JP2020094868A - Full charge capacity learning device - Google Patents

Full charge capacity learning device Download PDF

Info

Publication number
JP2020094868A
JP2020094868A JP2018231742A JP2018231742A JP2020094868A JP 2020094868 A JP2020094868 A JP 2020094868A JP 2018231742 A JP2018231742 A JP 2018231742A JP 2018231742 A JP2018231742 A JP 2018231742A JP 2020094868 A JP2020094868 A JP 2020094868A
Authority
JP
Japan
Prior art keywords
charging
time
charge capacity
battery
full charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018231742A
Other languages
Japanese (ja)
Inventor
田中 信行
Nobuyuki Tanaka
信行 田中
義宏 内田
Yoshihiro Uchida
義宏 内田
和樹 久保
Kazuki Kubo
和樹 久保
正規 内山
Masanori Uchiyama
正規 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018231742A priority Critical patent/JP2020094868A/en
Publication of JP2020094868A publication Critical patent/JP2020094868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To secure the frequency at which full charge capacity is learned while suppressing a reduction in battery performance.SOLUTION: For the case where external charging is executed between a set charging start time and a set charging end time, when the number of times learning of full charge capacity has failed exceeds a prescribed value, a time of day preceding the charging end time by a duration of time equal to the sum of a wait time for preparing for external charging, a required charge time needed for executing external charging and a depolarization time required for the depolarization of a secondary battery after external charging is terminated, is set as the charging start time, and external charging is begun when the wait time has elapsed from the charging start time, with full charge capacity learned after the charging end time has elapsed.SELECTED DRAWING: Figure 2

Description

本発明は、満充電容量学習装置に関し、詳しくは、外部電源からの電力で充電する外部充電が可能な二次電池の満充電容量を学習する満充電容量学習装置に関する。 The present invention relates to a full charge capacity learning device, and more particularly, to a full charge capacity learning device that learns the full charge capacity of an externally rechargeable secondary battery that is charged with electric power from an external power source.

従来、この種の満充電容量学習装置としては、外部電源からの電力で充電する外部充電が可能な二次電池(組電池)の満充電容量を推定するものが提案されている(例えば、特許文献1参照)。この装置では、充電前後の蓄電割合(SOC)差と充電中の充電電流積算値とに基づいて充電毎に二次電池の満充電容量を学習している。充電前後の蓄電割合差は、二次電池の開放電圧(OCV)を用いて算出している。 Conventionally, as this type of full-charge capacity learning device, there has been proposed a device that estimates the full-charge capacity of a secondary battery (battery pack) that can be externally charged by charging with electric power from an external power source (for example, patent Reference 1). In this device, the full charge capacity of the secondary battery is learned for each charge based on the difference in the storage ratio (SOC) before and after charging and the integrated value of the charging current during charging. The difference in storage ratio before and after charging is calculated using the open circuit voltage (OCV) of the secondary battery.

特開2013−101072号公報JP, 2013-101072, A

上述した満充電容量学習装置では、二次電池の分極が残留している状態で開放電圧を取得すると、分極によって開放電圧を精度よく取得できないことから、満充電容量の学習を精度よく行なうことができない。満充電容量の学習を精度よく行なう手法として、二次電池の充放電を終了してから、分極を解消するのに十分な時間二次電池を充放電させずに放置して、分極が解消してから満充電容量を学習する手法が考えられる。しかしながら、分極を解消するためには概ね数時間を要することから、外部充電が終了後二次電池を比較的高い蓄電割合のまま比較的長い時間放置することになり、二次電池が劣化して性能が低下してしまう。また、充電を終了する時刻を設定し、充電終了後速やかに二次電池の使用を開始するものでは、充電終了後に分極を解消する時間を確保できないことから、満充電容量の学習を行なうことができず、満充電容量を学習する頻度が少なくなってしまう。 In the above-described full-charge capacity learning device, if the open-circuit voltage is acquired while the polarization of the secondary battery remains, the open-circuit voltage cannot be acquired accurately due to the polarization, so that the full-charge capacity can be learned accurately. Can not. As a method for accurately learning the full charge capacity, after charging/discharging the secondary battery, leave the secondary battery without charging/discharging for a sufficient time to eliminate the polarization, and then eliminate the polarization. After that, a method of learning the full charge capacity can be considered. However, it takes about several hours to eliminate the polarization, so after the external charging is completed, the secondary battery is left for a relatively long time with a relatively high charge rate, and the secondary battery deteriorates. Performance will decrease. Further, in the case of setting the time to end charging and starting the use of the secondary battery immediately after the end of charging, it is not possible to secure the time to eliminate polarization after the end of charging, so it is possible to learn the full charge capacity. This is not possible, and the frequency of learning the full charge capacity will decrease.

本発明の満充電容量学習装置は、電池性能の低下を抑制しつつ満充電容量を学習する頻度を確保することを主目的とする。 The full-charge-capacity learning device of the present invention mainly aims to secure the frequency of learning the full-charge capacity while suppressing a decrease in battery performance.

本発明の満充電容量学習装置は、上述の主目的を達成するために以下の手段を採った。 The full-charge capacity learning device of the present invention employs the following means in order to achieve the main object described above.

本発明の第1の満充電容量学習装置は、
外部電源からの電力で充電する外部充電が可能な二次電池の満充電容量を学習する満充電容量学習装置であって、
設定された充電開始時刻と設定された充電終了時刻との間に前記外部充電を実行する場合において、前記満充電容量の学習を失敗した回数が所定値を超えているときには、前記外部充電の準備のための待機時間と、前記外部充電の実行に要する充電所要時間と、前記外部充電を終了した後に前記二次電池の分極の解消に要する分極解消時間と、の和の時間分前記充電終了時刻より前の時刻を前記充電開始時刻として設定し、前記充電開始時刻から前記待機時間を経過したときに前記外部充電を開始し、
前記充電終了時刻が経過した後に前記満充電容量を学習する、
ことを要旨とする。
The first full charge capacity learning device of the present invention is
A full-charge-capacity learning device that learns the full-charge capacity of a secondary battery that can be externally charged by charging with electric power from an external power source.
When performing the external charging between the set charging start time and the set charging end time, when the number of times the learning of the full charge capacity has failed exceeds a predetermined value, the preparation for the external charging is performed. Standby time for charging, the charging time required to execute the external charging, and the polarization elimination time required to eliminate the polarization of the secondary battery after the external charging is finished, and the charging end time. Set a time earlier than the charging start time, start the external charging when the standby time has elapsed from the charging start time,
Learning the full charge capacity after the charging end time has passed,
That is the summary.

この本発明の第1の満充電容量学習装置は、設定された充電開始時刻と設定された充電終了時刻との間に外部充電を実行する場合において、満充電容量の学習を失敗した回数が所定値を超えているときには、外部充電の準備のための待機時間と、外部充電の実行に要する充電所要時間と、外部充電を終了した後に二次電池の分極の解消に要する分極解消時間と、の和の時間分充電終了時刻より前の時刻を充電開始時刻として設定し、充電開始時刻から待機時間を経過したときに外部充電を開始し、充電終了時刻が経過した後に満充電容量を学習する。したがって、二次電池の分極を解消した後に満充電容量を学習できるから、精度よく満充電容量を学習でき、充電容量の学習頻度も確保することができる。外部充電が終了後、分極解消時間の間、二次電池を充放電せずに放置することになるが、外気温によっては外部充電が終了して高蓄電割合の二次電池を放置すると、二次電池が劣化して性能が低下してしまう。こうしたことを鑑みて、満充電容量の学習を失敗した回数が所定値を超えているときに、待機時間と充電所要時間と分極解消時間との和の時間分充電終了時刻より前の時刻を充電開始時刻として設定することにより、満充電容量の学習を失敗した回数に拘わらず待機時間と充電所要時間と分極解消時間との和の時間分充電終了時刻より前の時刻を充電開始時刻として設定するものに比して、二次電池の性能の低下を抑制できる。この結果、電池性能の低下を抑制しつつ満充電容量を学習する頻度を確保できる。 In the first full-charge capacity learning device of the present invention, when the external charging is performed between the set charging start time and the set charging end time, the number of times the learning of the full-charge capacity fails is predetermined. When the value exceeds the value, the standby time for preparation for external charging, the charging time required for executing external charging, and the polarization elimination time required for eliminating polarization of the secondary battery after completion of external charging, The time before the charging end time of the sum time is set as the charging start time, external charging is started when the standby time has elapsed from the charging start time, and the full charge capacity is learned after the charging end time has elapsed. Therefore, since the full charge capacity can be learned after the polarization of the secondary battery is eliminated, the full charge capacity can be learned with high accuracy, and the learning frequency of the charge capacity can be secured. After external charging is completed, the secondary battery is left uncharged and discharged during the polarization elimination time.However, depending on the outside temperature, if external charging is completed and a secondary battery with a high storage rate is left alone, The secondary battery deteriorates and the performance deteriorates. In view of this, when the number of times the learning of the full charge capacity has failed exceeds a predetermined value, the time before the charging end time is charged by the sum of the standby time, the required charging time and the polarization elimination time. By setting it as the start time, regardless of the number of times the learning of the full charge capacity has failed, the time before the charge end time is set as the charge start time by the sum of the standby time, the required charging time and the polarization elimination time. It is possible to suppress the deterioration of the performance of the secondary battery as compared with the above. As a result, the frequency of learning the full charge capacity can be secured while suppressing the deterioration of the battery performance.

こうした本発明の第1の満充電容量学習装置において、前記分極解消時間は、前記二次電池の温度と外気温とを用いて算出してもよい。 In the first full-charge capacity learning device of the present invention, the polarization elimination time may be calculated using the temperature of the secondary battery and the outside air temperature.

本発明の第2の満充電容量学習装置は、
外部電源からの電力で充電する外部充電が可能な二次電池の満充電容量を学習する満充電容量学習装置であって、
設定された充電開始時刻と設定された充電終了時刻との間に前記外部充電を実行する場合において、前回前記満充電容量の学習を行なってからの経過時間が所定時間を超えているときには、前記外部充電の準備のための待機時間と、前記外部充電の実行に要する充電所要時間と、前記外部充電を終了した後に前記二次電池の分極の解消に要する分極解消時間と、の和の時間分前記充電終了時刻より前の時刻を前記充電開始時刻として設定し、前記充電開始時刻から前記待機時間を経過したときに前記外部充電を開始し、
前記充電終了時刻が経過した後に前記満充電容量を学習する、
ことを要旨とする。
The second full charge capacity learning device of the present invention is
A full-charge-capacity learning device that learns the full-charge capacity of a secondary battery that can be externally charged by charging with electric power from an external power source.
In the case of executing the external charging between the set charging start time and the set charging end time, when the elapsed time from the previous learning of the full charge capacity exceeds a predetermined time, Standby time for preparation for external charging, charging time required to execute the external charging, polarization elimination time required to eliminate polarization of the secondary battery after the external charging is finished, and a sum of time The time before the charging end time is set as the charging start time, and the external charging is started when the standby time has elapsed from the charging start time,
Learning the full charge capacity after the charging end time has passed,
That is the summary.

この本発明の第2の満充電容量学習装置は、設定された充電開始時刻と設定された充電終了時刻との間に外部充電を実行する場合において、前回に満充電容量の学習を行なってからの経過時間が所定時間を超えているときには、外部充電の準備のための待機時間と、外部充電の実行に要する充電所要時間と、外部充電を終了した後に二次電池の分極の解消に要する分極解消時間と、の和の時間分充電終了時刻より前の時刻を充電開始時刻として設定し、充電開始時刻から待機時間を経過したときに前記外部充電を開始し、充電終了時刻が経過した後に前記満充電容量を学習する。したがって、二次電池の分極を解消した後に満充電容量を学習できるから、精度よく満充電容量を学習でき、充電容量の学習頻度も確保することができる。外部充電が終了後、分極解消時間の間、二次電池を充放電せずに放置することになるが、外気温によっては外部充電が終了して高蓄電割合の二次電池を放置すると、二次電池が劣化して性能が低下してしまう。こうしたことを鑑みて、満充電容量の学習を行なってからの経過時間が所定時間を超えているときに、待機時間と充電所要時間と分極解消時間との和の時間分充電終了時刻より前の時刻を充電開始時刻として設定し、充電終了時刻が経過した後に満充電容量を学習することにより、満充電容量の学習を行なってからの経過時間が所定時間を超えているか否かに拘わらず、待機時間と充電所要時間と分極解消時間との和の時間分充電終了時刻より前の時刻を充電開始時刻として設定するものに比して、二次電池の性能の低下を抑制できる。この結果、電池性能の低下を抑制しつつ満充電容量を学習する頻度を確保できる。 This second full-charge capacity learning device of the present invention, when performing external charging between the set charging start time and the set charging end time, performs learning of the full-charge capacity last time. When the elapsed time exceeds a predetermined time, the standby time for preparation for external charging, the charging time required for executing external charging, and the polarization required for eliminating the polarization of the secondary battery after external charging is completed. Set the time before the charging end time as the sum of the cancellation time and the charging start time, start the external charging when the standby time has elapsed from the charging start time, and after the charging end time has elapsed, Learn full charge capacity. Therefore, since the full charge capacity can be learned after the polarization of the secondary battery is eliminated, the full charge capacity can be learned with high accuracy, and the learning frequency of the charge capacity can be secured. After external charging is completed, the secondary battery is left uncharged and discharged during the polarization elimination time.However, depending on the outside temperature, if external charging is completed and a secondary battery with a high storage rate is left alone, The secondary battery deteriorates and the performance deteriorates. In view of this, when the elapsed time from the learning of the full charge capacity exceeds the predetermined time, the time of the sum of the standby time, the required charging time and the polarization elimination time is equal to or less than the charging end time. By setting the time as the charge start time and learning the full charge capacity after the charge end time has passed, regardless of whether or not the elapsed time after learning the full charge capacity exceeds the predetermined time, The deterioration of the performance of the secondary battery can be suppressed as compared with the case where the time before the charging end time is set as the charging start time by the sum of the standby time, the required charging time and the polarization elimination time. As a result, the frequency of learning the full charge capacity can be secured while suppressing the deterioration of the battery performance.

、本発明の一実施例としての満充電容量学習装置を搭載した電気自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 equipped with a full-charge capacity learning device as an embodiment of the present invention. 電子制御ユニット70により実行される外部充電ルーチンの一例を示すフローチャートである。6 is a flowchart showing an example of an external charging routine executed by the electronic control unit 70.

次に、本発明を実施するための形態を実施例を用いて説明する。 Next, modes for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての満充電容量学習装置を搭載した電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、蓄電装置としてのバッテリ36と、充電器50と、電子制御ユニット70と、を備える。実施例では、電子制御ユニット70が「満充電容量学習装置」に相当する。 FIG. 1 is a configuration diagram showing an outline of the configuration of an electric vehicle 20 equipped with a full-charge capacity learning device as an embodiment of the present invention. As illustrated, the electric vehicle 20 of the embodiment includes a motor 32, an inverter 34, a battery 36 as a power storage device, a charger 50, and an electronic control unit 70. In the embodiment, the electronic control unit 70 corresponds to a “full charge capacity learning device”.

モータ32は、例えば同期発電電動機として構成されており、回転子が駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。インバータ34は、モータ32の駆動に用いられると共に電力ライン38を介してバッテリ36に接続されている。モータ32は、電子制御ユニット70によってインバータ34の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されている。 The motor 32 is configured as, for example, a synchronous generator motor, and has a rotor connected to a drive shaft 26 that is connected to the drive wheels 22a and 22b via a differential gear 24. The inverter 34 is used to drive the motor 32 and is connected to the battery 36 via the power line 38. The motor 32 is rotationally driven by the electronic control unit 70 controlling switching of a plurality of switching elements (not shown) of the inverter 34. The battery 36 is configured as, for example, a lithium ion secondary battery or a nickel hydrogen secondary battery.

充電器50は、電力ライン38に接続されており、充電設備(外部電源)の設備側コネクタと車両側コネクタ51とが接続されているときに、充電設備からの電力を用いてバッテリ36を充電する外部充電を実行可能に構成されている。この充電器50は、電子制御ユニット70により制御される。ここで、充電設備は、電気自動車20に電力を供給可能な設備を意味する。 The charger 50 is connected to the power line 38, and when the equipment-side connector of the charging equipment (external power source) and the vehicle-side connector 51 are connected to each other, the battery 36 is charged with the electric power from the charging equipment. It is configured to be able to perform external charging. The charger 50 is controlled by the electronic control unit 70. Here, the charging facility means a facility capable of supplying electric power to the electric vehicle 20.

電子制御ユニット70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUに加えて、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。電子制御ユニット70には、各種センサからの信号が入力ポートを介して入力される。電子制御ユニット70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する図示しない回転位置センサからのモータ32の回転子の回転位置θmや、モータ32の各相の相電流を検出する図示しない電流センサからのモータ32の各相の相電流Iu,Iv,Iwを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからのバッテリ36の電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからのバッテリ36の電流Ib、バッテリ36に取り付けられた温度センサ36cからのバッテリ36の温度Tbも挙げることができる。車両側コネクタ51と充電設備の設備側コネクタとの接続を検出する接続検出センサ52からの接続検出信号も挙げることができる。イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPも挙げることができる。アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP、車速センサ88からの車速V、外気温を検出する温度センサ90からの雰囲気温度Tatmも挙げることができる。 Although not shown, the electronic control unit 70 is configured as a microprocessor centered on a CPU, and in addition to the CPU, a ROM for storing processing programs, a RAM for temporarily storing data, an input/output port, communication It has a port. Signals from various sensors are input to the electronic control unit 70 via an input port. The signals input to the electronic control unit 70 include, for example, the rotational position θm of the rotor of the motor 32 from a rotational position sensor (not shown) that detects the rotational position of the rotor of the motor 32, and the phase of each phase of the motor 32. The phase currents Iu, Iv, Iw of each phase of the motor 32 from a current sensor (not shown) that detects a current can be mentioned. Further, the voltage Vb of the battery 36 from the voltage sensor 36 a attached between the terminals of the battery 36, the current Ib of the battery 36 from the current sensor 36 b attached to the output terminal of the battery 36, and the temperature attached to the battery 36. The temperature Tb of the battery 36 from the sensor 36c can also be mentioned. A connection detection signal from the connection detection sensor 52 that detects the connection between the vehicle-side connector 51 and the equipment-side connector of the charging facility can also be mentioned. The ignition signal from the ignition switch 80 and the shift position SP from the shift position sensor 82 which detects the operation position of the shift lever 81 can also be mentioned. The accelerator opening Acc from the accelerator pedal position sensor 84 that detects the depression amount of the accelerator pedal 83, the brake pedal position BP from the brake pedal position sensor 86 that detects the depression amount of the brake pedal 85, and the vehicle speed V from the vehicle speed sensor 88. The ambient temperature Tatm from the temperature sensor 90 that detects the outside air temperature can also be used.

電子制御ユニット70からは、各種制御信号が出力ポートを介して出力される。電子制御ユニット70から出力される信号としては、例えば、インバータ34への制御信号や、充電器50への制御信号を挙げることができる。電子制御ユニット70は、電流センサ36bからのバッテリ36の電流Ibの積算値SIbに基づいてバッテリ36の蓄電量Sbや蓄電割合SOCを演算している。ここで、蓄電量Sbは、バッテリ36から放電可能な電力量であり、蓄電割合SOCは、バッテリ36の満充電容量FCCに対する現在の蓄電容量Fbの割合である。満充電容量FCCは、後述する満充電容量FCCの学習により得られた値を用いており、満充電容量FCCの学習がなされる前には初期値として所定値FCCrefが設定されている。 Various control signals are output from the electronic control unit 70 via the output port. Examples of signals output from the electronic control unit 70 include a control signal to the inverter 34 and a control signal to the charger 50. The electronic control unit 70 calculates the storage amount Sb and the storage ratio SOC of the battery 36 based on the integrated value SIb of the current Ib of the battery 36 from the current sensor 36b. Here, the storage amount Sb is the amount of power that can be discharged from the battery 36, and the storage ratio SOC is the ratio of the current storage capacity Fb to the full charge capacity FCC of the battery 36. The full charge capacity FCC uses a value obtained by learning the full charge capacity FCC described later, and a predetermined value FCCref is set as an initial value before the full charge capacity FCC is learned.

こうして構成された実施例の電気自動車20では、電子制御ユニット70は、アクセル開度Accと車速Vとに基づいて走行に要求される(駆動軸26に要求される)要求トルクTd*を設定し、要求トルクTd*をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34の複数のスイッチング素子のスイッチング制御を行なう。 In the thus configured electric vehicle 20 of the embodiment, the electronic control unit 70 sets the required torque Td* required for traveling (required for the drive shaft 26) based on the accelerator opening Acc and the vehicle speed V. , The required torque Td* is set to the torque command Tm* of the motor 32, and switching control of the plurality of switching elements of the inverter 34 is performed so that the motor 32 is driven by the torque command Tm*.

また、実施例の電気自動車20では、イグニッションスイッチ80がオフ時の自宅や充電ステーションなどで駐車中に車両側コネクタ51と充電設備の設備側コネクタとが接続されると(接続検出センサ52により両者の接続を検出すると)、電子制御ユニット70は、最初に、外部充電の準備(例えば、バッテリ36の温度Tbやバッテリ36の電圧Vbの取得など)のために待機する充電待機処理を実行し、その後、充電設備からの電力を用いてバッテリ36が充電されるように充電器50を制御することにより外部充電を実行する。そして、バッテリ36の蓄電割合SOCが所定割合Smaxに至ると、充電器50の制御を終了することにより外部充電の実行を終了する。所定割合Smaxとしては、例えば、90%や95%、100%などが用いられる。 Further, in the electric vehicle 20 of the embodiment, when the vehicle-side connector 51 and the equipment-side connector of the charging facility are connected to each other while the vehicle is parked at home or at a charging station when the ignition switch 80 is off (the connection detection sensor 52 causes both (When the connection is detected), the electronic control unit 70 first executes a charging standby process of waiting for preparation for external charging (for example, acquisition of the temperature Tb of the battery 36 or the voltage Vb of the battery 36). After that, external charging is executed by controlling the charger 50 so that the battery 36 is charged using the electric power from the charging facility. Then, when the storage ratio SOC of the battery 36 reaches the predetermined ratio Smax, the control of the charger 50 is ended, and the execution of the external charging is ended. For example, 90%, 95%, 100% or the like is used as the predetermined ratio Smax.

さらに、実施例の電気自動車20では、バッテリ36の外部充電が終了してから分極が解消する時間(分極解消時間)tpf(数時間程度)が経過すると、外部充電前の蓄電割合SOCbと、外部充電後の蓄電割合SOCaと、外部充電中の充電電流の積算値SIbと、を用いて、次式(1)により満充電容量FCCを学習する。外部充電前の蓄電割合SOCbは、外部充電前に自宅や充電ステーションなどで駐車中に車両側コネクタ51と充電設備の設備側コネクタとが接続されていない状態で電圧センサ36aにより検出されたバッテリ36の電圧Vbを開放電圧OCVとして、既知のOCV−SOC曲線を用いて設定される。外部充電後の蓄電割合SOCaは、外部充電後に自宅や充電ステーションなどで駐車中に車両側コネクタ51と充電設備の設備側コネクタとが接続されていない状態で、電圧センサ36aにより検出されたバッテリ36の電圧Vbを開放電圧OCVとして、既知のOCV−SOC曲線を用いて設定される。 Further, in the electric vehicle 20 of the embodiment, when the time for polarization elimination (polarization elimination time) tpf (several hours) elapses after the external charging of the battery 36 ends, the charge ratio SOCb before external charging and the external charge ratio SOCb. The full charge capacity FCC is learned by the following equation (1) using the storage ratio SOCa after charging and the integrated value SIb of the charging current during external charging. The charge ratio SOCb before external charging is the battery 36 detected by the voltage sensor 36a before the external charging while the vehicle-side connector 51 and the equipment-side connector of the charging facility are not connected during parking at home or at a charging station. Is set by using a known OCV-SOC curve with the open circuit voltage OCV being the voltage Vb. The storage ratio SOCa after external charging is the battery 36 detected by the voltage sensor 36a in a state where the vehicle-side connector 51 and the equipment-side connector of the charging facility are not connected during parking at home or a charging station after external charging. Is set by using a known OCV-SOC curve with the open circuit voltage OCV being the voltage Vb.

FCC=100/(SOCa-SOCb)×SIb ・・・(1) FCC=100/(SOCa-SOCb)×SIb ・・・(1)

次に、こうして構成された実施例の電気自動車20の動作、特に、充電設備からの電力でバッテリ36を外部充電を実行する際の動作について説明する。図2は、電子制御ユニット70により実行される外部充電ルーチンの一例を示すフローチャートである。このルーチンは、自宅や充電ステーションなどで駐車中に車両側コネクタ51と充電設備の設備側コネクタとが接続されたときに実行される。 Next, the operation of the thus configured electric vehicle 20 of the embodiment, particularly the operation when the battery 36 is externally charged by the electric power from the charging facility will be described. FIG. 2 is a flowchart showing an example of an external charging routine executed by the electronic control unit 70. This routine is executed when the vehicle-side connector 51 and the equipment-side connector of the charging equipment are connected while the vehicle is parked at home or at a charging station.

本ルーチンが実行されると、電子制御ユニット70のCPUは、電気自動車20の出発時刻が設定されているか否かを判定する処理を実行する(ステップS100)。出発時刻が設定されていないときには、充電待機処理に要する時間である充電待機時間twaitが経過した後に、外部充電を実行する(ステップS110)。そして、イグニッションスイッチ80がオンされてイグニッション信号が入力されたか否かを判定する(ステップS190)。イグニッションスイッチ80がオンされていないときにはオンされるまで待ち、イグニッションスイッチ80がオンされたときには、続いて、満充電容量FCCの学習が成功したか否かを判定する(ステップS200)。ここでは、外部充電後に、分極解消時間tpfが経過する前にイグニッションスイッチ80がオンされると、開放電圧OCVを精度よく取得できず、満充電容量FCCの学習をできないことから、満充電容量FCCの学習が失敗したと判定し、外部充電後の分極解消時間tpfが経過した後にイグニッションスイッチ80がオンされたときには、開放電圧OCVを精度よく取得できることから、満充電容量FCCが成功したと判定する。 When this routine is executed, the CPU of the electronic control unit 70 executes a process of determining whether or not the departure time of the electric vehicle 20 is set (step S100). When the departure time is not set, external charging is executed after the charging waiting time twait, which is the time required for the charging waiting process, has elapsed (step S110). Then, it is determined whether or not the ignition switch 80 is turned on and the ignition signal is input (step S190). When the ignition switch 80 is not turned on, it waits until it is turned on. When the ignition switch 80 is turned on, subsequently, it is determined whether or not learning of the full charge capacity FCC has succeeded (step S200). Here, if the ignition switch 80 is turned on after the polarization elimination time tpf has elapsed after the external charging, the open circuit voltage OCV cannot be acquired accurately and the full charge capacity FCC cannot be learned. It is determined that the learning has failed, and when the ignition switch 80 is turned on after the polarization elimination time tpf after external charging has elapsed, the full-charge capacity FCC is determined to be successful because the open circuit voltage OCV can be acquired accurately. ..

ステップS200で満充電容量FCCの学習が失敗したと判定したときには、失敗回数Nfailをインクリメントして(ステップS210)、本ルーチンを終了する。ステップS210で満充電容量FCCの学習が成功したと判定したときには、失敗回数Nfailをクリアして(ステップS220)、本ルーチンを終了する。したがって、失敗回数Nfailは、満充電容量FCCの学習が連続して失敗した回数となっている。このように、出発時刻が設定されていないときには、車両側コネクタ51と充電設備の設備側コネクタとが接続されてから、充電待機時間twaitが経過したら、外部充電を実行する。そして、イグニッションスイッチ80がオンされたときに満充電容量FCCの学習が終了していないときには、失敗回数Nfailをインクリメントする。 When it is determined in step S200 that the learning of the full charge capacity FCC has failed, the failure count Nfail is incremented (step S210), and this routine is ended. When it is determined in step S210 that the learning of the full charge capacity FCC has succeeded, the failure count Nfail is cleared (step S220), and this routine ends. Therefore, the failure count Nfail is the number of times the learning of the full charge capacity FCC has failed in succession. In this way, when the departure time is not set, external charging is executed after the charging standby time twait has elapsed since the vehicle-side connector 51 and the equipment-side connector of the charging equipment were connected. Then, when the learning of the full charge capacity FCC is not completed when the ignition switch 80 is turned on, the failure count Nfail is incremented.

ステップS100で出発時刻が設定されているときには、失敗回数Nfailが閾値Nrefを超えているか否かを判定する(ステップS120)。失敗回数Nfailが閾値Nref以下であるときには、充電充電待機時間twaitと、実際に充電設備からの電力でバッテリ36を充電する時間(充電所要時間)tchrと、の和の時間を総充電時間tsumを設定する(ステップS122)。充電所要時間tchrは、充電設備からの充電電力と現在のバッテリ36の蓄電割合SOCと蓄電割合SOCが所定割合Smaxに至るまでの充電所要時間との関係をマップとしてROMに記憶しており、マップから充電設備からの充電電力と現在のバッテリ36の蓄電割合SOCとに対応する充電所要時間として導出される時間である。 When the departure time is set in step S100, it is determined whether or not the number of failures Nfail exceeds the threshold value Nref (step S120). When the number of failures Nfail is less than or equal to the threshold value Nref, the sum of the charging/charging waiting time twait and the time (charging required time) tchr for actually charging the battery 36 with the electric power from the charging facility is defined as the total charging time tsum. It is set (step S122). The required charging time tchr is stored in the ROM as a map of the relationship between the charging power from the charging facility, the current charging ratio SOC of the battery 36, and the charging required time until the charging ratio SOC reaches the predetermined ratio Smax. Is the time derived as the required charging time corresponding to the charging power from the charging facility and the current storage ratio SOC of the battery 36.

こうして充電開始時刻tstを設定すると、出発時刻の少し前(例えば、数分など)の時刻である充電終了時刻tendから総充電時間tsum前の時刻を充電開始時刻tstとして設定する(ステップS124)。そして、充電開始時刻tstで充電待機処理を開始した後に外部充電を開始してバッテリ36を充電し、充電終了時刻tendで外部充電が終了されるように充電器50を制御する(ステップS126)。そして、イグニッションスイッチ80がオンされているか否かを判定する(ステップS190)。通常、出発時刻付近でユーザによりイグニッションスイッチ80がオンされる。そのため、充電終了時刻tendで外部充電が終了してから分極解消時間tpfが経過する前にイグニッションスイッチ80がオンされることが多く、満充電容量FCCの学習は行なわれないことが多くなる。 When the charging start time tst is set in this manner, a time before the total charging time tsum from the charging end time tend which is slightly before the departure time (for example, several minutes) is set as the charging start time tst (step S124). Then, after starting the charging standby process at the charging start time tst, external charging is started to charge the battery 36, and the charger 50 is controlled so that the external charging is ended at the charging end time tend (step S126). Then, it is determined whether or not the ignition switch 80 is turned on (step S190). Normally, the user turns on the ignition switch 80 near the departure time. Therefore, the ignition switch 80 is often turned on before the polarization elimination time tpf elapses after the external charging ends at the charging end time tend, and the full charge capacity FCC is not often learned.

ステップS190でイグニッションスイッチ80がオンされると、ステップS200以降の処理を実行して、本ルーチンを終了する。 When the ignition switch 80 is turned on in step S190, the processes of step S200 and subsequent steps are executed, and this routine ends.

ステップS110で失敗回数Nfailが閾値Nrefを超えているときには、充電終了時のバッテリ36の温度Tbfを推定する(ステップS130)。温度Tbfの推定は、以下のようにして行なわれる。 When the number of failures Nfail exceeds the threshold value Nref in step S110, the temperature Tbf of the battery 36 at the end of charging is estimated (step S130). The temperature Tbf is estimated as follows.

最初に、充電待機時間twaitと、充電所要時間tchrと、の和の時間を、バッテリ36の分極を考慮しない場合の総充電時間tsumcとし、充電終了時刻tendから総充電時間tsumc前の時刻を充電開始時刻tstcとする。 First, the sum of the charging standby time twait and the required charging time tchr is set as the total charging time tsumc when the polarization of the battery 36 is not considered, and the time before the total charging time tsumc from the charging end time tend is charged. The start time is tstc.

次に、バッテリ36に取り付けられた温度センサ36cからのバッテリ36の温度Tbと、外気温を検出する温度センサ90からの雰囲気温度Tatmと、第1マップと、を用いて、現在から充電開始時刻tstcまでのバッテリ36の温度変化量ΔTbaを算出する。第1マップは、バッテリ36を充電していない場合における、バッテリ36の温度Tbと雰囲気温度Tatmと現在から充電開始時刻tstcまでの時間tと温度変化量ΔTbaとの関係を予め実験や解析などにより定めたマップである。第1マップでは、バッテリ36の温度Tbが高いときには低いときに比して高くなるように、且つ、雰囲気温度Tatmが高いときには低いときに比して高くなるように、且つ、現在から充電開始時刻tstcまでの時間tが長いときには短いときに比して高くなるように、温度変化量ΔTbaを設定する。 Next, using the temperature Tb of the battery 36 from the temperature sensor 36c attached to the battery 36, the ambient temperature Tatm from the temperature sensor 90 that detects the outside air temperature, and the first map, the charging start time from the present time. The temperature change amount ΔTba of the battery 36 up to tstc is calculated. The first map shows the relationship between the temperature Tb of the battery 36, the ambient temperature Tatm, the time t from the present time to the charging start time tstc, and the amount of temperature change ΔTba when the battery 36 is not charged by experiments or analysis in advance. It is a set map. In the first map, when the temperature Tb of the battery 36 is high, it becomes higher than when it is low, and when the ambient temperature Tatm is high, it becomes higher than when it is low, and the charging start time from the present time. The temperature change amount ΔTba is set so that when the time t to tstc is long, it becomes higher than when it is short.

そして、現在のバッテリ36の温度Tbと、温度変化量ΔTbaと、総充電時間tsumcと、第2マップと、を用いて、充電している期間のバッテリ36の温度変化量ΔTbbを算出する。第2マップは、バッテリ36の充電中における、バッテリ36の温度Tbと雰囲気温度Tatmと総充電時間tsumcと温度変化量ΔTbbとの関係を予め実験や解析などにより定めたマップである。第2マップでは、バッテリ36の温度Tbが高いときには低いときに比して高くなるように、且つ、雰囲気温度Tatmが高いときには低いときに比して高くなるように、且つ、総充電時間tsumcが長いときには短いときに比して高くなるように、温度変化量ΔTbbを設定する。 Then, the temperature change amount ΔTbb of the battery 36 during the charging period is calculated using the current temperature Tb of the battery 36, the temperature change amount ΔTba, the total charging time tsumc, and the second map. The second map is a map in which the relationship between the temperature Tb of the battery 36, the ambient temperature Tatm, the total charging time tsumc, and the temperature change amount ΔTbb during the charging of the battery 36 is determined in advance by experiments or analysis. In the second map, when the temperature Tb of the battery 36 is high, it is higher than when it is low, and when the ambient temperature Tatm is high, it is higher than when it is low, and the total charging time tsumc is high. The temperature change amount ΔTbb is set so that the temperature change amount becomes higher when the temperature is long than when the temperature is short.

こうして現在から充電開始時刻tstcまでのバッテリ36の温度変化量ΔTbaと充電している期間のバッテリ36の温度変化量ΔTbbとを設定すると、現在のバッテリ36の温度Tbに温度変化量ΔTba、ΔTbbを加えた温度を、充電終了時のバッテリ36の温度Tbfと推定する。 In this way, when the temperature change amount ΔTba of the battery 36 from the present to the charging start time tstc and the temperature change amount ΔTbb of the battery 36 during the charging period are set, the temperature change amounts ΔTba and ΔTbb are set to the current temperature Tb of the battery 36. The added temperature is estimated as the temperature Tbf of the battery 36 at the end of charging.

充電終了時のバッテリ36の温度Tbfを推定すると、続いて、推定した充電終了時のバッテリ36の温度Tbfと第3マップとを用いて、分極解消時間tpfを設定する(ステップS140)。第3マップは、充電終了時のバッテリ36の温度Tbfと、分極解消時間tpfと、の関係を予め実験や解析などにより定めたマップである。第3マップは、充電終了時のバッテリ36の温度Tbが低いときには高いときに比して長くなるように、分極解消時間tpfを設定する。 When the temperature Tbf of the battery 36 at the end of charging is estimated, subsequently, the polarization elimination time tpf is set using the estimated temperature Tbf of the battery 36 at the end of charging and the third map (step S140). The third map is a map in which the relationship between the temperature Tbf of the battery 36 at the end of charging and the polarization elimination time tpf is determined in advance by experiments or analysis. In the third map, the polarization elimination time tpf is set such that when the temperature Tb of the battery 36 at the end of charging is low, it becomes longer than when it is high.

続いて、充電待機時間twaitと、充電所要時間tchrと、分極解消時間tpfと、の和の時間を、総充電時間tsumとして算出し(ステップS150)、充電終了時刻tendから総充電時間tsum前の時刻を充電開始時刻tstとして設定する(ステップS160)。そして、充電開始時刻tstで充電待機処理を開始し、続いて、外部充電を開始してバッテリ36を外部充電し、充電終了時刻tendより分極解消時間tpfだけ前に外部充電を終了し(ステップS170)、イグニッションスイッチ80がオンされていないときにはオンされるまで待つ(ステップS190)。ステップS170では、充電終了時刻tendより分極解消時間tpfだけ前に外部充電を終了することから、充電終了時刻tendから出発時刻までの間に満充電容量FCCの学習が実行される機会が多くなる。したがって、分極解消時間tpfを考慮せずに、充電待機時間twaitと充電所要時間tchrとの和の時間を総充電時間tsumとし、充電終了時刻tendから総充電時間tsum前の時刻を充電開始時刻tstとして設定して、充電開始時刻tstで充電待機処理を開始し、続いて、外部充電を開始してバッテリ36を外部充電し、充電終了時刻tendで外部充電を終了するものに比して、満充電容量FCCの学習を実行する機会を多くして、満充電容量FCCの学習の実行の頻度を確保することができる。バッテリ36は、外部充電を終了してから分極解消時間tpfを経過するまで充放電なしで放置されることになるが、失敗回数Nfailが閾値Nrefを超えているときのみ、即ち、満充電容量FCCの学習を連続して回数Nref以上失敗したときのみステップS130〜S170を実行するから、失敗回数Nfailに拘わらず、ステップS130〜S170を実行するものに比して、バッテリ36が蓄電割合SOCの高いまま放置される機会を少なくすることができる。したがって、バッテリ36の性能の劣化を抑制できる。これにより、バッテリ36の性能の低下を抑制しつつ満充電容量FCCを学習する頻度を確保できる。 Then, the total time of the charging standby time twait, the required charging time tchr, and the polarization elimination time tpf is calculated as the total charging time tsum (step S150), and the charging end time tend before the total charging time tsum is calculated. The time is set as the charging start time tst (step S160). Then, the charging standby process is started at the charging start time tst, then the external charging is started to externally charge the battery 36, and the external charging is ended before the polarization elimination time tpf from the charging end time tend (step S170). ), if the ignition switch 80 is not turned on, it waits until it is turned on (step S190). In step S170, the external charging is ended before the polarization elimination time tpf before the charging end time tend, so that the chance of learning the full charge capacity FCC increases from the charging end time tend to the departure time. Therefore, without considering the polarization elimination time tpf, the time of the sum of the charging standby time twait and the required charging time tchr is set as the total charging time tsum, and the time before the total charging time tsum from the charging end time tend is the charging start time tst. The charging standby process is started at the charging start time tst, the external charging is started to externally charge the battery 36, and the external charging is ended at the charging end time tend. It is possible to secure the frequency of performing the learning of the full charge capacity FCC by increasing the opportunities to perform the learning of the charge capacity FCC. The battery 36 is left without charge/discharge until the polarization elimination time tpf elapses after completion of external charging, but only when the number of failures Nfail exceeds the threshold Nref, that is, the full charge capacity FCC. Since the steps S130 to S170 are executed only when the learning of No. fails consecutively Nref or more times, the battery 36 has a higher power storage rate SOC as compared with the case where the steps S130 to S170 are executed regardless of the failure number Nfail. The chance of being left alone can be reduced. Therefore, the deterioration of the performance of the battery 36 can be suppressed. As a result, it is possible to secure the frequency of learning the full charge capacity FCC while suppressing the deterioration of the performance of the battery 36.

以上説明した実施例の満充電容量学習装置を搭載した電気自動車20によれば、充電開始時刻tstと充電終了時刻tendとの間で外部充電が実行される場合において、満充電容量FCCの学習を失敗回数Nfailが閾値Nrefを超えているときには、外部充電の準備のための充電充電待機時間twaitと、外部充電の実行に要する充電所要時間tchrと、外部充電を終了した後に二次電池の分極の解消に要する分極解消時間tpfと、の和の時間だけ充電終了時刻tendより前の時刻を充電開始時刻tstとして設定し、充電開始時刻tstから充電充電待機時間twaitを経過した後に外部充電を開始し、充電終了時刻tendが経過した後に満充電容量FCCを学習することにより、バッテリ36の性能の劣化を抑制できる。これにより、バッテリ36の性能の低下を抑制しつつ満充電容量FCCを学習する頻度を確保できる。 According to the electric vehicle 20 equipped with the full-charge capacity learning device of the above-described embodiment, the full-charge capacity FCC is learned when the external charging is performed between the charge start time tst and the charge end time tend. When the number of failures Nfail exceeds the threshold Nref, the charging/charging waiting time twait for preparing for external charging, the required charging time tchr required to execute external charging, and the polarization of the secondary battery after the external charging is completed A time before the charging end time tend is set as the sum of the polarization elimination time tpf required for the cancellation and the charging start time tst is set as the charging start time tst, and external charging is started after the charging/charging standby time twait has elapsed from the charging start time tst. By learning the full charge capacity FCC after the charging end time tend has elapsed, the deterioration of the performance of the battery 36 can be suppressed. As a result, it is possible to secure the frequency of learning the full charge capacity FCC while suppressing the deterioration of the performance of the battery 36.

実施例の満充電容量学習装置を搭載した電気自動車20では、失敗回数Nfailを、満充電容量FCCの学習が連続して失敗した回数としている。しかしながら、ステップS220を実行しないものとして、失敗する度に失敗回数Nfailを1ずつインクリメントし、失敗回数Nfailが閾値Nrefs(閾値Nrefと同じ値でもよいし異なる値でもよい)を超えているときに、充電充電待機時間twaitと充電所要時間tchrと分極解消時間tpfと、の和の時間だけ充電終了時刻tendより前の時刻を充電開始時刻tstとして設定し、充電開始時刻tstから充電充電待機時間twaitを経過した後に外部充電を開始し、充電終了時刻tendが経過した後に満充電容量FCCを学習してもよい。 In the electric vehicle 20 equipped with the full-charge capacity learning device of the embodiment, the failure count Nfail is set as the number of times the learning of the full-charge capacity FCC has continuously failed. However, assuming that step S220 is not executed, the number of failures Nfail is incremented by 1 each time a failure occurs, and when the number of failures Nfail exceeds the threshold Nrefs (which may be the same value as the threshold Nref or may be a different value), The charging start time tst is set to a time before the charging end time tend, which is the sum of the charging waiting time twait, the required charging time tchr, and the polarization elimination time tpf, and the charging charging waiting time twait is set from the charging start time tst. External charging may be started after a lapse of time, and the full charge capacity FCC may be learned after a charge end time tend has passed.

実施例の満充電容量学習装置を搭載した電気自動車20では、設定される出発時刻より少し前の時刻を充電終了時刻tendとしているが、出発時刻に代えて充電終了時刻tendを直接設定されてもよい。 In the electric vehicle 20 equipped with the full-charge capacity learning device of the embodiment, the charging end time tend is set to a time slightly before the set departure time, but the charging end time tend is set directly instead of the departure time. Good.

実施例の満充電容量学習装置を搭載した電気自動車20では、満充電容量FCCの学習を失敗回数Nfailが閾値Nrefを超えているときには、充電充電待機時間twaitと充電所要時間tchrと分極解消時間tpfと、の和の時間だけ充電終了時刻tendより前の時刻を充電開始時刻tstとして設定し、充電開始時刻tstから充電充電待機時間twaitを経過した後に外部充電を開始し、充電終了時刻tendを経過した後に満充電容量FCCを学習している。しかしながら、前回満充電容量FCCの学習を行なってからの経過時間が所定時間を超えているときに、充電充電待機時間twaitと充電所要時間tchrと分極解消時間tpfと、の和の時間だけ充電終了時刻tendより前の時刻を充電開始時刻tstとして設定し、充電開始時刻tstから充電充電待機時間twaitを経過した後に外部充電を開始し、充電終了時刻tendを経過した後に満充電容量FCCを学習してもよい。 In the electric vehicle 20 equipped with the full-charge-capacity learning device of the embodiment, when the number Nfail of failure to learn the full-charge capacity FCC exceeds the threshold value Nref, the charging/charging standby time twait, the required charging time tchr, and the polarization elimination time tpf. And a time before the charging end time tend is set as the charging start time tst, external charging is started after the charging/charging standby time twait has elapsed from the charging start time tst, and the charging end time tend has passed. After that, the full charge capacity FCC is learned. However, when the elapsed time from the previous learning of the full charge capacity FCC exceeds the predetermined time, the charging is completed only for the sum of the charging/charging standby time twait, the required charging time tchr, and the polarization elimination time tpf. A time before the time tend is set as the charge start time tst, external charging is started after the charge/charge waiting time twait has elapsed from the charge start time tst, and the full charge capacity FCC is learned after the charge end time tend. May be.

実施例では、本発明を、電気自動車20に搭載される満充電容量学習装置に適用した場合について例示しているが、本発明は電気自動車20に搭載される満充電容量学習装置に適用するものに限定されるわけでなく、外部からの電力で充電可能な二次電池を備える装置であれば如何なる装置に用いても構わない。 In the embodiment, the present invention is applied to the full charge capacity learning device mounted on the electric vehicle 20, but the present invention is applied to the full charge capacity learning device mounted on the electric vehicle 20. However, the device is not limited to the above, and may be used in any device as long as the device includes a secondary battery that can be charged by external power.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、電子制御ユニット70が「満充電容量学習装置」に相当する。 Correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem will be described. In the embodiment, the electronic control unit 70 corresponds to a “full charge capacity learning device”.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the section of means for solving the problem. This is an example for specifically explaining the mode for carrying out the invention, and does not limit the elements of the invention described in the column of means for solving the problem. That is, the interpretation of the invention described in the column of means for solving the problem should be made based on the description in that column, and the embodiment is the invention of the invention described in the column of means for solving the problem. This is just a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to the embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within a range not departing from the gist of the present invention. Of course, it can be implemented.

本発明は、満充電容量学習装置の製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in the manufacturing industry of the full charge capacity learning device.

20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、34 インバータ、36 バッテリ、36a 電圧センサ、36b 電流センサ、36c,90 温度センサ、38 電力ライン、50 充電器、51 車両側コネクタ、52 接続検出センサ、70 電子制御ユニット、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ。 20 electric vehicle, 22a, 22b drive wheels, 24 differential gear, 26 drive shaft, 32 motor, 34 inverter, 36 battery, 36a voltage sensor, 36b current sensor, 36c, 90 temperature sensor, 38 power line, 50 charger, 51 Vehicle side connector, 52 connection detection sensor, 70 electronic control unit, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor ..

Claims (1)

外部電源からの電力で充電する外部充電が可能な二次電池の満充電容量を学習する満充電容量学習装置であって、
設定された充電開始時刻と設定された充電終了時刻との間に前記外部充電を実行する場合において、前記満充電容量の学習を失敗した回数が所定値を超えているときには、前記外部充電の準備のための待機時間と、前記外部充電の実行に要する充電所要時間と、前記外部充電を終了した後に前記二次電池の分極の解消に要する分極解消時間と、の和の時間分前記充電終了時刻より前の時刻を前記充電開始時刻として設定し、前記充電開始時刻から前記待機時間を経過したときに前記外部充電を開始し、
前記充電終了時刻が経過した後に前記満充電容量を学習する、
満充電容量学習装置。
A full-charge-capacity learning device that learns the full-charge capacity of a secondary battery that can be externally charged by charging with electric power from an external power source.
When performing the external charging between the set charging start time and the set charging end time, when the number of times the learning of the full charge capacity has failed exceeds a predetermined value, the preparation for the external charging is performed. Standby time for charging, the charging time required to execute the external charging, and the polarization elimination time required to eliminate the polarization of the secondary battery after the external charging is finished, and the charging end time. Set a time earlier than the charging start time, start the external charging when the standby time has elapsed from the charging start time,
Learning the full charge capacity after the charging end time has passed,
Full charge capacity learning device.
JP2018231742A 2018-12-11 2018-12-11 Full charge capacity learning device Pending JP2020094868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231742A JP2020094868A (en) 2018-12-11 2018-12-11 Full charge capacity learning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231742A JP2020094868A (en) 2018-12-11 2018-12-11 Full charge capacity learning device

Publications (1)

Publication Number Publication Date
JP2020094868A true JP2020094868A (en) 2020-06-18

Family

ID=71084846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231742A Pending JP2020094868A (en) 2018-12-11 2018-12-11 Full charge capacity learning device

Country Status (1)

Country Link
JP (1) JP2020094868A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210675A (en) * 1997-01-20 1998-08-07 Yamaha Motor Co Ltd Charge control method and charge controller
JP2004100736A (en) * 2002-09-05 2004-04-02 Jatco Ltd Line pressure controller of v-belt type infinite variable speed transmission
JP2013101072A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Full charge capacity estimation method of power storage device and power storage system
JP2014025563A (en) * 2012-07-30 2014-02-06 Denso Corp Range switching device
JP2014102078A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Power storage system and full charge capacity calculation method
JP2014241656A (en) * 2013-06-11 2014-12-25 株式会社豊田自動織機 Charging start control method of secondary battery, and charging device
JP2015114105A (en) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 Power storage system
WO2016189675A1 (en) * 2015-05-27 2016-12-01 株式会社日立製作所 Neural network learning device and learning method
JP2017091852A (en) * 2015-11-11 2017-05-25 株式会社デンソー Control device for power supply system
WO2018110305A1 (en) * 2016-12-14 2018-06-21 ソニー株式会社 Information processing device and information processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210675A (en) * 1997-01-20 1998-08-07 Yamaha Motor Co Ltd Charge control method and charge controller
JP2004100736A (en) * 2002-09-05 2004-04-02 Jatco Ltd Line pressure controller of v-belt type infinite variable speed transmission
JP2013101072A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Full charge capacity estimation method of power storage device and power storage system
JP2014025563A (en) * 2012-07-30 2014-02-06 Denso Corp Range switching device
JP2014102078A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Power storage system and full charge capacity calculation method
JP2014241656A (en) * 2013-06-11 2014-12-25 株式会社豊田自動織機 Charging start control method of secondary battery, and charging device
JP2015114105A (en) * 2013-12-06 2015-06-22 トヨタ自動車株式会社 Power storage system
WO2016189675A1 (en) * 2015-05-27 2016-12-01 株式会社日立製作所 Neural network learning device and learning method
JP2017091852A (en) * 2015-11-11 2017-05-25 株式会社デンソー Control device for power supply system
WO2018110305A1 (en) * 2016-12-14 2018-06-21 ソニー株式会社 Information processing device and information processing method

Similar Documents

Publication Publication Date Title
US10322634B2 (en) Estimating battery capacity in an electric vehicle
EP2596375B1 (en) Vehicle control device and vehicle control method
US10286806B2 (en) Electrical storage system
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP6136950B2 (en) Driving distance calculation system
US20180313905A1 (en) Method for estimating state of charge and on-vehicle battery system
US20210152002A1 (en) Estimation system and estimation method
US10926642B2 (en) Electric vehicle
EP3260871B1 (en) Battery system monitoring apparatus
US10099571B2 (en) Control device and control method for vehicle
US10804715B2 (en) Electrically driven vehicle
JP7020375B2 (en) Electric vehicle
JP2018088767A (en) Automobile
CN112937367A (en) Charging control device
US10518649B2 (en) Motor vehicle
JP2010243447A (en) Apparatus and method for estimating electric storage capacity
JP2001272444A (en) Estimating device for remaining capacity of secondary battery
US10953753B2 (en) Electrified vehicle and control method for electrified vehicle
JP2020094868A (en) Full charge capacity learning device
EP2587622B1 (en) Charge capacity parameter estimation system of electric storage device
JP2015045561A (en) Power device
JP7205203B2 (en) Full charge capacity estimation device
US11260769B2 (en) Electrified vehicle
JP6825544B2 (en) Electric vehicle
JP6524936B2 (en) Charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228