096416A
JP2020096416A JP2018231172A JP2018231172A JP2020096416A JP 2020096416 A JP2020096416 A JP 2020096416A JP 2018231172 A JP2018231172 A JP 2018231172A JP 2018231172 A JP2018231172 A JP 2018231172A JP 2020096416 A JP2020096416 A JP 2020096416A
Authority
JP
Japan
Prior art keywords
power supply
storage battery
battery
supply system
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018231172A
Other languages
Japanese (ja)
Other versions
JP7084292B2 (en
Inventor
辻川 知伸
Tomonobu Tsujikawa
知伸 辻川
憲光 田中
Norimitsu Tanaka
憲光 田中
茂道 渡邉
Shigemichi Watanabe
茂道 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2018231172A priority Critical patent/JP7084292B2/en
Publication of JP2020096416A publication Critical patent/JP2020096416A/en
Application granted granted Critical
Publication of JP7084292B2 publication Critical patent/JP7084292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To be able to properly supply power to a commercial power source and the like while suppressing costs.SOLUTION: A power supply system comprises a backup battery 3 provided in a business office B and discharging to a load device 4 at a predetermined time, and an electric vehicle 2 equipped with a traveling battery 24 and capable of discharging to the load device 4 when returning to the business office B. Return information including time when the electric vehicle 2 returns to the business office B and remaining capacity of the traveling battery 24 at the time of return is acquired, and based on the return information, the electric vehicle 2 returns to the business office B and becomes ready to be discharged to the load device 4, thereby calculating dischargeable capacity that can be discharged from the backup battery 3 after securing necessary discharge capacity for the load device 4, and discharging the backup battery 3 only the dischargeable capacity when there is a power supply request from outside.SELECTED DRAWING: Figure 1

Description

この発明は、商用電源等からの電力供給が電力需要を下回るおそれがある場合に、供給を補いかつ需要を調整する電力供給システムおよび電力供給方法に関する。 The present invention relates to a power supply system and a power supply method for supplementing the supply and adjusting the demand when the power supply from a commercial power source or the like is likely to fall below the power demand.

近年、太陽光発電などの再生可能エネルギーが大量に導入されたことにより、いわゆるダックカーブ問題が生じている。すなわち、夕方4時頃から7時頃にかけて電力需要は増加するが、太陽光発電の発電量が減少するため、電力需要が供給量を超えてしまう、という問題がある。このような問題を解決するために、電力会社において揚水発電所や調整用火力発電所を増設したり、大容量蓄電池を設置して電力供給を補ったりしている。 In recent years, a large amount of renewable energy such as photovoltaic power generation has been introduced, causing a so-called duck curve problem. That is, although the power demand increases from around 4 pm to 7 pm in the evening, the power generation amount of the solar power generation decreases, so that there is a problem that the power demand exceeds the supply amount. In order to solve such a problem, an electric power company is adding a pumped storage power plant or a thermal power plant for adjustment, or installing a large-capacity storage battery to supplement the power supply.

一方、工場での消費電力が最大となる期間に、蓄電池を放電させて系統電力に補填する、という電力マネジメントシステムが知られている(例えば、特許文献1参照。)。このシステムは、消費電力が所定電力を越える可能性がある場合に、工場内設備に接続された電気自動車のバッテリと工場内設備内の定置蓄電池を放電させて、その電力を系統電力に補填するものである。 On the other hand, there is known a power management system that discharges a storage battery to compensate for system power during a period in which power consumption in a factory is maximum (see, for example, Patent Document 1). This system discharges the battery of the electric vehicle connected to the facility in the factory and the stationary storage battery in the facility when the power consumption may exceed the predetermined power, and supplements the power to the system power. It is a thing.

特開2012−196028号公報Japanese Patent Laid-Open No. 2012-196028

ところで、揚水発電所や調整用火力発電所を増設するには多大な費用を要するばかりでなく、調整用火力発電所は化石燃料を使用するため、温室効果ガスの増加を招く。また、大容量蓄電池を設置するにも多大な費用を要する。 By the way, adding a pumped storage power plant or a thermal power plant for adjustment requires a great amount of cost, and since the thermal power plant for adjustment uses fossil fuel, it causes an increase in greenhouse gas. In addition, installing a large-capacity storage battery requires a great deal of cost.

一方、特許文献1のシステムでは、系統電力を補填するという目的のためだけに、定置蓄電池を設置する必要があるため多大な費用を要する。さらに、工場に勤務する従業員が通勤に使用する電気自動車を放電対象とし、このような電気自動車は、勤務時間中常に駐車スペースに駐車されていて、いつでもどの電気自動車からも放電可能な状態となっている。しかしながら、一般の営業所やオフィスビルなどでは、いつどの電気自動車が駐車するかわからないため、本システムを適用することができない。 On the other hand, in the system of Patent Document 1, it is necessary to install the stationary storage battery only for the purpose of compensating for the system power, so that a large cost is required. In addition, electric vehicles used by employees working in factories for commuting are targeted for discharge, and such electric vehicles are always parked in a parking space during working hours and can be discharged from any electric vehicle at any time. Is becoming However, in general offices and office buildings, it is not possible to apply this system because it is not known when which electric vehicle will be parked.

そこでこの発明は、費用を抑えた上で適正に、商用電源等からの電力供給が電力需要を下回る場合に、供給を補いかつ需要を調整する電力供給システムおよび電力供給方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric power supply system and an electric power supply method that appropriately suppress the cost and appropriately supplement the supply when the electric power supply from a commercial power source or the like is lower than the electric power demand. And

上記目的を達成するために請求項1に記載の発明は、基地に設けられ、所定時に負荷に対して放電する定置用蓄電池と、移動するための走行用蓄電池を備え、前記基地に帰着した際に前記走行用蓄電池から前記負荷に放電可能な移動体と、前記移動体が前記基地に帰着する時刻と、帰着時の前記走行用蓄電池の残容量と、を含む帰着情報を取得する帰着情報取得手段と、前記帰着情報に基づいて、前記移動体が前記基地に帰着して前記負荷に放電可能な状態になることで、前記負荷に対して必要な放電容量を確保した上で前記定置用蓄電池から放電可能な放電可能容量を算出し、外部からの給電要求があった場合に、前記定置用蓄電池を前記放電可能容量だけ放電させる放電制御手段と、を備えることを特徴とする電力供給システムである。 In order to achieve the above object, the invention according to claim 1 is provided with a stationary storage battery that is installed in a base and discharges against a load at a predetermined time, and a traveling storage battery for moving, and when returning to the base. In addition, return information acquisition for obtaining return information including a moving body capable of discharging from the running storage battery to the load, a time when the moving body returns to the base, and a remaining capacity of the running storage battery at the time of returning And a stationary storage battery after securing the necessary discharge capacity for the load by allowing the mobile unit to return to the base and become a state capable of discharging to the load based on the return information. And a discharge control means for discharging the stationary storage battery by the dischargeable capacity when there is a request for power supply from the outside, and a power supply system characterized in that is there.

この発明によれば、移動体が基地に帰着する時刻と帰着時の蓄電池残容量に基づいて、走行用蓄電池から負荷に放電可能になることで、定置用蓄電池から放電可能な放電可能容量が算出される。そして、外部からの給電要求があった場合に、定置用蓄電池が放電可能容量だけ放電される。 According to this invention, the dischargeable capacity that can be discharged from the stationary storage battery is calculated by enabling the traveling storage battery to discharge the load based on the time when the mobile body returns to the base and the remaining storage battery capacity at the time of the return. To be done. Then, when there is a power supply request from the outside, the stationary storage battery is discharged by the dischargeable capacity.

請求項2に記載の発明は、請求項1に記載の電力供給システムにおいて、前記帰着情報取得手段は、前記移動体の位置情報に基づいて前記帰着情報を予測して取得する、ことを特徴とする。 The invention according to claim 2 is the power supply system according to claim 1, wherein the return information acquisition unit predicts and acquires the return information based on position information of the moving body. To do.

請求項3に記載の発明は、請求項1または2に記載の電力供給システムにおいて、前記放電制御手段は、所定の優先順位に基づいて前記定置用蓄電池および前記走行用蓄電池を放電させる、ことを特徴とする。 According to a third aspect of the present invention, in the power supply system according to the first or second aspect, the discharge control means discharges the stationary storage battery and the traveling storage battery based on a predetermined priority order. Characterize.

請求項4に記載の発明は、請求項1から3に記載の電力供給システムにおいて、前記負荷の電力需要を調整する需要調整手段を備える、ことを特徴とする。 The invention described in claim 4 is the power supply system according to any one of claims 1 to 3, further comprising a demand adjustment means for adjusting the power demand of the load.

請求項5に記載の発明は、請求項1から4に記載の電力供給システムにおいて、前記放電制御手段は、複数の前記基地の定置用蓄電池と移動体を制御対象とする、ことを特徴とする。 According to a fifth aspect of the present invention, in the electric power supply system according to the first to fourth aspects, the discharge control unit controls a plurality of stationary storage batteries of the bases and a mobile object. ..

請求項6に記載の発明は、所定時に負荷に対して放電する定置用蓄電池が基地に設けられ、移動するための走行用蓄電池を備えた移動体が前記基地に帰着した際に、前記走行用蓄電池から前記負荷に放電可能な状態において、前記移動体が前記基地に帰着する時刻と、帰着時の前記走行用蓄電池の残容量と、を含む帰着情報を取得し、前記帰着情報に基づいて、前記移動体が前記基地に帰着して前記負荷に放電可能な状態になることで、前記負荷に対して必要な放電容量を確保した上で前記定置用蓄電池から放電可能な放電可能容量を算出し、外部からの給電要求があった場合に、前記定置用蓄電池を前記放電可能容量だけ放電させる、ことを特徴とする電力供給方法である。 According to a sixth aspect of the present invention, a stationary storage battery that discharges against a load at a predetermined time is provided in the base, and when the moving body equipped with the traveling storage battery returns to the base, the running storage battery is used. In a state in which the load can be discharged from a storage battery, the time when the mobile body returns to the base, and the remaining capacity of the traveling storage battery at the time of return, obtains return information, based on the return information, When the mobile body returns to the base and becomes a state in which the load can be discharged, a dischargeable capacity that can be discharged from the stationary storage battery is calculated after securing a necessary discharge capacity for the load. In the power supply method, the stationary storage battery is discharged by the dischargeable capacity when an external power supply request is made.

請求項1および請求項6に記載の発明によれば、移動体が基地に帰着すれば負荷に必要な放電容量を確保できることを予測した上で、定置用蓄電池から放電可能容量だけ放電される。このため、所定時における負荷への電力供給に影響を与えることなく、外部からの給電要求に応じて適正に電力を供給することが可能となる。しかも、定置用蓄電池は負荷に対して放電、電力供給するために設けられたものであり、電力需要を補うために新たに設けるものではない。つまり、既存の定置用蓄電池を電力需要の補助に流用するため、費用を低く抑えることができる。 According to the first and sixth aspects of the present invention, it is predicted that the mobile body can secure the discharge capacity necessary for the load if it returns to the base, and then the stationary storage battery is discharged by the dischargeable capacity. Therefore, it is possible to appropriately supply power in response to a power supply request from the outside without affecting the power supply to the load at a predetermined time. Moreover, the stationary storage battery is provided for discharging and supplying power to the load, and is not newly provided to supplement the power demand. That is, since the existing stationary storage battery is diverted to assist power demand, the cost can be kept low.

また、移動体が基地に帰着する時刻と帰着時の蓄電池残容量を取得して、定置用蓄電池からの放電可能容量を算出するため、いつどの移動体が基地に帰着するか、走行用蓄電池の残容量がどのくらいなのか、定まっていない一般の営業所やオフィスビルなどにおいても、本発明を適用することが可能となる。従って、基地に帰着する不特定多数の移動体を利用して、適正に電力を供給することが可能となる。 In addition, in order to calculate the dischargeable capacity from the stationary storage battery by obtaining the time when the mobile body returns to the base and the remaining battery capacity at the time of return, it is possible to determine when the mobile body will return to the base, The present invention can be applied to general business offices and office buildings where the remaining capacity is not fixed. Therefore, it becomes possible to properly supply electric power by utilizing an unspecified number of moving bodies that return to the base.

請求項2に記載の発明によれば、移動体の位置情報に基づいて帰着時刻と帰着時の蓄電池残容量(帰着情報)を予測、取得するため、帰着情報を直接取得しなくても帰着前に、位置情報で帰着情報を取得、知得することができる。 According to the invention described in claim 2, since the return time and the remaining battery storage capacity (return information) at the time of the return are predicted and acquired based on the position information of the moving body, the return information is not directly acquired before the return. In addition, the return information can be acquired and known from the position information.

請求項3に記載の発明によれば、所定の優先順位に基づいて定置用蓄電池および走行用蓄電池を放電させるため、適正な蓄電池を適正なタイミングで放電させることができ、他への電力供給や移動体の使用への影響を抑えることができる。 According to the invention described in claim 3, since the stationary storage battery and the traveling storage battery are discharged based on a predetermined priority order, it is possible to discharge an appropriate storage battery at an appropriate timing, and to supply power to others. The influence on the use of the moving body can be suppressed.

請求項4に記載の発明によれば、需要調整手段で負荷の電力需要を調整することで、定置用蓄電池からの放電可能容量を調整して、外部の節電要求に柔軟に対応することが可能となる。 According to the invention described in claim 4, by adjusting the power demand of the load by the demand adjusting means, the dischargeable capacity from the stationary storage battery can be adjusted to flexibly respond to the external power saving request. Becomes

請求項5に記載の発明によれば、複数の基地の定置用蓄電池と移動体を制御対象(放電対象)とするため、より多くの定置用蓄電池と走行用蓄電池を利用して、外部の給電要求に柔軟かつ適正に対応することが可能となる。 According to the invention described in claim 5, since the stationary storage batteries and the moving bodies of the plurality of bases are set as control targets (discharging targets), more stationary storage batteries and traveling storage batteries are used to supply external power. It becomes possible to respond flexibly and appropriately to the request.

この発明の実施の形態1に係る電力供給システムを示す概略構成図である。It is a schematic block diagram which shows the electric power supply system which concerns on Embodiment 1 of this invention. 図1の電力供給システムにおける電気自動車の帰着情報に係るブロック図である。It is a block diagram which concerns on the return information of the electric vehicle in the electric power supply system of FIG. 図1の電力供給システムにおける事業所の設備構成を示す図である。It is a figure which shows the equipment structure of the business office in the electric power supply system of FIG. 図3の設備構成における制御装置のブロック図である。It is a block diagram of a control device in the equipment configuration of FIG. 図4の制御装置の放電量算出部による算出例を示す図である。It is a figure which shows the example of calculation by the discharge amount calculation part of the control apparatus of FIG. 図1の電力供給システムによる電力供給方法を示すタイミングチャートである。3 is a timing chart showing a power supply method by the power supply system of FIG. 1. この発明の実施の形態2に係る電力供給システムを示す概略構成図である。It is a schematic block diagram which shows the electric power supply system which concerns on Embodiment 2 of this invention. この発明の他の適用例を示す概略構成図である。It is a schematic block diagram which shows the other application example of this invention.

以下、この発明を図示の実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.

(実施の形態1)
図1〜図6は、この実施の形態を示し、図1は、この実施の形態に係る電力供給システム1を示す概略構成図である。この電力供給システム1は、商用電源100等からの電力供給が電力需要を下回るおそれがある場合に、供給を補うシステムであり、この実施の形態では、商用電源(系統電力)100を補う場合について説明する。この電力供給システム1は、主として、複数の電気自動車(移動体)2と、事業所(基地)Bに設けられたバックアップ用バッテリ(定置用蓄電池)3と制御装置5とを備える。
(Embodiment 1)
1 to 6 show this embodiment, and FIG. 1 is a schematic configuration diagram showing a power supply system 1 according to this embodiment. This power supply system 1 is a system that supplements the power supply from the commercial power supply 100 or the like when there is a possibility that the power supply will fall below the power demand. In the present embodiment, the case where the commercial power supply (system power) 100 is supplemented explain. The power supply system 1 mainly includes a plurality of electric vehicles (moving bodies) 2, a backup battery (stationary storage battery) 3 provided in a business establishment (base) B, and a control device 5.

電気自動車2は、移動するための走行用バッテリ(走行用蓄電池)24を備え、事業所Bに所属し、通常、朝に事業所Bを出発して夕方に事業所Bに帰着・帰社する。この電気自動車2は、図2に示すように、通信部21と、GPS部(帰着情報取得手段)22と、バッテリコントローラ(帰着情報取得手段)23と、これらを制御などする中央制御部20とを備える。 The electric vehicle 2 includes a traveling battery (traveling storage battery) 24 for moving, belongs to the business office B, and usually leaves the business office B in the morning and returns to or returns to the business office B in the evening. As shown in FIG. 2, the electric vehicle 2 includes a communication unit 21, a GPS unit (return information acquisition unit) 22, a battery controller (return information acquisition unit) 23, and a central control unit 20 for controlling them. Equipped with.

通信部21は、通信網NWを介して制御装置5などと通信するためのインターフェイスである。GPS部22は、GPS衛星から時刻信号電波を受信して、電気自動車2の現在位置の緯度と経緯を演算、検出するものである。バッテリコントローラ23は、走行用バッテリ24の充放電を制御などするコントローラであり、走行用バッテリ24の残容量を検知する機能を備えている。ここで、残容量を検知する方法はどのようなものでもよく、例えば、走行距離に基づいて消費電力を算出して残容量を演算したり、放電カーブに基づいて残容量を演算したりしてもよい。また、走行用バッテリ24には充放電ポート25が接続され、この充放電ポート25を後述する充放電器7に接続することで走行用バッテリ24が充放電される。 The communication unit 21 is an interface for communicating with the control device 5 and the like via the communication network NW. The GPS unit 22 receives time signal radio waves from GPS satellites, and calculates and detects the latitude and longitude of the current position of the electric vehicle 2. The battery controller 23 is a controller that controls charging and discharging of the traveling battery 24, and has a function of detecting the remaining capacity of the traveling battery 24. Here, any method may be used to detect the remaining capacity, for example, by calculating the power consumption based on the traveling distance to calculate the remaining capacity, or calculating the remaining capacity based on the discharge curve. Good. A charging/discharging port 25 is connected to the traveling battery 24, and the traveling battery 24 is charged/discharged by connecting the charging/discharging port 25 to a charger/discharger 7 described later.

このような電気自動車2は、事業所Bに帰着した際に充放電ポート25を充放電器7に接続することで、走行用バッテリ24が充電可能になるとともに、走行用バッテリ24から負荷装置(負荷)4および商用電源100に放電可能な状態となる。また、GPS部22で検出された現在位置(移動体の位置情報)と現在時刻と、バッテリコントローラ23で検知された走行用バッテリ24の残容量と、電気自動車2の識別情報とを含むEV情報を定期的に、および制御装置5からの要求に応じて随時、制御装置5に送信するようになっている。 In such an electric vehicle 2, by connecting the charging/discharging port 25 to the charging/discharging device 7 when returning to the business office B, the traveling battery 24 can be charged and the traveling battery 24 loads the load device ( The load 4 and the commercial power supply 100 are ready to be discharged. Also, EV information including the current position (positional information of the moving body) and current time detected by the GPS unit 22, the remaining capacity of the running battery 24 detected by the battery controller 23, and the identification information of the electric vehicle 2. Is transmitted to the control device 5 periodically and at any time in response to a request from the control device 5.

バックアップ用バッテリ3は、停電時(所定時)に通信機器などの負荷装置4に対して放電して電力供給するバックアップ電源であり、図3に示すように、セル(単位電池・二次電池)31が複数(例えば、168セル)直列に接続された組電池として構成されている。各セル31は、どのような電池であってもよいが、リチウムイオン二次電池や制御弁式鉛蓄電池などが挙げられる。また、この実施の形態では、バックアップ用バッテリ3の満充電時の容量(AkWh)は、負荷装置4に対して必要な放電容量・電力量と同値であるとする。 The backup battery 3 is a backup power source that supplies electric power by discharging the load device 4 such as a communication device at the time of power failure (predetermined time), and as shown in FIG. 3, cells (unit batteries/secondary batteries). 31 is configured as an assembled battery in which a plurality of (for example, 168 cells) are connected in series. Each cell 31 may be any battery, and examples thereof include a lithium-ion secondary battery and a control valve type lead storage battery. Further, in this embodiment, the fully charged capacity (AkWh) of the backup battery 3 is assumed to be the same value as the discharge capacity/electric energy required for the load device 4.

このバックアップ用バッテリ3は、整流装置6に接続され、商用電源100からの電力が整流装置6で直流に変換されてバックアップ用バッテリ3に供給され、バックアップ用バッテリ3が充電されるようになっている。さらに、整流装置6には負荷装置4が接続され、同様にして直流電力が負荷装置4に供給され、商用電源100が停電すると、バックアップ用バッテリ3から負荷装置4に直流電力が供給されるようになっている。 The backup battery 3 is connected to the rectifying device 6, and the power from the commercial power source 100 is converted into direct current by the rectifying device 6 and supplied to the backup battery 3 so that the backup battery 3 is charged. There is. Further, the load device 4 is connected to the rectifying device 6, DC power is supplied to the load device 4 in the same manner, and when the commercial power supply 100 fails, DC power is supplied from the backup battery 3 to the load device 4. It has become.

さらに、この実施の形態では、整流装置6を双方向電力変換装置にしてもよく、この場合は、商用電源100側にも電力を流す(逆潮流させる)機能を備え、後述するようにしてバックアップ用バッテリ3が放電した際に、バックアップ用バッテリ3からの直流電力を交流に変換して、商用電源100に給電するようになっている。ここで、図1中の符号101は、商用電源100の電線配を示し、符号102は、電線配101と事業所B側とを接続する引込線を示す。 Further, in this embodiment, the rectifying device 6 may be a bidirectional power converter, and in this case, the commercial power supply 100 side is provided with a function of causing power to flow (reverse power flow), and the backup is performed as described later. When the backup battery 3 is discharged, the DC power from the backup battery 3 is converted into AC power to supply power to the commercial power supply 100. Here, reference numeral 101 in FIG. 1 indicates an electric wire arrangement of the commercial power supply 100, and reference numeral 102 indicates a service wire connecting the electric wire arrangement 101 and the office B side.

制御装置5は、整流装置6や走行用バッテリ24を制御などする装置であり、整流装置6が接続されているとともに、走行用バッテリ24を充放電するための充放電器7が複数接続されている。ここで、充放電器7は、電気自動車2を駐車する駐車場に設置され、充電および放電に適した電圧に変換する機能を備えている。この制御装置5は、図4に示すように、主として、通信部51と、制御部52と、放電量算出部(帰着情報取得手段、放電制御手段)53と、メモリ54と、優先順位割出部55と、需要調整部(需要調整手段)56と、これらを制御などする中央処理部(放電制御手段)57とを備える。 The control device 5 is a device that controls the rectifying device 6 and the traveling battery 24, and is connected to the rectifying device 6 and a plurality of chargers/dischargers 7 for charging and discharging the traveling battery 24. There is. Here, the charger/discharger 7 is installed in a parking lot for parking the electric vehicle 2 and has a function of converting the voltage into a voltage suitable for charging and discharging. As shown in FIG. 4, the control device 5 mainly includes a communication unit 51, a control unit 52, a discharge amount calculation unit (reduction information acquisition unit, discharge control unit) 53, a memory 54, and a priority order index. A unit 55, a demand adjustment unit (demand adjustment unit) 56, and a central processing unit (discharge control unit) 57 that controls these units are provided.

通信部51は、通信網NWを介して各電気自動車2や商用電源100側(電力会社側)などと通信するためのインターフェイスであり、商用電源100側からデマンドレスポンス指令(外部からの給電要求)を受信可能となっている。制御部52は、整流装置6や各充放電器7を制御するコントローラであり、制御内容については後述する。 The communication unit 51 is an interface for communicating with each electric vehicle 2 or the commercial power supply 100 side (electric power company side) via the communication network NW, and the commercial power supply 100 side requests a demand response (power supply request from the outside). Are available for reception. The control unit 52 is a controller that controls the rectifying device 6 and each charger/discharger 7, and the control content will be described later.

放電量算出部53は、帰着情報を演算、取得し、放電可能容量を算出するタスク・プログラムである。まず、帰着情報とは、電気自動車2が事業所Bに帰着する時刻・日時と、帰着時の走行用バッテリ24の残容量と、を含む情報であり、電気自動車2から受信したEV情報に基づいて演算、予測する。すなわち、電気自動車2の現在位置に基づいて、その現在位置から事業所Bに直接帰着した場合に事業所Bに到着する時刻を割り出す。また、走行用バッテリ24の現在(EV情報受信時)の残容量と、現在位置から事業所Bまで走行した場合の消費電力とに基づいて、帰着時の走行用バッテリ24の残容量を演算する。 The discharge amount calculation unit 53 is a task program that calculates and acquires the return information and calculates the dischargeable capacity. First, the return information is information including the time and date when the electric vehicle 2 returns to the business office B and the remaining capacity of the traveling battery 24 at the time of return, and is based on the EV information received from the electric vehicle 2. Calculate and predict That is, based on the current position of the electric vehicle 2, the time to arrive at the business office B when directly returning to the business office B from the current position is calculated. Further, the remaining capacity of the traveling battery 24 at the time of returning is calculated based on the present (when EV information is received) remaining capacity of the traveling battery 24 and the power consumption when traveling from the current position to the office B. ..

次に、放電可能容量とは、電気自動車2が事業所Bに帰着して負荷装置4に放電可能な状態になることで、負荷装置4に対して必要な放電容量を確保した上でバックアップ用バッテリ3から放電可能な放電量である。すなわち、走行用バッテリ24から負荷装置4に放電可能な状態になれば、バックアップ用バッテリ3を所定量放電しても負荷装置4に必要な放電容量を確保することができ、この所定量が放電可能容量である。 Next, the dischargeable capacity means that the electric vehicle 2 is returned to the business office B and is ready to be discharged to the load device 4, thereby ensuring a necessary discharge capacity for the load device 4 and for backup. This is the discharge amount that can be discharged from the battery 3. In other words, if the battery 24 for traveling can be discharged to the load device 4, the discharge capacity necessary for the load device 4 can be secured even if the backup battery 3 is discharged by a predetermined amount. It is possible capacity.

このような放電可能容量を各電気自動車2の帰着情報に基づいて算出する。具体的には、各電気自動車2の帰着時の走行用バッテリ24の残容量を、帰着時刻ごとに加算して算出する。例えば、図5に示すように、バックアップ用バッテリ3が満充電されて容量がAkWhの状態において、第1の電気自動車2が30分後に帰着し帰着時の走行用バッテリ24の残容量がXkWhの場合、30分後の総容量が(A+X)kWhで、現時点から30分間での放電可能容量をXkWhと算出する。 Such a dischargeable capacity is calculated based on the return information of each electric vehicle 2. Specifically, the remaining capacity of the traveling battery 24 at the time of returning each electric vehicle 2 is calculated by adding it at each returning time. For example, as shown in FIG. 5, in the state of the capacitor is charged backup battery 3 Mitsuru is AkWh, the remaining capacity of the driving battery 24 at the time of return the first electric car 2 1 resulted after 30 minutes XkWh In this case, the total capacity after 30 minutes is (A+X)kWh, and the dischargeable capacity within 30 minutes from the present time is calculated as XkWh.

ただし、30分間において停電が発生して、バックアップ用バッテリ3から負荷装置4に給電する場合に、第1の電気自動車2が帰着するまで負荷装置4に給電できる場合であって、給電できない場合には放電可能容量はゼロとなる。例えば、バックアップ用バッテリ3および負荷装置4の仕様バックアップ時間が8時間の場合、放電可能容量はXkWhとなる。一方、仕様バックアップ時間が15分の場合、30分後に第1の電気自動車2が帰着しても負荷装置4に15分間連続給電できないため、放電可能容量はゼロとなり、第1の電気自動車2の帰着時刻が近づいた際に(例えば、10分後)、放電可能容量がプラスとなる。また、バックアップ用バッテリ3の容量AkWhは、周囲温度や経年劣化を考慮して算出する。 However, a power failure occurs at 30 minutes, when the power supply from the backup battery 3 to the load device 4, in a case where the first electric car 2 1 can supply power to the load device 4 until the result, when it is not possible to feed The dischargeable capacity is zero. For example, when the specification backup time of the backup battery 3 and the load device 4 is 8 hours, the dischargeable capacity is XkWh. On the other hand, if the specification backup time is 15 minutes for the first electric car 2 1 after 30 minutes can not be continuously powered for 15 minutes to a load device 4 also resulted, the discharge capacity is zero, the first electric car 2 When the return time of 1 approaches (for example, after 10 minutes), the dischargeable capacity becomes positive. Further, the capacity AkWh of the backup battery 3 is calculated in consideration of the ambient temperature and aging deterioration.

同様に、第2の電気自動車2が45分後に帰着し帰着時の走行用バッテリ24の残容量がYkWhの場合、45分後の総容量が(A+X+Y)kWhで、現時点から45分間での放電可能容量を(X+Y)kWhと算出し、第3の電気自動車2が60分後に帰着し帰着時の走行用バッテリ24の残容量がZkWhの場合、60分後の総容量が(A+X+Y+Z)kWhで、現時点から60分間での放電可能容量を(X+Y+Z)kWhと算出する。 Similarly, the remaining capacity of the driving battery 24 at the time of return second electric car 2 2 resulted after 45 minutes if the YkWh, in a total volume after 45 minutes (A + X + Y) kWh , at 45 minutes from the present time the discharge capacity (X + Y) is calculated as kWh, when the remaining capacity of the third electric car 2 3 driving battery 24 at the time of return resulted after 60 minutes of ZkWh, total capacity after 60 minutes (a + X + Y + Z ) In kWh, the dischargeable capacity within 60 minutes from the present time is calculated as (X+Y+Z) kWh.

メモリ54は、各種情報を記憶する記憶部であり、放電量算出部53で算出した放電可能容量や、後述する優先順位割出部55で割り出した優先順位、各電気自動車2に関する情報(自動車情報)などを記憶する。ここで、自動車情報には、各電気自動車2の識別情報や使用目的(緊急時対応車など)、主たる使用者、使用スケジュール、走行用バッテリ24の経年劣化などを含む。 The memory 54 is a storage unit that stores various kinds of information, and includes the dischargeable capacity calculated by the discharge amount calculation unit 53, the priority order calculated by the priority order calculation unit 55 described later, information about each electric vehicle 2 (vehicle information ) Etc. are memorized. Here, the vehicle information includes identification information of each electric vehicle 2, a purpose of use (emergency response vehicle, etc.), a main user, a use schedule, deterioration of the running battery 24 over time, and the like.

優先順位割出部55は、バックアップ用バッテリ3および走行用バッテリ24を放電させる場合の優先順位を割り出すタスク・プログラムである。すなわち、バックアップ用バッテリ3と帰着した走行用バッテリ24のなかから、バックアップ用バッテリ3が給電する負荷装置4の重要性や各電気自動車2の自動車情報などに基づいて、重要度が低く放電させてもよいバッテリ3、24から順に放電順位を決める。例えば、負荷装置4の重要性が高い場合には、バックアップ用バッテリ3の優先順位を高く(放電順位を下位に)設定し、電気自動車2の使用スケジュールに空きがある場合には、この走行用バッテリ24の優先順位を低く(放電順位を上位に)設定し、電気自動車2が緊急時対応車の場合には、この走行用バッテリ24の優先順位を高く(放電順位を下位に)設定する。 The priority level indexing unit 55 is a task program that determines a priority level when the backup battery 3 and the traveling battery 24 are discharged. In other words, the backup battery 3 and the reduced travel battery 24 are discharged with low importance based on the importance of the load device 4 to which the backup battery 3 supplies power, the vehicle information of each electric vehicle 2, and the like. The discharge order is determined in order from the good batteries 3 and 24. For example, when the load device 4 has a high importance, the backup battery 3 is set to a high priority (the discharge rank is set to a low order), and when the use schedule of the electric vehicle 2 is available, When the electric vehicle 2 is an emergency vehicle, the priority of the battery 24 for traveling is set high (the discharge order is low) when the priority of the battery 24 is set low (the discharge order is high).

需要調整部56は、負荷装置4の電力需要を調整するものである。すなわち、負荷装置4の消費電力を軽減させるものであり、負荷装置4を構成する負荷要素のなかから予め設定された負荷要素の動作、稼働を停止したり軽減したりすることで、消費電力を軽減させる。この需要調整部56は、外部からの指令を受けて、あるいは、商用電源100への給電量を確保するには負荷装置4の電力需要を下げる必要があると判断した場合に自動的に、起動される。 The demand adjustment unit 56 adjusts the power demand of the load device 4. That is, the power consumption of the load device 4 is reduced, and the power consumption is reduced by stopping or reducing the operation and operation of a load element that is preset from among the load elements that configure the load device 4. Reduce. The demand adjustment unit 56 is automatically started when receiving a command from the outside or when it is determined that the power demand of the load device 4 needs to be reduced in order to secure the amount of power supplied to the commercial power supply 100. To be done.

次に、このような構成の電力供給システム1の作用および、電力供給システム1による電力供給方法などについて、図6のタイミングチャートに基づいて説明する。 Next, the operation of the power supply system 1 having such a configuration and the power supply method by the power supply system 1 will be described with reference to the timing chart of FIG.

まず、平常時においては、バックアップ用バッテリ3と充放電器7が整流装置6に接続され、バックアップ用バッテリ3と充放電器7に接続された走行用バッテリ24が充電されている。このような状態で、外出中の各電気自動車2から制御装置5にEV情報が定期的に送信されると(ステップS1)、放電量算出部53が起動されて放電可能容量が逐次算出される(ステップS2)。 First, in normal times, the backup battery 3 and the charger/discharger 7 are connected to the rectifying device 6, and the traveling battery 24 connected to the backup battery 3 and the charger/discharger 7 is charged. In such a state, when EV information is periodically transmitted from each electric vehicle 2 that is out to the control device 5 (step S1), the discharge amount calculation unit 53 is activated and the dischargeable capacity is sequentially calculated. (Step S2).

次に、商用電源100側から制御装置5にデマンドレスポンス指令(外部からの給電要求)があると(ステップS3)、放電可能容量がゼロより大きい場合に、制御装置5の制御部52によって整流装置6の出力電圧がバックアップ用バッテリ3の開放電圧(フロート充電電圧)よりも下げられる(ステップS4)。これにより、バックアップ用バッテリ3から負荷装置4に放電可能容量だけ放電、給電される(ステップS5)。このとき、整流装置6が双方向電力変換装置の場合には、商用電源100にも放電、給電される。 Next, when there is a demand response command (power supply request from the outside) to the control device 5 from the commercial power supply 100 side (step S3), if the dischargeable capacity is larger than zero, the control unit 52 of the control device 5 causes the rectifying device to operate. The output voltage of 6 is lowered below the open circuit voltage (float charging voltage) of the backup battery 3 (step S4). As a result, the backup battery 3 discharges and supplies power to the load device 4 by the dischargeable capacity (step S5). At this time, when the rectifier 6 is a bidirectional power converter, the commercial power supply 100 is also discharged and supplied with power.

ここで、負荷装置4のみに給電されるか、商用電源100のみに給電されるか、あるいは負荷装置4と商用電源100の双方に給電されるかは、負荷装置4と商用電源100の容量に依存する。また、デマンドレスポンス指令を受信した際に、各電気自動車2に帰着指令を送信し、これを受けて各電気自動車2が制御装置5に最新のEV情報を送信したり、事業所Bに帰着したりするようにしてもよい。 Whether the power is supplied only to the load device 4, only the commercial power supply 100, or both the load device 4 and the commercial power supply 100 is determined by the capacity of the load device 4 and the commercial power supply 100. Dependent. In addition, when a demand response command is received, a reduction command is transmitted to each electric vehicle 2, and in response to this, each electric vehicle 2 transmits the latest EV information to the control device 5 or returns to the business office B. You may choose to do so.

その後、各電気自動車2が帰着して充放電器7に接続さると(ステップS6)、優先順位割出部55が起動されてバックアップ用バッテリ3および走行用バッテリ24を放電させる優先順位が割り出される(ステップS7)。 After that, when each electric vehicle 2 returns and is connected to the charger/discharger 7 (step S6), the priority level indexing section 55 is activated to determine the priority level for discharging the backup battery 3 and the traveling battery 24. (Step S7).

そして、商用電源100の停電が発生すると(ステップS8)、優先順位割出部55で割り出された優先順位に基づいて制御部52によって各充放電器7等が制御され(ステップS9)、バックアップ用バッテリ3と走行用バッテリ24から負荷装置4に給電される(ステップS10)。具体的には、まず、整流装置6の出力電圧がゼロになることで、無瞬断でバックアップ用バッテリ3から放電、給電される。整流装置6が双方向電力変換装置の場合には、商用電源100側に電力が流れないように制御される。続いて、バックアップ用バッテリ3の優先順位が低い場合(放電順位が上位の場合)には、そのままバックアップ用バッテリ3からの放電が継続される。 Then, when a power failure of the commercial power supply 100 occurs (step S8), the control unit 52 controls each charger/discharger 7 and the like based on the priority order calculated by the priority order calculation unit 55 (step S9), and backs up. Power is supplied to the load device 4 from the driving battery 3 and the traveling battery 24 (step S10). Specifically, first, when the output voltage of the rectifying device 6 becomes zero, the backup battery 3 is discharged and power is supplied without interruption. When the rectifier 6 is a bidirectional power converter, the rectifier 6 is controlled so that power does not flow to the commercial power source 100 side. Subsequently, when the backup battery 3 has a low priority (when the discharge rank is high), the discharge from the backup battery 3 is continued as it is.

一方、いずれかの充放電器7の優先順位が低い場合には、その充放電器7が放電される。このとき、バックアップ用バッテリ3の電圧、容量に応じて充放電器7からの放電電流(電力)を調整し、バックアップ用バッテリ3からの放電を抑制して走行用バッテリ24から放電させる。 On the other hand, when one of the chargers/dischargers 7 has a low priority, the charger/discharger 7 is discharged. At this time, the discharge current (electric power) from the charger/discharger 7 is adjusted according to the voltage and the capacity of the backup battery 3, and the discharge from the backup battery 3 is suppressed and discharged from the traveling battery 24.

このような制御を優先順位に従って行い、バックアップ用バッテリ3と走行用バッテリ24を順次放電させる。また、負荷装置4の電力需要を調整する必要がある場合には、需要調整部56によって負荷装置4の消費電力が軽減される。 Such control is performed according to the priority order, and the backup battery 3 and the traveling battery 24 are sequentially discharged. In addition, when it is necessary to adjust the power demand of the load device 4, the demand adjustment unit 56 reduces the power consumption of the load device 4.

ここで、デマンドレスポンス指令を受信した場合に、バックアップ用バッテリ3のみから放電、給電する場合について説明したが、電気自動車2の帰着後に優先順位に従って走行用バッテリ24から給電するようにしてもよい。例えば、電気自動車2の帰着前はバックアップ用バッテリ3から給電し、電気自動車2の帰着後は、優先順位に従ってバックアップ用バッテリ3または走行用バッテリ24から給電してもよい。 Here, when the demand response command is received, the case of discharging and supplying power from only the backup battery 3 has been described, but power may be supplied from the traveling battery 24 according to the priority order after the electric vehicle 2 has returned. For example, power may be supplied from the backup battery 3 before the return of the electric vehicle 2, and power may be supplied from the backup battery 3 or the traveling battery 24 according to the priority order after the return of the electric vehicle 2.

以上のように、この電力供給システム1および電力供給方法によれば、電気自動車2が事業所Bに帰着すれば負荷装置4に必要な放電容量を確保できることを予測した上で、バックアップ用バッテリ3から放電可能容量だけ放電される。このため、負荷装置4への電力供給に影響を与えることなく、商用電源100側からの給電要求に応じて適正に電力を供給することが可能となる。つまり、バックアップ用バッテリ3から負荷装置4や商用電源100に給電することで、商用電源100からの電力供給を補うことが可能となる。 As described above, according to the power supply system 1 and the power supply method, it is predicted that if the electric vehicle 2 returns to the business office B, the discharge capacity required for the load device 4 can be secured, and then the backup battery 3 Is discharged from the dischargeable capacity. For this reason, it becomes possible to appropriately supply power in response to a power supply request from the commercial power supply 100 side without affecting the power supply to the load device 4. That is, by supplying power from the backup battery 3 to the load device 4 and the commercial power supply 100, it becomes possible to supplement the power supply from the commercial power supply 100.

しかも、バックアップ用バッテリ3は負荷装置4に対して放電、電力供給するためにバックアップ電源として設けられたものであり、商用電源100からの電力供給を補うために新たに設けたものではない。つまり、既存のバックアップ用バッテリ3を電力需要の補助に流用するため、費用を低く抑えることができる。 Moreover, the backup battery 3 is provided as a backup power source for discharging and supplying power to the load device 4, and is not newly provided to supplement the power supply from the commercial power source 100. That is, since the existing backup battery 3 is diverted to assist power demand, the cost can be kept low.

また、電気自動車2が事業所Bに帰着する時刻と帰着時の蓄電池残容量を取得して、バックアップ用バッテリ3からの放電可能容量を算出するため、いつどの電気自動車2が事業所Bに帰着するか、走行用バッテリ24の残容量がどのくらいなのか、定まっていない一般の営業所やオフィスビルなどにおいても、本システム1を適用することが可能となる。従って、事業所Bに帰着する不特定多数の電気自動車2を利用して、電力を適正に供給することが可能となる。 In addition, the time at which the electric vehicle 2 returns to the office B and the remaining storage battery capacity at the time of the return are acquired, and the dischargeable capacity from the backup battery 3 is calculated. In other words, the present system 1 can be applied to a general business office, office building, or the like in which the remaining capacity of the battery 24 for traveling is not fixed. Therefore, it becomes possible to properly supply electric power by using an unspecified number of electric vehicles 2 that return to the business office B.

しかも、電気自動車2の位置情報に基づいて帰着時刻と帰着時の蓄電池残容量(帰着情報)を予測、取得するため、帰着情報を直接取得しなくても帰着前に、位置情報で帰着情報を取得、知得することができる。 Moreover, since the return time and the remaining battery charge (return information) at the time of return are predicted and acquired based on the position information of the electric vehicle 2, the return information can be obtained by the position information before the return without directly acquiring the return information. You can get it.

また、所定の優先順位に基づいてバックアップ用バッテリ3および走行用バッテリ24を放電させるため、適正なバッテリ3、24を適正なタイミングで放電させることができ、他への電力供給や電気自動車2の使用への影響を抑えることができる。一方、需要調整部56で負荷装置4の電力需要・消費電力を調整・軽減することで、バックアップ用バッテリ3からの放電可能容量を調整・アップして、商用電源100の給電要求に柔軟に対応することが可能となる。 Further, since the backup battery 3 and the traveling battery 24 are discharged based on a predetermined priority order, it is possible to discharge the proper batteries 3 and 24 at proper timing, and to supply electric power to others and the electric vehicle 2. The influence on use can be suppressed. On the other hand, the demand adjustment unit 56 adjusts/reduces the power demand/power consumption of the load device 4, thereby adjusting/upgrading the dischargeable capacity from the backup battery 3 and flexibly responding to the power supply request of the commercial power supply 100. It becomes possible to do.

(実施の形態2)
図7は、この実施の形態に係る電力供給システム1を示す概略構成図である。この実施の形態では、複数の事業所Bのバックアップ用バッテリ3と電気自動車2を制御対象・放電対象とする点で、実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することでその説明を省略する。この実施の形態では、2つの事業所B、Bを対象とする場合について説明する。
(Embodiment 2)
FIG. 7 is a schematic configuration diagram showing the power supply system 1 according to this embodiment. In this embodiment, the configuration is different from that of the first embodiment in that the backup batteries 3 and the electric vehicles 2 of a plurality of business offices B are control targets and discharge targets. , And the description thereof will be omitted. In this embodiment, a case where two business establishments B 1 and B 2 are targeted will be described.

第1の事業所Bと第2の事業所Bの設備構成は同等であり、第1の事業所Bの制御装置5が、両事業所B、Bのバックアップ用バッテリ3と電気自動車2を制御する。このとき、第1の事業所Bの放電量算出部53で両事業所B、Bに帰着する各電気自動車2の帰着情報や、両事業所B、Bのバックアップ用バッテリ3の放電可能容量を演算、算出する。また、第1の事業所Bの優先順位割出部55で両事業所B、Bのバッテリ3、24の優先順位・放電順位を割り出し、この優先順位に従ってバッテリ3、24を放電させる。 The first office B 1 and the second system configuration of the office B 2 are equivalent, the first control device 5 of the business office B 1, a backup battery 3 of both plants B 1, B 2 Control the electric vehicle 2. At this time, the first discharge amount calculating unit 53 in both offices B 1 offices B 1, B 2 result information and the electric vehicle 2, resulting in both sites B 1, B 2 Backup Battery 3 The dischargeable capacity of is calculated and calculated. Further, indexing priorities and discharging order of the first priority determination section 55 in both offices B 1 offices B 1, B 2 of the battery 3,24 discharges the battery 3, 24 according to this priority ..

例えば、商用電源100側から制御装置5にデマンドレスポンス指令があると、優先順位が低い(放電順位が上位の)事業所B、Bのバックアップ用バッテリ3を放電可能容量だけ最初に放電させ、その後、他方の事業所B、Bのバックアップ用バッテリ3を放電可能容量だけ放電させる。また、電気自動車2が事業所B、Bに帰着後に、優先順位に従って走行用バッテリ24から商用電源100に放電、給電する。 For example, when there is a demand response command from the commercial power supply 100 side to the control device 5, the backup batteries 3 of the offices B 1 and B 2 with low priority (higher discharge order) are first discharged by the dischargeable capacity. After that, the backup batteries 3 of the other offices B 2 and B 1 are discharged by the dischargeable capacity. In addition, after the electric vehicle 2 returns to the business offices B 1 and B 2 , the traveling battery 24 discharges and supplies power to the commercial power supply 100 in accordance with the priority order.

このように、この実施の形態によれば、複数の事業所B、Bのバックアップ用バッテリ3と電気自動車2を制御対象・放電対象とするため、より多くのバックアップ用バッテリ3と走行用バッテリ24を利用して、商用電源100側からの給電要求に柔軟かつ適正に対応することが可能となる。 Thus, according to this embodiment, for a plurality of offices B 1, backup battery 3 of B 2 and the electric vehicle 2 and the control target and discharging target, traveling with more backup battery 3 By using the battery 24, it becomes possible to flexibly and appropriately respond to the power supply request from the commercial power supply 100 side.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、制御装置5で帰着情報を演算、予測しているが、各電気自動車2で帰着情報を演算して制御装置5に送信するようにしてもよい。また、事業所Bに所属する電気自動車2を放電対象にしているが、一般の電気自動車を放電対象にして連系してもよい。さらに、移動体が電気自動車2の場合について説明したが、走行用蓄電池を備えれば船舶や自走ロボットなどであってもよい。 Although the embodiments of the present invention have been described above, the specific configuration is not limited to the above-mentioned embodiments, and even if there is a design change or the like within the scope not departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the control device 5 calculates and predicts the return information, but each electric vehicle 2 may calculate the return information and transmit it to the control device 5. Further, although the electric vehicle 2 belonging to the business office B is targeted for discharging, a general electric vehicle may be targeted for discharging to be interconnected. Further, although the case where the moving body is the electric vehicle 2 has been described, it may be a ship or a self-propelled robot as long as it has a storage battery for traveling.

また、実施の形態1、2では、充放電器7が直流連系されている場合について説明したが、図8に示すように、交流連系されている場合でも適用することができる。すなわち、整流装置6と並列に充放電器7を商用電源100に接続し、商用電源100からの交流電力を充放電器7で直流に変換して走行用バッテリ24に給電し、走行用バッテリ24からの直流電力を充放電器7で交流に変換して、商用電源100や整流装置6に給電してもよい。この際、AC/DCコンバータ81と大容量蓄電池82を備え負荷装置4の容量よりも大容量のUPS8を、充放電器7と並列に設ける。 Further, in the first and second embodiments, the case where the charger/discharger 7 is DC-connected has been described, but as shown in FIG. 8, the present invention can be applied even when AC-connected. That is, the charger/discharger 7 is connected in parallel to the rectifier 6 to the commercial power supply 100, the AC power from the commercial power supply 100 is converted into the direct current by the charger/discharger 7, and the traveling battery 24 is supplied with power. Alternatively, the DC power from the converter may be converted into AC by the charger/discharger 7 to supply power to the commercial power supply 100 or the rectifier 6. At this time, the UPS 8 having the AC/DC converter 81 and the large-capacity storage battery 82 and having a larger capacity than the capacity of the load device 4 is provided in parallel with the charger/discharger 7.

1 電力供給システム
2 電気自動車(移動体)
21 通信部
22 GPS部(帰着情報取得手段)
23 バッテリコントローラ(帰着情報取得手段)
24 走行用バッテリ(走行用蓄電池)
3 バックアップ用バッテリ(定置用蓄電池)
31 セル
4 負荷装置(負荷)
5 制御装置
51 通信部
52 スイッチ
53 放電量算出部(帰着情報取得手段、放電制御手段)
54 メモリ
55 優先順位割出部
56 需要調整部(需要調整手段)
57 中央処理部(放電制御手段)
6 整流装置
7 充放電器
8 UPS
100 商用電源(系統電力、外部)
B 事業所(基地)
NW 通信網
1 Power supply system 2 Electric vehicle (moving body)
21 communication unit 22 GPS unit (return information acquisition means)
23 Battery controller (return information acquisition means)
24 Running battery (running storage battery)
3 Backup battery (stationary storage battery)
31 cell 4 load device (load)
5 Control Device 51 Communication Unit 52 Switch 53 Discharge Amount Calculation Unit (Reduction Information Acquisition Means, Discharge Control Means)
54 Memory 55 Priority Indexing Unit 56 Demand Adjustment Unit (Demand Adjustment Unit)
57 Central processing unit (discharge control means)
6 Rectifier 7 Charger 8 UPS
100 Commercial power supply (system power, external)
B establishment (base)
NW communication network

Claims (6)

基地に設けられ、所定時に負荷に対して放電する定置用蓄電池と、
移動するための走行用蓄電池を備え、前記基地に帰着した際に前記走行用蓄電池から前記負荷に放電可能な移動体と、
前記移動体が前記基地に帰着する時刻と、帰着時の前記走行用蓄電池の残容量と、を含む帰着情報を取得する帰着情報取得手段と、
前記帰着情報に基づいて、前記移動体が前記基地に帰着して前記負荷に放電可能な状態になることで、前記負荷に対して必要な放電容量を確保した上で前記定置用蓄電池から放電可能な放電可能容量を算出し、外部からの給電要求があった場合に、前記定置用蓄電池を前記放電可能容量だけ放電させる放電制御手段と、
を備えることを特徴とする電力供給システム。
A stationary storage battery that is provided at the base and discharges against a load at a predetermined time,
A traveling storage battery for moving, a movable body capable of discharging from the traveling storage battery to the load when returning to the base;
Return information acquisition means for acquiring return information including the time when the mobile body returns to the base, and the remaining capacity of the traveling storage battery at the time of return,
On the basis of the return information, the mobile body can return to the base and become a state capable of discharging to the load, so that the stationary storage battery can be discharged after securing a necessary discharge capacity for the load. And a discharge control means for discharging the stationary storage battery only by the dischargeable capacity when there is a power supply request from the outside,
An electric power supply system comprising:
前記帰着情報取得手段は、前記移動体の位置情報に基づいて前記帰着情報を予測して取得する、
ことを特徴とする請求項1に記載の電力供給システム。
The return information acquisition unit predicts and acquires the return information based on the position information of the moving body,
The power supply system according to claim 1, wherein:
前記放電制御手段は、所定の優先順位に基づいて前記定置用蓄電池および前記走行用蓄電池を放電させる、
ことを特徴とする請求項1または2のいずれか1項に記載の電力供給システム。
The discharge control means discharges the stationary storage battery and the traveling storage battery based on a predetermined priority order,
The power supply system according to claim 1, wherein the power supply system is a power supply system.
前記負荷の電力需要を調整する需要調整手段を備える、
ことを特徴とする請求項1から3のいずれか1項に記載の電力供給システム。
A demand adjustment means for adjusting the power demand of the load,
The power supply system according to claim 1, wherein the power supply system is a power supply system.
前記放電制御手段は、複数の前記基地の定置用蓄電池と移動体を制御対象とする、
ことを特徴とする請求項1から4のいずれか1項に記載の電力供給システム。
The discharge control means controls a plurality of stationary storage batteries of the base and a mobile body,
The power supply system according to claim 1, wherein the power supply system is a power supply system.
所定時に負荷に対して放電する定置用蓄電池が基地に設けられ、
移動するための走行用蓄電池を備えた移動体が前記基地に帰着した際に、前記走行用蓄電池から前記負荷に放電可能な状態において、
前記移動体が前記基地に帰着する時刻と、帰着時の前記走行用蓄電池の残容量と、を含む帰着情報を取得し、
前記帰着情報に基づいて、前記移動体が前記基地に帰着して前記負荷に放電可能な状態になることで、前記負荷に対して必要な放電容量を確保した上で前記定置用蓄電池から放電可能な放電可能容量を算出し、外部からの給電要求があった場合に、前記定置用蓄電池を前記放電可能容量だけ放電させる、
ことを特徴とする電力供給方法。
A stationary storage battery that discharges against a load at a predetermined time is provided at the base,
When a moving body including a traveling storage battery for moving is returned to the base, in a state in which the traveling storage battery can discharge the load,
Obtaining return information including the time when the mobile body returns to the base and the remaining capacity of the traveling storage battery at the time of return,
On the basis of the return information, the mobile body can return to the base and become a state capable of discharging to the load, so that the stationary storage battery can be discharged after securing a necessary discharge capacity for the load. The dischargeable capacity, when the power supply request from the outside, the stationary storage battery is discharged by the dischargeable capacity,
A power supply method characterized by the above.
JP2018231172A 2018-12-10 2018-12-10 Power supply system and power supply method Active JP7084292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231172A JP7084292B2 (en) 2018-12-10 2018-12-10 Power supply system and power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231172A JP7084292B2 (en) 2018-12-10 2018-12-10 Power supply system and power supply method

Publications (2)

Publication Number Publication Date
JP2020096416A true JP2020096416A (en) 2020-06-18
JP7084292B2 JP7084292B2 (en) 2022-06-14

Family

ID=71085158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231172A Active JP7084292B2 (en) 2018-12-10 2018-12-10 Power supply system and power supply method

Country Status (1)

Country Link
JP (1) JP7084292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238210A1 (en) * 2022-06-06 2023-12-14 日本電信電話株式会社 Prediction device, prediction method, and program
JP7550545B2 (en) 2020-06-23 2024-09-13 関西電力株式会社 Charge and discharge management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017937A1 (en) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 Power demand-and-supply equalization system
JP2012151948A (en) * 2011-01-18 2012-08-09 Panasonic Corp Power control system, power control method, power control device, and power control program thereof
JP2012196028A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Electric power management system
JP2017005787A (en) * 2015-06-05 2017-01-05 株式会社デンソー Energy management system
JP2017046485A (en) * 2015-08-27 2017-03-02 トヨタホーム株式会社 Power supply system for building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017937A1 (en) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 Power demand-and-supply equalization system
JP2012151948A (en) * 2011-01-18 2012-08-09 Panasonic Corp Power control system, power control method, power control device, and power control program thereof
JP2012196028A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Electric power management system
JP2017005787A (en) * 2015-06-05 2017-01-05 株式会社デンソー Energy management system
JP2017046485A (en) * 2015-08-27 2017-03-02 トヨタホーム株式会社 Power supply system for building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7550545B2 (en) 2020-06-23 2024-09-13 関西電力株式会社 Charge and discharge management system
WO2023238210A1 (en) * 2022-06-06 2023-12-14 日本電信電話株式会社 Prediction device, prediction method, and program

Also Published As

Publication number Publication date
JP7084292B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
US8970160B2 (en) Supervisory system controller for use with a renewable energy powered radio telecommunications site
JP5865602B2 (en) Power exchange system for exchanging electrical energy between battery and power grid, and method for exchanging electrical energy between battery and power grid
US9041355B2 (en) Battery controller, battery control method and program
JP7168438B2 (en) Power supply system and power supply method
EP2309619A1 (en) Imbalance reduction circuit, power supply device, and imbalance reduction method
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
US20150165915A1 (en) Vehicle charging system
KR101793579B1 (en) Dc-ac common bus type hybrid power system
US20140217989A1 (en) Battery control system, battery controller, battery control method, and recording medium
JP5490834B2 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
JP7503389B2 (en) Power Supply System
KR20160030209A (en) Electrical vehicle and associated transport facility
US11205902B2 (en) Energy storage system
US11411400B2 (en) DC power supply system
KR20130006427A (en) Rapid charger
CA2831361C (en) Power generation system, backup power supply, data center installation method, power generation system controller, power system, and power generation system operating method
CN105485809A (en) Air conditioning system and control method of air conditioning system
WO2015008467A1 (en) System controlling base station device connected to power grid, base station device, base station device control device, and charging control method therefor
KR102421893B1 (en) Energy storage system
JP2021093788A (en) Charging device and charging method
WO2013122073A1 (en) Power charging and supplying device, power charging and supplying management device, energy management system, and power charging and supplying management method
JP7084292B2 (en) Power supply system and power supply method
WO2018177921A1 (en) Smart charging with energy planning and grid optimalization
US20170163082A1 (en) Electric voltage system and method for charging a battery of an electric voltage system
JP2013141374A (en) Electric power supply system for electric railroad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220602

R150 Certificate of patent or registration of utility model

Ref document number: 7084292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150