JP2020094257A - Conductive member for electrochemical polishing and sliding ring - Google Patents

Conductive member for electrochemical polishing and sliding ring Download PDF

Info

Publication number
JP2020094257A
JP2020094257A JP2018234588A JP2018234588A JP2020094257A JP 2020094257 A JP2020094257 A JP 2020094257A JP 2018234588 A JP2018234588 A JP 2018234588A JP 2018234588 A JP2018234588 A JP 2018234588A JP 2020094257 A JP2020094257 A JP 2020094257A
Authority
JP
Japan
Prior art keywords
conductive member
electropolishing
titanium
polishing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018234588A
Other languages
Japanese (ja)
Other versions
JP7138035B2 (en
Inventor
寅浩 今井
Torahiro Imai
寅浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018234588A priority Critical patent/JP7138035B2/en
Publication of JP2020094257A publication Critical patent/JP2020094257A/en
Application granted granted Critical
Publication of JP7138035B2 publication Critical patent/JP7138035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a conductive member for electrochemical polishing that can be used for a long period of time.SOLUTION: A conductive member for electrochemical polishing of the present invention comprises a ceramic including: an aluminum oxide as a primary component; and at least one of the carbide, nitride, carbonitride, boride, and oxide of titanium as an accessory component.SELECTED DRAWING: Figure 1

Description

本発明は、電解研磨用導電性部材および摺動リングに関する。 The present invention relates to an electropolishing conductive member and a sliding ring.

従来、ウェハー上に形成されたCu膜は、電解研磨装置を用いて研磨(平坦化)することによって配線化されている。 Conventionally, a Cu film formed on a wafer is made into wiring by polishing (planarizing) using an electrolytic polishing apparatus.

この電解研磨装置は、ウェハー上に形成され、陽極として通電されるCu膜を電解作用と機械的研磨とによって平坦化するための装置である。 This electrolytic polishing apparatus is an apparatus for flattening a Cu film formed on a wafer and supplied with electricity as an anode by electrolytic action and mechanical polishing.

図4は、従来の電解研磨用導電性部材を備えた電解研磨装置の概略構成の一例を示す、(a)は模式図であり、(b)はXX’線における断面図である。 4A and 4B show an example of a schematic configuration of an electropolishing apparatus provided with a conventional electropolishing conductive member. FIG. 4A is a schematic view, and FIG. 4B is a cross-sectional view taken along line XX'.

特許文献1では、図4に示す電解研磨装置21を用いて、以下のような研磨方法が提案されている。 Patent Document 1 proposes the following polishing method using the electrolytic polishing apparatus 21 shown in FIG.

まず、電解研磨液Eが収容された電解槽22内で、定盤23に貼り付けられた研磨パッド24を回転させ、同じ方向に回転する、銅からなる膜(図示しない)を備えたウェハーWを加圧しながら研磨パッド24に摺接させる。ウェハーWは、予め、上方からウェハーチャック25に固定されている。研磨パッド24は定盤23を支持する定盤用回転軸26とともに回転し、ウェハーWは、ウェハーチャック25を支持するウェハー用回転軸27とともに回転する。 First, in the electrolytic bath 22 containing the electrolytic polishing liquid E, the polishing pad 24 attached to the surface plate 23 is rotated to rotate in the same direction, and a wafer W provided with a film made of copper (not shown). Is brought into sliding contact with the polishing pad 24 while being pressed. The wafer W is previously fixed to the wafer chuck 25 from above. The polishing pad 24 rotates together with a surface plate rotating shaft 26 that supports the surface plate 23, and the wafer W rotates together with a wafer rotation shaft 27 that supports the wafer chuck 25.

このとき、研磨パッド24の内周側に位置する陽極通電リング28の一部および研磨パッド24の外周側に位置する陽極通電リング29の一部と、ウェハーW上に形成されたCu膜の外周部の一部とが常に摺接する。また、研磨パッド24は、厚み方向に沿って電解研磨液Eを通過させる貫通孔24aを備え、膜側から研磨パッド24を支持する網状のスペーサ30、定盤23を通じて陰極板31まで電解研磨液Eが介在するようにされている。 At this time, a part of the anode current-carrying ring 28 located on the inner circumference side of the polishing pad 24, a part of the anode current-carrying ring 29 located on the outer circumference side of the polishing pad 24, and the outer circumference of the Cu film formed on the wafer W. It is always in sliding contact with a part of the section. Further, the polishing pad 24 has a through hole 24a that allows the electrolytic polishing solution E to pass through along the thickness direction, and a net-like spacer 30 that supports the polishing pad 24 from the film side to the cathode plate 31 through the surface plate 23 to the electrolytic polishing solution. E is arranged to intervene.

そして、電源(図示しない)から電圧を印加することによって、陽極通電リング28,29を介して膜に通電し、貫通孔24aに電解研磨液Eが通過することによって、電解研磨に必要な電流が陰極板31に流れる。そして、電解作用を受ける膜の表面が酸化される。 Then, by applying a voltage from a power source (not shown), the film is energized through the anode energizing rings 28 and 29, and the electrolytic polishing liquid E passes through the through holes 24a, so that a current required for electrolytic polishing is generated. It flows to the cathode plate 31. Then, the surface of the film subjected to the electrolytic action is oxidized.

膜の表面の酸化に伴って高電気抵抗層、不溶性錯体被膜、不動態被膜等の変質層が発生するので、膜の表面に研磨パッド24を摺接(ワイピング)させると、変質層が除去されて、下地の銅や銅合金が露出する。変質層が除去されると、露出した銅や銅合金が再び電解作用を受けるようになる。このように、電解研磨およびワイピングを繰り返すことによって、ウェハーW上に形成された膜は平坦化されて、配線となる。 Deteriorated layers such as a high electric resistance layer, an insoluble complex coating, and a passivation coating are generated along with the oxidation of the surface of the film. Therefore, when the polishing pad 24 is slidably contacted (wiped) on the surface of the film, the altered layer is removed. As a result, the underlying copper or copper alloy is exposed. When the altered layer is removed, the exposed copper or copper alloy is again subjected to electrolytic action. As described above, by repeating the electrolytic polishing and the wiping, the film formed on the wafer W is flattened and becomes wiring.

陽極通電リング28,29は、例えば黒鉛、焼結銅合金、焼結銀合金等のカーボン系合金や、白金、銅等からなることが記載されている。 It is described that the anode current-carrying rings 28, 29 are made of, for example, graphite, a carbon-based alloy such as a sintered copper alloy, a sintered silver alloy, platinum, copper or the like.

特開2003−311540号公報JP, 2003-311540, A

陽極通電リングがこれらの材料からなる場合、電解研磨による摩耗が著しく、長期間に亘って用いることができないという問題があった。 When the anode current-carrying ring is made of these materials, there is a problem that it is not worn for a long period of time due to the significant wear due to electrolytic polishing.

本発明は上記課題を解決すべく案出されたものであり、長期間に亘って用いることができる電解研磨用導電性部材および摺動リングを提供することを目的とする。 The present invention has been devised to solve the above problems, and an object thereof is to provide a conductive member for electrolytic polishing and a sliding ring that can be used for a long period of time.

本開示の電解研磨用導電性部材は、酸化アルミニウムを主成分とし、チタンの炭化物、窒化物、炭窒化物、硼化物および酸化物の少なくともいずれかを副成分として含むセラミックスからなる。 The electropolishing conductive member of the present disclosure is made of ceramics containing aluminum oxide as a main component and at least one of titanium carbide, nitride, carbonitride, boride and oxide as a subcomponent.

本開示の電解研磨用導電性部材は、長期間に亘って用いることができる。 The electropolishing conductive member of the present disclosure can be used for a long period of time.

本開示の電解研磨用導電性部材を備えた電解研磨装置の概略構成の一例を示す、(a)は模式図であり、(b)はAA’線における断面図である。FIG. 2A is a schematic view showing an example of a schematic configuration of an electrolytic polishing apparatus provided with a conductive member for electrolytic polishing of the present disclosure, and FIG. 図1に示す電解研磨装置のB部を拡大しており、被研磨体が電解研磨用導電性部材に接触している状態を示す模式図である。FIG. 2 is a schematic view showing a state in which a portion B of the electrolytic polishing apparatus shown in FIG. 1 is enlarged and the object to be polished is in contact with the electrolytic polishing conductive member. 本開示の電解研磨用導電性部材の前駆体である成形体の加圧焼結装置内における配置状態の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of an arrangement state of a molded body that is a precursor of the electropolishing conductive member of the present disclosure in the pressure sintering device. 従来の電解研磨用導電性部材を備えた電解研磨装置の概略構成の一例を示す、(a)は模式図であり、(b)はXX’線における断面図である。FIG. 2A is a schematic view showing an example of a schematic configuration of an electropolishing apparatus including a conventional electropolishing conductive member, and FIG. 3B is a cross-sectional view taken along line XX′.

以下、図面を参照して、本開示の電解研磨用導電性部材について詳細に説明する。 Hereinafter, the electropolishing conductive member of the present disclosure will be described in detail with reference to the drawings.

図1は、本開示の電解研磨用導電性部材を備えた電解研磨装置の概略構成の一例を示す、(a)は模式図であり、(b)はAA’線における断面図である。 1A and 1B show an example of a schematic configuration of an electropolishing apparatus including an electropolishing conductive member of the present disclosure. FIG. 1A is a schematic view, and FIG. 1B is a cross-sectional view taken along line AA′.

図2は、図1に示す電解研磨装置のB部を拡大しており、被研磨体が電解研磨用導電性部材に接触している状態を示す模式図である。 FIG. 2 is an enlarged view of a portion B of the electropolishing apparatus shown in FIG. 1, and is a schematic view showing a state where the object to be polished is in contact with the electropolishing conductive member.

図1に示す電解研磨装置1は、ウェハーW上に形成され、陽極として通電される、図2に示す円形状の銅または銅合金からなる膜2を電解作用と機械的研磨とによって平坦化するための装置であり、膜2は被研磨体である。 The electropolishing apparatus 1 shown in FIG. 1 planarizes a circular film 2 made of copper or copper alloy shown in FIG. 2 formed on a wafer W and energized as an anode by electrolytic action and mechanical polishing. The film 2 is an object to be polished.

電解研磨装置1は、ウェハーWに形成された膜2を下向きにして固定するウェハーチャック3と、ウェハーチャック3を矢印C方向に回転させるウェハー用回転軸4と、ウェハーチャック3を上下方向に移動させるとともに下向きに加圧する加圧手段(図示しない)とを備える。 The electropolishing apparatus 1 includes a wafer chuck 3 for fixing the film 2 formed on the wafer W downward, a wafer rotation shaft 4 for rotating the wafer chuck 3 in the direction of arrow C, and a vertical movement of the wafer chuck 3. And a pressing means (not shown) for pressing downward.

また、電解研磨装置1は、ウェハーチャック3と対向する位置に、電解研磨液Eを収容する電解槽5を備えている。電解槽5の内部には、電解研磨液Eに浸漬させた状態で、膜2の表面を研磨する研磨パッド6が設置される。電解研磨液Eは、電解作用により酸化、錯体形成等で変質した膜2の表面を機械的に除去する砥粒、例えば、酸化アルミニウムからなる砥粒を含むスラリーとしても機能する。 Further, the electropolishing apparatus 1 is provided with an electrolytic bath 5 for containing the electropolishing liquid E at a position facing the wafer chuck 3. Inside the electrolytic bath 5, a polishing pad 6 for polishing the surface of the film 2 while being immersed in the electrolytic polishing liquid E is installed. The electropolishing liquid E also functions as a slurry containing abrasive grains that mechanically remove the surface of the film 2 that has been altered by oxidation, complex formation, or the like by electrolytic action, for example, abrasive grains made of aluminum oxide.

研磨パッド6は、網状のスペーサ7を介して定盤8に載置された状態で、定盤8を支持する定盤用回転軸9とともに矢印D方向に回転する。 The polishing pad 6 rotates in the direction of arrow D together with the surface plate rotating shaft 9 that supports the surface plate 8 while being placed on the surface plate 8 via the mesh-shaped spacer 7.

研磨パッド6は、発泡ポリウレタン、発泡ポリプロピレン、ポリビニルアセタール等からなり、厚み方向に電解研磨液Eを介在させる貫通孔6aを有する。また、膜2の外周縁は研磨パッド6の内周縁および外周縁に接触摺動し、ウェハーWを陽極として通電する、陽極通電リング10a、10bは、定盤8上に設置された弾性部材11(一部、図2に図示)によって膜2をそれぞれ押圧するように設置されている。陽極通電リング10a、10bのそれぞれの側面および底面は、絶縁体12によって覆われている。陽極通電リング10a、10bの間隔は、膜2の外周に陽極通電リング10a、10bが接触するように設定されている。 The polishing pad 6 is made of expanded polyurethane, expanded polypropylene, polyvinyl acetal, or the like, and has a through hole 6a through which the electrolytic polishing liquid E is interposed in the thickness direction. Further, the outer peripheral edge of the film 2 contacts and slides on the inner peripheral edge and the outer peripheral edge of the polishing pad 6, and energizes the wafer W as an anode. The anode energizing rings 10a and 10b are elastic members 11 installed on the surface plate 8. (Partially shown in FIG. 2) so as to press the membranes 2 respectively. The side surface and the bottom surface of each of the anode conduction rings 10a and 10b are covered with an insulator 12. The distance between the anode current-carrying rings 10a and 10b is set so that the anode current-carrying rings 10a and 10b contact the outer periphery of the membrane 2.

また、研磨パッド6の下方には、定盤8を介してウェハーWに対向するように陰極板13が備えられている。陰極板13は、電解研磨液Eを介して通電される。陰極板13は円板状であって、例えば銅、白金等からなる。 A cathode plate 13 is provided below the polishing pad 6 so as to face the wafer W via the surface plate 8. The cathode plate 13 is energized via the electropolishing liquid E. The cathode plate 13 has a disk shape and is made of, for example, copper or platinum.

そして、電源(図示しない)から電圧を印加することによって、陽極通電リング9,10を介して膜2に通電し、貫通孔6aに電解研磨液Eが通過することによって、電解研磨に必要な電流が陰極板13に流れる。そして、電解作用を受ける膜2の表面が酸化される。 Then, by applying a voltage from a power source (not shown), the film 2 is energized through the anode energization rings 9 and 10, and the electrolytic polishing liquid E passes through the through holes 6a, so that a current required for electrolytic polishing is obtained. Flow into the cathode plate 13. Then, the surface of the film 2 that is subjected to the electrolytic action is oxidized.

膜2の表面の酸化に伴って高電気抵抗層、不溶性錯体被膜、不動態被膜等の変質層が発生するので、膜2の表面に研磨パッド6を摺接(ワイピング)させると、変質層が除去されて、下地の銅や銅合金が露出する。変質層が除去されると、露出した銅や銅合金が再び電解作用を受けるようになる。このように、電解研磨およびワイピングを繰り返すことによって、ウェハーW上に形成された膜2は平坦化されて、配線となる。 Deteriorated layers such as a high electric resistance layer, an insoluble complex coating, and a passivation coating are generated along with the oxidation of the surface of the film 2. Therefore, when the polishing pad 6 is slid on the surface of the film 2, the altered layer is formed. It is removed to expose the underlying copper or copper alloy. When the altered layer is removed, the exposed copper or copper alloy is again subjected to electrolytic action. As described above, by repeating the electrolytic polishing and the wiping, the film 2 formed on the wafer W is flattened and becomes a wiring.

なお、電解槽5には、使用済みの電解研磨液Eを電解槽5の外部へ排出する廃液用配管14が取り付けられている。 The electrolytic bath 5 is provided with a waste liquid pipe 14 for discharging the used electrolytic polishing liquid E to the outside of the electrolytic bath 5.

陽極通電リング10a、10bは、本開示の電解研磨用導電性部材の一例であり、本開示の電解研磨用導電性部材は、酸化アルミニウムを主成分とし、チタンの炭化物、窒化物、炭窒化物、硼化物および酸化物の少なくともいずれかを副成分として含むセラミックスからなる。このようなセラミックスは、セラミックスの中でも、硬度,剛性および機械的強度がいずれも高いので、膜2と摺接する部分でも、この摺接による摩耗や脱粒等が抑制されるので、長期間にわたって用いることができる。 The anode current-carrying rings 10a and 10b are an example of the electropolishing conductive member of the present disclosure, and the electropolishing conductive member of the present disclosure contains aluminum oxide as a main component and contains titanium carbide, nitride, or carbonitride. , Ceramics containing at least one of a boride and an oxide as an accessory component. Since such ceramics have high hardness, rigidity, and mechanical strength among the ceramics, wear and shedding due to the sliding contact can be suppressed even in a portion in sliding contact with the film 2, so that such ceramics should be used for a long period of time. You can

そのため、長期間にわたって繰り返し使用した場合の交換頻度も少ない。陽極通電リング10a,10bを交換した場合、これらの部品の相対位置を調整する作業が必要となるが、交換頻度が少ないので、この作業の発生回数も少なく、長期間にわたって使用した場合の交換作業に要する時間も削減することができる。 Therefore, the frequency of replacement is low when it is repeatedly used over a long period of time. When the anode energization rings 10a and 10b are replaced, it is necessary to adjust the relative positions of these parts. However, since the replacement frequency is low, the frequency of this operation is low and the replacement work when used for a long period of time. The time required for can also be reduced.

また、電解研磨用導電性部材が上記セラミックスからなると、非磁性であることから、電解研磨液Eを電解槽6から廃液用配管14を介して排出後、洗浄、乾燥させても、大気中に浮遊する磁気を帯びた塵埃を吸着しにくくなるので、この塵埃による膜2への損傷が発生し難い。また、このようなセラミックスは硬度が高く、摺動中に脱粒が発生しにくいので、脱粒による膜への損傷を抑制することができる。 Further, when the electropolishing conductive member is made of the above-mentioned ceramics, it is non-magnetic. Therefore, even if the electropolishing liquid E is discharged from the electrolytic bath 6 through the waste liquid pipe 14 and then washed and dried, it remains in the atmosphere. Since it becomes difficult to adsorb the floating magnetic dust, the dust is unlikely to be damaged by the dust. Moreover, since such ceramics have high hardness and are unlikely to be shed during sliding, damage to the film due to shedding can be suppressed.

また、上記セラミックスは、例えば半導電性を示すことで知られる炭化珪素質セラミッ
クスよりも導電性が高いことから、放電加工によって容易に複雑な形状に加工することもができる。
Further, since the above-mentioned ceramics have higher conductivity than, for example, silicon carbide-based ceramics known to exhibit semiconductivity, they can be easily processed into a complicated shape by electric discharge machining.

ここで、セラミックスにおける主成分とは、セラミックスを構成する成分のうち、含有量が50質量%以上の成分をいう。本開示の電解研磨用導電性部材は、酸化アルミニウムの含有量が、例えば、50質量%以上80質量%以下であり、チタンの炭化物、窒化物、炭窒化物、硼化物および酸化物の少なくともいずれか(以下、これらをチタンの化合物という。)の含有量の合計が20質量%より大きく50質量%未満となっている。 Here, the main component in the ceramics means a component having a content of 50% by mass or more among the components constituting the ceramics. In the electropolishing conductive member of the present disclosure, the content of aluminum oxide is, for example, 50% by mass or more and 80% by mass or less, and at least any of titanium carbide, nitride, carbonitride, boride, and oxide. (Hereinafter, these are referred to as titanium compounds), the total content is more than 20% by mass and less than 50% by mass.

また、本開示の電解研磨用導電性部材を構成するセラミックスは、チタンの化合物の含有量の合計が30質量%以上40質量%以下であってもよい。チタンの化合物の含有量の合計が30質量%以上であると、高い導電性を有するセラミックスが得られ、ワイヤ放電加工,片彫り放電加工等の放電加工を容易にすることができるので、複雑な形状の電解研磨用導電性部材を少ない手間で製造することができる。一方、チタンの化合物の含有量の合計が40質量%以下であると、焼結工程において、セラミックスの内部に微少な気孔(例えば、直径が100nm〜500nmの気孔)の発生を抑制することができる。そのため、焼結後の加工、たとえば切断,研削、研磨等で脱粒が発生しにくい。チタンの化合物の含有量の合計が上記範囲であると、脱粒しにくく、耐欠損性の高い電解研磨用導電性部材を得ることができる。 Further, in the ceramic constituting the electropolishing conductive member of the present disclosure, the total content of titanium compounds may be 30% by mass or more and 40% by mass or less. When the total content of titanium compounds is 30% by mass or more, a ceramic having high conductivity can be obtained, and electric discharge machining such as wire electric discharge machining or single-sided electric discharge machining can be facilitated. A shaped electropolishing conductive member can be manufactured with less labor. On the other hand, when the total content of titanium compounds is 40 mass% or less, generation of minute pores (for example, pores having a diameter of 100 nm to 500 nm) inside the ceramic can be suppressed in the sintering step. .. Therefore, graining is less likely to occur during processing after sintering, such as cutting, grinding, and polishing. When the total content of titanium compounds is within the above range, it is possible to obtain a conductive member for electropolishing which is difficult to shed and has high fracture resistance.

ここで、セラミックスに含まれる成分は、X線回折装置を用いて組成を同定することができる。また、セラミックスに含まれる各元素の量は、蛍光X線分析装置またはICP(Inductively Coupled Plasma)発光分光分析装置によって求めることができる。X線回折装置によって同定された成分が酸化アルミニウムおよび炭化チタンである場合には、蛍光X線分析装置またはICP(Inductively Coupled Plasma)発光分光分析装置によって求められるアルミニウムは酸化物(Al)に、チタンは炭化物(TiC)にそれぞれ換算すればよい。 Here, the composition of the components contained in the ceramics can be identified by using an X-ray diffractometer. Moreover, the amount of each element contained in the ceramics can be determined by a fluorescent X-ray analyzer or an ICP (Inductively Coupled Plasma) emission spectroscopy analyzer. When the components identified by the X-ray diffractometer are aluminum oxide and titanium carbide, the aluminum obtained by a fluorescent X-ray analyzer or an ICP (Inductively Coupled Plasma) emission spectrometer is an oxide (Al 2 O 3 ). In addition, titanium may be converted into carbide (TiC).

X線回折装置によって同定された成分が酸化アルミニウムおよび窒化チタンである場合には、アルミニウムは酸化物(Al)に、チタンは窒化物(TiN)にそれぞれ換算すればよい。同定された成分が炭窒化チタン(TiCN)や酸化チタン(TiO)である場合も同様の方法によって換算すればよい。 When the components identified by the X-ray diffractometer are aluminum oxide and titanium nitride, aluminum may be converted into oxide (Al 2 O 3 ) and titanium may be converted into nitride (TiN). When the identified component is titanium carbonitride (TiCN) or titanium oxide (TiO 2 ), the conversion may be performed by the same method.

また、本開示の電解研磨用導電性部材を構成するセラミックスは、チタンの炭化物を副成分として含む場合、このチタンの炭化物は、組成式がTiCx(ただし、x=0.95〜0.99)であってもよい。原子数xがこの範囲であると、TiとCとの結合が、金属結合的性質を帯びた共有結合となり、靭性が高くなるので、さらに摩耗しにくくなる。 Further, when the ceramic constituting the electropolishing conductive member of the present disclosure contains titanium carbide as an accessory component, the titanium carbide has a composition formula of TiCx (where x=0.95 to 0.99). May be When the number of atoms x is in this range, the bond between Ti and C becomes a covalent bond having a metal-bonding property, and the toughness is increased, so that the wear becomes more difficult.

原子数xは、透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光法(Energy dispersive X-ray Spectroscopy(EDS))により、原子数xを求めればよい。 The number of atoms x may be determined by energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope (TEM).

また、本開示の電解研磨用導電性部材を構成するセラミックスは、イッテルビウム、イットリウムおよびディスプロシウムの少なくともいずれかを酸化物として含んでいてもよい。イッテルビウム、イットリウムおよびディスプロシウムの少なくともいずれかの酸化物(以下、これらの酸化物を希土類元素酸化物という。)を含んでいると、希土類元素酸化物は焼結促進作用が高いことから、密度が高くなるので、機械的強度を高くすることができる。 Further, the ceramic constituting the electropolishing conductive member of the present disclosure may contain at least one of ytterbium, yttrium, and dysprosium as an oxide. When the oxide of at least one of ytterbium, yttrium, and dysprosium (hereinafter, these oxides are referred to as rare earth element oxides) is included, the rare earth element oxide has a high sintering promoting action, and Since it is high, the mechanical strength can be increased.

特に、希土類元素酸化物の含有量の合計が0.01質量%以上1質量%以下であってもよく、特に、0.06質量%以上0.2質量%以下であるとよい。希土類元素酸化物は、
焼結促進作用が高いことから、希土類元素酸化物の含有量の合計が0.06質量%以上であると、密度がより高くなるので、機械的強度をさらに高くすることができる。一方、希土類元素酸化物の含有量の合計0.2質量%以下であると、希土類元素が偏析しにくくなるため、この偏析に伴う脱粒のおそれが抑制され、さらに耐欠損性の高い電解研磨用導電性部材を得ることができる。
In particular, the total content of rare earth element oxides may be 0.01% by mass or more and 1% by mass or less, and particularly preferably 0.06% by mass or more and 0.2% by mass or less. Rare earth oxides
Since the sintering promoting action is high, if the total content of rare earth element oxides is 0.06 mass% or more, the density becomes higher, and therefore the mechanical strength can be made higher. On the other hand, when the total content of the rare earth element oxides is 0.2% by mass or less, the rare earth elements are less likely to segregate, so that the risk of shedding due to this segregation is suppressed, and for electrolytic polishing with higher defect resistance. A conductive member can be obtained.

本開示の電解研磨用導電性部材を構成するセラミックスは、ニッケル、コバルトおよびモリブデンの少なくともいずれかを含んでいてもよい。 The ceramic constituting the electro-polishing conductive member of the present disclosure may contain at least one of nickel, cobalt, and molybdenum.

これらの元素は、チタンの化合物の結晶粒子を強固に結合させることができ、また、これらの元素の一部が酸化すると、元素と酸化アルミニウムとの濡れ性が向上するので、機械的強度を高くすることができるとともに、研削で生じるチッピングを抑制することができる。 These elements can firmly bond the crystal particles of the titanium compound, and when a part of these elements is oxidized, the wettability between the element and aluminum oxide is improved, so that the mechanical strength is increased. It is possible to suppress the chipping caused by grinding.

本開示の電解研磨用導電性部材を構成するセラミックスは、厚み方向における中央部よりも表層部の方が密度が高くてもよい。このような構成であると、表層部の方が相対的に密度が高くなるので、摩耗の進行が抑制される。また、表層部よりも体積の大きい中央部の方が密度が低くなるので、セラミックス全体が軽くなり、定盤8の剛性を長期間に亘って維持することができる。 In the ceramic constituting the electropolishing conductive member of the present disclosure, the surface layer portion may have a higher density than the central portion in the thickness direction. With such a configuration, the surface layer portion has a relatively higher density, so that the progress of wear is suppressed. Further, since the central portion having a larger volume than the surface layer portion has a lower density, the whole ceramic becomes lighter, and the rigidity of the surface plate 8 can be maintained for a long period of time.

表層部とは、被研磨体との摺接面の近傍領域のことである。なお、摺接面とは反対側に位置する表面の近傍領域も、中央部よりも密度が高くてもよい。摺接面の近傍領域およびその反対側の表面の近傍領域が、ともに中央部よりも密度が高いと、電解研磨用導電性部材の反りを低減できる。中央部と表層部の密度の差は、例えば、0.004g/cm以上であるとよい。 The surface layer portion is a region in the vicinity of the sliding contact surface with the object to be polished. It should be noted that the area in the vicinity of the surface located on the side opposite to the sliding contact surface may have a higher density than the central portion. If both the area near the sliding contact surface and the area near the opposite surface have a higher density than the central portion, the warp of the electropolishing conductive member can be reduced. The difference in density between the central portion and the surface layer portion is preferably 0.004 g/cm 3 or more, for example.

電解研磨用導電性部材が基板状あるいは環状である場合、表層部は、被研磨体との摺接面側の主面から、例えば、2mm以内の領域であり、中央部は電解研磨用導電性部材の両主面から2mm以内の領域を除く領域である。 When the electropolishing conductive member has a substrate shape or an annular shape, the surface layer portion is, for example, a region within 2 mm from the main surface on the sliding contact surface side with the object to be polished, and the central portion is electropolishing conductive material. It is a region excluding a region within 2 mm from both main surfaces of the member.

ここで、密度はJIS R 1634−1996に準拠して求め、見掛密度で比較すればよい。 Here, the density may be obtained in accordance with JIS R 1634-1996, and the apparent density may be compared.

本開示の摺動リングは、上述した電解研磨用導電性部材からなるとよい。 The sliding ring of the present disclosure may be made of the electropolishing conductive member described above.

本開示の摺動リングは、このような電解研磨用導電性部材からなると、耐久性が高いので、長期間にわたって用いることができる。 When the sliding ring of the present disclosure is made of such a conductive member for electrolytic polishing, it has high durability and can be used for a long period of time.

また、本開示の摺動リングは、いずれか一方の主面が被研磨体との摺接面であって、摺接面の粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、粗さ曲線における切断レベル差(Rδc)が1μm以下であってもよい。 Further, in the sliding ring of the present disclosure, one of the main surfaces is a sliding contact surface with the object to be polished, and a cutting level at a load length ratio of 25% in the roughness curve of the sliding contact surface, The cutting level difference (Rδc) in the roughness curve, which represents the difference from the cutting level at the load length ratio of 75% in the roughness curve, may be 1 μm or less.

負荷長さ率Rmrとは、以下の式(1)に示されるように、JIS B0601:2001で規定されている粗さ曲線から、その平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の粗さ曲線を山頂線に平行な切断レベルで切断したときに得られる切断長さη1,η2,・・・、ηnの和(負荷長さηp)の、基準長さLに対する比を百分率で表した値であり、高さ方向およびこの高さ方向に垂直な方向の表面性状を示すものである。 The load length rate Rmr is, as shown in the following formula (1), extracted from the roughness curve specified in JIS B0601:2001 by the reference length L in the direction of the average line, and the extracted portion The ratio of the sum of the cutting lengths η1, η2,..., ηn (load length ηp) obtained when the roughness curve of No. 1 is cut at a cutting level parallel to the peak line to the reference length L in percentage. These are the values shown, and show the surface texture in the height direction and in the direction perpendicular to this height direction.

Rmr=ηp/L×100・・・(1)
ηp:η1+η2+・・・・+ηn
このような負荷長さ率Rmrに対応する、2種類の負荷長さ率それぞれに対応する切断レベルC(Rrmr)、およびこれら切断レベルC(Rrmr)同士の差を表す切断レベル差(Rδc)も、表面の高さ方向およびこの高さ方向に垂直な方向の表面性状に対応する。切断レベル差(Rδc)が大きい場合、測定の対象とする表面の凹凸は大きいが、小さい場合には、その表面の凹凸は小さく比較的平坦といえる。
Rmr=ηp/L×100 (1)
ηp: η1 + η2 +... + ηn
The cutting level C (Rrmr) corresponding to each of the two types of load length ratios corresponding to the load length ratio Rmr, and the cutting level difference (Rδc) representing the difference between these cutting levels C (Rrmr) are also included. , The surface height direction and the surface texture in the direction perpendicular to this height direction. When the cutting level difference (Rδc) is large, the unevenness of the surface to be measured is large, but when it is small, it can be said that the unevenness of the surface is small and relatively flat.

切断レベル差(Rδc)が1μm以下であると、摺動リングが膜2等の被研磨体に摺接しても、摺接面の初期摩耗を低減することができる。 When the cutting level difference (Rδc) is 1 μm or less, even when the sliding ring makes sliding contact with the object to be polished such as the film 2, the initial wear of the sliding surface can be reduced.

特に、切断レベル差(Rδc)は0.5μm以上0.9μm以下であってもよい。 In particular, the cutting level difference (Rδc) may be 0.5 μm or more and 0.9 μm or less.

切断レベル差(Rδc)がこの範囲であると、摺接面の初期摩耗を低減することができるとともに、摺接の初動で生じやすい凝着を抑制することができる。 When the cutting level difference (Rδc) is in this range, it is possible to reduce the initial wear of the sliding contact surface and suppress the adhesion that is likely to occur in the initial movement of the sliding contact.

次に、本開示の電解研磨用導電性部材の製造方法の一例について説明する。 Next, an example of a method for manufacturing the electropolishing conductive member of the present disclosure will be described.

まず、副成分がチタンの炭化物である場合について説明する。 First, the case where the accessory component is a carbide of titanium will be described.

酸化アルミニウム,二酸化チタンおよび炭化チタンの各粉末を準備し、これらの粉末の合計100質量%における各粉末の比率が酸化アルミニウムを55質量%以上75質量%以下、二酸化チタンを0.2質量%以上10質量%以下として、残部を炭化チタンとする。炭化チタンの含有量が30質量%以上40質量%以下であるセラミックスを得るには、酸化アルミニウムを60質量%以上70質量%以下、二酸化チタンを0.2質量%以上10質量%以下として、残部を炭化チタンとすればよい。ここで、二酸化チタン(TiO)は焼結助剤として機能し、焼成工程におけるアルゴン、ヘリウム、ネオン、窒素あるいは真空等の焼成雰囲気中に含まれる微量の一酸化炭素(CO)により、反応式(1)に示すように、一酸化チタン(TiO)に還元される。一酸化チタン(TiO)は、反応式(2)に示すように、炭化チタン(TiC)に固溶して、新たにTiC(x+y<1、かつx≫y)を生成する。なお、x=0.85〜0.9、y=0.1〜0.15である。 Powders of aluminum oxide, titanium dioxide, and titanium carbide are prepared, and the ratio of each powder in the total 100 mass% of these powders is 55 mass% or more and 75 mass% or less of aluminum oxide, and 0.2 mass% or more of titanium dioxide. The balance is 10% by mass or less, and the balance is titanium carbide. In order to obtain ceramics having a titanium carbide content of 30% by mass or more and 40% by mass or less, aluminum oxide is 60% by mass or more and 70% by mass or less, titanium dioxide is 0.2% by mass or more and 10% by mass or less, and the balance is May be titanium carbide. Here, titanium dioxide (TiO 2 ) functions as a sintering aid, and the reaction formula is changed by a trace amount of carbon monoxide (CO) contained in the firing atmosphere such as argon, helium, neon, nitrogen, or vacuum in the firing step. As shown in (1), it is reduced to titanium monoxide (TiO). Titanium monoxide (TiO) forms a solid solution with titanium carbide (TiC) to newly generate TiC x O y (x+y<1 and x>>y) as shown in the reaction formula (2). In addition, x=0.85-0.9 and y=0.1-0.15.

TiO+CO→TiO+CO・・・(1)
TiO+TiC→TiC(x+y<1、かつx≫y)・・・(2)
生成したTiCは、酸化チタンの固溶量yに応じて密度が異なり、固溶量yを0.15にすると、セラミックスの密度が最も大きくなる。
TiO 2 +CO → TiO+CO 2 (1)
TiO+TiC→TiC x O y (x+y<1 and x>>y) (2)
The density of the produced TiC x O y varies depending on the solid solution amount y of titanium oxide, and when the solid solution amount y is 0.15, the density of the ceramics becomes maximum.

焼結助剤として添加した二酸化チタンは、そのほとんどがTiCに変化する。x=0.85〜0.9、y=0.1〜0.15の範囲では、炭化チタンへの酸化チタンの固溶により内部に発生する微小な気孔、例えば、直径が100〜500nmである気孔の発生を低減することができ、これらの気孔の凝集も抑制することができる。 Most of titanium dioxide added as a sintering aid changes to TiC x O y . In the range of x=0.85 to 0.9 and y=0.1 to 0.15, minute pores generated inside due to solid solution of titanium oxide in titanium carbide, for example, the diameter is 100 to 500 nm. Generation of pores can be reduced, and aggregation of these pores can also be suppressed.

次に、副成分がチタンの窒化物、炭窒化物および硼化物の少なくともいずれかである場合について説明する。 Next, the case where the accessory component is at least one of titanium nitride, carbonitride, and boride will be described.

酸化アルミニウムの粉末と、チタンの窒化物、炭窒化物および硼化物の少なくともいずれかから選ばれるチタン化合物の粉末とを準備し、これらの粉末の合計100質量%における各粉末の比率が酸化アルミニウムを50質量%以上86質量%以下、残部をチタン化合物とする。なお、チタンの炭窒化物の粉末に代えて、チタンの炭化物の粉末およびチタンの窒化物の粉末を用いてもよい。チタンの窒化物、炭化物、炭窒化物および硼化物は、
例えば、窒化チタン、炭化チタン、炭窒化チタン、硼化チタンである。
An aluminum oxide powder and a titanium compound powder selected from at least one of titanium nitride, carbonitride and boride are prepared, and the ratio of each powder in the total 100% by mass of these powders is aluminum oxide. 50 mass% or more and 86 mass% or less and the balance titanium compound. Instead of the titanium carbonitride powder, titanium carbide powder and titanium nitride powder may be used. Titanium nitrides, carbides, carbonitrides and borides are
For example, titanium nitride, titanium carbide, titanium carbonitride, and titanium boride.

これらの粉末は、バレルミル,回転ミル,振動ミル,コロイドミル,ビーズミル,アトライターまたは高速ミキサー等を用いて湿式混合し、粉砕してスラリーとする。希土類元素酸化物を含むセラミックスを得るには、希土類元素酸化物の粉末の含有量の合計を、例えば、0.06質量%以上0.2質量%以下として添加すればよい。粉末の湿式混合および粉砕は、例えば、直径が2mm以下の粉砕用ビーズをビーズミルに投入すればよい。 These powders are wet-mixed using a barrel mill, a rotary mill, a vibration mill, a colloid mill, a bead mill, an attritor, a high speed mixer or the like, and pulverized into a slurry. In order to obtain a ceramic containing a rare earth element oxide, the total content of the rare earth element oxide powders may be added, for example, from 0.06% by mass to 0.2% by mass. For the wet mixing and pulverization of the powder, for example, beads for pulverization having a diameter of 2 mm or less may be put into a bead mill.

粉砕した粉末に、結合剤、分散剤等の成形助剤を添加して混合した後に、たとえば、転動造粒機、噴霧乾燥機または圧縮造粒機を用いて造粒して、顆粒を得る。 A molding aid such as a binder or a dispersant is added to the crushed powder and mixed, and then granulated by using, for example, a tumbling granulator, a spray dryer or a compression granulator to obtain granules. ..

そして、得られた顆粒を乾式加圧成形、冷間等方静水圧成形等の成形手段で成形して、例えば、リング状の成形体とした後、加圧焼結装置内に配置する。 Then, the obtained granules are molded by a molding means such as dry pressure molding, cold isostatic pressing, etc. to obtain, for example, a ring-shaped molded body, which is then placed in a pressure sintering apparatus.

図3は、本開示の電解研磨用導電性部材の前駆体である成形体の加圧焼結装置内における配置状態の一例を示す断面図である。 FIG. 3 is a cross-sectional view showing an example of an arrangement state of a molded body, which is a precursor of the electropolishing conductive member of the present disclosure, in the pressure sintering device.

成形体15の両側には緻密質のカーボンシート16を、このカーボンシート16の両側には黒鉛製スペーサ17をそれぞれ接触配置させて、段積み状態とする。成形体15の両主面に緻密質のカーボンシート16を接触配置させることで、TiOが焼成工程で還元されて発生する二酸化炭素(CO)がセラミックスの内部から表層部に向って流れにくくなり、厚み方向における中央部よりも表層部の方が密度の高いセラミックスを得ることができ、密度の差は、例えば、0.004g/cm以上にすることができる。 A dense carbon sheet 16 is placed on both sides of the molded body 15, and a graphite spacer 17 is placed on both sides of the carbon sheet 16 so as to be in a stacked state. By disposing the dense carbon sheet 16 in contact with both main surfaces of the molded body 15, carbon dioxide (CO 2 ) generated by reduction of TiO 2 in the firing step does not easily flow from the inside of the ceramic toward the surface layer portion. Therefore, it is possible to obtain a ceramic having a higher density in the surface layer portion than in the central portion in the thickness direction, and the difference in density can be 0.004 g/cm 3 or more, for example.

一方、セラミックスの中央部および表層部における密度の差を抑制する場合には、成形体15の両側には多孔質のカーボンシート16を、このカーボンシート16の両側には黒鉛製スペーサ17をそれぞれ接触配置させて、段積み状態とする。成形体14の両主面に多孔質のカーボンシート16を接触配置させることで、TiOが焼成工程で還元されて発生する二酸化炭素(CO)が容易に排出され、セラミックスの表層部および内部における密度の差を制御して、その差を0.004g/cm以下とすることができる。 On the other hand, in order to suppress the difference in density between the central portion and the surface layer portion of the ceramics, a porous carbon sheet 16 is contacted with both sides of the molded body 15 and a graphite spacer 17 is contacted with both sides of the carbon sheet 16. Place them in a stack. By placing the porous carbon sheets 16 in contact with both main surfaces of the molded body 14, carbon dioxide (CO 2 ) generated by reducing TiO 2 in the firing step is easily discharged, and the surface layer portion and the inside of the ceramics are discharged. It is possible to control the difference in the density at 0.004 g/cm 3 or less.

このように配置した後、アルゴン、ヘリウム、ネオン、窒素、真空等の雰囲気中、焼結温度を1400℃以上1700℃以下、加圧力を30MPa以上として加圧焼結することによって、リング状の焼結体であるセラミックスを得ることができる。 After such arrangement, ring-shaped firing is performed by pressure sintering in an atmosphere of argon, helium, neon, nitrogen, vacuum or the like at a sintering temperature of 1400° C. or more and 1700° C. or less and a pressing force of 30 MPa or more. It is possible to obtain a ceramic that is a united body.

ここで、温度を1400〜1700℃とすることによって、焼結が不十分となることもなく、チタン化合物の結晶粒子を適切に分散させつつチタン化合物の結晶粒子の異常な粒成長を抑制することができる。また、加圧焼結における加圧力を30MPa以上とすれば、セラミックスの緻密化を促進し、電解研磨用導電性部材として求められる機械的強度を得ることができる。 Here, by setting the temperature to 1400 to 1700° C., it is possible to suppress the abnormal grain growth of the titanium compound crystal particles while appropriately dispersing the titanium compound crystal particles without causing insufficient sintering. You can Further, when the pressure applied in the pressure sintering is 30 MPa or more, the densification of the ceramics can be promoted and the mechanical strength required for the electropolishing conductive member can be obtained.

また、炭素質材料を含む遮蔽材18を成形体の周囲に配置して加圧焼結すれば、機械的特性の優れたセラミックスとすることができる。 Further, when the shielding material 18 containing a carbonaceous material is arranged around the molded body and pressure-sintered, it is possible to obtain a ceramic having excellent mechanical properties.

加圧焼結後には、必要に応じて熱間等方加圧焼結(HIP)を行なってもよい。熱間等方加圧焼結(HIP)を行なうことで、セラミックスの3点曲げ強度を800MPa以上にすることができる。 After the pressure sintering, hot isotropic pressure sintering (HIP) may be performed if necessary. By performing hot isostatic pressing (HIP), the three-point bending strength of ceramics can be increased to 800 MPa or more.

このようにして得られたセラミックスは、両主面、内周面および外周面をそれぞれ研削することで、本開示の電解研磨用導電性部材を得ることができる。 The ceramics obtained in this manner can be ground to both the main surface, the inner peripheral surface, and the outer peripheral surface to obtain the electropolishing conductive member of the present disclosure.

ここで、摺接面の粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、粗さ曲線における切断レベル差(Rδc)が1μm以下である摺動リングを得るには、ASTM E11−61に記載されている粒度番号が270以上である、即ち、粒径が53μm以下であるダイヤモンド砥粒をレジンで結合した研削砥石を用いて研削すればよい。 Here, the cutting in the roughness curve, which represents the difference between the cutting level at the 25% load length rate in the roughness curve of the sliding contact surface and the cutting level at the 75% load length rate in the roughness curve In order to obtain a sliding ring having a level difference (Rδc) of 1 μm or less, a diamond abrasive grain having a grain size number of 270 or more described in ASTM E11-61, that is, a grain size of 53 μm or less with a resin is used. It suffices to grind using a bonded grinding wheel.

また、求められる電解研磨用導電性部材が複雑形状である場合、ワイヤー放電加工,片彫り放電加工等の放電加工を用いて、セラミックスを所望の形状にし、表面をダイヤモンドパウダー等でバフ研磨すればよい。 If the required electropolishing conductive member has a complicated shape, wire-discharge machining, electric discharge machining such as single-sided erosion machining, etc. can be used to shape the ceramic into a desired shape and buff the surface with diamond powder or the like. Good.

1 :電解研磨装置
2 :膜
3 :ウェハーチャック
4 :ウェハー用回転軸
5 :電解槽
6 :研磨パッド
7 :スペーサ
8 :定盤
9 :定盤用回転軸
10a:陽極通電リング
10b:陽極通電リング
11:弾性部材
12:絶縁体
13:陰極板
14:廃液用配管
15:成形体
16:カーボンシート
17:黒鉛製スペーサ
18:遮蔽材
1: Electropolishing device 2: Membrane 3: Wafer chuck 4: Wafer rotating shaft 5: Electrolytic bath 6: Polishing pad 7: Spacer 8: Surface plate 9: Surface plate rotating shaft 10a: Anode current ring 10b: Anode current ring 11: Elastic member 12: Insulator 13: Cathode plate 14: Waste liquid pipe 15: Molded body 16: Carbon sheet 17: Graphite spacer 18: Shielding material

Claims (7)

酸化アルミニウムを主成分とし、チタンの炭化物、窒化物、炭窒化物、硼化物および酸化物の少なくともいずれかを副成分として含むセラミックスからなる、電解研磨用導電性部材。 A conductive member for electropolishing, which comprises aluminum oxide as a main component and ceramics containing titanium carbide, nitride, carbonitride, boride and/or oxide as an accessory component. 上記チタンの炭化物は、組成式がTiCx(ただし、x=0.95〜0.99)である、請求項1に記載の電解研磨用導電性部材。 The conductive member for electrolytic polishing according to claim 1, wherein the composition of the titanium carbide is TiCx (where x=0.95 to 0.99). 上記セラミックスは、イッテルビウム、イットリウムおよびディスプロシウムの少なくともいずれかを含む、請求項1または請求項2に記載の電解研磨用導電性部材。 3. The electropolishing conductive member according to claim 1, wherein the ceramic contains at least one of ytterbium, yttrium, and dysprosium. 上記セラミックスは、ニッケル、コバルトおよびモリブデンの少なくともいずれかを含む、請求項1乃至請求項3のいずれかに記載の電解研磨用導電性部材。 4. The electropolishing conductive member according to claim 1, wherein the ceramic contains at least one of nickel, cobalt, and molybdenum. 上記セラミックスは、厚み方向における中央部よりも表層部の方が密度が高い、請求項1乃至請求項4のいずれかに記載の電解研磨用導電性部材。 The electropolishing conductive member according to any one of claims 1 to 4, wherein the ceramic has a higher density in the surface layer portion than in the central portion in the thickness direction. 請求項1乃至請求項5のいずれかに記載の電解研磨用導電性部材からなる、摺動リング。 A sliding ring comprising the electro-polishing conductive member according to claim 1. いずれか一方の主面が被研磨体との摺接面であって、該摺接面の粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)が1μm以下である、摺動リング。 One of the main surfaces is a sliding contact surface with the object to be polished, a cutting level at a load length ratio of 25% in the roughness curve of the sliding contact surface, and a load of 75% in the roughness curve. A sliding ring having a cutting level difference (Rδc) in the roughness curve of 1 μm or less, which represents a difference from the cutting level in length ratio.
JP2018234588A 2018-12-14 2018-12-14 Conductive member for electropolishing and sliding ring Active JP7138035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018234588A JP7138035B2 (en) 2018-12-14 2018-12-14 Conductive member for electropolishing and sliding ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234588A JP7138035B2 (en) 2018-12-14 2018-12-14 Conductive member for electropolishing and sliding ring

Publications (2)

Publication Number Publication Date
JP2020094257A true JP2020094257A (en) 2020-06-18
JP7138035B2 JP7138035B2 (en) 2022-09-15

Family

ID=71084636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018234588A Active JP7138035B2 (en) 2018-12-14 2018-12-14 Conductive member for electropolishing and sliding ring

Country Status (1)

Country Link
JP (1) JP7138035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680776A (en) * 2020-12-02 2021-04-20 无锡市鹏振智能科技有限公司 Rotary type electrolysis device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production
JPH0610363U (en) * 1992-07-14 1994-02-08 新日本製鐵株式会社 Electrolytic treatment device for metal plates
JPH08119721A (en) * 1994-10-17 1996-05-14 Nisshin Flour Milling Co Ltd Electrically conductive alumina-based composite ceramic and its production
JP2001261463A (en) * 2000-03-15 2001-09-26 Narita Seitoushiyo:Kk Ceramic porous body and its production process
JP2001342082A (en) * 2000-05-29 2001-12-11 Kyocera Corp Manufacturing method of porous body
WO2003080898A1 (en) * 2002-03-25 2003-10-02 Ebara Corporation Electrochemical machine and electrochemical machining method
JP2003311540A (en) * 2002-04-30 2003-11-05 Sony Corp Electrolytic polishing liquid, electrolytic polishing method and method for producing semiconductor device
JP2003324088A (en) * 2002-04-30 2003-11-14 Sony Corp Polishing method and polishing device
JP2004250776A (en) * 2002-12-27 2004-09-09 Ebara Corp Substrate treatment apparatus and method
JP2007091488A (en) * 2005-09-27 2007-04-12 Toto Ltd Alumina sintered compact
JP2008105938A (en) * 2006-09-29 2008-05-08 Nippon Tungsten Co Ltd Composite ceramic
JP2009050997A (en) * 2006-09-27 2009-03-12 Kyocera Corp Cutting tool
JP2016516954A (en) * 2013-04-04 2016-06-09 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Mechanical seal device having sliding surfaces with different hardness
JP2017115268A (en) * 2015-12-25 2017-06-29 京セラ株式会社 Disc for false-twisting machine
JP2017178665A (en) * 2016-03-30 2017-10-05 京セラ株式会社 Porous ceramic, gas dispersion sheet and member for absorption

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production
JPH0610363U (en) * 1992-07-14 1994-02-08 新日本製鐵株式会社 Electrolytic treatment device for metal plates
JPH08119721A (en) * 1994-10-17 1996-05-14 Nisshin Flour Milling Co Ltd Electrically conductive alumina-based composite ceramic and its production
JP2001261463A (en) * 2000-03-15 2001-09-26 Narita Seitoushiyo:Kk Ceramic porous body and its production process
JP2001342082A (en) * 2000-05-29 2001-12-11 Kyocera Corp Manufacturing method of porous body
WO2003080898A1 (en) * 2002-03-25 2003-10-02 Ebara Corporation Electrochemical machine and electrochemical machining method
JP2003311540A (en) * 2002-04-30 2003-11-05 Sony Corp Electrolytic polishing liquid, electrolytic polishing method and method for producing semiconductor device
JP2003324088A (en) * 2002-04-30 2003-11-14 Sony Corp Polishing method and polishing device
JP2004250776A (en) * 2002-12-27 2004-09-09 Ebara Corp Substrate treatment apparatus and method
JP2007091488A (en) * 2005-09-27 2007-04-12 Toto Ltd Alumina sintered compact
JP2009050997A (en) * 2006-09-27 2009-03-12 Kyocera Corp Cutting tool
JP2008105938A (en) * 2006-09-29 2008-05-08 Nippon Tungsten Co Ltd Composite ceramic
JP2016516954A (en) * 2013-04-04 2016-06-09 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Mechanical seal device having sliding surfaces with different hardness
JP2017115268A (en) * 2015-12-25 2017-06-29 京セラ株式会社 Disc for false-twisting machine
JP2017178665A (en) * 2016-03-30 2017-10-05 京セラ株式会社 Porous ceramic, gas dispersion sheet and member for absorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680776A (en) * 2020-12-02 2021-04-20 无锡市鹏振智能科技有限公司 Rotary type electrolysis device

Also Published As

Publication number Publication date
JP7138035B2 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
KR102510986B1 (en) Boroncarbide sintered body and etch apparatus comprising the same
Ohmori et al. Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding
EP2641868B1 (en) High-hardness conductive diamond polycrystalline body and method for producing same
JP5344204B2 (en) Surface coated cutting tool
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP2023543687A (en) Large size sintered ceramic body and method for making the same
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
JP7307769B2 (en) RING-SHAPED PARTS FOR ETCHING APPARATUS AND METHOD FOR ETCHING SUBSTRATE USING THE SAME
CN103596905A (en) Joint of metal material and ceramic-carbon composite material, method for producing same, carbon material joint, jointing material for carbon material joint, and method for producing carbon material joint
CN109153106B (en) Diamond compound CMP pad conditioner
KR20170108457A (en) Composite sintered body for cutting tools and cutting tools using the same
JP2012066979A (en) High-hardness, electrically conductive polycrystalline diamond and method for producing the same
JP7138035B2 (en) Conductive member for electropolishing and sliding ring
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JPWO2006080302A1 (en) Composite wear-resistant member and manufacturing method thereof
JPWO2019163710A1 (en) Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
JPWO2018003877A1 (en) Super hard sintered body
EP3614415B1 (en) Boron carbide sintered body and etcher including the same
EP1287949A2 (en) Metal-less bond grinding stone, and electrolytic dressing grinding method and apparatus using the grinding stone
JP6748263B2 (en) Wedge bonding parts
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide
JP2015030816A (en) Abrasive grains, polishing slurry, wire saw, bound body, and method for producing abrasive grains
TWI814188B (en) Clamp jig apparatus, manufacturing method of clamp jig, and clean apparatus
JP3865966B2 (en) Plasma-resistant member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7138035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150