JP2020094122A - Luminescent material and organic electroluminescent element based on the same - Google Patents

Luminescent material and organic electroluminescent element based on the same Download PDF

Info

Publication number
JP2020094122A
JP2020094122A JP2018232533A JP2018232533A JP2020094122A JP 2020094122 A JP2020094122 A JP 2020094122A JP 2018232533 A JP2018232533 A JP 2018232533A JP 2018232533 A JP2018232533 A JP 2018232533A JP 2020094122 A JP2020094122 A JP 2020094122A
Authority
JP
Japan
Prior art keywords
group
ring
light emitting
aromatic hydrocarbon
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018232533A
Other languages
Japanese (ja)
Inventor
宗弘 長谷川
Munehiro Hasegawa
宗弘 長谷川
森井 克行
Katsuyuki Morii
克行 森井
米原 宏司
Koji Yonehara
宏司 米原
淳志 若宮
Atsushi Wakamiya
淳志 若宮
智也 中村
Tomoya Nakamura
智也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2018232533A priority Critical patent/JP2020094122A/en
Publication of JP2020094122A publication Critical patent/JP2020094122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

To provide a novel luminescent material that emits light in a near-infrared region of 800 nm or more.SOLUTION: A luminescent material comprises a compound represented by the formula (1) in the figure. (In the formula, Arand Arare each a benzene ring, thiophene ring, furan ring, or pyrrole ring; Rto Rare each an aromatic hydrocarbon group or aromatic heterocyclic group; X is -S-, -SO-, or a direct coupling; and Ris an aromatic hydrocarbon group, aromatic heterocyclic group, or alkyl group.)SELECTED DRAWING: None

Description

本発明は、発光材料及びそれを用いた有機電界発光素子に関する。より詳しくは、有機電界発光素子の発光層を形成する材料として利用可能な発光材料及びそれを用いた有機電界発光素子に関する。 The present invention relates to a light emitting material and an organic electroluminescence device using the same. More specifically, the present invention relates to a light emitting material that can be used as a material for forming a light emitting layer of an organic electroluminescent device, and an organic electroluminescent device using the same.

近赤外光は700〜2500nmの目に見えない光であり、光通信・カメラ・センサ等をはじめとする様々な分野で幅広く利用されているが、特に650〜1000nmの波長領域の光は生体を透過しやすいことから、例えば静脈認証やパルスオキシメータ等の生体情報を取得する機器の光源として利用されている。近年、これらの機器の小型化やウェアラブル機器への搭載等の要求が高まってきているものの、現在一般に普及している機器は無機LEDを光源に用いたものであってフレキシブル性に劣るため、その要求を実現することが非常に困難であった。 Near-infrared light is invisible light of 700 to 2500 nm and is widely used in various fields such as optical communication, cameras, and sensors, but light in the wavelength range of 650 to 1000 nm is particularly useful for living organisms. It is used as a light source for devices for acquiring biological information such as vein authentication and pulse oximeters because it easily transmits light. In recent years, although demands for miniaturization of these devices and mounting on wearable devices have been increasing, currently popular devices use inorganic LEDs as a light source and are inferior in flexibility. It was very difficult to meet the demand.

一方、有機電界発光素子は、フレキシブル化が可能な発光素子であるため、上記要求に応えることが可能であるが、近赤外線領域で発光する有機電界発光素子を可能とする材料については、ベンゾビスチアジアゾール由来の骨格を有する化合物(特許文献1、非特許文献1〜3参照)や、チアジアゾール系化合物(特許文献2、3参照)等の数少ない報告例があるのみである。 On the other hand, since the organic electroluminescent device is a light emitting device that can be made flexible, it is possible to meet the above-mentioned requirements. However, regarding the material that enables the organic electroluminescent device to emit light in the near infrared region, benzobis There are only a few reported examples of compounds having a skeleton derived from thiadiazole (see Patent Document 1, Non-Patent Documents 1 to 3) and thiadiazole-based compounds (see Patent Documents 2 and 3).

特開2013−124231号公報JP, 2013-124231, A 特開2012−224567号公報JP2012-224567A 特開2013−177327号公報JP, 2013-177327, A

CHEMISTRY OF MATERIALS、2012年、第24巻、p.2178−2185CHEMISTRY OF MATERIALS, 2012, Vol. 24, p. 2178-2185 APPLIED PHYSICS LETTERS、2008年、第93巻、163305APPLIED PHYSICS LETTERS, 2008, Volume 93, 163305 ADVANCED MATERIALS、2009年、第21巻、p.111−116ADVANCED MATERIALS, 2009, Volume 21, p. 111-116

上記のとおり、近赤外領域で発光する材料の報告例はあるものの、800nm以上の波長領域で発光する材料は種類が少なく、それらを使用した有機電界発光素子のほとんどは充分な出力が得られていないのが現状である。800nm以上の波長領域で発光する材料を用いた高出力の有機電界発光素子を開発できれば、生体情報を取得する機器の小型化やウェアラブル機器への展開等、より多彩な生体情報を取得する機器の光源として利用することができるだけでなく、様々なセンサへの応用も期待される。
有機電界発光素子は異なる材料によって形成される複数の層を積層して構成され、発光材料に求められる特性は他の層を形成する材料によっても変わる可能性があるため、今後の近赤外領域で発光する有機電界発光素子の開発を促進するためには、近赤外領域での発光する材料のバリエーションを増やすことが求められる。
As mentioned above, although there are reports of materials that emit light in the near-infrared region, there are few types of materials that emit light in the wavelength region of 800 nm or more, and most of the organic electroluminescent devices using them have sufficient output. The current situation is not. If we could develop a high-power organic electroluminescent device using a material that emits light in the wavelength region of 800 nm or more, we would like to develop a device that acquires more diverse biometric information, such as downsizing of the device that acquires biometric information and deployment to wearable devices. Not only can it be used as a light source, it is also expected to be applied to various sensors.
Organic electroluminescent devices are constructed by stacking multiple layers made of different materials, and the characteristics required for light-emitting materials may change depending on the materials forming the other layers. In order to promote the development of the organic electroluminescent device that emits light in, it is necessary to increase the variation of materials that emit light in the near infrared region.

本発明は、上記現状に鑑みてなされたものであり、800nm以上の近赤外領域で発光する新たな発光材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a new light emitting material that emits light in the near infrared region of 800 nm or more.

本発明者は、800nm以上の近赤外領域で発光する新規な材料について検討し、チアゾール環が縮環したベンゾチアジアゾール骨格を有する特定の構造の化合物が、近赤外領域で発光することを見出した。そして該化合物を有機電界発光素子の発光材料として適用したところ、800nm以上の領域に発光波長を有し、かつ、高出力な有機電界発光素子が得られることを見出し、本発明に到達したものである。 The present inventor examined a novel material that emits light in the near infrared region of 800 nm or more, and found that a compound having a specific structure having a benzothiadiazole skeleton in which a thiazole ring was condensed emits light in the near infrared region. It was When the compound was applied as a light emitting material for an organic electroluminescent device, it was found that an organic electroluminescent device having an emission wavelength in a region of 800 nm or more and high output was obtained, and thus the present invention was achieved. is there.

すなわち本発明は、下記式(1); That is, the present invention provides the following formula (1);

Figure 2020094122
Figure 2020094122

(式中、Ar、Arは、同一又は異なって、置換基を有していてもよいベンゼン環、チオフェン環、フラン環、ピロール環のいずれかの環由来の基を表す。R〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基を表し、RとR、RとRはそれぞれ結合していてもよい。Xは、−S−、−SO−又は直接結合を表す。Rは、芳香族炭化水素基、芳香族複素環基又はアルキル基を表す。)で表されるベンゾチアゾール由来の骨格を有する化合物を含むことを特徴とする発光材料である。 (In the formula, Ar 1 and Ar 2 are the same or different and each represents a group derived from any ring of a benzene ring, a thiophene ring, a furan ring, and a pyrrole ring, which may have a substituent. R 1 to R 4 is the same or different and represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 and R 2 and R 3 and R 4 may be bonded to each other. good .X is, -S -, - SO 2 - or .R 5 representing a direct bond, an aromatic hydrocarbon group, derived structure benzothiazole represented by the representative) an aromatic heterocyclic group or an alkyl group. A luminescent material comprising a compound having:

上記式(1)のAr、Arは、いずれもチオフェン環基であることが好ましい。 Both Ar 1 and Ar 2 in the above formula (1) are preferably a thiophene ring group.

上記式(1)のR〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基又はチオフェン環基であり、Rは、芳香族炭化水素基又はアルキル基であることが好ましい。 R 1 to R 4 in the above formula (1) are the same or different and each is an aromatic hydrocarbon group or a thiophene ring group which may have a substituent, and R 5 is an aromatic hydrocarbon group or an alkyl group. It is preferably a group.

本発明はまた、陽極と陰極との間に発光層を含む複数の層が積層された構造を有する有機電界発光素子であって、該発光層は、本発明の発光材料を含むことを特徴とする有機電界発光素子でもある。 The present invention is also an organic electroluminescent device having a structure in which a plurality of layers including a light emitting layer are laminated between an anode and a cathode, wherein the light emitting layer contains the light emitting material of the present invention. It is also an organic electroluminescent device that operates.

本発明の発光材料は、800nm以上の近赤外領域に発光波長を有する材料であって、この材料を用いることで、800nm以上の領域に発光波長を有し、かつ、高出力な有機電界発光素子を得ることが可能となる。 The light emitting material of the present invention is a material having an emission wavelength in the near infrared region of 800 nm or more, and by using this material, an organic electroluminescence having an emission wavelength in the region of 800 nm or more and high output. It becomes possible to obtain an element.

本発明の発光材料を発光層として用いた有機電界発光素子の積層構造の一例を示した概略図である。It is the schematic which showed an example of the laminated structure of the organic electroluminescent element which used the light emitting material of this invention for a light emitting layer. 実施例1で得た化合物4および実施例2で得た化合物6の蛍光スペクトルを示した図である。FIG. 2 is a diagram showing fluorescence spectra of compound 4 obtained in Example 1 and compound 6 obtained in Example 2. 実施例3で作製した有機電界発光素子1の(a)電圧−電流密度特性、(b)電圧−放射照度の関係を示した図である。FIG. 5 is a diagram showing a relationship between (a) voltage-current density characteristics and (b) voltage-irradiance of the organic electroluminescent device 1 manufactured in Example 3. 実施例4で作製した有機電界発光素子2の(a)電圧−電流密度特性、(b)電圧−放射照度の関係を示した図である。FIG. 6 is a diagram showing a relationship between (a) voltage-current density characteristics and (b) voltage-irradiance of the organic electroluminescent element 2 manufactured in Example 4. 実施例5で作製した有機電界発光素子3の(a)電圧−電流密度特性、(b)電圧−放射照度の関係を示した図である。FIG. 9 is a diagram showing a relationship between (a) voltage-current density characteristics and (b) voltage-irradiance of the organic electroluminescent element 3 manufactured in Example 5.

以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention is described in detail below.
It should be noted that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

本発明の発光材料は、下記式(1); The light emitting material of the present invention has the following formula (1);

Figure 2020094122
Figure 2020094122

(式中、Ar、Arは、同一又は異なって、置換基を有していてもよいベンゼン環、チオフェン環、フラン環、ピロール環のいずれかの環由来の基を表す。R〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基を表し、RとR、RとRはそれぞれ結合していてもよい。Xは、−S−、−SO−又は直接結合を表す。Rは、芳香族炭化水素基、芳香族複素環基又はアルキル基を表す。)で表されるベンゾチアゾール由来の骨格を有する化合物を含むことを特徴とする。
上記式(1)で表される化合物は、強い電子受容性骨格と電子供与性骨格を有するため、近赤外領域で発光する。
(In the formula, Ar 1 and Ar 2 are the same or different and each represents a group derived from any ring of a benzene ring, a thiophene ring, a furan ring, and a pyrrole ring, which may have a substituent. R 1 to R 4 is the same or different and represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 and R 2 and R 3 and R 4 may be bonded to each other. good .X is, -S -, - SO 2 - or .R 5 representing a direct bond, an aromatic hydrocarbon group, derived structure benzothiazole represented by the representative) an aromatic heterocyclic group or an alkyl group. It is characterized by including the compound which has.
Since the compound represented by the above formula (1) has a strong electron accepting skeleton and an electron donating skeleton, it emits light in the near infrared region.

上記式(1)におけるAr、Arは、同一又は異なって、置換基を有していてもよいベンゼン環、チオフェン環、フラン環、ピロール環のいずれかの環由来の基を表す。
ArやArがベンゼン環由来の基である場合、該ベンゼン環由来の基と−NRや−NRとの結合位置は特に制限されないが、ベンゾチアゾール由来の骨格と結合する炭素原子に対してパラ位の炭素原子で結合することが好ましい。
Arがチオフェン環、フラン環、ピロール環のいずれかの環由来の基である場合、ベンゾチアゾール由来の骨格との結合位置や−NRとの結合位置は特に制限されないが、2位の炭素原子でベンゾチアゾール由来の骨格と結合し、5位の炭素原子で−NRと結合することが好ましい。Arがチオフェン環、フラン環、ピロール環のいずれかの環由来の基である場合の、ベンゾチアゾール由来の骨格との結合位置や−NRとの結合位置も同様である。
これらの中でも、Ar、Arは、いずれもチオフェン環由来の基であることが好ましい。
なお、本発明において「環由来の基」とは、該環から水素原子を除いてできる基を表し、1価の基の場合は水素原子を1つ除いてできる基を意味し、2価の基の場合は水素原子を2つ除いてできる基を意味する。
Ar 1 and Ar 2 in the above formula (1) are the same or different and each represents a group derived from any ring of a benzene ring, a thiophene ring, a furan ring and a pyrrole ring which may have a substituent.
When Ar 1 or Ar 2 is a group derived from a benzene ring, the bonding position between the group derived from the benzene ring and —NR 1 R 2 or —NR 3 R 4 is not particularly limited, but is bonded to the skeleton derived from benzothiazole. It is preferable that the carbon atom is in a para position with respect to the carbon atom.
When Ar 1 is a group derived from any ring of a thiophene ring, a furan ring, and a pyrrole ring, the bonding position with the benzothiazole-derived skeleton and the bonding position with -NR 1 R 2 are not particularly limited, but the 2-position It is preferable that the carbon atom of is bonded to the skeleton derived from benzothiazole and the carbon atom at the 5-position is bonded to —NR 1 R 2 . The same applies to the bonding position with the benzothiazole-derived skeleton and the bonding position with -NR 3 R 4 when Ar 2 is a group derived from any ring of a thiophene ring, a furan ring, and a pyrrole ring.
Of these, Ar 1 and Ar 2 are preferably both groups derived from a thiophene ring.
In the present invention, the “ring-derived group” means a group formed by removing a hydrogen atom from the ring, and in the case of a monovalent group, it means a group formed by removing one hydrogen atom. In the case of a group, it means a group formed by removing two hydrogen atoms.

上記置換基を有していてもよいベンゼン環、チオフェン環、フラン環、ピロール環由来の基における置換基としては、例えば、芳香族炭化水素基;芳香族複素環基;ハロゲン原子;シアノ基;炭素数1〜18のアルキル基;炭素数1〜12のアルコキシ基;炭素数6〜12のアリールオキシ基;炭素数2〜12のアルキルアミノ基;炭素数7〜18のアリールアミノ基等が挙げられる。 Examples of the substituent in the benzene ring, thiophene ring, furan ring or pyrrole ring-derived group which may have a substituent include an aromatic hydrocarbon group; an aromatic heterocyclic group; a halogen atom; a cyano group; Examples include an alkyl group having 1 to 18 carbon atoms; an alkoxy group having 1 to 12 carbon atoms; an aryloxy group having 6 to 12 carbon atoms; an alkylamino group having 2 to 12 carbon atoms; and an arylamino group having 7 to 18 carbon atoms. Be done.

上記芳香族炭化水素基を形成する芳香族炭化水素環としては、炭素数6〜18のものが好適なものとして挙げられ、具体的にはベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環がより好適なものとして挙げられる。
上記芳香族炭化水素基の炭素数の上限は、14であることが好ましく、10であることがより好ましく、具体的にはベンゼン由来の基が特に好ましい。
Preferable examples of the aromatic hydrocarbon ring forming the aromatic hydrocarbon group include those having 6 to 18 carbon atoms, specifically, aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene. Are more preferred.
The upper limit of the carbon number of the aromatic hydrocarbon group is preferably 14, more preferably 10, and specifically, a group derived from benzene is particularly preferable.

上記芳香族複素環基を形成する芳香族複素環は、炭素、水素以外の原子であるヘテロ原子を環構成原子として含有する芳香環であり、炭素数2〜12のものが好適なものとして挙げられ、具体的には、トリアゾール、イミダゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、ピラゾール、ピロール、インドール、カルバゾール、フラン、ベンゾフラン、ジベンゾフラン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン等の五員環複素環;ピリジン、ピラジン、ピリミジン、トリアジン等の六員環複素環が好適なものとして挙げられる。
上記芳香族複素環基としては、これらの中でも炭素数の上限が8であることが好ましく、6であることがより好ましく、5であることが更に好ましい。また、該炭素数の下限が2であることが好ましく、3であることが更に好ましい。上記芳香族複素環基を形成する芳香族複素環としては、ピリジン、ピラジン、フラン、ピロール、チオフェン、ピロリドン等の窒素原子を有するものが特に好適なものとして挙げられる。
The aromatic heterocycle forming the aromatic heterocyclic group is an aromatic ring containing a hetero atom which is an atom other than carbon and hydrogen as a ring-constituting atom, and ones having 2 to 12 carbon atoms are preferred. Specifically, a five-membered heterocyclic ring such as triazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyrazole, pyrrole, indole, carbazole, furan, benzofuran, dibenzofuran, thiophene, benzothiophene, dibenzothiophene; Six-membered heterocycles such as pyridine, pyrazine, pyrimidine and triazine are preferred.
Among these, the aromatic heterocyclic group preferably has an upper limit of 8 carbon atoms, more preferably 6 carbon atoms, and even more preferably 5. Further, the lower limit of the carbon number is preferably 2, and more preferably 3. As the aromatic heterocycle forming the aromatic heterocyclic group, those having a nitrogen atom such as pyridine, pyrazine, furan, pyrrole, thiophene and pyrrolidone are particularly preferable.

上記ハロゲン原子は、フッ素原子又は塩素原子であることが好ましく、中でもフッ素原子がより好ましい。 The halogen atom is preferably a fluorine atom or a chlorine atom, and more preferably a fluorine atom.

上記炭素数1〜18のアルキル基としては、例えば炭素数1〜18の直鎖状アルキル基、炭素数3〜18の分岐鎖状アルキル基、炭素数3〜18のシクロアルキル基が好適なものとして挙げられる。
上記炭素数1〜18の直鎖状アルキル基としては具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−デシル基等が挙げられる。
上記炭素数3〜18の分岐鎖状アルキル基としては具体的には、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、イソヘキシル基、2−エチルヘキシル基等が挙げられる。
上記炭素数3〜18のシクロアルキル基としては具体的には、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等が挙げられる。
Preferred examples of the alkyl group having 1 to 18 carbon atoms include a linear alkyl group having 1 to 18 carbon atoms, a branched alkyl group having 3 to 18 carbon atoms, and a cycloalkyl group having 3 to 18 carbon atoms. As.
Specific examples of the linear alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, Examples thereof include n-octyl group and n-decyl group.
Specific examples of the branched chain alkyl group having 3 to 18 carbon atoms include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, an isohexyl group and a 2-ethylhexyl group.
Specific examples of the cycloalkyl group having 3 to 18 carbon atoms include cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.

上記炭素数1〜12のアルコキシ基は、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基等の直鎖状又は分岐鎖状のものが好適なものとして挙げられる。 The alkoxy group having 1 to 12 carbon atoms is a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group. Preferred are straight-chain or branched-chain ones such as n-heptyloxy group and n-octyloxy group.

上記炭素数6〜12のアリールオキシ基としては、フェニルオキシ基、ベンジルオキシ基等が挙げられる。
上記炭素数2〜12のアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ピロジニル基、ピペリジニル基、モルホリニル基等の炭素数2〜12の非環状又は環状ジアルキルアミノ基が好適なものとして挙げられる。
上記炭素数7〜18のアリールアミノ基としては、N−メチル−N−フェニルアミノ基等のN−アルキル−N−アリールアミノ基;ジフェニルアミノ基、カルバゾリル基、フェノキサジニル基、フェノチアジニル基等の炭素数12〜18のジアリールアミノ基等が好適なものとして挙げられる。
Examples of the aryloxy group having 6 to 12 carbon atoms include a phenyloxy group and a benzyloxy group.
Preferred examples of the alkylamino group having 2 to 12 carbon atoms include an acyclic or cyclic dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group, a diethylamino group, a pyridinyl group, a piperidinyl group and a morpholinyl group. ..
Examples of the arylamino group having 7 to 18 carbon atoms include N-alkyl-N-arylamino groups such as N-methyl-N-phenylamino group; carbons such as diphenylamino group, carbazolyl group, phenoxazinyl group and phenothiazinyl group. Preferable examples are diarylamino groups of the formulas 12-18.

なお、上記置換基は、本発明の効果を発揮できる限り、ハロゲン原子やヘテロ原子、アルキル基、アルコキシ基、アルケニル基、アルキニル基、芳香環由来の基等で更に置換されていてもよい。置換基が結合する位置や数は特に限定されない。 The substituent may be further substituted with a halogen atom, a hetero atom, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, a group derived from an aromatic ring, or the like as long as the effects of the present invention can be exhibited. The position and number of the substituent bonded are not particularly limited.

上記式(1)におけるR〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基又は芳香族複素環基を表し、RとR、RとRはそれぞれ結合していてもよい。
〜Rで表される環が芳香族複素環基である場合、該芳香族複素環基とN原子とは芳香族複素環の2位の炭素原子で結合することが好ましい。また、Rが芳香族複素環基であって、RとRとが結合する場合、該芳香族複素環の3位の炭素原子でRと結合することが好ましい。Rが芳香族複素環基であって、RとRとが結合する場合や、R又はRが芳香族複素環基であって、RとRとが結合する場合も同様に、芳香族複素環の3位の炭素原子で結合することが好ましい。
が芳香族炭化水素基であって、RとRとが結合する場合、該芳香族炭化水素環の、N原子と結合する炭素原子のオルト位の炭素原子でRと結合することが好ましい。Rが芳香族炭化水素基であって、RとRとが結合する場合や、R又はRが芳香族炭化水素基であって、RとRとが結合する場合も同様に、芳香族炭化水素環の、N原子と結合する炭素原子のオルト位の炭素原子で結合することが好ましい。
R 1 to R 4 in the above formula (1) are the same or different and each represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 and R 2 , R 3 and Each R 4 may be bonded.
When the ring represented by R 1 to R 4 is an aromatic heterocyclic group, the aromatic heterocyclic group and the N atom are preferably bonded to each other at the carbon atom at the 2-position of the aromatic heterocycle. Further, when R 1 is an aromatic heterocyclic group and R 1 and R 2 are bonded to each other, it is preferable that R 3 is bonded to the carbon atom at the 3-position of the aromatic heterocycle. When R 2 is an aromatic heterocyclic group and R 1 and R 2 are bonded to each other, or when R 3 or R 4 is an aromatic heterocyclic group and R 3 and R 4 are bonded to each other Similarly, it is preferable to bond at the carbon atom at the 3-position of the aromatic heterocycle.
And R 1 is an aromatic hydrocarbon group, if R 1 and R 2 are attached, the aromatic hydrocarbon ring, bond and R 2 in the ortho-position carbon atom of the carbon atom bonded to the N atom Preferably. When R 2 is an aromatic hydrocarbon group and R 1 and R 2 are bonded to each other, or when R 3 or R 4 is an aromatic hydrocarbon group and R 3 and R 4 are bonded to each other Similarly, it is preferable to bond at the carbon atom in the ortho position of the carbon atom bonded to the N atom of the aromatic hydrocarbon ring.

上記R〜Rにおける芳香族炭化水素基、芳香族複素環基を形成する芳香族炭化水素環や、芳香族複素環の具体例としては、上述したAr、Arの置換基の具体例に含まれる芳香族炭化水素基や芳香族複素環基における芳香族炭化水素環、芳香族複素環の具体例と同様のものが挙げられる。
これらの中でも、R〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基又はチオフェン環基であることが好ましい。
Specific examples of the aromatic hydrocarbon ring forming the aromatic hydrocarbon group and the aromatic heterocyclic group in R 1 to R 4 and the aromatic heterocycle include specific examples of the substituents of Ar 1 and Ar 2 described above. Specific examples of the aromatic hydrocarbon ring and aromatic heterocycle in the aromatic hydrocarbon group and aromatic heterocyclic group included in the examples are the same.
Among these, it is preferable that R 1 to R 4 are the same or different and are an aromatic hydrocarbon group or a thiophene ring group which may have a substituent.

上記R〜Rが置換基を有する芳香族炭化水素基や芳香族複素環基である場合の置換基の具体例としては、上述したAr、Arにおける置換基の具体例と同様のものが挙げられる。 Specific examples of the substituent in the case where R 1 to R 4 are an aromatic hydrocarbon group having a substituent or an aromatic heterocyclic group are the same as the specific examples of the substituent in Ar 1 and Ar 2 described above. There are things.

上記式(1)におけるRは、芳香族炭化水素基、芳香族複素環基又はアルキル基を表す。
芳香族炭化水素基、芳香族複素環基を形成する芳香族炭化水素環や、芳香族複素環の具体例としては、上述したAr、Arの置換基の具体例に含まれる芳香族炭化水素環基や芳香族複素環基における芳香族炭化水素環、芳香族複素環の具体例と同様のものが挙げられる。
アルキル基としては、上述したAr、Arの置換基の具体例における炭素数1〜18のアルキル基と同様のものが挙げられる。これらの中でも、メチル基、エチル基、イソプロピル基、tert−ブチル基、2-エチルヘキシル基のいずれかが好ましい。より好ましくは、メチル基、エチル基のいずれかである。
R 5 in the above formula (1) represents an aromatic hydrocarbon group, an aromatic heterocyclic group or an alkyl group.
Specific examples of the aromatic hydrocarbon ring forming the aromatic hydrocarbon group and the aromatic heterocyclic group, and specific examples of the aromatic heterocycle include aromatic hydrocarbons contained in the specific examples of the substituents of Ar 1 and Ar 2 described above. Specific examples of the aromatic hydrocarbon ring and aromatic heterocycle in the hydrogen ring group and aromatic heterocycle group are the same.
Examples of the alkyl group include the same groups as the alkyl groups having 1 to 18 carbon atoms in the specific examples of the substituents of Ar 1 and Ar 2 described above. Of these, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, or a 2-ethylhexyl group is preferable. More preferably, it is either a methyl group or an ethyl group.

上記式(1)で表されるベンゾチアゾール由来の骨格を有する化合物の合成方法は特に制限されないが、例えば、特開2015−172131号公報または特開2017−59668を参考に、以下のいずれかの反応により合成することができる。なお、下記反応スキーム中、DMAPはN,N−ジメチル−4−アミノピリジンを、MWはマイクロウェーブを、ODCBはオルトジクロロベンゼンを表す。また、DMFはN,N−ジメチルホルムアミド、mCPBAはメタ−クロロ過安息香酸を表し、Xはヨウ素原子、臭素原子または塩素原子であり、Mはクロスカップリング反応に用いられる金属置換基(ホウ素、すず、亜鉛、マグネシウム等)を表す。 The method of synthesizing the compound having a benzothiazole-derived skeleton represented by the above formula (1) is not particularly limited, but for example, referring to JP-A-2015-172131 or JP-A-2017-59668, one of the following It can be synthesized by a reaction. In the reaction scheme below, DMAP represents N,N-dimethyl-4-aminopyridine, MW represents microwave, and ODCB represents orthodichlorobenzene. Further, DMF represents N,N-dimethylformamide, mCPBA represents meta-chloroperbenzoic acid, X 1 represents an iodine atom, a bromine atom or a chlorine atom, and M represents a metal substituent (boron) used in the cross coupling reaction. , Tin, zinc, magnesium, etc.).

Figure 2020094122
Figure 2020094122

Figure 2020094122
Figure 2020094122

本発明の発光材料は、800nm以上の領域に発光波長を有する材料であり、有機電界発光素子の発光層の材料として用いることで、800nm以上の領域に発光波長を有し、かつ、高出力な有機電界発光素子を得ることができる。このような有機電界発光素子、すなわち、陽極と陰極との間に発光層を含む複数の層が積層された構造を有する有機電界発光素子であって、該発光層は、本発明の発光材料を含む有機電界発光素子もまた、本発明の1つである。 The light emitting material of the present invention is a material having an emission wavelength in a region of 800 nm or more, and when used as a material of a light emitting layer of an organic electroluminescent device, it has an emission wavelength in a region of 800 nm or more and has a high output. An organic electroluminescent device can be obtained. Such an organic electroluminescent device, that is, an organic electroluminescent device having a structure in which a plurality of layers including a light emitting layer are laminated between an anode and a cathode, and the light emitting layer comprises the light emitting material of the present invention. An organic electroluminescent device containing the same is also included in the present invention.

本発明の有機電界発光素子は、陽極と陰極との間に発光層を含む複数の層が積層された構造を有する限り、積層構造は特に制限されず、陽極、陰極、発光層の他に電子注入層、電子輸送層、正孔輸送層、正孔注入層、正孔阻止層等の1つ又は2つ以上を有するものであってもよい。
発光層以外の有機電界発光素子を構成する陽極、陰極や各層の材料としては公知の材料を用いることができる。
The organic electroluminescent element of the present invention is not particularly limited in the laminated structure as long as it has a structure in which a plurality of layers including a light emitting layer are laminated between an anode and a cathode, and an electron, an anode, a cathode and a light emitting layer are also included. It may have one or more of an injection layer, an electron transport layer, a hole transport layer, a hole injection layer, a hole blocking layer, and the like.
Known materials can be used as materials for the anode, the cathode, and each layer constituting the organic electroluminescent element other than the light emitting layer.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「%」は「モル質量%」を意味するものとする。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, "%" means "mol mass%" unless otherwise specified.

(合成例1) 2−(メチルチオ)−1,3−ベンゾチアゾール−5,6−ジアミン(化合物1)の合成 (Synthesis Example 1) Synthesis of 2-(methylthio)-1,3-benzothiazole-5,6-diamine (Compound 1)

Figure 2020094122
Figure 2020094122

1L二口フラスコに2−クロロ−5−ニトロベンゼン−1,4−ジアミン(10.0g,53.3mmol)、エチルキサントゲン酸ナトリウム(16.9g、117mmol)、ジメチルホルムアミド(350mL)を入れ、100℃で2.5時間撹拌した。この反応溶液を水浴で冷却し、ヨウ化メチル(8.29mL,133mol)を滴下後、17.5時間撹拌した。反応溶液を水に投入し、析出した固体をろ取、減圧下、50℃で乾燥した。得られた固体を1L二口ナスフラスコに入れ、次いで塩化すず二水和物(55.0g、244mmol)、水(68mL)、塩酸(12M、1.8mL、22mmol)を加え、70℃で22時間加熱撹拌した。反応溶液を濃縮し、飽和炭酸水素ナトリウム水溶液(500mL)で中和した後、析出した固体をろ取した。この個体を減圧下、50℃で乾燥後、シリカゲルカラムクロマトグラフィーで精製することにより、化合物1を11.3g(収率65%)得た。
その物性値は以下の通りであった。
H−NMR(DMSO−d6);δ6.98(s,1H),6.92(s,1H),4.76(s,2H),4.71(s,2H),2.67(s,3H).13C−NMR(DMSO−d6):159.39,146.14,135.58,134.84,123.38,105.32,103.97,15.65.
2-Chloro-5-nitrobenzene-1,4-diamine (10.0 g, 53.3 mmol), sodium ethyl xanthate (16.9 g, 117 mmol), and dimethylformamide (350 mL) were placed in a 1 L two-necked flask, and the temperature was 100°C. Stirred for 2.5 hours. The reaction solution was cooled in a water bath, methyl iodide (8.29 mL, 133 mol) was added dropwise, and the mixture was stirred for 17.5 hours. The reaction solution was poured into water, the precipitated solid was collected by filtration, and dried under reduced pressure at 50°C. The obtained solid was put in a 1 L two-necked eggplant flask, and then tin chloride dihydrate (55.0 g, 244 mmol), water (68 mL) and hydrochloric acid (12M, 1.8 mL, 22 mmol) were added, and the mixture was heated at 70° C. for 22 minutes. The mixture was heated and stirred for hours. The reaction solution was concentrated, neutralized with saturated aqueous sodium hydrogen carbonate solution (500 mL), and the precipitated solid was collected by filtration. The solid was dried under reduced pressure at 50° C. and purified by silica gel column chromatography to obtain 11.3 g of Compound 1 (yield 65%).
The physical properties were as follows.
1 H-NMR (DMSO-d6); δ 6.98 (s, 1H), 6.92 (s, 1H), 4.76 (s, 2H), 4.71 (s, 2H), 2.67 ( s, 3H). 13 C-NMR (DMSO-d6): 159.39, 146.14, 135.58, 134.84, 123.38, 105.32, 103.97, 15.65.

(合成例2) 6−(メチルチオ)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物2)の合成 Synthesis Example 2 Synthesis of 6-(methylthio)thiadiazolo[5,4-f]-2,1,3-benzothiadiazole (Compound 2)

Figure 2020094122
Figure 2020094122

500mL二口フラスコに、化合物1(3.0g,14.2mmol)、トリエチルアミン(15.8mL,114mmol)、ジクロロメタン(200mL)を入れ、氷浴中で拡販した。これに塩化チオニル(4.2mL,57.9mmol)を滴下し、室温で17時間撹拌した。この反応溶液を飽和炭酸水素ナトリウム水溶液で中和し、水層をジクロロメタンで抽出した。合わせた有機層を硫酸ナトリウムで乾燥後、濾過して濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物2を3.21g得た。(収率94%)
その物性値は以下の通りであった。
H−NMR(CDCl):δ8.37(s,1H),8.32(s,1H),2.87(s,3H);13C−NMR(CDCl):172.94,155.69,153.93,152.00,140.61,111.68,110.53,15.76.
The compound 1 (3.0 g, 14.2 mmol), triethylamine (15.8 mL, 114 mmol), and dichloromethane (200 mL) were put into a 500 mL two-necked flask, and sales were expanded in an ice bath. Thionyl chloride (4.2 mL, 57.9 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 17 hours. The reaction solution was neutralized with saturated aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated, and the obtained residue was purified by silica gel column chromatography to obtain 3.21 g of compound 2. (Yield 94%)
The physical properties were as follows.
1 H-NMR (CDCl 3 ): δ 8.37 (s, 1H), 8.32 (s, 1H), 2.87 (s, 3H); 13 C-NMR (CDCl 3 ): 172.94, 155. .69, 153.93, 152.00, 140.61, 111.68, 110.53, 15.76.

(合成例3) 4,8−ジブロモ−6−(メチルチオ)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物3)の合成 (Synthesis example 3) Synthesis of 4,8-dibromo-6-(methylthio)thiadiazolo[5,4-f]-2,1,3-benzothiadiazole (Compound 3)

Figure 2020094122
Figure 2020094122

100mL二口フラスコに化合物2(3.16g,13.2mmol)、塩化鉄(III)六水和物(2.16g,7.99mmol)を入れ、これに臭素(22.0mL,427mmol)を加えた。この混合物を50℃で5時間加熱撹拌した後、飽和炭酸水素ナトリウム水溶液をゆっくり加えた。析出固体をろ取し、水で洗浄後、減圧下50℃で乾燥させた。これをシリカゲルカラムクロマトグラフィーで精製することにより化合物3を4.85g得た。(収率92%)
この物性値は以下の通りであった。
H−NMR(CDCl):δ2.92(s,3H);13C−NMR(CDCl):173.60,152.53,152.15,149.82,142.84,102.96,102.37,16.15.
Compound 2 (3.16 g, 13.2 mmol) and iron(III) chloride hexahydrate (2.16 g, 7.99 mmol) were placed in a 100 mL two-necked flask, and bromine (22.0 mL, 427 mmol) was added thereto. It was The mixture was heated with stirring at 50° C. for 5 hours, and then saturated aqueous sodium hydrogen carbonate solution was slowly added. The precipitated solid was collected by filtration, washed with water, and dried under reduced pressure at 50°C. This was purified by silica gel column chromatography to obtain 4.85 g of compound 3. (Yield 92%)
The physical properties were as follows.
1 H-NMR (CDCl 3) : δ2.92 (s, 3H); 13 C-NMR (CDCl 3): 173.60,152.53,152.15,149.82,142.84,102.96 , 102.37, 16.15.

(実施例1) 4,8−ビス[5−(N,N−ジフェニルアミノ)チオフェン−2−イル]−6−(メチルチオ)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物4)の合成 Example 1 4,8-Bis[5-(N,N-diphenylamino)thiophen-2-yl]-6-(methylthio)thiadiazolo[5,4-f]-2,1,3-benzothiadiazole Synthesis of (Compound 4)

Figure 2020094122
Figure 2020094122

200mL二口フラスコに化合物3(2.00g,5.04mmol)、Pd(PBu(257mg,0.50mmol)、5−(N,N−ジフェニルアミノ)−2−トリブチルスタニルチオフェン(6.80g,12.59mmol)、THF(100mL)を入れ、70℃で15時間撹拌した。室温まで放冷後、濃縮し、残渣をシリカゲルクロマトグラフィーにより化合物4の粗精製物を得た、これをジクロロメタンでの分散洗浄、およびアセトンで分散洗浄後、化合物4を1.50g得た。(収率40%)
その物性値は以下の通りであった。
H−NMR(acetone−d6):δ8.86(d,1H,J=4.0Hz),7.89(d,1H,J=4.0Hz),7.37−7.42(m,8H),7.31(d,4H,J=8.0Hz),7.26(d,4H,J=8.0Hz),7.13−7.19(m,4H),6.82(d,1H,J=4.0Hz),6.73(d,1H,J=4.0Hz),2.77(s,3H).
また、化合物4の蛍光スペクトル(日立ハイテクサイエンス社製 蛍光分光光度計F−7000、溶媒:クロロホルム)の測定の結果を図2に示す。
Compound 3 (2.00 g, 5.04 mmol), Pd(P t Bu 3 ) 2 (257 mg, 0.50 mmol), 5-(N,N-diphenylamino)-2-tributylstannylthiophene in a 200 mL two-necked flask. (6.80 g, 12.59 mmol) and THF (100 mL) were added, and the mixture was stirred at 70° C. for 15 hours. After allowing to cool to room temperature, the mixture was concentrated, and the residue was subjected to silica gel chromatography to obtain a crude purified product of compound 4. This was dispersed and washed with dichloromethane and with acetone to obtain 1.50 g of compound 4. (Yield 40%)
The physical properties were as follows.
1 H-NMR (acetone-d6): δ8.86 (d, 1H, J=4.0 Hz), 7.89 (d, 1H, J=4.0 Hz), 7.37-7.42 (m, 8H), 7.31 (d, 4H, J=8.0 Hz), 7.26 (d, 4H, J=8.0 Hz), 7.13-7.19 (m, 4H), 6.82( d, 1H, J=4.0 Hz), 6.73 (d, 1H, J=4.0 Hz), 2.77 (s, 3H).
In addition, the result of measurement of the fluorescence spectrum of Compound 4 (fluorescence spectrophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd., solvent: chloroform) is shown in FIG.

(合成例4) 4,8−ジブロモ−6−(メチルスルホニル)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物5)の合成 (Synthesis Example 4) Synthesis of 4,8-dibromo-6-(methylsulfonyl)thiadiazolo[5,4-f]-2,1,3-benzothiadiazole (Compound 5)

Figure 2020094122
Figure 2020094122

100mL二口フラスコに化合物3(199mg,0.50mmol)、クロロホルム(40mL)を入れ、撹拌しながらmCPBA(493mg,2.00mmol)を加えた。室温で30時間撹拌後、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を硫酸ナトリウムで乾燥し、濾過して濃縮後、残渣をカラムクロマトグラフィーで精製し、化合物5を157mg得た。(収率73%)
その物性値は以下の通りであった。
H−NMR(CDCl):δ3.54(s,3H);13C−NMR(CDCl):δ171.12,152.29,151.09,150.88,141.59,110.45,104.85,41.70.
Compound 3 (199 mg, 0.50 mmol) and chloroform (40 mL) were placed in a 100 mL two-necked flask, and mCPBA (493 mg, 2.00 mmol) was added with stirring. After stirring at room temperature for 30 hours, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The organic layer was dried over sodium sulfate, filtered and concentrated, and the residue was purified by column chromatography to obtain 157 mg of compound 5. (Yield 73%)
The physical properties were as follows.
1 H-NMR (CDCl 3) : δ3.54 (s, 3H); 13 C-NMR (CDCl 3): δ171.12,152.29,151.09,150.88,141.59,110.45 , 104.85, 41.70.

(実施例2) 4,8−ビス[5−(N,N−ジフェニルアミノ)チオフェン−2−イル]−6−(メチルスルホニル)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物6)の合成 Example 2 4,8-Bis[5-(N,N-diphenylamino)thiophen-2-yl]-6-(methylsulfonyl)thiadiazolo[5,4-f]-2,1,3-benzo Synthesis of thiadiazole (compound 6)

Figure 2020094122
Figure 2020094122

200mL二口フラスコに化合物5(2.25g,5.24mmol)、Pd(PBu(268mg,0.52mmol)、5−(N,N−ジフェニルアミノ)−2−トリブチルスタニルチオフェン(7.08g,13.11mmol)、THF(105mL)を入れ、70℃で15時間撹拌した。室温まで放冷後、濃縮し、残渣をシリカゲルクロマトグラフィーにより化合物6の粗精製物を得た、これをジクロロメタンでの分散洗浄、次いでアセトンで分散洗浄後、化合物6を1.44g得た。(収率36%)
その物性値は以下の通りであった。
H−NMR(CDCl):δ8.76(d,1H,J=4.5Hz),7.85(d,1H,J=4.5Hz),7.30−7.37(m,12H),7.25(d,4H,J=7.5Hz),7.11−7.18(m,4H),6.75(d,1H,J=4.5Hz),6.69(d,1H,J=4.5Hz),3.34(s,3H).
また、化合物6の蛍光スペクトル(日立ハイテクサイエンス社製 蛍光分光光度計F−7000、溶媒:クロロホルム)の測定の結果を図2に示す。
Compound 5 (2.25 g, 5.24 mmol), Pd(P t Bu 3 ) 2 (268 mg, 0.52 mmol), 5-(N,N-diphenylamino)-2-tributylstannylthiophene in a 200 mL two-necked flask. (7.08 g, 13.11 mmol) and THF (105 mL) were added, and the mixture was stirred at 70° C. for 15 hours. After cooling to room temperature, the mixture was concentrated, and the residue was subjected to silica gel chromatography to obtain a crude purified product of compound 6, which was dispersed and washed with dichloromethane and then with acetone to obtain 1.44 g of compound 6. (36% yield)
The physical properties were as follows.
1 H-NMR (CD 2 Cl 2 ): δ 8.76 (d, 1 H, J=4.5 Hz), 7.85 (d, 1 H, J=4.5 Hz), 7.30-7.37 (m , 12H), 7.25 (d, 4H, J=7.5Hz), 7.11-7.18 (m, 4H), 6.75 (d, 1H, J=4.5Hz), 6.69. (D, 1H, J=4.5 Hz), 3.34 (s, 3H).
Moreover, the result of the measurement of the fluorescence spectrum of Compound 6 (Fluorescence spectrophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd., solvent: chloroform) is shown in FIG.

(有機電界発光素子の作製)
(実施例3)
工程[1]
市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極(陽極)は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間蒸気洗浄を行った。この基板を窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
工程[2]
次に、陽極が形成された基板1を、真空蒸着装置の基板ホルダーに固定した。また、酸化モリブデン(MoO)と、下記式(2)で示されるN,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン(α−NPD)と、実施例1で合成した4,8−ビス[5−(N,N−ジフェニルアミノ)チオフェン−2−イル]−6−(メチルチオ)チアジアゾロ[5,4−f]−2,1,3−ベンゾチアジアゾール(化合物4)と、ルブレンと、トリス(8−キノリノラト)アルミニウム(Alq3)と、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)と、フッ化リチウム(LiF)と、Alとを、それぞれアルミナルツボに入れて蒸着源にセットした。
そして、下記工程[3]、[4]のようにして、真空蒸着装置のチャンバー内を1×10−5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8を連続して形成した。
工程[3]
まず、MoO3からなる厚み0.75nmの正孔注入層3を形成した。次に、正孔輸送層4としてα−NPDを40nm形成した。
工程[4]
続いて、発光層5として、化合物4を10nm形成した。さらに、電子輸送層6、電子注入層7として、それぞれAlq3を20nm、LiFを1nm製膜した。最後に、Alを100nm製膜し陰極8とした。なお、陰極8は、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるように形成し、作製した有機EL素子の発光面積を4mmとした。
各層の平均厚さは、水晶振動子膜厚計により製膜時に測定した。 これにより有機電界発光素子1を作製した。
(Fabrication of organic electroluminescent device)
(Example 3)
Process [1]
A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, the ITO electrode (anode) of the substrate used was patterned to have a width of 2 mm. This substrate was ultrasonically cleaned in acetone and isopropanol for 10 minutes each, and then steam cleaned in isopropanol for 5 minutes. This substrate was dried by nitrogen blow, and UV ozone cleaning was performed for 20 minutes.
Process [2]
Next, the substrate 1 on which the anode was formed was fixed to the substrate holder of the vacuum vapor deposition device. In addition, molybdenum oxide (MoO 3 ) and N,N′-di(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine represented by the following formula (2) are shown. (Α-NPD) and 4,8-bis[5-(N,N-diphenylamino)thiophen-2-yl]-6-(methylthio)thiadiazolo[5,4-f]− synthesized in Example 1. 2,1,3-benzothiadiazole (Compound 4), rubrene, tris(8-quinolinolato)aluminum (Alq3), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) Lithium fluoride (LiF) and Al were placed in an alumina crucible and set in a vapor deposition source.
Then, as in the following steps [3] and [4], the inside of the chamber of the vacuum vapor deposition apparatus is decompressed to a pressure of 1×10 −5 Pa, and the hole injection layer is formed by a vacuum vapor deposition method by resistance heating. 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, the electron injection layer 7, and the cathode 8 were successively formed.
Process [3]
First, the hole injection layer 3 made of MoO 3 and having a thickness of 0.75 nm was formed. Next, α-NPD having a thickness of 40 nm was formed as the hole transport layer 4.
Process [4]
Then, the compound 4 was formed in 10 nm as the light emitting layer 5. Further, as the electron transport layer 6 and the electron injection layer 7, Alq3 of 20 nm and LiF of 1 nm were formed. Finally, a film of Al having a thickness of 100 nm was formed to form the cathode 8. The cathode 8 was formed using a stainless steel vapor deposition mask so that the vapor deposition surface had a strip shape with a width of 2 mm, and the organic EL device produced had an emission area of 4 mm 2 .
The average thickness of each layer was measured at the time of film formation by a crystal oscillator film thickness meter. This produced the organic electroluminescent element 1.

Figure 2020094122
Figure 2020094122

(実施例4)
実施例3の工程[4]のかわりに、以下の工程[4−2]を行うことにより有機電界発光素子2を作製した。
工程[4−2]
続いて、発光層5として、化合物4とルブレンの共蒸着により25nmの膜を形成した。比率は、化合物4は質量比で4%となるように、水晶振動子膜厚計を用いて制御した。さらに、電子輸送層6、電子注入層7として、BCPを80nm、LiFを1nm製膜した。最後に、Alを100nm製膜し陰極8とした。なお、陰極8は、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるように形成し、作製した有機EL素子の発光面積を4mmとした。各層の平均厚さは、水晶振動子膜厚計により製膜時に測定した。 これにより有機電界発光素子2を作製した。
(Example 4)
Instead of the step [4] of Example 3, the following step [4-2] was carried out to fabricate the organic electroluminescent element 2.
Process [4-2]
Subsequently, as the light emitting layer 5, a film having a thickness of 25 nm was formed by co-evaporation of the compound 4 and rubrene. The ratio was controlled using a quartz oscillator film thickness meter so that the compound 4 had a mass ratio of 4%. Further, as the electron transport layer 6 and the electron injection layer 7, BCP of 80 nm and LiF of 1 nm were formed. Finally, a film of Al having a thickness of 100 nm was formed to form the cathode 8. The cathode 8 was formed using a stainless steel vapor deposition mask so that the vapor deposition surface had a strip shape with a width of 2 mm, and the light emitting area of the produced organic EL element was 4 mm 2 . The average thickness of each layer was measured at the time of film formation by a crystal oscillator film thickness meter. This produced the organic electroluminescent element 2.

(実施例5)
実施例3の工程[4]のかわりに、以下の工程[4−3]により有機電界発光素子3を作製した。
工程[4−3]
続いて、発光層5として、化合物4とルブレンの共蒸着により25nmの膜を形成した。比率は、化合物4は質量比で4%となるように、水晶振動子膜厚計を用いて制御した。さらに、電子輸送層6、電子注入層7として、BCPを40nm、LiFを1nm製膜した。最後に、Alを100nm製膜し陰極8とした。なお、陰極8は、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるように形成し、作製した有機EL素子の発光面積を4mmとした。各層の平均厚さは、水晶振動子膜厚計により製膜時に測定した。 これにより有機電界発光素子3を作製した。
(Example 5)
Instead of the step [4] of Example 3, the organic electroluminescent element 3 was produced by the following step [4-3].
Process [4-3]
Subsequently, as the light emitting layer 5, a film having a thickness of 25 nm was formed by co-evaporation of the compound 4 and rubrene. The ratio was controlled using a quartz oscillator film thickness meter so that the compound 4 had a mass ratio of 4%. Further, as the electron transport layer 6 and the electron injection layer 7, BCP of 40 nm and LiF of 1 nm were formed. Finally, a film of Al having a thickness of 100 nm was formed to form the cathode 8. The cathode 8 was formed using a stainless steel vapor deposition mask so that the vapor deposition surface had a strip shape with a width of 2 mm, and the light emitting area of the produced organic EL element was 4 mm 2 . The average thickness of each layer was measured at the time of film formation by a crystal oscillator film thickness meter. This produced the organic electroluminescent element 3.

(有機電界発光素子の発光特性測定)
実施例3〜5で作製した有機電界発光素子1〜3について、ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と電流測定を行った。また、1000nmまで測定可能なフォトディテクタを用いることにより、放射照度を測定した。測定はアルゴン雰囲気下で行った。
実施例3〜5の結果を図3〜5に示す。
(Measurement of emission characteristics of organic electroluminescent device)
With respect to the organic electroluminescent elements 1 to 3 produced in Examples 3 to 5, voltage application and current measurement were performed on the elements with a "2400 type source meter" manufactured by Keithley. Also, the irradiance was measured by using a photodetector capable of measuring up to 1000 nm. The measurement was performed under an argon atmosphere.
The results of Examples 3 to 5 are shown in FIGS.

図3に示されているように、化合物4のみで発光層を形成した実施例3の有機電界発光素子1においても、ある程度の照度を発現している(図3:0.1mW/cm@10V)。また別途測定した蛍光スペクトル(図2)から、ピークトップが820nm程度であることを確認した。また、実施例4の有機電界発光素子2の結果である図4では、ホストゲストの発光層を用いることで、放射照度が0.8mW/cm@13Vに達している。有機電界発光素子2については、それに加えて駆動安定性が増したことを観測している。
さらに電子輸送層を薄膜化した実施例5の有機電界発光素子3の結果である図5では、放射照度が1mW/cm@8.5Vに達した。また別途測定した蛍光スペクトル(図2)から、ピークトップが850nm程度であることを確認した。
これらのことから、本発明のベンゾチアゾール由来の骨格を有する化合物は、近赤外発光材料として有用であることが示された。
As shown in FIG. 3, even in the organic electroluminescent device 1 of Example 3 in which the light emitting layer was formed only by the compound 4, some illuminance was exhibited (FIG. 3: 0.1 mW/cm 2 @). 10V). In addition, it was confirmed from a separately measured fluorescence spectrum (FIG. 2) that the peak top was about 820 nm. Further, in FIG. 4, which is a result of the organic electroluminescent device 2 of Example 4, the irradiance reaches 0.8 mW/cm 2 @13 V by using the light emitting layer of the host guest. Regarding the organic electroluminescent device 2, in addition to that, it is observed that the driving stability is increased.
In FIG. 5, which is the result of the organic electroluminescent device 3 of Example 5 in which the electron transport layer was further thinned, the irradiance reached 1 mW/cm 2 @8.5V. In addition, it was confirmed from a separately measured fluorescence spectrum (FIG. 2) that the peak top was about 850 nm.
From these, it was shown that the compound having a benzothiazole-derived skeleton of the present invention is useful as a near-infrared light emitting material.

1:基板
2:陽極
3:正孔注入層
4:正孔輸送層
5:発光層
6:電子輸送層
7:電子注入層
8:陰極
1: Substrate 2: Anode 3: Hole injection layer 4: Hole transport layer 5: Light emitting layer 6: Electron transport layer 7: Electron injection layer 8: Cathode

Claims (4)

下記式(1);
Figure 2020094122
(式中、Ar、Arは、同一又は異なって、置換基を有していてもよいベンゼン環、チオフェン環、フラン環、ピロール環のいずれかの環由来の基を表す。R〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基を表し、RとR、RとRはそれぞれ結合していてもよい。Xは、−S−、−SO−又は直接結合を表す。Rは、芳香族炭化水素基、芳香族複素環基又はアルキル基を表す。)で表されるベンゾチアゾール由来の骨格を有する化合物を含むことを特徴とする発光材料。
Formula (1) below;
Figure 2020094122
(In the formula, Ar 1 and Ar 2 are the same or different and each represents a group derived from any ring of a benzene ring, a thiophene ring, a furan ring, and a pyrrole ring, which may have a substituent. R 1 to R 4 is the same or different and represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and R 1 and R 2 and R 3 and R 4 may be bonded to each other. good .X is, -S -, - SO 2 - or .R 5 representing a direct bond, an aromatic hydrocarbon group, derived structure benzothiazole represented by the representative) an aromatic heterocyclic group or an alkyl group. A light emitting material comprising a compound having:
前記式(1)のAr、Arは、いずれもチオフェン環基であることを特徴とする請求項1に記載の発光材料。 The light emitting material according to claim 1 , wherein Ar 1 and Ar 2 in the formula (1) are both thiophene ring groups. 前記式(1)のR〜Rは、同一又は異なって、置換基を有していてもよい芳香族炭化水素基又はチオフェン環基であり、Rは、芳香族炭化水素基又はアルキル基であることを特徴とする請求項1又は2に記載の発光材料。 R 1 to R 4 in the above formula (1) are the same or different and are an aromatic hydrocarbon group or a thiophene ring group which may have a substituent, and R 5 is an aromatic hydrocarbon group or an alkyl group. It is a group, The light emitting material of Claim 1 or 2 characterized by the above-mentioned. 陽極と陰極との間に発光層を含む複数の層が積層された構造を有する有機電界発光素子であって、
該発光層は、請求項1〜3のいずれかに記載の発光材料を含むことを特徴とする有機電界発光素子。
An organic electroluminescence device having a structure in which a plurality of layers including a light emitting layer are laminated between an anode and a cathode,
An organic electroluminescent device comprising the light emitting layer containing the light emitting material according to claim 1.
JP2018232533A 2018-12-12 2018-12-12 Luminescent material and organic electroluminescent element based on the same Pending JP2020094122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232533A JP2020094122A (en) 2018-12-12 2018-12-12 Luminescent material and organic electroluminescent element based on the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232533A JP2020094122A (en) 2018-12-12 2018-12-12 Luminescent material and organic electroluminescent element based on the same

Publications (1)

Publication Number Publication Date
JP2020094122A true JP2020094122A (en) 2020-06-18

Family

ID=71084098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232533A Pending JP2020094122A (en) 2018-12-12 2018-12-12 Luminescent material and organic electroluminescent element based on the same

Country Status (1)

Country Link
JP (1) JP2020094122A (en)

Similar Documents

Publication Publication Date Title
KR102046983B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
JP7226718B2 (en) Organic light-emitting device, composition and film
JP5372867B2 (en) Novel organic compound and organic light emitting device using the same
JP5584702B2 (en) Organic electroluminescence device
TWI589562B (en) Spirobifluorene compounds for light emitting devices
US20040170863A1 (en) Organic electroluminescent devices using double-spiro organic compounds
KR20200100972A (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101627691B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101622821B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20140082847A (en) 4-aminocarbazole compound and use of same
KR101913628B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR102665302B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101666826B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
JP6579405B2 (en) Heterocyclic compound and organic light emitting device including the same
JP6624284B2 (en) Amine compound and organic light emitting device containing the same
JP6753545B1 (en) Nitrogen-containing heterocyclic compounds and their use
KR20200056059A (en) Novel compound and organic electroluminescent divice including the same
KR20140098502A (en) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
US10400001B2 (en) Heteroleptic iridium complex, and light-emitting material and organic light-emitting element using compound
JP5609234B2 (en) Biscarbazole compounds and uses thereof
JP6863590B2 (en) Red light emitting iridium complex and light emitting material and organic light emitting device using the compound
JP6420889B2 (en) Compound and organic electronic device using the same
WO2021220952A1 (en) Nitrogen-containing heterocyclic compound and use thereof
JP2020094122A (en) Luminescent material and organic electroluminescent element based on the same
JP7025885B2 (en) Nitrogen-containing condensed polycyclic complex aromatic ring compound